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JULIEN BICHON

Abstract. These are the notes for a series of lectures given at Córdoba University, november
2017. These lectures provide a light and Hopf algebra oriented introduction to homological
algebra, with a special emphasis on cohomological dimension.
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Introduction

The cohomological dimension (most often called the global dimension) is a classical and
important invariant of an algebra, of homological nature, that powerfully generalizes the usual
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definition of dimension for an affine algebraic set1. In this text, which provides the notes for a
series of lectures given at the university of Córdoba (november 2017), we present and discuss
cohomological dimension for Hopf algebras, starting from the minimal necessary homological
algebra material, and finishing by a number of recent research questions.

These notes are organized as follows. Section 1 provides a short review of Hopf algebra
theory, with the basic main definitions, a panel of key examples and a number of results about
modules over Hopf algebras. It is hoped that the reader unfamiliar with Hopf algebra theory
will find enough material (and enough motivation) to go on with the rest of these notes. In
Section 2 we present and discuss in detail projective modules, the basic objects for homological
algebra, and define the projective dimension of a module. This already enables us, in Section 3,
to define the cohomological dimension of a Hopf algebra. To study and prove properties about
cohomological dimension, we need more homological algebra material, that Section 4 provides,
with the construction of Ext and Tor. In Section 5 we explain in some detail the meaning of
cohomological dimension for Hopf algebras of polynomial functions on affine algebraic groups. In
Section 6 we introduce homology and cohomology of Hopf algebras, and we study the case of the
function algebra on quantum SL2 in detail. Section 7 discusses the behaviour of cohomological
dimension under exact sequences of Hopf algebras. Section 8 presents Poincaré duality in the
setting of Hopf algebras, while Section 9 is a more advanced (and sketchy) one, discussing a
recent research question, the possible invariance of cohomological dimension under monoidal
equivalence.

Throughout these notes, the base field is the field of complex numbers (which has no effect
on the theoretical results, but can have some effect when discussing examples).

1. Hopf algebras

This section is a short review on the theory of Hopf algebras, with the basic definitions, a
number of key examples, and some basic results about their modules and comodules.

We warn the reader that the presentation is designed to highlight the facts that we believe
to be the most important and useful for the rest of the notes, but does not follow the logical
order that one would need for a complete course on the subject.

1.1. Basic definitions and examples.

Definition 1.1. A Hopf algebra is an algebra A together with algebra maps

(1) ∆ : A −→ A⊗A (comultiplication)
(2) ε : A −→ C (counit)
(3) S : A −→ Aop (antipode)

satisfying the following axioms:

(a) (∆⊗ idA) ◦∆ = (idA ⊗∆) ◦∆ (Coassociativity)
(b) (ε⊗ idA) ◦∆ = idA = (idA ⊗ ε) ◦∆ (counit axiom)
(c) m ◦ (idA ⊗ S) ◦∆ = u ◦ ε = m ◦ (S ⊗ idA) ◦∆ (antipode axiom),

where m : A⊗A→ A and u : C→ A are the respective multiplication and unit of A.

The most popular Hopf algebra textbook is [48]. The interested reader will find an historical
account of the theory of Hopf algebras in [3].

Example 1.2. Let Γ be a discrete group, and let CΓ be its group algebra with C-basis {eg, g ∈ Γ},
multiplication egeh = egh and unit element e1. This is a Hopf algebra with, for any g ∈ Γ,

∆(eg) = eg ⊗ eg, ε(eg) = 1, S(eg) = eg−1

Example 1.3. Let G be an affine algebraic group: G is both an affine algebraic set and a group,
and the group law G × G → G and inversion map G 7→ G, x 7→ x−1, are morphisms of affine
algebraic sets, i.e. are polynomial maps.

1There are also other competing natural notions of dimension for an algebra, such as the Gelfand-Kirillov
dimension.
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Let O(G) be the algebra of polynomial functions on G. The group structure of G induces
a Hopf algebra structure on O(G), with comultiplication induced by the multiplication m :
G×G→ G:

∆ : O(G) −→ O(G×G) ' O(G)⊗O(G)

f 7−→ f ◦m 7−→ ∆(f)

The counit is defined by

ε : O(G) −→ C
f 7−→ f(1)

and the antipode is induced by the inversion map in G

S : O(G) −→ O(G)

f 7−→ S(f), S(f)(x) = f(x−1)

Example 1.4. Let again G be an affine algebraic group, with G defined as a subgroup of the
general linear group GLn(C). Let uij , 1 ≤ i, j ≤ n, be the coordinate functions on G: for
g = (gij) ∈ G, uij(g) = gij . The elements uij belong to O(G), and D = det((uij)) ∈ O(G) is
an invertible element in O(G), so that the matrix (uij) ∈Mn(O(G)) is invertible. The algebra
O(G) is generated by the elements uij , 1 ≤ i, j ≤ n, D−1, and we have

∆(uij) =
n∑
k=1

uik ⊗ ukj , ε(uij) = δij , S(uij) = (u−1)ij

where u−1 stands for the inverse of the matrix u = (uij) ∈Mn(O(G)).

Example 1.5. Let g = (g, [, ]) be a Lie algebra, and let U(g) be its enveloping algebra: U(g) =
T (g)/([x, y]−xy+yx, x, y ∈ g). Then U(g) is a Hopf algebra, with comultiplication, counit and
antipode defined, for x ∈ g, by

∆(x) = 1⊗ x+ x⊗ 1, ε(x) = 0, S(x) = −x
One defines morphisms of Hopf algebras in the obvious way, we get a category, and the

constructions of examples 1.2, 1.3 and 1.5 define functors.

There are important groups naturally attached to a Hopf algebra, as well as a Lie algebra.

Definition 1.6. Let A be a Hopf algebra.

(1) An element a ∈ A is said to be group-like if ∆(a) = a ⊗ a and ε(a) = 1. The set
of group-like elements in A is denoted Gr(A), the multiplication of A induces a group
structure on Gr(A), with for a ∈ Gr(A), a−1 = S(a).

(2) The set of algebra maps A −→ C, denoted G(A), is a group under the law

φ · ψ := (φ⊗ ψ) ◦∆

The unit element is ε and the inverse of φ ∈ G(A) is φ ◦ S. If A is finitely generated as
an algebra, then G(A) is an affine algebraic group.

(3) Let
P(A) = {x ∈ A | ∆(x) = 1⊗ x+ x⊗ 1}

An element in P(A) is called a primitive element, and P(A) is a subspace of A, having
a natural Lie algebra structure, whose braket is defined by [a, b] = ab− ba.

These constructions allow us to reconstruct the groups and the Lie algebra from the Hopf
algebras in examples 1.2, 1.3 and 1.5, and the Hopf algebras arising in this way can be charac-
terized, mainly using properties of their categories of comodules (see the third subsection).

Example 1.7. (1) If Γ is a discrete group, we have a group isomorphism Γ ' Gr(CΓ), x 7−→ ex
(exercise). Therefore the Hopf algebra CΓ completely determines the group Γ. Moreover, a
cocommutative (for any a ∈ A, ∆(a) = τ∆(a), where τ : A ⊗ A → A ⊗ A is the canonical
flip) and cosemisimple Hopf algebra A is isomorphic to CΓ, for Γ = Gr(A).
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(2) Let G be an affine algebraic group. Then G(O(G)) is an affine algebraic group, and

ι : G −→ G(O(G))

x 7−→ ι(x), ι(x)(f) = f(x)

is an isomorphim. A commutative and finitely generated Hopf algebra is isomorphic to
O(G), for G = G(A). This is Cartier’s theorem, see [48, 67]

(3) Let g be a Lie algebra. The map

ι : g −→ P(U(g))

x 7−→ x,

is a Lie algebra isomorphim, see [48, Chapter 5]). A cocommutative and connected Hopf
algebra is isomorphic to U(g), for g = P(A), again see [48, chapter 5].

To construct more examples of Hopf algebras, in particular examples that are neither com-
mutative or cocommutative, several crossed product like constructions are available. Here is
the simplest one.

Example 1.8. Let Γ be a discrete group acting on a Hopf algebra A, via a group morphism
α : Γ → Aut(A) (where Aut(A) means the group of Hopf algebra automorphisms of A). To
this data, we associate, as usual, the crossed product algebra A o CΓ, which has A ⊗ CΓ as
underlying vector space, and product defined by

a⊗ g · b⊗ h = aαg(b)⊗ gh, a, b ∈ A, g, h ∈ G
Then AoCΓ has a natural Hopf algebra structure defined by

∆(a⊗ g) = a(1) ⊗ g ⊗ a(2) ⊗ g, ε(a⊗ g) = ε(a), S(a⊗ g) = αg−1(S(a))⊗ g−1

and A identifies with a Hopf subalgebra of AoCΓ via a 7→ a⊗ 1.

Example 1.4 exactly paves the way to construct examples by generators and relations, by the
following useful result. The proof is left as an exercise.

Lemma 1.9. Let A be an algebra endowed with algebra maps ∆ : A −→ A⊗A, ε : A −→ C, and
S : A −→ Aop. Assume that there exists a matrix u = (uij) ∈ Mn(A) such that the following
conditions hold:

(1) u = (uij) is an invertible matrix;
(2) A is generated, as an algebra, by the coefficients of the matrix u;
(3) for any i, j, we have

∆(uij) =
n∑
k=1

uik ⊗ ukj , ε(uij) = δij , S(uij) = (u−1)ij

Then A, endowed with the above structure maps, is a Hopf algebra.

Using this lemma, we can construct the celebrated quantum group SLq(2).

Example 1.10 (SL(2) and its quantum q-deformation SLq(2)). Let q ∈ C∗. The algebraOq(SL2(C))
is, as an algebra, presented by generators a, b, c, d, submitted to the relations

ba = qab, ca = qac, db = qbd, dc = qcd, cb = bc,

ad− da = (q−1 − q)bc, ad− q−1bc = 1

Letting (
a b
c d

)
=

(
u11 u12

u21 u22

)
and using Lemma 1.9, we get that Oq(SL2(C)) is a Hopf algebra with

∆(uij) =
2∑

k=1

uik ⊗ ukj , ε(uij) = δij
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and
S(a) = d, S(b) = −qb, S(c) = −q−1c, S(d) = a

If q = 1, then O1(SL2(C)) is commutative with G(O1(SL2(C))) ' SL2(C) and thus we have
O1(SL2(C)) ' O(SL2(C)).

If q 6= 1, then Oq(SL2(C)) is noncocommutative and noncommutative (this is not completely
obvious), and is often denoted O(SLq(2)), to emphazize the viewpoint that this is the algebra
of polynomial functions on the quantum group SLq(2). It was introduced in independent fun-
damental works of Drinfeld [27] and Woronowicz [69]. There are also quantum groups SLq(n)
and q-deformations for other classical algebraic groups that we do not discuss here, see the
textbooks [16, 39].

Example 1.11 (Hopf algebras attached to bilinear forms). Among the many possible generaliza-
tions of quantum SL2, we will be interested in the following one, introduced by Dubois-Violette
and Launer [28]. Let E ∈ GLn(C). The algebra B(E) [28] is presented by generators (uij)1≤i,j≤n
and relations

E−1utEu = In = uE−1utE,

where u is the matrix (uij)1≤i,j≤n. Using Lemma 1.9, we see that B(E) has a Hopf algebra
structure defined by

∆(uij) =
n∑
k=1

uik ⊗ ukj , ε(uij) = δij , S(u) = E−1utE

Adding commutation relations, we get the algebra of polynomial functions on the automorphism
group of the bilinear form defined by the matrix E, so we consider B(E) as the Hopf algebra
representing the quantum automorphism group of this bilinear form.

For the matrix

Eq =

(
0 1
−q−1 0

)
we have B(Eq) = Oq(SL2(C)), and thus the Hopf algebras B(E) are generalizations ofOq(SL2(C)).

While the algebra Oq(SL2(C)) share many ring-theoretical properties with O(SL2(C)), this
is much less the case for B(E) in general. For example B(E) is not Noetherian if n > 2. We
will see, however, that from the homological algebra viewpoint, B(E) still has a number of the
(pleasant) features of Oq(SL2(C)).

Example 1.12 (Free algebras). Let A = C〈x1, · · · , xn〉 be the free algebra on n generators. Then
A has a Hopf algebra structure given by

∆(xi) = 1⊗ xi + xi ⊗ 1, ε(xi) = 0, S(xi) = −xi
Notice that this is also the universal enveloping algebra of the free Lie algebra on n generators.

Example 1.13 (The Sweedler algebra). The next example mixes those constructed form discrete
groups and those constructed from Lie algebras. Let A be the algebra presented by generators
x, g submitted to the relations g2 = 1, x2 = 0, xg = −gx. Then A is a 4-dimensional algebra,
and has a Hopf algebra structure given by

∆(x) = 1⊗ x+ x⊗ g, ∆(g) = g ⊗ g, ε(x) = 0, ε(g) = 1, S(x) = −xg, S(g) = g

This is a noncommutative and noncocommutative Hopf algebra, and a key toy example.

Example 1.14 (Sn and the quantum permutation group S+
n , [65]). Let n ≥ 1. Consider the

commutative algebra A presented by generators xij , 1 ≤ i, j ≤ n, submitted to the relations of
permutation matrices (1 ≤ i, j, k ≤ n)

n∑
l=1

xil = 1 =

n∑
l=1

xli, xijxik = δjkxij , xjixki = δjkxji

We have algebra maps

∆ : A −→ A⊗A, ε : A −→ C, and S : A −→ A
5



defined by (1 ≤ i, j ≤ n)

∆(xij) =
n∑
k=1

xik ⊗ xkj , ε(xij) = δij , S(xij) = xji

that endow A with a Hopf algebra structure. We have G(A) ' Sn, and hence A ' O(Sn).
The free version “S+

n ” of Sn is obtained by removing the commutativity relations in the
above presentation of O(Sn). More precisely let As(n) be the algebra presented by generators
xij , 1 ≤ i, j ≤ n, submitted to the relations of permutation matrices (1 ≤ i, j, k ≤ n)

n∑
l=1

xil = 1 =
n∑
l=1

xli, xijxik = δjkxij , xjixki = δjkxji

We have algebra maps

∆ : As(n) −→ As(n)⊗As(n), ε : As(n) −→ C, and S : As(n) −→ As(n)op

defined by (1 ≤ i, j ≤ n)

∆(xij) =
n∑
k=1

xik ⊗ xkj , ε(xij) = δij , S(xij) = xji

that endow As(n) with a Hopf algebra structure, noncommutative and noncocommutative if
n ≥ 4. We put As(n) = O(S+

n ), and call S+
n the quantum permutation group on n points. The

quantum permutation group S+
n is the largest compact quantum group acting on the classical

set formed by n points, whence his name, see [65].

We finish the subsection by presenting the very convenient Sweedler notation, which con-
sists of writing, for a Hopf algebra A and a ∈ A,

∆(a) = a(1) ⊗ a(2)

With this notation, the Hopf algebra axioms become

(∆⊗ idA)∆(a) = a(1) ⊗ a(2) ⊗ a(3) = (idA ⊗∆)∆(a)

ε(a(1))a(2) = a = a(1)ε(a(2)), S(a(1))a(2) = ε(a)1 = a(1)S(a(2))

1.2. Modules over a Hopf algebra. The category MA of (right) A-modules has a number
of pleasant additional properties and features when A is a Hopf algebra, that we present now.

(1) The trivial A-module Cε: this is the A-module whose underlying vector space is C, and
whose A-module structure is defined by 1 · a = ε(a).

(2) If M and N are A-modules, then M ⊗N has a natural A-module structure, defined by

(x⊗ y) · a = x · a(1) ⊗ y · a(2), ∀x ∈M,y ∈ N, a ∈ A
(3) If M , N are A-modules, then Hom(M,N) has a natural right A-module structure defined

by
f · a(x) = f(x · S(a(1))) · a(2)

In particular, M∗ = Hom(V,C) has a natural A-module structure, defined by f · a(x) =
f(x · S(a)).

We leave it to the reader to check that the above receipes indeed define A-module structures.
For A-modules M , N , P , it is an immediate verification to check, using the Hopf algebra axioms,
that the canonical isomorphisms

(M ⊗N)⊗ P 'M ⊗ (N ⊗ P ), M ⊗ Cε 'M ' Cε ⊗M
are A-linear. This means that MA is a tensor subcategory of the category Vect(C) (see [30]).

