Finite quantum groups and quantum permutation groups

Julien Bichon
Université Blaise Pascal, Clermont-Ferrand II

Conference Hopf algebras and tensor categories
Almería, July 2011

Talk based on joint work with Teodor Banica and Sonia Natale
Quantum permutation algebras

We work over k, an algebraically closed field of characteristic zero.

Definition

A quantum permutation algebra is a Hopf algebra generated (as an algebra) by the coefficients of a matrix $x = (x_{ij}) \in M_n(H)$ such that

1. x is a permutation matrix: for all $i, j, k \in \{1, \ldots, n\}$
 \[
 \sum_{l=1}^{n} x_{li} = 1 = \sum_{l=1}^{n} x_{il}, \quad x_{ij}x_{ik} = \delta_{kj}x_{ij}, \quad x_{ji}x_{ki} = \delta_{jk}x_{ji}
 \]

2. x is a multiplicative matrix: for all $i, j \in \{1, \ldots, n\}$
 \[
 \Delta(x_{ij}) = \sum_{l=1}^{n} x_{il} \otimes x_{lj}, \quad \varepsilon(x_{ij}) = \delta_{ij}, \quad S(x_{ij}) = x_{ji}
 \]
Definition

A quantum permutation algebra is a Hopf algebra generated (as an algebra) by the coefficients of a matrix $x = (x_{ij}) \in M_n(H)$ such that

1. x is a permutation matrix
2. x is a multiplicative matrix

Example

k^{S_n} is a quantum permutation algebra with $x_{ij}(\sigma) = \delta_{i,\sigma(j)}$, for all $\sigma \in S_n$.

Definition

Let $A_s(n)$ be the universal algebra generated by the coefficients of a permutation matrix of size n. $A_s(n)$ is a quantum permutation algebra.

A Hopf algebra H is a quantum permutation algebra if and only if $A_s(n) \to H$ for some n.

Theorem

$A_s(n)$ is the universal cosemisimple Hopf algebra coacting on the algebra k^n. This means:

1. $A_s(n)$ is cosemisimple and k^n is an $A_s(n)$-comodule algebra via

 $$
 k^n \to k^n \otimes A_s(n)
 $$

 $$
 e_i \mapsto \sum_{k=1}^n e_k \otimes x_{ki}
 $$

2. If k^n is a comodule algebra over a cosemisimple Hopf algebra H with coaction $\beta : k^n \to k^n \otimes H$, then there is a unique Hopf algebra map $f : A_s(n) \to H$ with $(1 \otimes f) \circ \alpha = \beta$

Thus we write $A_s(n) = \mathcal{O}(S_n^+)$, where S_n^+ is the quantum permutation group on n points, and quantum permutation algebras correspond to quantum permutation groups.
Theorem

$A_s(n)$ is the universal cosemisimple Hopf algebra coacting on the algebra k^n.

Thus we write $A_s(n) = \mathcal{O}(S_n^+)$, where S_n^+ is the quantum permutation group on n points, and quantum permutation algebras correspond to quantum permutation groups.

We observe that

1. $A_s(n) \cong k^S_n$ if $n \leq 3$,

2. $A_s(n + m) \rightarrow A_s(n) \ast A_s(m)$, so $\dim A_s(n) = \infty$ if $n \geq 4$.

Hence the symmetric group S_n has an infinite quantum analogue if $n \geq 4$!

Banica has shown that the fusion rules of $A_s(n)$ are the same as those of PGL_2 (1999, when $k = \mathbb{C}$).
Early examples of quantum permutation algebras

1. $O(O_{-1}(n))$ (corresponding to the quantum automorphism group of the hypercube in \mathbb{R}^n).

2. $(kA_5)^\sigma$ (so that A_5 has a quantum analogue acting faithfully on 4 points).

3. The Kac-Paljutkin algebra of dimension 8 (as well as other series of Hopf algebras studied by Masuoka).

4. Some 2-cocycle deformations of kS_n.

Several of these examples were unexpected at first sight.

So it becomes natural to wonder if there are lots of quantum permutation algebras. A basic obstruction to being a quantum permutation algebra is the following one:

If H is a quantum permutation algebra, then $\text{Hom}_{k-\text{alg}}(H, k)$ is finite and $S^2 = \text{id}_H$. So if H is a finite-dimensional quantum permutation algebra, then H is semisimple.
So a reasonable question is:

Is any (finite dimensional) semisimple Hopf algebra a quantum permutation algebra?

In other words, in view of the universal property of \(A_s(n) = \mathcal{O}(S_n^+) \), is there a Cayley theorem for finite quantum groups?

Naturally this leads to other more specific questions.

Is the class of finite quantum permutation algebras stable under

1. duality?
2. extensions?
3. 2-cocycle deformations?
Extensions and quantum permutation algebras

We now wish to study the stability of the class of quantum permutation algebras under extensions.
If \(\Gamma \) is a finite group, the algebras \(k^\Gamma \) and \(k\Gamma \) are quantum permutation algebras.