If M is a right A-module, we denote

MA = {x ∈M | x · a = ε(a)x}
the subspace of A-invariants.
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Lemma 1.15. We have

Hom(M,N)A = HomA(M,N)

for any A-modules M , N .

Proof. If f ∈ HomA(M,N), we have for any a ∈ A and x ∈M , f · a(x) = f(x · S(a(1))) · a(2) =

f(x) · S(a(1))a(2) = f(x)ε(a), hence f ∈ Hom(M,N)A. Conversely, if f ∈ Hom(M,N)A, we
have f(x · S(a(1))) · a(2) = ε(a)f(x) for any a ∈ A, x ∈M . Hence

f(x · a) = f(x · a(1))ε(a(2)) = f(x · a(1)S(a(2))) · a(3) = f(x) · a

and f ∈ HomA(M,N). �

Lemma 1.16. Let M be a right A-module.

(1) The evaluation map

eM : M ⊗M∗ → Cε, x⊗ f 7→ f(x)

is A-linear.
(2) If M is finite-dimensional, there exists an A-linear map δM : Cε →M∗ ⊗M such that

(eM ⊗ idM )(idM ⊗ δM ) = idM and (idM∗ ⊗ eM )(δM ⊗ idM∗) = idM∗

and there are, for any A-modules X and Y , natural isomorphisms

HomA(X,Y ⊗M) ' HomA(X ⊗M∗, Y )

Proof. For x ∈M , f ∈M∗, and a ∈ A, we have

eM ((x⊗ f) · a) =eM
(
x · a(1) ⊗ f · a(2)

)
= f · a(2)(x · a(1))

=f
(
x · a(1)S(a(2))

)
= ε(a)f(x) = ε(a)eM (f ⊗ x)

Hence eM is A-linear. If M is finite-dimensional, let e1, . . . , en be basis of M , with dual basis
e∗1, . . . , e

∗
n, and define δM : Cε → M∗ ⊗M by δM (1) =

∑n
i=1 e

∗
i ⊗ ei. It is immediate that the

above equations are satisfied, and we have to chack that δM is A-linear. Consider the linear
isomorphism

F : M∗ ⊗M −→ End(M)

ψ ⊗ x 7−→ ψ̃ ⊗ x, y 7→ ψ(y)x

We leave it to the reader to check that F is A-linear, hence δM = F−1(idM ) ∈ (M∗ ⊗M)A

(Lemma 1.15) is indeed A-linear. To conclude, the announced natural isomorphisms are given
by

HomA(X,Y ⊗M) −→ HomA(X ⊗M∗, Y )

f 7−→ (idY ⊗eM )(f ⊗ idM∗)

(g ⊗ idM )(idX ⊗ δM )←− g

�

Proposition 1.17. Let M be a right A-module. The map

Mt ⊗A −→M ⊗A
x⊗ a 7−→ x · a(1) ⊗ a(2)

is an isomorphism of A-modules, where Mt⊗A is the free A-module whose A-module structure
is given by multiplication on the right.

Proof. Denote by ψ be the above map. We have

ψ((x⊗ a) · b) = ψ(x⊗ ab) = x · (a(1)b(1))⊗ a(2)b(2) = (x · a(1)) · b(1))⊗ a(2)b(2) = ψ(x⊗ a) · b
7



and this shows that ψ is A-linear. Let

φ : M ⊗A −→Mt ⊗A
x⊗ a 7−→ x · S(a(1))⊗ a(2)

We have

φψ(x⊗ a) = φ(x · a(1) ⊗ a(2)) = x · a(1)S(a(2))⊗ a(3) = x⊗ ε(a(1))a(2) = x⊗ a

and hence φψ is the identity map. One checks similarly that ψφ is the identity map. �

1.3. Comodules. We now discuss comodules over a Hopf algebra, which correspond to rep-
resentations of the corresponding algebraic quantum group, and are crucial in analysing its
structure.

Definition 1.18. Let A be a Hopf algebra. A (right) A-comodule is a vector space V endowed
with a linear map α : V −→ V ⊗ A (called coaction) such that the following conditions are
satisfied:

(1) (α⊗ idA) ◦ α = (idV ⊗∆) ◦ α;
(2) (idV ⊗ ε) ◦ α = idV .

Examples 1.19. (1) The comultiplication ∆ : A −→ A ⊗ A endows A with a right A-
comodule structure, called the regular A-comodule.

(2) The one-dimensional A-comodules correspond to the group-like elements of A.
(3) Let Γ be a group and V be a vector space. A CΓ-comodule structure on V is the same

as a Γ-grading on V, i.e. a direct sum decomposition V = ⊕g∈ΓVg.
(4) Let G be an affine algebraic group. An O(G)-comodule structure on a finite-dimensional

vector space precisely corresponds to a (polynomial) representation G → GL(V ), see
Proposition 1.21.

One defines morphisms of comodules in a straightforward manner: if A is a Hopf algebra
and V = (V, αV ) and W = (W,αW ) are A-comodules, an A-comodule morphism V −→W is a
linear map f : V −→W such that the following diagram commutes:

V
f //

αV
��

W

αW
��

V ⊗A
f⊗idA// W ⊗A

One also says that an A-comodule morphism is an A-colinar map. The set of A-comodule
morphisms from V to W is denoted HomA(V,W ), this is a linear supspace of HomC(V,W ).

The category of A-comodules is denotedMA. This is an abelian subcategory of Vect(C), the
category of vector spaces, which means that the standard operations in linear algebra such as
direct sums, kernels, cokernels can be performed inside this category.

If V is an A-comodule with coaction α : V → V ⊗A, the Sweedler notation is

α(v) = v(0) ⊗ v(1)

and the comodule axioms are

(α⊗ idA)α(v) = v(0) ⊗ v(1) ⊗ v(2) = (idV ⊗∆)α(v), (idV ⊗ ε)α(v) = v(0)ε(v(1)) = v

A remarkable feature of comodules is that any element in a comodule is contained in a finite-
dimensional subcomodule: this is the fundamental theorem of comodules. This shows that the
study of comodules essentially reduces to the study of the finite-dimensional ones.

The following definition comes from Example 1.4.
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Definition 1.20. Let A be a Hopf algebra and let u = (uij) ∈ Mn(A) be a matrix. We say
that u is a multiplicative matrix if for all i, j ∈ {1, . . . , n}, we have

∆(uij) =
n∑
k=1

uik ⊗ ukj , ε(uij) = δij

Finite-dimensional comodules can be described by means of multiplicative matrices, as shown
by the following result, whose verification is an easy exercise.

Proposition 1.21. Let A be a Hopf algebra and let V be a finite-dimensional vector space.

(1) Assume that V has an A-comodule structure with coaction α : V −→ V ⊗A. Let v1, . . . , vn
be a basis of V and let x = (xij) ∈Mn(A) be the matrix such that ∀i,

α(vi) =
n∑
j=1

vj ⊗ xji

Then x = (xij) is a multiplicative matrix.
(2) Conversely, if x = (xij) ∈ Mn(A) is a multiplicative matrix, for each basis of V , the above

formula defines an A-comodule structure on V .

Similarly to the category of modules, the category of comodules over a Hopf algebra has a
tensor category structure, defined as follows.
• If V = (V, αV ), W = (W,αW ) are comodules over A, their tensor product has a natural

A-comodule structure defined by

V ⊗W αV ⊗αW−→ V ⊗A⊗W ⊗A id⊗τ⊗id−→ V ⊗W ⊗A⊗A id⊗m−→ V ⊗W ⊗A
The natural associativity isomorphisms (V ⊗W )⊗Z ' V ⊗(W⊗Z) are morphisms of comodules.
• The trivial comodule C is defined by 1 7→ 1⊗ 1A.
These structures make the categoryMA into a tensor category, see [30, 38], and is a tensor

subcategory of Vect(C).

Definition 1.22. A Hopf algebra A is said to be

(1) cosemisimple if every A-comodule is semisimple, i.e. every subcomodule of a comodule
admits a supplementary comodule (in this case every comodule is a direct sum of simple
comodules);

(2) pointed if every simple A-comodule is one-dimensional;
(3) connected if the trivial comodule is the unique simple comodule.

Examples 1.23. (1) A group algebra is cosemisimple and pointed.
(2) The enveloping algebra of a Lie algebra is connected.
(3) The algebra of polynomial functions on an affine algebraic group is cosemisimple if and

only if the group is linearly reductive.
(4) The Hopf algebra Oq(SL2(C)) is cosemisimple if and only if q = ±1 or q is not a root of

unity (in which case we say that q is generic).

If A is cosemisimple Hopf algebra, the set of isomorphism classes of simple A-comodules
together with the decompositions of tensor products of simple comodules into direct sums of
simple comodules produces a combinatorial data called the fusion rules of A (see e.g. [5]).
One of the most exciting results in quantum group theory (in my opinion) is that for q generic,
Oq(SL2(C)) as the same fusion rules as O(SL2(C)).

There is also a stronger relation than the one of having the same fusion rules, the relation of
monoidal equivalence.

Definition 1.24. We say that two Hopf algebras A and B are monoidally equivalent if
there exists a tensor category equivalence MA '⊗ MB (i.e an equivalence of categories that
preserves the tensor products up to isomorphism in a coherent way, we refer to [30, 38, 51] for
the precise definition).
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Among the previous Hopf algebras, let us mention the monoidal equivalences

MB(E) '⊗MOq(SL2(C)), for q + q−1 = −tr(E−1Et), [7]

and
MAs(n) '⊗MOq(PSL2(C)), for q + q−1 =

√
n, [22, 49]

where Oq(PSL2(C)) is defined in Example 7.10.
Notice that Oq(SL2(C)) and Op(SL2(C)) are monoidally equivalent only when p = q±1, in

which case they are isomorphic.
To construct more examples, one can use the notion of Hopf 2-cocycle. Let A be a Hopf

algebra. A 2-cocycle on A (see [26]) is a convolution invertible linear map σ : A ⊗ A −→ k
satisfying

σ(a(1), b(1))σ(a(2)b(2), c) = σ(b(1), c(1))σ(a, b(2)c(2))

and σ(a, 1) = σ(1, a) = ε(a), for all a, b, c ∈ A.
The deformed Hopf algebra Aσ [26] is defined to be Aσ = A as a vector space, the comulti-

plication and counit are the same as those of A (so that Aσ = A as coalgebras), the unit is the
one of A, the product is defined by

a.b = σ(a(1), b(1))σ
−1(a(3), b(3))a(2)b(2)

(where σ−1 denotes the convolution inverse of σ) and the antipode is defined by

S(a) = σ(a(1), S(a(2)))σ
−1(S(a(4)), a(5))S(a(3))

Since A = Aσ as coalgebra, the identity functor defines an equivalence of categoriesMA 'MAσ

that we can enrich to a monoidal equivalence MA '⊗MAσ using the natural isomorphisms

V ⊗W −→ V ⊗W
v ⊗ w 7−→ σ−1(v(1), w(1))v(0) ⊗ w(0)

There are many examples of such deformed Hopf algebras, in particular in the finite-dimensional
case. We present an infinite-dimensional example.

Example 1.25. The Hopf algebra Oq,q−1(GL2(C)) is the algebra presented by generators a, b, c,

d, δ−1 subject to the relations

ba = qab, dc = qcd, ca = q−1ac, db = q−1bd, qcb = q−1bc,

da = ad, (ad− q−1bc)δ−1 = 1 = δ−1(ad− q−1bc).

The Hopf algebra structure on Oq,q−1(GL2(C)) is given by the usual formulas

∆(a) = a⊗ a+ b⊗ c, ∆(b) = a⊗ b+ b⊗ d, ∆(c) = c⊗ a+ d⊗ c, ∆(d) = c⊗ b+ d⊗ d,
∆(δ−1) = δ−1 ⊗ δ−1, ε(a) = ε(d) = ε(δ−1) = 1, ε(b) = ε(c) = 0,

S(a) = dδ−1, S(b) = −qbδ−1, S(c) = −q−1cδ−1, S(d) = aδ−1, S(δ−1) = ad− q−1bc.

This Hopf algebra is part of the 2-parameter deformations of GL2(C) in [61], and is a 2-cocycle
deformation, as above, of O(GL2(C)). See [61].

2. Projective and injective modules

2.1. Projective modules. Let A be an algebra and let P be an A-module. The functor
HomA(P,−) from A-modules to vector spaces is left exact: if

0→ X
i→ Y

p→ Z → 0

is an exact sequence of A-modules (in the usual sense: i is injective, p is surjective, and Im(i) =
Ker(p)), then the sequence

0→ HomA(P,X)
i◦−→ HomA(P, Y )

p◦−→ HomA(P,Z)

is exact (check this). Projective modules are precisely those for which this functor is exact.
10



Proposition-Definition 2.1. A (right) A-module P is said to be projective if one of the
equivalent following conditions holds.

(1) The functor HomA(P,−) is exact.
(2) For any surjective A-linear p : M → N and any A-linear map φ : P → N , there exists

an A-linear map ψ : P →M such that pψ = φ:

P

φ
��

ψ

~~
M

p // N // 0

(3) Any surjective A-linear map f : M → P admits a section, i.e. there exists an A-linear
map s : P →M such that fs = idP .

(4) There exists a free A-module F and an A-module Q such that F ' P ⊕Q as A-modules.
(5) There exists families (xi)i∈I and (fi)i∈I of elements of P and HomA(P,A) respectively

such that, for any x ∈ P , x =
∑

i∈I fi(x)xi.

Proof. The equivalence between (1) and (2) is done by just writing the definitions. (3) follows
from (2), applied to N = P and φ = idP . Assume that (3) holds and consider a surjective
A-linear map f : F → A for some free A-module F (obtained by choosing a generating subset
of P ). One gets an A-linear map s : P → F such that fs = idP , and then F ' P ⊕ Q, for
Q = Ker(sf), so (4) holds.

Assume that (4) holds: we have an A-linear isomorphism F ' P ⊕Q for F free and another
A-module Q. This means that there exists A-linear maps u1 : P → F , u2 : Q→ F , q1 : F → P ,
q2 : F → Q such that q1u1 = idP , q2u2 = idQ, q2u1 = 0 = q1u2, idF = u1p1 + u2p2. Choosing
a basis (ei)i∈I of F , with dual basis (e∗i )i∈I (e∗i ∈ HomA(F,A)), one obtains the announced
elements by letting xi = q1(ei) and fi = e∗iu1.

Assume finally that (5) holds, and consider a surjective A-linear p : M → N and an A-linear
map φ : P → N . For i ∈ I, fix zi in M be such that p(zi) = φ(xi). Define ψ : P → M by
ψ(x) =

∑
i∈I fi(x)zi. It is clear that ψ is A-linear and that pψ = φ, so (2) holds. �

The proof of the following result is left to the reader.

Proposition 2.2. If M = ⊕i∈IMi is a direct sum of A-modules , then M is projective if and
only if each Mi is.

For a Hopf algebra A, projectivity of the trivial A-module Cε has very strong consequences
on the structure of A.

Proposition 2.3. Let A be a Hopf algebra. The following properties are equivalent.

(1) The trivial A-module Cε is projective.
(2) There exists t ∈ A such that ta = ε(a)t, for any a ∈ A, and ε(t) = 1.
(3) The algebra A is semisimple and finite-dimensional.

Proof. (1)⇒ (2): the counit can be interpreted as a surjective A-linear map ε : A→ Cε. Hence
if Cε is projective, the previous proposition furnishes a section to ε, and hence the announced
t. An algebra is semisimple precisely when all its modules are projective, so (3)⇒ (1) is trivial.

It remains to prove that (2)⇒ (3). Assume that such a t exists. Given an A-module M , recall
from the previous section that MA denotes the space of A-invariants: MA = {x ∈ M | x · a =
ε(a)x, ∀a ∈ A}. It is not difficult to check that for t as in (2), one has MA = M · t.

Now if M , N are A-modules, endow Hom(M,N) with the right A-module structure defined
by f · a(x) = f(x · S(a(1))) · a(2) (see the previous section). We have seen (Lemma 1.15)that

HomA(M,N) = Hom(M,N)A. So for f ∈ Hom(M,N), we have f · t HomA(M,N). If N ⊂ M
is a sub-A-module, let p : M → N be a C-linear map such that p|N = idN . One sees easily that
still p · t|N = idN , so we have the direct sum of A-modules M = N ⊕Ker(p · t), and A is indeed
semisimple.

11



To conclude that A is finite-dimensional, we will show that the linear map

A∗ −→ A

ω 7−→ ω(t(1))t(2)

is injective (see Lemma 1.2 in [62] for a left-handed version), which will force A to be finite-
dimensional.

For a ∈ A, we have

ta = ε(a)t⇒ ta(1) ⊗ a(2) = t⊗ a⇒ t(1)a(1) ⊗ t(2)a(2) ⊗ a(3) = t(1) ⊗ t(2) ⊗ a
⇒ t(1)a(1) ⊗ t(2)a(2)S(a(3)) = t(1) ⊗ t(2)S(a)⇒ t(1)a⊗ t(2) = t(1) ⊗ t(2)S(a)

Hence if ω is in the kernel of the above map, we have ω(t(1)a)t(2) = 0 for any a ∈ A. Writing

∆(t) =
∑m

i=1 ai⊗ bi with b1, . . . , bm linearly independent, we thus have ω(aia) = 0 for any i and
any a. Hence ω(aiS(bi)a) = 0 for any i, and

0 =

m∑
i=1

ω(aiS(bi)a) = ω(t(1)S(t(2))a) = ε(t)ω(a) = ω(a)

Hence ω = 0, as needed. �

Proposition 2.4. Let P be a projective module over a Hopf algebra A, and let X be an A-
module. Then the A-module X ⊗ P is projective.

Proof. If P = A, we have seen in Proposition 1.17 that X ⊗ A is free, hence projective. It
follows that if P is free, then so is X ⊗P . In general, we have F ' P ⊕Q for some free module
F , so X ⊗ F ' (X ⊗ P )⊕ (X ⊗Q), hence X ⊗ P , being a direct summand of a free module, is
a projective module. �

2.2. Projective dimension of a module. We now define the projective dimension of a mod-
ule, which measures how far it is from being projective. It is the key step towards the definition
of the cohomological dimension of a Hopf algebra in the next section.

Definition 2.5. Let M be an A-module. A resolution of M is an exact sequence of A-modules

· · · → Pn+1
∂n+1→ Pn

∂n→ Pn−1 · · · → P2
∂2→ P1

∂1→ P0
ε→M → 0

The resolution P∗ →M is said to be

(1) finite if there exists n ≥ 0 such that for any k > n, Pk = 0, the smallest such n being
called the length of the resolution;

(2) projective if the Pi’s are projective A-modules;
(3) free is the Pi’s are free A-modules.

Of course we make the convention that the 0-module is free.

Proposition 2.6. Any A-module admits a free (and hence projective) resolution.

Proof. Let M be an A-module. The construction of a free resolution is done by an obvious step
by step procedure: start from a surjective A-linear map F0 → M → 0 with F0 free, apply the
same to the kernel of this map to get an exact sequence F1 → F0 →M → 0, and so on. �

Definition 2.7. The projective dimension of a non-zero A-module M is defined to be

pdA(M) = min{n : M admits a projective resolution of length n} ∈ N ∪ {∞}

and we make the convention that the projective dimension of the zero module is zero.

Examples 2.8. (1) An A-module M is projective if and only if pdA(M) = 0.
12



(2) Let A = CZ = C[t, t−1] be the group algebra of Z. Then A+ = Ker(ε) is easily seen to
be free as an A-module (freely generated by t− 1), so we have a free resolution of Cε

0→ A+ → A
ε→ Cε → 0

and hence pd(Cε) ≤ 1. Since A is infinite-dimensional, we have pdA(Cε) > 0, so
pdA(Cε) = 1. More generally, if A = CFn is the group algebra of the free group on
n ≥ 1 generators, then A+ is a free A-module, and hence pdA(Cε) = 1 (see e.g. [68,
Chapter 6])

(3) Let A = C〈x1, . . . , xn〉 be the free algebra on n generators (Example 1.12). Similarly to
the previous example, one has pdA(Cε) = 1.

(4) Let A = C[x]/(x2) and let ε be the unique algebra map A→ C. We have a infinite free
resolution

· · · → A→ A→ · · · → A→ A
ε→ Cε → 0

where each map A→ A is the multiplication by x.

The basic problem to actually compute a projective dimension is that given of length n
resolution of M , we know that pdA(M) ≤ n, but it is unclear how to see that this resolution
has the smallest possible length. To deal with this question, we will need the homological
machinery developed in Section 4.

2.3. Injective modules. We now discuss the notion of injective module, a concept dual to
that of projective module. We will show that a projective module over a finite-dimensional Hopf
algebra is injective, which will have an important consequence about the possible behaviour of
cohomological dimension for such Hopf algebras.

Let A be an algebra and let Q be an A-module. The (contravariant) functor HomA(−, Q)
from A-modules to vector spaces is left exact: if

0→ X
i→ Y

p→ Z → 0

is an exact sequence of A-modules, then the sequence

0→ HomA(Z,Q)
−◦p→ HomA(Y,Q)

−◦i→ HomA(X,Q)

is exact (check this). Injective modules are precisely those for which this functor is exact.

Proposition-Definition 2.9. A (right) A-module Q is said to be injective if one of the
equivalent following conditions holds.

(1) The functor HomA(−, Q) is exact.
(2) For any injective A-linear i : M → N and any A-linear map f : M → Q, there exists

an A-linear map ψ : N → Q such that ψi = f :

0 // M

f
��

i // N

ψ~~
Q

(3) Any injective A-linear map i : Q→M admits a retraction, i.e. there exists an A-linear
map r : M → Q such that ri = idQ.

The proof of the equivalence between these conditions is left to the reader, as well as the
proof of the following result.

Proposition 2.10. Let (Qi)∈I be a family of A-modules. Then
∏
i∈I Qi is injective if and only

if ∀i ∈ I, Qi is injective.

It is not true however, that
⊕
Mi is necessarily injective if all the Mi’s are (of course in such

a counterexample the set I has to be infinite). We will see soon that this is true if A is (right)
Noetherian. The proof will use another characterization of injectivity, Baer’s criterion.
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Proposition 2.11. An A-module Q is injective if and only if for any right ideal I ⊂ A and
any A-linear map f : I → Q, there exists an A-linear map ψ : A→ Q such that ψ|I = f :

0 // I

f
��

// A

ψ��
Q

Proof. It is clear that an injective module satisfies the above condition. Conversely assume that
Q satisfies this condition, and suppose given a diagram of morphism of A-modules

0 // M

f
��

i // N

Q

Let E be the set of pairs (N1, ψ1) where i(M) ⊂ N1 ⊂ N is a submodule and ψ1 : N1 → Q is anA-
linear map such that ψ1i = f . It is clear that E is non-empty, and order E by (N1, ψ1) ≤ (N2, ψ2)
if N1 ⊂ N2 and (ψ2)|N1

= ψ1. It is not difficult to check that E is inductively ordered, so by
Zorn’s Lemma there exists a maximal element (N0, ψ0) in E . We have to show that N0 = N .

Otherwise let x ∈ N \ N0, and let I = {a ∈ A | x · a ∈ N0}. It is clear that I ⊂ A is a
right ideal. We get a linear map g : I → Q, a 7→ ψ0(x · a). By our assumption there exists an
A-linear map φ : A→ Q extending g. For y, y′ ∈ N0 and a, a′ ∈ A such that y − y′ = x(a− a′)
(so that a− a′ ∈ I), we have ψ0(y− y′) = ψ0(x · (a− a′)) = φ(a− a′), and this shows that there
is a well-defined A-linear map ψ : N0 + x · A → Q such that ψ(y + x · a) = ψ0(y) + φ(a), thus
extending ψ0. This contradicts the maximality of (N0, ψ0), and hence N0 = N . �

Corollary 2.12. Let A be a (right) Noetherian algebra. If (Qλ)λ∈Λ is a family of injective
A-modules, then so is ⊕λ∈ΛQλ.

Proof. We use Baer’s criterion. Consider a diagram of A-linear maps

0 // I

f
��

// A

ψ��
Q

with I an ideal of A. Since A is Noetherian, I is finitely generated and there exists a finite
subset U ⊂ Λ such that f(I) ⊂ ⊕λ∈UQλ. By Proposition 2.10, the above finite direct sum
is injective, and there exists an A-linear map ψ : A → ⊕λ∈UQλ such that ψ|I = f , and this
concludes the proof. �

Lemma 2.13. Let P be a finite-dimensional projective A-module over a finite-dimensional Hopf
algebra A. Then P ∗ is projective as well.

Proof. Recall that we have, for any A-module Y , natural isomorphisms

HomA(P ∗, Y ) ' HomA(Cε, Y ⊗ P )

Hence the functor HomA(P ∗,−) is isomorphic to the functor HomA(Cε,−⊗ P ). Let

0→ X → Y → Z → 0

be an exact sequence of A-modules. Then the sequence

0→ X ⊗ P → Y ⊗ P → Z ⊗ P → 0

is exact as well, and is split since Z ⊗ P is projective (Proposition 2.4). It follows that the
sequence

0→ HomA(Cε, X ⊗ P )→ HomA(Cε, Y ⊗ P )→ HomA(Cε, Z ⊗ P )→ 0

is exact. Hence the functor HomA(P ∗,−) is exact, and P ∗ is projective. �
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We now can prove the expected result.

Theorem 2.14. Let P be a projective A-module over a finite-dimensional Hopf algebra A. Then
P is injective.

Proof. First assume that P is a finite-dimensional. We have for any A-module Y , natural
isomorphisms

HomA(Y, P ) ' HomA(Y ⊗ P ∗,Cε)
Hence the functor HomA(−, P ) is isomorphic to the functor HomA(−⊗ P ∗,Cε). Let

0→ X → Y → Z → 0

be an exact sequence of A-modules. Then the sequence

0→ X ⊗ P ∗ → Y ⊗ P ∗ → Z ⊗ P ∗ → 0

is exact as well, and is split because P ∗ is projective (Lemma 2.13) and then Z⊗P ∗ is projective
(Proposition 2.4). Hence the sequence

0→ HomA(X ⊗ P ∗,Cε)→ HomA(Y ⊗ P ∗,Cε)→ HomA(Z ⊗ P ∗,Cε)→ 0

is exact, and the functor HomA(−, P ) ' HomA(−⊗ P ∗,Cε) is exact.
Therefore AA is an injective A-module, and A being Noetherian since finite-dimensional, any

free A-module is injective by Corollary 2.12. If now P is projective, there exists a free A-module
F with P ⊕Q ' F , and we have from Proposition 2.10 that P is injective. �

3. Cohomological dimension of a Hopf algebra

We are now ready to define the cohomological dimension of a Hopf algebra, using the trivial
module.

Definition 3.1. The cohomological dimension of a Hopf algebra A is defined by

cd(A) = pdA(Cε) ∈ N ∪ {∞}

We first review, without any proof, the meaning of cohomological dimension for Hopf algebras
associated to groups and Lie algebras.

Example 3.2. If Γ is a discrete group, then cd(CΓ) = cdC(Γ), the cohomological dimension of
Γ with coefficients C, see [18, 13]. We warn the reader that the cohomological dimension of
a group, as usually considered [18], is different in general, because it is based on the integral
group ring ZΓ (this is already clear for finite groups). The cohomological dimension of Γ with
coefficients C rather behaves like virtual cohomological dimension [18]. Here are some examples.

(1) We have cd(CΓ) = 0 if and only if Γ is finite (see Proposition 2.3, recall that the group
algebra of a finite group is semisimple).

(2) We have seen in Examples 2.8 that if Γ is free group on n generators, then cd(CΓ) = 1.
In fact, if Γ is a finitely generated group, then cd(CΓ) = 1 if and only if Γ contains a
free normal subgroup of finite index, see [29, 24, 25], this is Dunwoody’s theorem.

(3) If Γ is the fundamental group of an aspherical manifold of dimension n, then cd(CΓ) = n,
see [18].

Example 3.3. If A = C〈x1, . . . , xn〉 is the free algebra on n generators (Example 1.12), then
cd(A) = 1, see the previous section.

Example 3.4. If A = O(G), the algebra of polynomial functions on an affine algebraic group G,
then cd(O(G)) = dimG, the usual dimension of G, i.e. the linear dimension of the Lie algebra
of G. This is explained is Section 5.

Example 3.5. If A = U(g), the enveloping algebra of a finite-dimensional Lie algebra g, then
cd(A) = dim(g). See [68].

The case of finite-dimensional Hopf algebras is well understood.
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Theorem 3.6. Let A be a Hopf algebra.

(1) cd(A) = 0 if and only if A is finite-dimensional semisimple.
(2) If A is finite-dimensional, then cd(A) ∈ {0,∞}.

Proof. The first statement is Proposition 2.3. Assume that A is finite-dimensional and cd(A) =
n > 0. We thus have a projective resolution

0→ Pn
∂n→ Pn−1

∂n−1→ · · · → P1
∂1→ P0

ε→ Cε → 0

Since Pn is projective, it is injective by Theorem 2.14, and hence there exists an A-linear map
r : Pn−1 → Pn such that r∂n = idPn . Hence Pn−1 = ∂n(Pn)⊕Q for a submodule Q, with both
∂n(Pn) and Q projective, since Pn−1 is. We get a new projective resolution

0→ Q
∂n−1→ Pn−2

∂n−2→ · · · → P0
ε→ Cε → 0

of length n− 1, so cd(A) ≤ n− 1, a contradiction. Hence if cd(A) > 0, there does not exist any
finite projective resolution of Cε, and cd(A) =∞. �

Since the trivial module Cε is a distinguished one, the above definition of the cohomologi-
cal dimension of a Hopf algebra is perfectly natural, and two isomorphic Hopf algebras have
the same cohomological dimension. In fact the following result shows that the cohomological
dimension does not even depend on the choice of special module.

Proposition 3.7. Let A be a Hopf algebra. Then

cd(A) = Sup{pdA(M), M ∈ Mod(A)}

Proof. It is clear that cd(A) is smaller than the quantity on the right, and to prove the equality,
we can assume that n = cd(A) is finite. We follow the argument in [45]. Consider a projective
resolution

0→ Pn → Pn−1 → · · · → P1 → P0 → Cε → 0

For an A-module M , tensoring this resolution by M on the right yields a projective resolution

0→M ⊗ Pn →M ⊗ Pn−1 → · · · →M ⊗ P1 →M ⊗ P0 →M ⊗ Cε 'M → 0

(the terms M ⊗ Pi are indeed projective modules by Proposition 2.4) and hence pdA(M) ≤ n,
as needed. �

Therefore the cohomological dimension of a Hopf algebra coincides with its right global
dimension, one of the most classical homological invariants of an algebra, see [68], and only
depends on the algebra structure.

4. Homological algebra

We now present the necessary homological algebra background to be able to compute effec-
tively cohomological dimensions.

4.1. Chain complexes.

Definition 4.1. A chain complex C∗ = (C∗, d∗) consists of a sequence of complex vector
spaces and linear maps

· · · → Cn+2
dn+2→ Cn+1

dn+1→ Cn → · · · → C2
d2→ C1

d1→ C0 → 0

such that for any n ≥ 0, we have dndn+1 = 0. The maps dn are called the differentials of the
complex. For n ≥ 0, the n-th homology space of the complex C∗ is then defined by

Hn(C∗) = Ker(dn)/Im(dn+1)

making the convention that d0 = 0.
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Remark 4.2. If M is an A-module, a resolution of M

· · · → Pn+1
∂n+1→ Pn → · · · → P2

∂2→ P1
∂1→ P0

ε→M → 0

as in Definition 2.5 can be seen as a chain complex with trivial homology. Forgetting M , we
get a chain complex P∗

· · · → Pn+1
∂n+1→ Pn → · · · → P2

∂2→ P1
∂1→ P0 → 0

with H0(P∗) 'M and Hn(P∗) = 0 is n ≥ 1

Definition 4.3. Let C∗ = (C∗, d
C
∗ ) and D∗ = (D∗, d

D
∗ ) be two chain complexes. A morphism

of complexes f : C∗ → D∗ is a sequence of linear map fn : Cn → Dn, n ∈ N, commuting with
the differentials:

Cn
fn //

dCn
��

Dn

dDn
��

Cn−1
fn−1 // Dn−1

The following result is left as an exercise.

Proposition 4.4. Let f : C∗ → D∗ be a morphism of morphism of complexes. Then for any
n ≥ 0, f induces a linear map

Hn(f) : Hn(C∗) −→ Hn(D∗)

[c] 7−→ [fn(c)]

where [−] means the class of the element c ∈ Ker(dn) in Hn(C∗).