Theorem

Let \(H \) be a Hopf algebra that fits into an exact sequence

\[
k \rightarrow k^\Gamma \rightarrow H \rightarrow kF \rightarrow k
\]

for some finite groups \(\Gamma, F \). Assume that one of the following conditions holds:

1. \(k^\Gamma \) is central in \(H \);
2. the sequence is split (\(H = k^\Gamma \# kF \)) and \(F \) is generated by its \(\Gamma \)-stable abelian subgroups;

Then \(H \) is a quantum permutation algebra.
Idea of proof: we observe that H is a quantum permutation algebra if and only if H is generated by its commutative (right) coideal subalgebras. So we find a family of such coideal subalgebras. □

By using the theorem together with various classification results (Masuoka, Natale, Kashina, Etingof-Nikshych-Ostrik) we get

Corollary

Let H be a semisimple Hopf algebra. Then H is a quantum permutation algebra if one the following holds:

1. $\dim H = p^3$, with p prime;
2. $\dim H = 2q^2$, with q prime;
3. $\dim H = pq^2$, with $p > q$ prime;
4. $\dim H = pqr$, with p, q, r distinct primes;
5. $\dim H = 16$.

In particular if $\dim H \leq 23$, then H is a quantum permutation algebra.
Theorem

The Hopf algebras $k^{C_4} \# kS_3$, $k^{C_5} \# kS_4$, $k^{C_5} \# kA_4$ (respectively associated to the group exact factorizations $S_4 = S_3 C_4$, $S_5 = S_4 C_5$, $A_5 = A_4 C_5$) are not quantum permutation algebras.

Thus there exists a semisimple Hopf algebra of dimension 24 that is not a quantum permutation algebra.

Corollary

The class of quantum permutation algebras is not stable under extensions, duality or 2-cocycle deformations.

Indeed, $H = k^{C_4} \# kS_3$ is not a quantum permutation algebra, while $H^* = k^{S_3} \# kC_4$ is a quantum permutation algebra by the first theorem. Moreover $D(H)^* \cong (D(S_4)^*)^\sigma$ for some 2-cocycle σ (Beggs-Gould-Majid). The first theorem ensures that $D(S_4)^*$ is a quantum permutation algebra, while $D(H)^*$ is not (because $D(H)^* \twoheadrightarrow H$). □
Sketch of the proof of the theorem

We have to see that $H = k\Gamma \# kF$ is not generated by its commutative (right) coideal subalgebras. It is not easy to have the full list of these coideal subalgebras, so instead we use the following observations:

Lemma

If $\pi : H \to kF$ is a surjective Hopf algebra map and if there exits a proper subgroup $F' \subsetneq F$ such that $\pi(R) \subset kF'$ for any commutative (right) coideal subalgebra $R \subset H$, then H is not a quantum permutation algebra.

Lemma

Let $H = k\Gamma \# kF$ and $\pi = \epsilon \otimes \text{id} : H \to kF$. Let $R \subset H$ be a commutative right coideal subalgebra. Then $\pi(R) = kT$, where T is an abelian subgroup of F, and we have:

(i) If $k\Gamma \subseteq R$, then T acts trivially on Γ via \triangleleft.

(ii) If $k\Gamma \cap R = k1$, then T is stable under the action \triangleright of Γ.

Now assume that $H = k^{C_5} \# k^{S_4}$ (exact factorization $S_5 = S_4 C_5$ and actions : $C_5 \leftarrow C_5 \times S_4 \rightarrow S_4$).

If R is a commutative right coideal subalgebra of H, then $R \cap k^{C_5}$ is a right coideal subalgebra of k^{C_5}, hence a Hopf subalgebra of k^{C_5} and thus $\dim(R \cap k^{C_5})$ divides 5. We are in the situation of the previous lemma: we have $\pi(R) = kT$ where T is an abelian subgroup of S_4 and either T acts trivially on C_5 via \triangleleft or T is stable under the action \triangleright of C_5.

The only subgroup of S_4 that acts trivially on C_5 is $\{1\}$, and the only abelian subgroups of S_4 that are stable under the action \triangleright of C_5 are contained in $\langle (1324) \rangle = F'$. Thus $\pi(R) \subset kF'$, and we conclude by the first lemma. □

Question

What is the smallest dimension that a self dual non quantum permutation algebra can have?
Some quantum permutation algebras obtained by 2-cocycle deformations

We have seen that the class of quantum permutation algebras is not stable under 2-cocycle deformations. We wish to show however that large classes of quantum permutation algebras can be constructed in this way.

Let Γ be an abelian group and let $\sigma \in Z^2(\Gamma, k^*)$. The character group $\hat{\Gamma}$ acts faithfully on the twisted group algebra $k_\sigma \Gamma$ by $\chi.g = \chi(g)g$ ($\chi \in \hat{\Gamma}$, $g \in \Gamma$), hence $\hat{\Gamma} \subset \text{Aut}(k_\sigma \Gamma)$.

Theorem

Let Γ be a finite abelian group and let $\sigma \in Z^2(\Gamma, k^*)$. Let G be a linear algebraic group with $\hat{\Gamma} \subset G \subset \text{Aut}(k_\sigma \Gamma)$. Then σ induces a 2-cocycle σ' on $\mathcal{O}(G)$ such that $\mathcal{O}(G)^{\sigma'}$ is a quantum permutation algebra (non commutative if the only subgroup of $\hat{\Gamma}$ that is normal in G is $\{1\}$ and if $k_\sigma \Gamma$ is non commutative).
Examples: \(\hat{\Gamma} = C_2^n \subset G \subset O_n(k) \subset \text{Aut}(C\ell_n(k)) \)
\(\hat{\Gamma} = C_n \times C_n \subset G \subset \text{PGL}_n(k) = \text{Aut}(M_n(k)) \)

Question

If \(G \) is a finite group and \(\sigma \) is a 2-cocycle on \(k^G \), is \((k^G)^\sigma \) a quantum permutation algebra?