Definition 4.5. Let C∗ = (C∗, d
C
∗ ) and D∗ = (D∗, d

D
∗ ) be some chain complexes and let

f, g : C∗ → D∗ be some morphisms of complexes. An homotopy h from f to g consists of a
sequence of linear maps hn : Cn → Dn+1, n ≥ −1 (with h−1 = 0), such that ∀n ≥ 0, we have
dDn+1hn + hn−1d

C
n = fn − gn.

Cn+1

dCn+1 // Cn
dCn //

fn
��
gn

��

hn

||

Cn−1

hn−1||
Dn+1

dDn+1

// Dn
dDn

// Dn−1

We say that f and g are homotopic, and write f ∼ g, if there exists an homotopy from f
to g. We say that f is an homotopy equivalence if there exists a morphism of complexes
f ′ : D∗ → C∗ such that ff ′ ∼ idD∗ and f ′f ∼ idC∗ .

Proposition 4.6. Let C∗ = (C∗, d
C
∗ ) and D∗ = (D∗, d

D) be some chain complexes and let
f, g : C∗ → D∗ be some morphisms of complexes. If f and g are homotopic, then Hn(f) = Hn(g)
for all n ≥ 0. In particular, if f is an homotopy equivalence, then Hn(f) is, for any n ≥ 0, an
isomorphism Hn(C∗) ' Hn(D∗).

Proof. Let h be an homotopy from f to g, and let x ∈ Ker(dCn ). We have

fn(x)− gn(x) = dDn+1(hn(x)) + hn−1(dCn (x)) = dDn+1(hn(x))

hence Hn(f)([x]) = [fn(x)] = [gn(x)] = Hn(g)([x]). �

As a first application of homotopies, we get the standard resolution of the trivial module over
a Hopf algebra.

Proposition 4.7. If A is a Hopf algebra, consider the following sequence of A-linear maps
(with A acting by right multiplication on the extreme right term of A⊗n):

· · · −→ A⊗n+1 −→ A⊗n −→ · · · −→ A⊗A −→ A
ε−→ Cε → 0
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where each map A⊗n+1 → A⊗n is given by

a1 ⊗ · · · ⊗ an+1 7→ ε(a1)a2 ⊗ · · · ⊗ an+1 +
n−1∑
i=1

(−1)ia1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1

Then this is a free resolution of the trivial module Cε, called the standard resolution of the
standard module.

Proof. We leave it to the reader to check that this is indeed a complex. For n ≥ 0, let hn+1 :
A⊗n+1 → A⊗n+2, a1 ⊗ · · · ⊗ an+1 7→ 1 ⊗ a1 ⊗ · · · ⊗ an+1, and let h0 : C → A, 1 7→ 1. It is
an immediate verification to check that this defines an homotopy from the identity to the zero
map, so the homology of this complex is trivial, and we indeed have a resolution. �

Theorem 4.8. Let M , N be some A-modules, let P∗ → M be a projective resolution of M
and let f : M → N be an A-linear map. Then for any resolution Q∗ → N of N , there exists
a morphism of complexes ϕ : P∗ → Q∗ which is a lifting of f , in the sense that ε′ϕ0 = fε.
Moreover, the morphism of complexes ϕ is unique up to homotopy.

· · · // P2
d2 //

∃ ϕ2

��

P1
d1 //

∃ ϕ1

��

P0
ε //

∃ ϕ0

��

M //

f
��

0

· · · // Q2
∂2 // Q1

∂1 // Q0
ε′ // N // 0

Proof. We begin by showing the existence of ϕ, by induction.
• Construction of ϕ0. We have a diagram

P0

fε
��

Q0
ε′ // N // 0

hence, since P0 is projective, there exists ϕ0 : P0 → Q0 such that ε′ϕ0 = fε.
• Put ∂0 = ε′, d0 = ε, and ϕ−1 = f , and assume now that we have constructed linear maps

ϕk, 0 ≤ k ≤ n, such that ∂kϕk = ϕk−1dk for 0 ≤ k ≤ n, and let us construct ϕn+1.
We have ∂nϕndn+1 = ϕn−1dndn+1 = 0, hence Im(ϕndn+1) ⊂ Ker(∂n) = Im(∂n+1). Hence we

have a diagram

Pn+1

ϕndn+1

��
Qn+1

∂n+1

// Im(∂n+1) // 0

hence, since Pn+1 is projective, there exists ϕn+1 : Pn+1 → Qn+1 such that ∂n+1ϕn+1 = ϕndn+1.
This proves the existence of ϕ, and we now have to show uniqueness up to homotopy. Assume

that ψ is another lifting of f and put θ = ψ − ϕ. We have to construct linear maps hn : Pn →
Qn+1 such that θn = ∂n+1hn +hn−1dn for any n ≥ 0, where we put h−1 = 0 (and again ∂0 = ε′,
d0 = ε). Again we proceed by induction.
• Construction of h0. We have ∂0θ0 = ∂0ψ0−∂0ϕ0 = fd0−fd0 = 0, hence Im(θ0) ⊂ Ker(∂0) =

Im(∂1). We thus have a diagram

P0

θ0
��

Q1
∂1
// Im(∂1) // 0

and since P0 is projective, there exists h0 : P0 → Q1 such that θ0 = ∂1h0 = ∂1h0 + h−1d0.
• Assume now that we have constructed linear maps hk : Pk → Qk+1 such that θk =

∂k+1hk + hk−1dk for any 0 ≤ k ≤ n, and let us construct hn+1.
18



Consider the linear map θn+1 − hndn+1 : Pn+1 → Qn+1. We have ∂n+1(θn+1 − hndn+1) =
θndn+1− (θn− hn−1dn)dn+1 = 0, hence Im(θn+1− hndn+1) ⊂ Ker(∂n+1) = Im(∂n+2). Hence we
have a diagram

Pn+1

θn+1−hndn+1

��
Qn+2

∂n+2

// Im(∂n+2) // 0

and since Pn+1 is projective, there exists hn+1 : Pn+1 → Qn+2 such that θn+1 − hndn+1 =
∂n+2hn+1. This finishes the proof. �

Corollary 4.9 (Uniqueness of projective resolutions). Let P∗ →M and Q∗ →M be projective
resolutions of an A-module M. Then there exists a morphism of complexes ϕ : P∗ → Q∗ which
is an homotopy equivalence.

Proof. Let ϕ : P∗ → Q∗ be a lifting of idM , and let ψ : Q∗ → P∗ be a lifting of idM . Then
ψϕ : P∗ → P∗ is a lifting of idM , and so is idP∗ . The uniqueness of liftings up to homotopy
shows that ψϕ ∼ idP∗ , and similarly ϕψ ∼ idQ∗ . �

Proposition 4.10. Let C∗ = (C∗, d
C
∗ ) and D∗ = (D∗, d

D
∗ ) be some chain complexes of A-

modules, and let F :MA → Vec(C) be a C-linear functor.

(1) F (C∗) = (F (C∗), F (dC∗ )) and F (D∗) = (F (D∗), F (dD∗ )) are chain complexes.
(2) If f : C∗ → D∗ is a morphism of complexes, then so is F (f) : F (C∗)→ F (D∗).
(3) If f : C∗ → D∗ and g : C∗ → D∗ are homotopic morphism of complexes, so are F (f)

and F (g). If particular, if f is an homotopy equivalence, so is F (f).

Proof. The first assertions are immediate verifications. If h is an homotopy from f to g, it is
also immediate that F (h) is an homotopy from F (f) to F (g), and the last assertion follows as
well. �

4.2. Cochain complexes.

Definition 4.11. A cochain complex C∗ = (C∗, d∗) consists of a sequence of complex vector
spaces and linear maps

0→ C0
d0→ C1

d1→ C2 → · · · → Cn
dn→ Cn+1

dn+1→ Cn+2 → · · ·

such that for any n ≥ 0, we have dn+1dn = 0. The maps dn are called the differentials of the
complex. For n ≥ 0, the n-th cohomology space of the complex C∗ is then defined by

Hn(C∗) = Ker(dn)/Im(dn−1)

making the convention that d−1 = 0.

The definitions and basic results of the previous subsection have easy adaptation to the case
of cochain complexes.

Definition 4.12. Let C∗ = (C∗, d
C
∗ ) and D∗ = (D∗, d

D
∗ ) be two cochain complexes. A mor-

phism of (cochain) complexes f : C∗ → D∗ is a sequence of linear map fn : Cn → Dn,
n ∈ N, commuting with the differentials:

Cn
fn //

dCn
��

Dn

dDn
��

Cn+1
fn+1 // Dn+1
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Proposition 4.13. Let f : C∗ → D∗ be a morphism of cochain complexes. Then for any n ≥ 0,
f induces a linear map

Hn(f) : Hn(C∗) −→ Hn(D∗)

[c] 7−→ [fn(c)]

where [−] means the class of the element c ∈ Ker(dn) in Hn(C∗).

Definition 4.14. Let C∗ = (C∗, d
C
∗ ) and D∗ = (D∗, d

D
∗ ) be some cochain complexes and let

f, g : C∗ → D∗ be some morphisms of complexes. An homotopy h from f to g consists of a
sequence of linear maps hn : Cn → Dn−1, n ≥ 0 (with h−1 = 0), such that ∀n ≥ 0, we have
dDn−1hn + hn+1d

C
n = gn − fn.

Cn−1

dCn−1 // Cn
dCn //

fn
��
gn

��

hn

||

Cn+1

hn+1||
Dn−1

dDn−1

// Dn
dDn

// Dn+1

We say that f and g are homotopic, and write f ∼ g, if there exists an homotopy from f
to g. We say that f is an homotopy equivalence if there exists a morphism of complexes
f ′ : D∗ → C∗ such that ff ′ ∼ idD∗ and f ′f ∼ idC∗ .

Proposition 4.15. Let C∗ = (C∗, d
C
∗ ) and D∗ = (D∗, d

D
∗ ) be some cochain complexes and let

f, g : C∗ → D∗ be some morphisms of complexes. If f and g are homotopic, then Hn(f) = Hn(g)
for all n ≥ 0. In particular, if f is an homotopy equivalence, then Hn(f) is, for any n ≥ 0, an
isomorphism Hn(C∗) ' Hn(D∗).

Proof. The proof is similar to that of Proposition 4.6. �

Proposition 4.16. Let C∗ = (C∗, d
C
∗ ) and D∗ = (D∗, d

D
∗ ) be some chain complexes of A-

modules, and let F :MA → Vec(C) be a contravariant C-linear functor.

(1) F (C∗) = (F (C∗), F (dC∗ )) and F (D∗) = (F (D∗), F (dD∗ )) are cochain complexes.
(2) If f : C∗ → D∗ is a morphism of complexes, then so is F (f) : F (D∗)→ F (C∗).
(3) If f : C∗ → D∗ and g : C∗ → D∗ are homotopic morphism of complexes, so are F (f)

and F (g). If particular, if f is an homotopy equivalence, so is F (f).

Proof. Similarly to Proposition 4.10, these are immediate verifications. �

4.3. Ext spaces. We now provide another interpretation of projective dimension, in terms of
certain cohomology spaces, the Ext-spaces.

Theorem-Definition 4.17. Let M , N be right A-modules. Let P∗ → M → 0 be a projective
resolution of M

· · · → Pn+1
∂n+1→ Pn → · · · → P2

∂2→ P1
∂1→ P0

ε→M → 0

and consider the associated complex HomA(P∗, N)

0→ HomA(P0, N)
−◦∂1−→ HomA(P1, N)

−◦∂2−→ HomA(P2, N)
−◦∂3−→ · · ·

Then the cohomology spaces H∗(HomA(P∗, N)) do not depend on the choice of the projective
resolution P∗, and are denoted Ext∗A(M,N).

Proof. Let Q∗ →M → 0 be a another projective resolution of M

· · · → Qn+1
dn+1→ Qn → · · · → Q2

d2→ Q1
d1→ Q0

ε′→M → 0

Let ϕ : P∗ → Q∗ be an homotopy equivalence (Corollary 4.9). It follows from Proposition 4.16,
applied to the contravariant functor HomA(−, N), that the cochain complexes

0→ HomA(P0, N)
−◦∂1−→ HomA(P1, N)

−◦∂2−→ HomA(P2, N)
−◦∂3−→ · · ·
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and

0→ HomA(Q0, N)
−◦d1−→ HomA(Q1, N)

−◦d2−→ HomA(Q2, N)
−◦d3−→ · · ·

are homotopy equivalent, and hence have isomorphic cohomologies. �

Remark 4.18. We have Ext0
A(M,N) ' HomA(M,N).

Proof. Let

· · · → Pn+1
∂n+1→ Pn → · · · → P2

∂2→ P1
∂1→ P0

ε→M → 0

be a projective resolution of M . By definition, we have

Ext0
A(M,N) = {f ∈ HomA(P0, N), f∂1 = 0} = {f ∈ HomA(P0, N), f|Ker(ε) = 0}

Since P0/Ker(ε) 'M , the result follows. �

In fact the equivalences classes of elements in ExtnA(M,N) truly correspond to equivalences
classes of exact sequences of A-modules of length n + 2 starting at N and finishing at M , see
[68] again.

The Ext-spaces and the projective dimension are related as follows.

Proposition 4.19. Let M be an A-module. The following assertions are equivalent.

(1) pdA(M) ≤ n.
(2) ExtiA(M,−) = 0 for i > n.
(3) Extn+1

A (M,−) = 0.
(4) For any exact sequence of A-modules 0→ K → Pn−1 → · · · → P1 → P0 →M → 0 with

each Pi projective, then K is projective.

(5) For any exact sequence of A-modules 0→ L
i→ Pn → Pn−1 → · · · → P1 → P0 →M → 0

with each Pi projective, there exists r ∈ HomA(Pn, L) such that ri = idL.

Proof. (2)⇒ (3) is obvious, and so are (4)⇒ (1) and (1)⇒ (2), just by writing the definitions.

Assume that (3) holds, and let 0 → K
i→ Pn−1

dn−1→ Pn−2 → · · · → P1 → P0 → M → 0 be
an exact sequence of A-modules with each Pi projective. Complete this exact sequence to a
projective resolution

// · · ·Pn+2
dn+2 // Pn+1

dn+1 //

q "" ""

Pn
dn //

p "" ""

Pn−1
dn−1 // · · · // P0

// M // 0

L

j

OO

K

i

OO

We are going to show that Pn ' K ⊕L as A-modules, so that K, being a direct summand of a
projective module, will be projective, and this will prove that (3)⇒ (4).

We have an exact sequence 0→ L
j→ Pn

p→ K → 0, and hence to show that Pn ' K ⊕ L, it
is enough to show that there exists an A-linear map r : Pn → L such that rj = idL. Consider
q ∈ HomA(Pn+1, L). We have qdn+2 = 0 since jqdn+2 = dn+1dn+2 = 0 and j is injective. Hence
since Extn+1

A (M,L) = 0, there exists r ∈ HomA(Pn, L) such that q = rdn+1. Then rjq = q, and
since q is surjective, we have rj = idL, as needed.

Assume now that (4) holds, and let 0 → L
i→ Pn → Pn−1 → · · · → P1 → P0 → M → 0 be

exact with each Pi projective. We then have an exact sequence

0→ Pn/Im(i)→ Pn−1 → · · · → P1 → P0 →M → 0

By (4), we have that Pn/Im(i) is a projective A-module, so Pn ' Pn/Im(i) ⊕ L as A-modules
and (5) follows. The proof of (5)⇒ (1) is left as an exercise. �

Corollary 4.20. We have, for any A-module M

pdA(M) = sup{n : ExtnA(M,N) 6= 0 for some A-module N}
21



4.4. Tor spaces. We finish the section by introducing the Tor-spaces, which will be in use
when defining homology spaces of Hopf algebras.

Theorem-Definition 4.21. Let M be a right A-module and let N be a left A-module. Let
P∗ →M → 0 be a projective resolution of M

· · · → Pn+1
∂n+1→ Pn

∂n→ · · · → P2
∂2→ P1

∂1→ P0
ε→M → 0

and consider the associated complex P∗ ⊗A N

· · · → Pn+1 ⊗A N
∂n+1⊗idN→ Pn → · · · → P2 ⊗A N

∂2⊗AidN→ P1
∂1⊗AidN→ P0 → 0

Then the cohomology spaces H∗(P∗⊗AN) do not depend on the choice of the projective resolution
P∗, and are denoted TorA∗ (M,N).

Proof. Let Q∗ →M → 0 be a another projective resolution of M

· · · → Qn+1
dn+1→ Qn → · · · → Q2

d2→ Q1
d1→ Q0

ε′→M → 0

Let ϕ : P∗ → Q∗ be an homotopy equivalence (Corollary 4.9). Then ϕ ⊗A N is an homo-
topy equivalence between the complexes P∗ ⊗A N and Q∗ ⊗A N , which thus have isomorphic
homologies. �

Remark 4.22. We have TorA0 (M,N) 'M ⊗A N .

An important fact, that we will only use in the proof of Theorem 8.5 and will not prove, is
that TorA∗ (M,N) can also be computed using projective resolutions of N : If

· · · → Pn+1
∂n+1→ Pn

∂n→ · · · → P2
∂2→ P1

∂1→ P0
ε→ N → 0

is a projective resolution of N by left A-modules, then TorA∗ (M,N) is isomorphic to the homol-
ogy of the complex M ⊗A P∗. See [68], for example.

5. Example: cohomological dimension of commutative Hopf algebras

In this section we explain the ideas leading to the computation of the cohomological dimension
of the coordinate algebra on an affine algebraic group.

5.1. The Koszul complex. We first present a general tool. Let A be commutative algebra,
and let x = (x1, . . . , xr) be a sequence of elements of A. The Koszul complex K∗(A, x) is defined
as follows.
• K0(A, x) = A ;
• K1(A, x) = E, the free A-module of rank r, with basis e1, . . . , er ;
• for 1 ≤ p ≤ r, Kp(A, x) = ΛpA(E), the free A-module with basis ei1 ∧ · · · ∧ eip , i1 < · · · < ip ;
• for p > r, Kp(A, x) = {0} ;
• the diffentials are defined by d1(ei) = xi and

dp : Kp(A, x) −→ Kp−1(A, x)

ei1 ∧ · · · ∧ eip 7−→
p∑
j=1

(−1)j−1(ei1 ∧ · · · ∧ êij ∧ · · · ∧ eip)xij

It is not difficult to check that (K∗(A, x), d∗) is a complex:

0→ Kr(A, x)
dr→ Kr−1(A, x)

dr−1→ Kr−2(A, x)→ · · · → K2(A, x)
d2→ K1(A, x)

d1→ K0(A, x) = A→ 0

Definition 5.1. A sequence x = (x1, . . . , xr) of elements of A is said to be regular if

(1) Ax1 + · · ·+Axr $ A ;
(2) x1 is not a zero divisor in A ;
(3) For any i ≥ 2, xi is not a zero divisor in the ring A/(x1, . . . , xi−1).
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Theorem 5.2. If x = (x1, . . . , xr) is a regular sequence in A, then the Koszul complex provides
a free resolution of the A-module A/I, where I = Ax1 + · · ·+Axr:

0→ Kr(A, x)
dr→ Kr−1(A, x)→ · · · → K2(A, x)

d2→ K1(A, x)
d1→ K0(A, x) = A→ A/I → 0

Moreover we have

ExtpA(A/I,A) '

{
0 if p 6= r

A/I if p = r

and in particular we have pdA(A/I) = r.

Proof. This can be found in numerous textbooks, e.g. [42, 47, 68]. The reader will easily treat
the case r = 1, 2, 3, check that ExtrA(A/I,A) ' A/I, and deduce the last assertion. �

A first immediate application of Theorem 5.2 is the following result:

Corollary 5.3. Let A be a commutative Hopf algebra. If the augmentation ideal I = A+ is
generated by a regular sequence with r elements, then cd(A) = r.

Proof. This indeed follows immediately from Theorem 5.2, since Cε ' A/I. �

As a first illustration, we have:

Example 5.4. The cohomological dimensions of the Hopf algebras

O(Cn) ' C[X1, . . . , Xn], O(C∗n) ' CZn ' C[X±1
1 , · · · , X±1

n ], O(SL2(C))

respectively are n, n, 3.

Proof. For the first two algebras, the sequences (X1, . . . , Xn) is regular, while for the third one,
the sequence (b, c, a− 1) is regular (all the involved quotients being integral domains). �

5.2. General case. We now explain how the construction of the previous subsection enables
one to compute the cohomological dimension of the coordinate algebra of an affine algebraic
group. We only sketch the main ideas, taking for granted a number of tools from commutative
algebra.

5.2.1. Localization. Let S ⊂ A \ {0} be a multiplicative subset of a commutative ring (1 ∈ S
and s, t ∈ S ⇒ st ∈ S). The localized ring S−1A is the set of pairs (a, s) ∈ A × S modulo the
equivalence relation

(a, s) ∼ (b, r) ⇐⇒ ∃t ∈ S such that tra = tsb

It becomes a ring under the laws

a

s
+
b

r
=
ar + bs

sr
,

a

s

b

r
=
ab

sr

where a
s stands for the class of (a, s) in S−1A. There is a morphism of ring

A −→ S−1A, a 7−→ a

1

which is injective if S does not contain any zero-divisor.
The localization of an A-module M is denoted S−1M and is defined to be the set of pair

(x, s) ∈M × S modulo the equivalence relation

(x, s) ∼ (y, r) ⇐⇒ ∃t ∈ S such that x · tr = y · ts
It becomes an S−1A-module under the laws

x

s
+
y

r
=
x · r + y · s

sr
,

x

s

a

r
=
x · a
sr

The construction defines an exact functor from A-modules to S−1A-modules.
When S = A \m with m a maximal ideal of A, the localized ring S−1A is denoted Am, while

the localized module S−1M is denoted Mm. The following result will be useful later.
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Proposition 5.5. Let M be an A-module. Then

M = {0} ⇐⇒ Mm = {0} for any maximal ideal m ⊂ A

5.2.2. Localization and Ext. While the previous material was quite basic, we will need a more
advanced result. We begin with a preliminary remark.

Let A be an algebra (non necessarily commutative) and M , N be right A-modules. If N is
a left B-module for another algebra B such that N is a B-A-bimodule, then the space of right
A-linear maps HomA(M,N) carries a natural left B-module structure defined by

(b · f)(x) = b · (f(x)

This remark ensures that the Ext-spaces

Ext∗A(M,N)

carry a natural left B-module structure. Indeed, if P∗ →M → 0 is a projective resolution of M

· · · → Pn+1
∂n+1→ Pn → · · · → P2

∂2→ P1
∂1→ P0

ε→M → 0

the associated complex HomA(P∗, N)

0→ HomA(P0, N)
−◦∂1−→ HomA(P1, N)

−◦∂2−→ HomA(P2, N)
−◦∂3−→ · · ·

carries a natural left B-module structure, and hence so do the cohomology spaces Ext∗A(M,N) =
H∗(HomA(P∗, N)) (the B-module structure does not depend either on the choice of the projec-
tive resolution P∗).

Now assume that A is commutative, and let M , N be some right A-modules. Since A is
commutative, the right A-module N can be transformed in a symmetric A-A-bimodule, so that
the spaces Ext∗A(M,N) carry a left and hence right A-module structure. We can therefore
consider localizations of such modules, and we have the following result [68, Proposition 3.3.10]:

Proposition 5.6. Let A be a commutative Noetherian ring, let M be a finitely generated A-
module, let N be any A-module, and let S ⊂ A be a multiplicative subset. Then we have for any
n ≥ 0

S−1 (Ext∗A(M,N)) ' Ext∗S−1A(S−1M,S−1N)

Proof. This follows from the combination of two facts.

(1) If P∗ →M → 0 is a projective resolution by A-modules, then so is S−1P∗ → S−1M → 0.
This is because the localization functor is exact and preserve projective objeects, since
it preserves free ones.

(2) S−1 (HomA(M,N)) ' HomS−1A(S−1M,S−1N).

The details are left to the reader. �

Combined with Proposition 5.5, this gives the following useful result [68, Corollary 3.3.11].

Corollary 5.7. Let A be a commutative Noetherian ring, let M be a finitely generated A-module,
let N be any A-module. Then, for any n ≥ 0,

ExtnA(M,N) = {0} ⇐⇒ ExtnAm
(Mm, Nn) = {0} for any maximal ideal m ⊂ A

5.2.3. Local rings. Recall that local ring is a commutative ring having only one maximal ideal.
If A is such a local ring, with maximal ideal m, then for any A-module M , the quotient M/mM
carries a natural vector space structure over the field K = A/m. In particular m/m2 is vector
space over K = A/m.

The prototypical example of a local ring is the localization AI of a commutative ring at a
maximal ideal I, the unique maximal ideal being m = IAI , and the quotient field AI/IAI
being canonically isomorphic to A/I (check this). Moreover the obvious map gives a linear
isomorphism between I/I2 and m/m2 (as vector spaces over A/I).
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5.2.4. Krull dimension. If A is a commutative ring and p ⊂ A is a prime ideal, recall that the
height of p, denoted ht(p), is defined to be the maximal length of chains of prime ideals

p0 $ p1 $ · · · $ pn = p

The Krull dimension of A is then defined by

Kdim(A) = sup{ht(m), m maximal ideal of A} ∈ N ∪ {∞}

If A is local with maximal ideal m, we then have Kdim(A) = ht(m). Therefore, if I ⊂ A is a
maximal ideal, the map p 7→ pAI being an order-preserving bijection between the set of prime
ideals of A contained in I and the set of prime ideals of AI , we have

Kdim(A) = sup{Kdim(AI), I maximal ideal of A}

When A = O(G) is the coordinate algebra on an affine algebraic group, for any two maximal
ideals m and n there exists an algebra automorphism f : A → A such that f(m) = n, hence
have the same height, and we get

Kdim(O(G)) = Kdim(O(G)I),where I denotes the augmentation ideal of O(G)

5.2.5. Regular local rings, regular rings. If A is a Noetherian local ring, then

dim(A) ≤ dimK(m/m2)

where the first dim stands for Krull dimension (see e.g. [37, Page 52]). A regular local ring is
a Noetherian local ring for which the above equality holds.

It is known that a regular local ring is an integral domain (see [68, Proposition 4.4.5], or [37,
Theorem 164]).

We will use the following result (see [68, Corollary 4.6] or [37, Theorem 169]).

Theorem 5.8. Let A be a regular local ring with maximal ideal m, and let x1, . . . , xd be a
sequence of elements of m whose classes are a K-basis of m/m2. Then these elements generate
the ideal m (by Nakayama’s lemma) and form a regular sequence in A.

A regular ring is a commutative Noetherian ring such that for any maximal ideal I in A, AI
is a regular local ring,

5.2.6. Dimension of an affine algebraic group. We finally come back to the situation that is of
interest to us: A = O(G) for an affine algebraic group G. Denote by I the augmentation ideal
of A. Let us recall a number of standard definitions and facts.
• The dimension of G is defined to be

dim(G) = Kdim(O(G))

This is the definition of the dimension of G as an affine algebraic set. If G0 is the connected
component of the neutral element of G, we have dim(G) = dim(G0) since the irreducible
components of G all are translate of each other. Since O(G0) is an integral domain, we thus
have

dim(G) = Kdim(O(G)) = Kdim(O(G0)) = trdegC(Fr(O(G0))

where trdegC(Fr(O(G0)) is the transcendence degree of the fraction field of O(G0) (see [47,
Theorem 5.6]).
• The Lie algebra of G can be defined as

g = Derε(A,C)

and we have a linear isomorphism g ' (I/I2)∗. We thus have, letting m = IAI

dimC(g) = dimC(I/I2) = dimC(m/m2) ≥ Kdim(O(G)I) = Kdim(O(G)) = dim(G)

The smoothness theorem (see [67]) says that dimC(g) = dim(G), and thus O(G)I is a regular
local ring.
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Now put n = dim(G). We want to show that n = cd(O(G)). Let us first show that for any
A-module M (with A = O(G)), we have

Extn+1
A (Cε,M) = {0}

By Corollary 5.7, it is enough to show that for any maximal ideal m in A, we have

Extn+1
Am

((Cε)m,Mm) = {0}
and since (Cε)m = {0} for m 6= I, we only have to show that

Extn+1
AI

((Cε)I ,MI) = Extn+1
AI

(Cε,MI) = {0}

Let x1, . . . , xn ∈ I be such that x1, . . . , xn is a basis of I/I2. Then the corresponding elements
generate m = IAI , and form a basis of m/m2 and a regular sequence in the regular local ring
AI , by Theorem 5.8. It thus follows from Theorem 5.2 that Extn+1

AI
(Cε,MI) = {0}, According

to Proposition 4.19, we have cd(A) ≤ n.
If we take nowM = AA, we haveMI = AI , and by Theorem 5.2 we have ExtnAI (Cε, AI) 6= {0}.

Hence Corollary 5.7, together with Proposition 4.19, ensure that cd(A) ≥ n, as required.

6. Cohomology and homology of a Hopf algebra

6.1. Generalities. Let A be Hopf algebra. If M is a right A-module and N a left A-module,
the spaces

Ext∗A(Cε,M) and TorA∗ (Cε, N)

serve as cohomology and homology spaces for A. It is thus tempting to denote them H∗(A,M)
and H∗(A,M), but we will not do exactly that, since it is contrary to some more usual notations.
Indeed, in general, if A is an algebra and M is an A-bimodule, then H∗(A,M) and H∗(A,M)
denote usually the Hochschild cohomology and homology of A with coefficients in M . See the
appendix for more details.

Definition 6.1 (Cohomology and homology of a Hopf algebra). (1) The cohomology of
a Hopf algebra A with coefficients in a right A-module M , denoted H∗(A, εM),
is defined by

H∗(A, εM) = Ext∗A(Cε,M)

(2) The homology of a Hopf algebra A with coefficients in a left A-module N ,
denoted H∗(A,Nε), is defined by

H∗(A,Nε) = TorA∗ (Cε, N)

We thus have, by Proposition 4.19,

cd(A) = sup{n : Hn(A, εM) 6= 0 for some A-module M}
= min{n : Hn+1(A, εM) = 0 for any A-module M}

Remark 6.2. Given a right A-module as above, the cohomology H∗(A, εM) as above coincides
with the Hochschild cohomology H∗(A, εM), where εM is the A-bimodule having M as underly-
ing right A-module, and trivial left A-module structure given by a · x = ε(a)x. So our notation
is consistent with the usual one in the literature. See the appendix.

Remark 6.3. The cohomology of a discrete group Γ is defined similarly as above, but using the
integral group ring ZΓ. Since we cannot seriously impose that the Hopf algebras we are interest
in are defined over Z, our definition is not a full generalization of ordinary group cohomology,
but rather of group cohomology with coefficients into CΓ-modules.

Remark 6.4. The cohomology of a Hopf algebra only depends of the underlying augmented
algebra.

Using the standard resolution of the trivial module (Proposition 4.7) together with Theorem
4.17, we get, after some identifications, a more concrete definition for cohomology.
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Proposition 6.5. Let A be Hopf algebra and let M be a right A-module. Then the cohomology
H∗(A, εM) is the cohomology of the complex

0 −→ Hom(C,M)
δ−→ Hom(A,M)

δ−→ · · · δ−→ Hom(A⊗n,M)
δ−→ Hom(A⊗n+1,M)

δ−→ · · ·

where the differential δ : Hom(A⊗n,M) −→ Hom(A⊗n+1,M) is given by

δ(f)(a1 ⊗ · · · ⊗ an+1) =ε(a1)f(a2 ⊗ · · · ⊗ an+1) +
n∑
i=1

(−1)if(a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1)

+ (−1)n+1f(a1 ⊗ · · · ⊗ an) · an+1

We thus have in particular

H0(A, εM) = MA = {x ∈M | x · a = ε(a)x, ∀a ∈ A}

and

H1(A, εM) = Der(A, εM)/InnDer(A, εM)

where Der(A, εM) is the vector space of derivations d : A→ M , i.e. d(ab) = ε(a)d(b) + d(a) · b
for any a, b, and InnDer(A, εM) is the subspace of inner derivations, i.e. those of type defined
by d(a) = ε(a)x− x · a for some x in M .

In higher degrees, the concrete description is rarely useful to proceed with concrete compu-
tations, and the best is often to search for short or simple resolutions of the trivial module
Cε.

Example 6.6. Let G be an affine algebraic group. Then

H∗(O(G), εCε) ' Λ∗(g)

where g is the (complexification of the) Lie algebra ofG. This follows from the HKR (Hochschild-
Kostant-Rosenberg) theorem [36], with a few other considerations. See [68, 44] (the reader might
also like to read [41])

Example 6.7. (See [19]) Consider the Sweedler algebra A (Example 1.13) with its standard
generators x, g. Let

P = Span(1 + g, x+ gx), Q = Span(1− g, x− gx)

We have an A-module direct sum A = P ⊕Q, so that P and Q are projective A-modules. We
have a resolution of the trivial module

· · · → Pn+1
∂n+1→ Pn

∂n→ · · · → P2
∂2→ P1

∂1→ P0
ε→ Cε → 0

where for i ≥ 0, P2i = P , P2i+1 = Q and

∂2i : P2i −→ P2i−1 ∂2i+1 : P2i+1 −→ P2i

1 + g 7→ x− gx, x+ gx 7→ 0 1− g 7→ x+ gx, x− gx 7→ 0

Computing with this resolution, we get

Hp(A, εCε) '

{
C if p is even

0 if p is odd
Hp(A, εC−ε) '

{
C if p is odd

0 if p is even

where −ε is the unique algebra map such that −ε(g) = −1.

6.2. Example : quantum SL2. In this subsection we study the case of Oq(SL2(C)) (which
has been the subject of numerous papers, see [35, 46, 52], for example) and compute its coho-
mological dimension.

Theorem 6.8. We have, for any q ∈ C∗, cd(Oq(SL2(C))) = 3.
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Since Oq(SL2(C)) looks like O(SL2(C)), the result is not too surprizing, and it seems to
natural to try to mimic the Koszul complexes techniques from the previous section to construct
a resolution of the trivial object. This is the route followed by Hadfield and Krahmer [35], who
present a general method to build Koszul complexes for noncommutative algebras, which works
well for Oq(SL2(C)). The resolution we present is slightly different from the one in [35]:

Theorem 6.9. Let A = Oq(SL2(C)). There exists a free resolution of A-modules

0→ A
φ1−→ (C2 ⊗ C2)⊗A φ2−→ (C2 ⊗ C2)⊗A φ3−→ A

ε−→ Cε → 0

and hence cd(Oq(SL2(C))) ≤ 3.

Proof. For x ∈ A, denoting e1, e2 the canonical basis of C2, the maps φ1, φ2, φ3, are defined by
([8]):

φ1(x) =e∗1 ⊗ e1 ⊗ ((−q−1 + qd)x) + e∗1 ⊗ e2 ⊗ (−cx)

+ e∗2 ⊗ e1 ⊗ (−bx) + e∗2 ⊗ e2 ⊗ ((−q + q−1a)x)

φ2(e∗1 ⊗ e1 ⊗ x) =e∗1 ⊗ e1 ⊗ x+ e∗2 ⊗ e1 ⊗ (−qbx) + e∗2 ⊗ e2 ⊗ ax
φ2(e∗1 ⊗ e2 ⊗ x) =e∗1 ⊗ e1 ⊗ bx+ e∗1 ⊗ e2 ⊗ (1− q−1a)x

φ2(e∗2 ⊗ e1 ⊗ x) =e∗2 ⊗ e1 ⊗ (1− qd)x+ e∗2 ⊗ e2 ⊗ cx
φ2(e∗2 ⊗ e2 ⊗ x) =e∗1 ⊗ e1 ⊗ dx+ e∗1 ⊗ e2 ⊗ (−q−1cx) + e∗2 ⊗ e2 ⊗ x
φ3(e∗1 ⊗ e1 ⊗ x) =(a− 1)x, φ3(e∗1 ⊗ e2 ⊗ x) = bx,

φ3(e∗2 ⊗ e1 ⊗ x) =cx, φ3(e∗2 ⊗ e2 ⊗ x) = (d− 1)x

One sees easily that these maps define a complex. To see that it is exact, we will frequently use
the well-known fact that A and its quotients A/(b), A/(c) and A/(b, c) are integral domains,
see e.g. [16, I.1]. The injectivity of φ1 follows from the fact that A is an integral domain and
the surjectivity of φ3 is easy. Let X =

∑
i,j e
∗
i ⊗ ej ⊗ xij ∈ Ker(φ3). We have

X + φ2(−e∗1 ⊗ e1 ⊗ x11) = e∗1 ⊗ e2 ⊗ x12 + e∗2 ⊗ e1 ⊗ (qbx11 + x21) + e∗2 ⊗ e2 ⊗ (−ax11 + x22)

and hence to show that X ∈ Im(φ2), we can assume that x11 = 0. We have

bx12 + cx21 + (d− 1)x22 = 0

which gives (d − 1)x = 0 in the integral domain A/(b, c) and thus x22 = bα + cβ for some
α, β ∈ A. Then we have

X + φ2(e∗1 ⊗ e2 ⊗ qdα− e∗2 ⊗ e1 ⊗ β − e∗2 ⊗ e2 ⊗ bα) = e∗1 ⊗ e2 ⊗ x+ e∗2 ⊗ e1 ⊗ y
for some x, y ∈ A, and hence we also can assume that x22 = 0. Then we have bx12 + cx21 = 0,
which gives bx12 = 0 in the integral domain A/(c), and hence x12 = cα for some α ∈ A, and
moreover x21 = −bα. Then we have

φ2(q−1e∗1 ⊗ e1 ⊗ α+ e∗1 ⊗ e2 ⊗ cα− q−1e∗2 ⊗ e2 ⊗ aα) = X

and we conclude that Ker(φ3) = Im(φ2).
Let X =

∑
i,j e
∗
i ⊗ ej ⊗ xij ∈ Ker(φ2). Then −qbx11 + (1− qd)x21 = 0, hence (1− qd)x21 = 0

in the integral domain A/(b) and hence x21 = bα for some α ∈ A. Hence

X+φ1(α) = e∗1⊗e1⊗ (x11 +(−q−1 +qd)α)+e∗1⊗e2⊗ (x12−cα)+e∗2⊗e2⊗ (x22 +(−q+q−1a)α)

and we can assume that x21 = 0. But then, using the fact that A is an integral domain, we see
that X = 0 since X ∈ Ker(φ2). We conclude that Ker(φ2) = Im(φ1). �

Corollary 6.10. We have

Hp(O(SL2(C)), εCε) '


C if p = 0, 3

C3 if p = 1, 2

0 otherwise

Hp(O−1(SL2(C)), εCε) '

{
C if p = 0, 1, 2, 3

0 otherwise
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and for q 6= ±1,

Hp(Oq(SL2(C)), εCε) '

{
C if p = 0, 1

0 otherwise
Hp(Oq(SL2(C)), εCψ) '

{
C if p = 2, 3

0 otherwise

where ψ : Oq(SL2(C))→ C is the algebra map defined by ψ(a) = q2, ψ(d) = q−2, ψ(b) = ψ(c) =
0.

Proof. Exercise, using the previous resolution. �

Proof of Theorem 6.8. We have cd(Oq(SL2(C))) ≤ 3 by Theorem 6.9, and cd(Oq(SL2(C))) ≥ 3
by Corollary 6.10: the result follows. �

Remark 6.11. The fact that for q 6= ±1, H2(O(SL2(C)), εCε) = 0 = H3(O(SL2(C)), εCε), in
contrast with the classical case, is known as the dimension drop, see [35] for this question.

For other q-deformations of classical algebraic groups, we refer the reader to [15, 34, 17], and
the references therein.

7. Exact sequences of Hopf algebras and cohomological dimension

We now discuss the behaviour of cohomological dimension when passing to Hopf subalgebras
and quotient subalgebras. This leads to exact sequence of Hopf algebras.

7.1. Hopf subalgebras. Here is the basic result.

Proposition 7.1. Let B ⊂ A be a Hopf subalgebra. If A is projective as a right B-module, then
cd(B) ≤ cd(A).

Proof. Since A is projective as a B-module, the restriction of a projective A-module to a B-
module is a projective B-module (check this). The result follows, since the restriction of an
A-projective resolution of Cε is a B-projective resolution. �

It is thus crucial, to use the previous result, to know if a Hopf algebra is projective as a
module over its Hopf subalgebras. Here is a short review of known fact about this question. In
what follows B ⊂ A is a Hopf subalgebra.

(1) Unfortunately this is not true in general, see [53], but the examples presented there are
somewhat pathological.

(2) If A is a group algebra, then A is free over B, so is projective.
(3) If A has bijective antipode and is faithfully flat as a (left or right) B-module, then

A is projective as a (left or right) B-module: this is [56, Corollary 1.8]. Here that
A is faithfully flat as a right B-module means as usual that the functor BM → AM,
M 7→ A ⊗B M is exact and creates exact sequences (a short sequence that becomes
exact after applying this functor was necessarily exact).

(4) If B is commutative and A has bijective antipode, combining (2) with the faithful flatness
result in [4] yields that A is projective as a B-module.

(5) If A is cosemisimple, then A is faithfully flat as a B-module [20], so is projective over
B by (2).

Therefore there are a number of interesting situations where Hopf algebras are projective
over their Hopf subalgebras, and this is expected to be true in any reasonnable situation.

Example 7.2. If Γ is a free abelian group of infinite rank, then combining the proposition and
Example 5.4, we see that cd(CΓ) = ∞. Using the group considered by Baumslag in [6] (a
finitely presented group whose derived subgroup is free abelian of infinite rank), we thus see
that there exist finitely presented groups Γ with cd(CΓ) =∞.

In order to make the inequality in Proposition 7.1 more precise in some situations, we will
consider exact sequences of Hopf algebras.
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7.2. Exact sequences. We now define exact sequences of Hopf algebras [2]. We begin with
the following preliminary notation and results.

• Let B ⊂ A be a Hopf subalgebra. Let B+ = Ker(ε) ∩ B and let B+A (resp. AB+) be
the right (resp. left) sub-A-module of A generated by B+. When B+A = AB+, then
this space is a Hopf ideal, and hence the quotient A/B+A has a Hopf algebra structure
such that the canonical map p : A→ A/B+A is a Hopf algebra map.
• Let p : A→ L be a surjective morphism of Hopf algebras, and let

AcoL = {a ∈ A : (id⊗p)∆(a) = a⊗ 1}, coLA = {a ∈ A : (p⊗ id)∆(a) = 1⊗ a}
Both are subalgebras of A, and when AcoL = coLA, this is a Hopf subalgebra of A.

Definition 7.3. A sequence of Hopf algebra maps

C→ B
i→ A

p→ L→ C
is said to be exact if the following conditions hold.

(1) i injective and p surjective.
(2) Ker(p) = Ai(B)+ = i(B)+A.
(3) i(B) = AcoL = coLA.

Note that pi = uε follows automatically from these axioms.

Example 7.4. If Γ is a discrete group acting on a Hopf algebra A, then

C→ A
i→ AoCΓ

ε⊗id→ CΓ→ C
is an exact sequence of Hopf algebras.

There are a number of situations where some of the axioms follow from the other ones.

Theorem-Definition 7.5. Let C → B
i→ A

p→ L → C be a sequence of Hopf algebra maps
with bijective antipodes and with i injective and p surjective. Consider the following conditions.

(1) A is faithfully flat as a right B-module and Ker(p) = Ai(B)+ = i(B)+A.
(2) p is left or right faithfully coflat (this holds if L is cosemisimple) and i(B) = AcoL = coLA.

Then if (1) or (2) holds, the sequence is exact. Conversely, if the sequence is exact, then
(1) ⇐⇒ (2). An exact sequence satisfying (1) or (2) (and hence both) is called strict.

References for the proof. That the sequence is exact if (1) holds follows from [60, Theorem 1]
(see also [48, Proposition 3.4.3], which is of easier access). Similarly if (2) holds, exactness
follows from [60, Theorem 2], combined with [50, Remark 1.3]. The equivalence of (1) and (2)
under the assumption of exactness is [56, Corollary 1.8]. �

Example 7.6. A sequence 1 → Γ1 → Γ2 → Γ3 → 1 of morphisms of discrete groups is exact if
and only if the corresponding sequence of Hopf algebras C→ CΓ1 → CΓ2 → CΓ3 → C is exact.

Example 7.7. A sequence 1→ N → G→ H → 1 of morphisms of affine algebraic groups is exact
if and only if the corresponding sequence of Hopf algebras C → O(H) → O(G) → O(N) → C
is exact.

As an example, we consider exact sequence of Hopf algebras of a special type, the cocentral
ones. One advantage is that in this restricted setting, we can prove quite simply and directly
exactness in all the possible senses of Theorem-Definition 7.5.

A Hopf algebra map f : A → B is said to be cocentral if f(a(1))⊗ a(2) = f(a(2))⊗ a(1) for
any a ∈ A.

Example 7.8. Let H ⊂ G be a closed subgroup of classical compact group. Then the restriction
map

p : O(G) −→ O(H)

f 7−→ f|H
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is cocentral if and only if H ⊂ Z(G). Indeed, p is cocentral if and only if

f(xh) = f(hx), ∀f ∈ O(G), ∀x ∈ G, ∀h ∈ H
and the conclusion follows since O(G) separates the points of G.

Proposition 7.9. Let p : A → CΓ be surjective cocentral morphism of Hopf algebras. Then
AcoCΓ = coCΓA, and the sequence

C→ AcoCΓ i→ A
p→ CΓ→ C

is strict exact.

Proof. The cocentrality condition clearly ensures that AcoCΓ = coCΓA, so we can use the previous
theorem to conclude that the sequence is exact. We give direct proof of exactness in this
particular setting. We have to show that letting B = AcoCΓ, we have Ker(p) = AB+ = B+A.

The map (id⊗ p)∆ : A→ A⊗CΓ endows A with a CΓ-comodule structure, so the structure
of comodules of a group algebra (Example 3) gives a decomposition A =

⊕
g∈ΓAg with

Ag = {a ∈ A |a(1) ⊗ p(a(2)) = a⊗ g}

and A1 = AcoCΓ = B, p|Ag = ε(−)g, AgAh ⊂ Agh, ∆(Ag) ⊂ Ag ⊗ Ag, S(Ag) ⊂ Ag−1 . For fixed
g, h ∈ Γ take b ∈ Ah−1 such that ε(b) = 1 (such a b exists by surjectivity of p). Then for any
a ∈ Agh we have

a = ab(1)S(b(2)) ∈ AgAh.
The same argument shows that if a ∈ A+

gh, then a ∈ A+
g Ah, hence A+

g Ah = A+
gh. Similarly one

checks that A+
gh = AgA

+
h . Now let a ∈ Ker(p), and write a =

∑
g∈Γ ag, with ag ∈ Ag. Since

a ∈ Ker(p), each ag belongs to A+
g = A+

gg−1g
= A+

1 Ag ∈ B+A, and to A+
g = A+

gg−1g
= AgA

+
1 ⊂

AB+. This shows that the sequence is indeed exact.
We can show quite directly as well that A is projective as a B-module (hence faithfully flat).

We have shown that A1 = B = AgAg−1 for any g ∈ Γ. Hence if we choose xi ∈ Ag and yi ∈ Ag−1

such that
∑n

i=1 xiyi = 1, then we can define a right A1-module map Ag → Bn by a 7→ (yia)ni=1
and its left inverse Bn → Ag by (ai)

n
i=1 7→

∑
i xiai. Hence each Ag is B-projective and so is

A. �

Example 7.10. It is an immediate verification that the Hopf algebra map

Oq(SL2(C)) −→ CZ2

uij 7−→ δijg

where g denotes the generator of the cyclic group of order 2, is cocentral. We thus get a cocentral
exact sequence

C→ Oq(PSL2(C))→ Oq(SL2(C))→ CZ2 → C
where Oq(PSL2(C)) = Oq(SL2(C))coCZ2 is the subalgebra generated by the elements uijukl,
1 ≤ i, j, k, l ≤ 2.

The cohomological dimensions of Hopf algebras involved in a strict exact sequence are related
as follows.

Theorem 7.11. Let C → B → A → L → C be a strict exact sequence of Hopf algebras,
with A having bijective antipode. Then cd(A) ≤ cd(B) + cd(L), and if L is finite-dimensional
semisimple, then cd(B) = cd(A).

This is [10, Proposition 3.2], using Stefan’s spectral sequence [58]. We will not use the
inequality, and we give an indepent proof of the last equality. We begin with a Lemma.

Lemma 7.12. Let C → B → A
p→ L → C be an exact sequence of Hopf algebras , with L

finite-dimensional semisimple. Let τ ∈ L be a such that τp(a) = ε(a)τ for any a ∈ A, with
ε(τ) = 1, and let t ∈ A be such that p(t) = τ (Proposition 2.3).
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(1) Let M be a right A-module, and let MB = {x ∈M | x · b = ε(b)x, ∀b ∈ B} be the space
of B-invariants. Then the A-module structure on M induces an L-module structure on
MB with (MB)L = MA.

(2) Let V,W be right A-modules and let f : V → W be a B-linear map. Then the linear

map f̃ : V → W defined by f̃(v) = f(v · S(t(1))) · t(2) is A-linear. If there exists an

A-linear map j : W → V such that fj = idW , then f̃ j = idW as well.

Proof. (1) For x ∈MB and b ∈ B+, we have x · b = 0. Moreover, for x ∈MB, a ∈ A, one easily
sees, using that AB+ = B+A, that x · a ∈ MB. Hence the formula x · p(a) = x · a provides a
well-defined L-module structure on MB. The last equality is immediate.

(2) Recall that Hom(V,W ) admits a right A-module structure defined by

f · a(v) = f(v · S(a(1))) · a(2)

and that

HomA(V,W ) = Hom(V,W )A = (Hom(V,W )B)L

Recall also that if M is a right L-module over the semisimple algebra L, then ML = M · τ .
Hence, since f ∈ HomB(V,W ) = Hom(V,W )B, we have f ·τ ∈ (Hom(V,W )B)L = HomA(V,W ).

We now have f · τ = f · p(t) = f · t, and it is clear that f · t is the map f̃ in the statement. The
last statement is an immediate verification. �

Proof of the equality in Theorem 7.11. We already know that cd(B) ≤ cd(A), and to prove the
equality we can assume that m = cd(B) is finite. Consider a resolution of the trivial A-module

· · · → Pn → Pn−1 → · · · → P1 → P0 → Cε

by projective A-modules. These are in particular projective as B-modules, so since m = cd(B),
Proposition 4.19 yields an exact sequence of B-modules, and of A-modules

0→ K
i→ Pm → Pm−1 → · · · → P1 → P0 → C

together with r : Pm → K, a B-linear map such that ri = idK . The previous lemma yields
an A-linear map r̃ : Pm → K such that r̃i = idK . We thus obtain, since a direct summand of
a projective is projective, a length m resolution of Cε by projective modules over A, and we
conclude that cd(A) ≤ m, as required. �

Example 7.13. If Γ is a finite group acting on a Hopf algebra A, then cd(AoCΓ) = cd(A).

Example 7.14. If C → AcoCΓ i→ A
p→ CΓ → C is a cocentral exact sequence with Γ a finite

group, then cd(AcoCΓ) = cd(A). In particular cd(Oq(PSL2(C))) = cd(Oq(SL2(C))) = 3.

8. Homological duality and Poincaré duality Hopf algebras

In this section we present Poincaré duality, a kind of duality between homology and coho-
mology, for Hopf algebras, following closely the case of groups [18].

Definition 8.1. A Hopf algebra A is said to be homologically smooth if the trivial module
Cε has a finite resolution by finitely generated projective right A-modules.

For the next definition, recall from Subsection 5.2.2 that if A is an algebra and M , N are right
A-modules with N is a left B-module for another algebra B such that N is a B-A-bimodule,
then the Ext-spaces Ext∗A(M,N) carry a natural left B-module structure.

Definition 8.2. A homological duality Hopf algebra of dimension n ≥ 0 is a Hopf
algebra A satisfying the following conditions.

(1) A is homologically smooth.
(2) ExtiA(Cε, AA) = (0) if i 6= n.
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When the vector space ExtnA(Cε, AA) has dimension 1, a homological duality Hopf algebra of
dimension n ≥ 0 is said to be a Poincaré duality Hopf algebra of dimension n, and if
ExtiA(Cε, AA) is, as a left A-module, isomorphic to the trivial left A-module εC, then A is said
to be an orientable Poincaré duality Hopf algebra of dimension n.

A Poincaré duality Hopf algebra of dimension n is what is usually called a twisted Calabi-
Yau (Hopf) algebra in the literature, the orientable case corresponding to Calabi-Yau algebras.
Calabi-Yau algebras were named in [33], one of their remarkable features is that they enjoy a
duality between their Hochschild homology and cohomology [63]. We refer the reader to [66]
and the references therein. Our treatment follows closely the lines of older works on duality
groups [14, 18, 13].

Remark 8.3. The integer n in condition (2) is automatically the cohomological dimension of
A, and we have ExtnA(Cε, AA) 6= (0)

Sketch of the proof. This follows from the combination of two facts that we did not (and will
not) prove. The first fact is that cd(A) is the largest integer m ≥ 0 such that Hm(A, εF ) 6= (0)
for some free A-module F (this is a consequence of the long exact sequence for Ext, see [68] for
example). The second fact is that since A is homologically smooth, then ExtiA(Cε,−) commutes
with arbitrary direct sums (exercise). Hence the cohomological dimension of A is the largest
integer m ≥ 0 such that Hm(A, εA) = ExtmA (Cε, AA) 6= (0), and this has to be n by the second
condition. �

Examples 8.4. (1) A homological duality Hopf algebra of dimension 0 is precisely a semisim-
ple Hopf algebra.

(2) If Γ is a free group, then CΓ is a homological duality Hopf algebra of dimension 1.
(3) The free algebra on n generators is a homological duality Hopf algebra of dimension 1.
(4) If Γ is a duality group of dimension n over C in the sense of [13], then CΓ is a homological

duality Hopf algebra of dimension n, with Poincaré duality group corresponding to
Poincaré duality Hopf algebra, and orientable Poincaré duality group corresponding to
orientable Poincaré duality Hopf algebra.

(5) If A is a commutative Hopf algebra such the augmentation ideal I = A+ is generated
by a regular sequence with r elements, then A is an orientable Poincaré duality Hopf
algebra of dimension r, see Theorem 5.2. In fact, since a Noetherian Hopf algebra is
homologically smooth if and only if its cohomological dimension is finite (this can be
read off from the considerations in [18, Chapter VIII], see [12, Proposition 3.9]), the
reasoning at the end of Section 5 easily enables one to show that a finitely generated
commutative Hopf algebra is always a homological duality Hopf algebra.

(6) Oq(SL2(C)) is a Poincaré duality Hopf algebra of dimension 3 (exercise).

The “homological duality” terminology will be justified by our next result, for which we need
the following construction. If A is a Hopf algebra, M is a right A-module, and N is a left A-
module, then we denote by M ⊗′N the left A-module whose underlying vector space is M ⊗N
and whose A-module structure is defined by

a · (x⊗ y) = x · S(a(1))⊗ a(2) · y

Theorem 8.5. Let A be a homological duality Hopf algebra of dimension n ≥ 0. Then we have,
for any 0 ≤ i ≤ n and any right A-module M , functorial isomorphisms

H i(A, εM) = ExtiA(Cε,M) ' TorAn−i(Cε,M ⊗′ D) = Hn−i(A, (M ⊗′ D)ε)

where D is the left A-module ExtnA(Cε, AA).

The proof adapts the one developed for duality groups in [18]. We begin with two lemmas.

Lemma 8.6. Let F,M be a right A-modules and N be a left A-module. We have

F ⊗A (M ⊗′ N) ' (M ⊗ F )⊗A N
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Proof. The isomorphism is the obvious one: z ⊗A x⊗ y 7→ x⊗ z ⊗A y. �

Lemma 8.7. Let M be a right A-module and N be a left A-module. We have

TorA∗ (Cε,M ⊗′ N) ' TorA∗ (M,N)

Proof. Start with a free resolution by right A-modules

F∗ → Cε → 0

We have, using the first lemma

TorA∗ (Cε,M ⊗′ N) 'H∗(F∗ ⊗A (M ⊗′ N))

'H∗((M ⊗ F∗)⊗A N)

Tensoring F∗ → Cε → 0 by M , we get a resolution M ⊗ F∗ →M → 0 of M by free A-modules
(Proposition 1.17), so

H∗((M ⊗ F∗)⊗A N) ' TorA∗ (M,N)

which thus proves our claim. �

Proof of Theorem 8.5. Consider a resolution of Cε
0→ Pn → Pn−1 → · · · → P1 → P0 → Cε → 0

by finitely generated projective right A-modules. Consider the left A-modules

Pi = HomA(Pi, AA)

and the corresponding complex

0→ P0 → P1 → · · · → Pn−1 → Pn → 0

We have H∗(P ) = Ext∗A(Cε, AA), and our assumption says that

0→ P0 → P1 → · · · → Pn−1 → Pn → ExtnA(Cε, A)→ 0

is a resolution of ExtnA(Cε, AA) by projective left A-modules. We then have, for a right A-module
M (see the end of Section 4)

TorAn−i(M,ExtnA(Cε, A)) ' H i(M ⊗A P ) = H i(M ⊗A HomA(P,A))

' H i(HomA(P,M)) (projectivity of each Pk)

' ExtiA(Cε,M)

The previous lemma concludes the proof. �

Remark 8.8. The converse is true: if A is homologically smooth of dimension n with bijective
antipode and if the above homological duality holds (for some D), then (2) in Definition 8.2
holds.

Proof. We have, by assumption, ExtiA(Cε, AA) ' TorAn−i(Cε, AA ⊗′ D). We leave to the reader
to check that AA ⊗′ D is a free left A-module, and by the end of Section 4, this proves our
claim. �

Remark 8.9. When A is a Poincaré duality Hopf algebra of dimension n, i.e. we have D =
ExtnA(Cε, AA) ' αC for some algebra map α : A→ C, then for any right A-module M , we have

ExtiA(Cε,M) ' TorAn−i(Cε, θM)

where θ is the anti-algebra map defined by θ(a) = S(a(1))α(a(2)), and the leftA-module structure
on M is a→ x = x · θ(a).

If M is an A-bimodule, we get, for Hochschild cohomology (see the appendix), letting σ = Sθ

H i(A,M) ' Hd−i(A, σM)

where σM is M as having the A-bimodule structure defined by a · x · b := σ(a) · x · b.
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We refer the reader to [18, 13] for (many) examples of duality groups, to [17] for (again many)
purely Hopf algebraic examples, includind the q-deformed algebras of functions on classical
algebraic groups, and to [40] for a recent more general framework.

9. Cohomological dimension of monoidally equivalent Hopf algebras

If A and B are Hopf algebras having equivalent categories of modules, it follows from Propo-
sition 3.7 that they have the same cohomological dimension. We are interested here in the
dual question, assuming that A and B have equivalent categories of comodules. At this level
of generality, not much can be said because this property only takes the coalgebra structure
into account (e.g. if A and B are group algebras, this just means that the two groups have the
same cardinality), so we have to ask for a stronger condition, that takes the algebra structure
into account. The condition that we will consider is that of being monoidally equivalent, see
Section 1: recall that two Hopf algebras are said to be monoidally equivalent if their categories
of comodules are equivalent as tensor categories. Our basic question is:

Question 9.1. Let A, B be monoidally equivalent Hopf algebras. Is it true that cd(A) = cd(B)?

Of course a natural related problem is to examine how the cohomologies of two such Hopf
algebras are related. This leads us to consider Yetter-Drinfeld modules.

9.1. Yetter-Drinfeld modules. Let A be a Hopf algebra.

Definition 9.2. a (right-right) Yetter-Drinfeld module over A is a right A-comodule and
right A-module V satisfying the condition, ∀v ∈ V , ∀a ∈ A,

(v ← a)(0) ⊗ (v ← a)(1) = v(0) ← a(2) ⊗ S(a(1))v(1)a(3)

The category of Yetter-Drinfeld modules over A is denoted YDAA: the morphisms are the
A-linear A-colinear maps. Endowed with the usual tensor product of modules and comodules,
it is a tensor category.

An important example of Yetter-Drinfeld module is the right coadjoint Yetter-Drinfeld mod-
ule Acoad: as a right A-module Acoad = A and the right A-comodule structure is defined by

adr(a) = a(2) ⊗ S(a(1))a(3),∀a ∈ A
The following result, which will be of importance for us, generalizes the construction of the
right coadjoint comodule.

Proposition 9.3. Let A be a Hopf algebra and let V be a right A-comodule. Endow V ⊗A with
the right A-module structure defined by multiplication on the right. Then the linear map

V ⊗A −→ V ⊗A⊗A
v ⊗ a 7−→ v(0) ⊗ a(2) ⊗ S(a(1))v(1)a(3)

endows V ⊗A with a right A-comodule structure, and with a Yetter-Drinfeld module structure.
We denote by V � A the resulting Yetter-Drinfeld module, and this construction produces a
functor

L :MA −→ YDAA
V 7−→ V �A

Proof. This is a direct verification. �

Note that when V = C is the trivial comodule, then C�A = Acoad.

Definition 9.4. Let A be a Hopf algebra. A Yetter-Drinfeld module over A is said to be free
if it is isomorphic to V �A for some right A-comodule V .

Of course a free Yetter-Drinfeld module is free as a right A-module. The terminology is
further justified by the following result.
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Proposition 9.5. Let A be a Hopf algebra. The functor L = − � A : MA −→ YDAA is left
adjoint to the forgetful functor R : YDAA −→ MA. In particular if P is a projective object in
MA, then L(P ) is a projective object in YDAA.

Here of course a projective object in YDAA is an object X such that the functor HomYDAA
(X,−)

is exact.

Proof. Let V ∈ MA and X ∈ YDAA. It is a direct verification to check that we have a natural
isomorphism

HomA(V,R(X)) −→ HomYDAA
(V �A,X)

f 7−→ f̃ , f̃(v ⊗ a) = f(v)← a

and thus L = −�A is left adjoint to the forgetful functor R. We thus have an isomomorphism
of functors

HomA(P,R(−)) ' HomYDAA
(P �A,−)

This functor on the left is exact if P is projective (R is exact) and the last assertion, which a
general property of adjoint functors, follows. �

Definition 9.6. Let V be a Yetter-Drinfeld module over A. Then V is said to be relative
projective if the functor HomYDAA

(V,−) transforms exact sequences of Yetter-Drinfeld modules

that split as sequences of comodules to exact sequences of vector spaces.

Relative projective Yetter-Drinfeld modules have the following characterization.

Proposition 9.7. Let P be a Yetter-Drinfeld module over A. The following assertions are
equivalent.

(1) P is relative projective.
(2) Any surjective morphism of Yetter-Drinfeld modules f : M → P that admits a section

which is a map of comodules admits a section which is a morphism of Yetter-Drinfeld
modules.

(3) P is a direct summand of a free Yetter-Drinfeld module.

If A is cosemisimple, these conditions are equivalent to P being a projective object of YDAA.

Proof. The proof of (1)⇒(2) is similar to the usual one for modules. Assume (2), and consider
the surjective Yetter-Drinfeld module morphism R(P ) � A → P , x ⊗ a 7→ x ← a. The map
P → R(P ) �A, x 7→ x⊗ 1 is an A-colinear section, so by (2) P is indeed, as a Yetter-Drinfeld
module, a direct summand of R(P ) �A.

Assume now that P is free, i.e. P = V �A for some comodule V , and let

0→M
i→ N

p→ Q→ 0

be an exact sequence of Yetter-Drinfeld modules that splits as a sequence of comodules. The
sequence

0→ HomYDAA
(P,M)

i−−→ HomYDAA
(P,N)

p−−→ HomYDAA
(P,Q)

is exact and we have to show the surjectivity of the map on the right. Let s : Q → N be a
morphism of comodules such that ps = idQ. Let ϕ ∈ HomYDAA

(V � A,Q), and let ϕ0 : V → Q

be defined by ϕ0(v) = ϕ(v ⊗ 1): ϕ0 is a map of comodules, and so is sϕ0. Considering
now s̃ϕ0 ∈ HomYDAA

(V � A,N), we have ps̃ϕ0 = ϕ, which gives the expected surjectivity

result. Now if V � A ' P ⊕ M as Yetter-Drinfeld modules, then HomYDAA
(V � A,−) '

HomYDAA
(P,−) ⊕ HomYDAA

(M,−), and the usual argument for projective modules works to

conclude that P is relative projective.
It is clear that a projective Yetter-Drinfeld module is relative projective, and if A is cosemisim-

ple, a free Yetter-Drinfeld module is a projective object in YDAA (Proposition 9.5), hence a direct
summand of a free Yetter-Drinfeld module is projective, and so is a relative projective Yetter-
Drinfeld module. �
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Relative projective Yetter-Drinfeld modules are projective as modules. Our interest for these
modules, in view of Question 9.1, comes from the following result.

Theorem 9.8. Let A and B be monoidally equivalent Hopf algebras, via an equivalence of
linear tensor categories Θ : MA '⊗ MB. Then Θ induces an equivalence of linear tensor

categories Θ̂ : YDAA '⊗ YDBB that preserves free (resp. relative projective) Yetter-Drinfeld

modules. The functor Θ̂ associates to any relative projective Yetter-Drinfeld resolution of the
trivial Yetter-Drinfeld module in YDAA

P∗ → C→ 0

a relative projective Yetter-Drinfeld resolution in YDBB
Θ̂(P∗)→ C→ 0

Proof. Let RA : YDAA −→ MA and RB : YDBB −→ MB be the respective forgetful functors
with their respective left adjoint LA :MA −→ YDAA and LB :MB −→ YDBB. The description
of YDAA as the weak center of the monoidal category MA (this is stated in [55], Appendix,
the proof can be done along similar lines as the one for modules over a finite-dimensional Hopf
algebra, given in [38], Theorem XIII.5.1) ensures the existence of an equivalence of linear tensor

categories Θ̂ : YDAA ' YDBB such that RBΘ̂ ' ΘRA as functors. Denote by Θ−1 a quasi-inverse
of Θ. Then we have, for any U ∈MB and X ∈ YDBB, natural isomorphisms

HomYDBB
(Θ̂LAΘ−1(U), X) ' HomYDAA

(LAΘ−1(U), Θ̂−1(X))

' HomMA(Θ−1(U), RAΘ̂−1(X))

' HomMA(Θ−1(U),Θ−1RB(X))

' HomMB (U,RB(X))

The uniqueness of adjoint functors ensures that Θ̂LAΘ−1 ' LB, so that Θ̂LA ' LBΘ, as

required: Θ̂ preserves free Yetter-Drinfeld modules, and preserves the relative projective ones
by Proposition 9.7. The last assertion is then immediate. �

Example 9.9. Let A = Oq(SL2(C)). The free resolution of A-modules

0→ A
φ1−→ (C2 ⊗ C2)⊗A φ2−→ (C2 ⊗ C2)⊗A φ3−→ A

ε−→ Cε → 0

from Theorem 6.9 is a resolution by free Yetter-Drinfeld modules (C2 having the canonical
structure of comodule over A).

Therefore, for any Hopf algebra B that is monoidally equivalent to Oq(SL2(C)), we have
cd(B) ≤ 3. To use Theorem 9.8 in a more precise way, one needs a more concrete description
for the monoidal equivalences involved (using Hopf bi-Galois extensions [54, 55] or cogroupoids
[9]), that we do not explain here, see [8]). This enables one to construct the following resolution,
using the previous one, see [8].

Theorem 9.10. Let E ∈ GLn(C), n ≥ 2, and let VE be the fundamental n-dimensional B(E)-
comodule. There exists an exact sequence of Yetter-Drinfeld modules over B(E)

0→ C� B(E)
φ1−→ (V ∗E ⊗ VE) � B(E)

φ2−→ (V ∗E ⊗ VE) � B(E)
φ3−→ C� B(E)

ε−→ C→ 0

which thus yields a free Yetter-Drinfeld resolution of the trivial Yetter-Drinfeld module over
B(E). Moreover we have cd(B(E)) = 3.

When E = In, the resolution was found in [21], using computer calculations. The above
resolution can also be used to show (see [8, 64, 70, 66]):

Theorem 9.11. For any E ∈ GLn(C), n ≥ 2, the Hopf algebra B(E) is a Poincaré duality
Hopf algebra of dimension 3.
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An interesting partial positive anwer to question 9.1 is given in the recent paper by Wang,
Yu and Zhang [66], in the setting of Poincaré duality Hopf algebras:

Theorem 9.12. Let A, B be monoidally equivalent Hopf algebras. Assume that A is a Poincaré
duality Hopf algebra of dimension n ≥ 0 and that B is homologically smooth. Then cd(A) =
cd(B).

Using this result together with the monoidal equivalence mentionned in Section 1 and Theo-
rem 9.8, one can show that As(n) (Example 1.14) is, for n ≥ 4, an orientable Poincaré duality
Hopf algebra, see [12].

9.2. Gerstenhaber-Schack cohomology. Still motivated by Question 9.1, we consider now
Gerstenhaber-Schack cohomology, which is a cohomology for Hopf algebras having coefficients
in Yetter-Drinfeld modules. Let A be a Hopf algebra.

(1) If A is cosemisimple, every object in MA is projective and it follows from Proposition
9.5 that that any Yetter Drinfeld is a quotient of a projective Yetter-Drinfeld modules
(YDAA has enough projective objects), the projective objects are the direct summands
of the free ones (Proposition 9.7) and we can define Ext in the category of Yetter-
Drinfeld modules exactly as in Section 4, using projective resolutions. We then define
the Gerstenhaber-Schack cohomology of A with coefficients in a Yetter-Drinfeld module
V by

H∗GS(A, V ) = Ext∗YDAA
(C, V )

and the Gerstenhaber-Schack cohomological dimension of A by

cdGS(A) = sup{n : Hn
GS(A, V ) 6= 0 for some V ∈ YDAA} ∈ N ∪ {∞}

and similarly to Proposition 4.19, cdGS(A) is also the shortest length for a resolution of
the trivial Yetter-Drinfeld module by projective Yetter-Drinfeld modules. In the second
appendix we present an explicit complex to compute Gerstenhaber-Schack cohomology
in the cosemisimple case.

(2) If A is co-Frobenius, which means that MA has enough projectives (see [2] for gen-
eral results and non cosemisimple examples) then again Proposition 9.5 ensures that
YDAA has enough projective objects, so we can proceed as in the previous item to define
Gerstenhaber-Schack cohomology and Gerstenhaber-Schack cohomological dimension,
the main additional difficulty being that we do not have anymore the nice characteriza-
tion of projective objects from Proposition 9.7.

(3) In general, the basic problem is that the category of Yetter-Drinfeld modules does not
always have enough projective objects, so that one cannot define Ext∗YD has we did in

Section 4. This can be bypassed by the fact that YDAA always has enough injective
objects, and one can define Ext by using injective resolutions of the second factor (see
[68]). So we define, for a Hopf algebra A and a Yetter-Drinfeld module V ,

H∗GS(A, V ) = Ext∗YDAA
(C, V )

This is not the original definition of Gerstenhaber-Schack [32], but it coincides with it
by [59]. Of course we also put

cdGS(A) = sup{n : Hn
GS(A, V ) 6= 0 for some V ∈ YDAA} ∈ N ∪ {∞}

Example 9.13. The resolution in Theorem 9.10 is by free Yetter-Drinfeld modules, so when B(E)
is cosemisimple, one can use it to show that cdGS(B(E)) = 3.

It is clear from Theorem 9.8 that if A and B are monoidally equivalent Hopf algebras, then

cdGS(A) = cdGS(B)

Hence in view of Question 9.1, a key problem is to compare the two cohomological dimensions.
Here is the most general answer known to me at the time of writing these notes [10, 11].
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Theorem 9.14. Let A be a Hopf algebra. We have cd(A) ≤ cdGS(A), with equality if A is
cosemisimple with S4 = id.

Proof. We give the proof in the simplified situation where A is cosemisimple and S2 = id. Since
a projective Yetter-Drinfeld module is projective as a module, a resolution of the trivial Yetter-
Drinfeld module by projective objects is in particular a resolution of the trivial module by
projective modules, so we get that cd(A) ≤ cdGS(A) (here we have just used cosemisimplicity).

The proof of the last equality in the statement will use the following lemma.

Lemma 9.15. Let V,W be Yetter-Drinfeld modules over the cosemisimple Hopf algebra A
satisfying S2 = id, let i : W → V be an injective morphism of Yetter-Drinfeld modules, and
let r : V → W be an A-linear map such that ri = idW . Then there exists a morphism of
Yetter-Drinfeld modules r̃ : V →W such that r̃i = idW .

Proof of the lemma. In a dual manner to Proposition 2.3, the cosemisimplicity of A amounts
to the existence of a Haar integral on A: a left and right A-colinear map h : A → C such that
h(1) = 1. The orthogonality relations (see [39] for example) ensure that S2 = id if and only if
h is a trace. So let h be the Haar integral on A. Then for any A-comodules V and W , we have
a surjective averaging operator

M : Hom(V,W ) −→ HomA(V,W )

f 7−→M(f), M(f)(v) = h
(
f(v(0))(1)S(v(1))

)
f(v(0))(0)

with f ∈ HomA(V,W ) if and only if M(f) = f . We put r̃ = M(r), and it is straightforward to
check that r̃i = idW . It remains to check that r̃ is A-linear. We have, using the Yetter-Drinfeld
condition and the A-linearity of r,

r̃(v · a) = h
(
r((v · a)(0))(1)S((v · a)(1))

)
r((v · a)(0))(0)

= h
(
r(v(0) · a(2))(1)S(S(a(1))v(1)a(3))

)
r(v(0) · a(2))(0)

= h
(
(r(v(0)) · a(2))(1)S(S(a(1))v(1)a(3))

)
(r(v(0)) · a(2))(0)

= h
(
S(a(2))r(v(0))(1)a(4)S(S(a(1))v(1)a(5))

)
r(v(0))(0) · a(3)

= h
(
S(a(2))r(v(0))(1)a(4)S(a(5))S(v(1))S

2(a(1))
)
r(v(0))(0) · a(3)

= h
(
S(a(2))r(v(0))(1)S(v(1))S

2(a(1))
)
r(v(0))(0) · a(3)

Thus, if S2 = id, we have

r̃(v · a) = h
(
S(a(2))r(v(0))(1)S(v(1))S

2(a(1))
)
r(v(0))(0) · a(3)

= h
(
r(v(0))(1)S(v(1))

)
r(v(0))(0) · a

= r̃(v) · a

and hence r̃ is A-linear. �

Back to the proof of our theorem, to prove our equality we can assume that m = cd(A) is
finite. Consider a resolution of the trivial Yetter-Drinfeld module

· · · → Pn → Pn−1 → · · · → P1 → P0 → C

by projective Yetter-Drinfeld modules over A. These are in particular projective as A-modules,
so since m = cd(A), Proposition 4.19 yields an exact sequence of Yetter-Drinfeld modules over
A

0→ K
i→ Pm → Pm−1 → · · · → P1 → P0 → C

together with r : Pm → K, an A-linear map such that ri = idK . The previous proposition
yields a morphism of Yetter-Drinfeld module r̃ : Pm → K such that r̃i = idK . We thus obtain,
since a direct summand of a projective is projective, a length m resolution of C by projective
Yetter-Drinfeld modules over A, and we conclude that cdGS(A) ≤ m, as required. �
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Of course, in view of the monoidal invariance of the Gerstenhaber-Schack cohomological
dimension, Theorem 9.14 provides a partial positive answer to Question 9.1:

Corollary 9.16. If A, B are monoidally equivalent Hopf algebras with A cosemisimple and
S4 = id, then cd(A) ≥ cd(B), with equality if moreover the antipode of B also satisfies S4 = id.

Example 9.17. The Hopf algebra Oq,q−1(GL2(C)) of Example 1.25 satisfy

cd(Oq,q−1(GL2(C)) = cdGS(Oq,q−1(GL2(C)) = cdGS(O(GL2(C)) = cd(O(GL2(C)) = 4

10. An open question

We conclude these notes by a open question, that we believe to be of high interest.

Question 10.1. What are the Hopf algebras of cohomological dimension one ?

Recall from Example 3.2 that Dunwoody’s theorem [29] states that a finitely generated dis-
crete group has cohomological dimension one if only if it constains a free subgroup of finite
index. So, is there an analogue of this theorem for Hopf algebras ? Notice that it is not difficult
to construct examples of noncommutative and noncocommutative Hopf algebras of cohomolog-
ical dimension one, using free product, crossed product or crossed coproduct constructions. Of
course, the ring-theoretic analogues of Bass-Serre techniques [23, 31] should play a role here.

Appendix A. Relation with Hochschild (co)homology

In this appendix we explain the relation between the (co)homology we have considered for
Hopf algebras and Hochschild (co)homology.

Let A be an algebra and let M be an A-bimodule.
• The Hochschild cohomology spaces H∗(A,M) are the cohomology spaces of the complex

0 −→ Hom(C,M)
δ−→ Hom(A,M)

δ−→ · · · δ−→ Hom(A⊗n,M)
δ−→ Hom(A⊗n+1,M)

δ−→ · · ·
where the differential δ : Hom(A⊗n,M) −→ Hom(A⊗n+1,M) is given by

δ(f)(a1 ⊗ · · · ⊗ an+1) =a1 · f(a2 ⊗ · · · ⊗ an+1) +
n∑
i=1

(−1)if(a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1)

+ (−1)n+1f(a1 ⊗ · · · ⊗ an) · an+1

• The Hochschild homology spaces H∗(A,M) are the homology spaces of the complex

· · · −→M ⊗A⊗n b−→M ⊗A⊗n−1 b−→ · · · b−→M ⊗A b−→M −→ 0

where the differential b : M ⊗A⊗n −→M ⊗A⊗n−1 is given by

b(x⊗ a1 ⊗ · · · ⊗ an) =x · a1 ⊗ · · · ⊗ an +
n−1∑
i=1

(−1)ix⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an

+ (−1)nan · x⊗ a1 ⊗ · · · ⊗ an−1

The following result (or variants of it) is proved in many papers.

Proposition A.1. Let A be a Hopf algebra and let M be an A-bimodule. Define a left A-module
structure on M and a right A-module structure on M by

a→ x = a(2) · x · S(a(1)), x← a = S(a(1)) · x · a(2)

and denote by M ′ and M ′′ the respective corresponding left A-module and right A-module. Then
for all n ∈ N there exist isomorphisms of vector spaces

Hn(A,M) ' TorAn (Cε,M ′), Hn(A,M) ' ExtnA(Cε,M ′′)
Conversely, if M is a right A-module and N is a left A-module, denote εM the and Nε the
A-bimodules whose left and right structures are induced by ε. Then the Hochschild homology
and cohomology spaces H∗(A,Nε) and H∗(A, εM) coincide with the homology and cohomology
spaces introduced in Definition 6.1.
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Proof. Using the standard resolution of the trivial object, we see that TorAn (Cε,M ′) is the
homology of the following complex

· · · −→ A⊗n ⊗M ′ d−→ A⊗n−1 ⊗M ′ d−→ · · · d−→ A⊗M ′ d−→M ′ −→ 0

where the differential d : A⊗n ⊗M ′ −→ A⊗n−1 ⊗M ′ is given by

d(a1 ⊗ · · · ⊗ an ⊗ x) =ε(a1)a2 ⊗ · · · ⊗ an ⊗ x+

n−1∑
i=1

(−1)ia1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an ⊗ x

+ (−1)na1 ⊗ · · · ⊗ an−1 ⊗ an · x

Consider the linear map

θ : M ⊗A⊗n −→ A⊗n ⊗M ′

x⊗ a1 ⊗ · · · ⊗ an 7−→ a1(2) ⊗ · · · ⊗ an(2) ⊗ x · (a1(1) · · · · · · an(1))

It is straightforward to see that θ is an isomorphism with inverse given by

θ−1 : A⊗n ⊗M ′ −→M ⊗A⊗n

a1 ⊗ · · · ⊗ an ⊗ x 7−→ x · S(a1(1) · · · an(1))⊗ (a1(2) ⊗ · · · ⊗ · · · an(2))

and that d◦θ = θ◦b. Hence θ induces an isomorphism between the complexes defining H∗(A,M)
and TorA∗ (Cε,M ′) and we get the first isomorphism H∗(A,M) ' TorA∗ (Cε,M ′). For cohomology,
consider the linear map

ϑ : Hom(A⊗n,M) −→ Hom(A⊗n,M ′′)

f 7−→ f̂ , f̂(a1 ⊗ · · · ⊗ an) = S(a1(1) · · · an(1))f(a1(2) ⊗ · · · ⊗ an(2))

It is easy to see that ϑ is an isomorphism and that ∂ ◦ ϑ = ϑ ◦ δ. Hence ϑ induces an iso-
morphism between the complexes defining H∗(A,M) and Ext∗A(Cε,M ′′) and we get the second
isomorphism H∗(A,M) ' Ext∗A(Cε,M ′′).

If M is a right A-module and N is a left A-module, then (εM)′ 'M and (Nε)
′′ ' N , so the

last assertion follows from the first ones. �

Notice that the cohomological dimension of the Hopf algebra A is thus

cd(A) = sup{n : Hn(A,M) 6= 0 for some A-bimodule M} ∈ N ∪ {∞}
= min{n : Hn+1(A,M) = 0 for for any A-bimodule M}
= pd

AMA
(A)

where pd
AMA

(A) is the projective dimension of A in the category of A-bimodules, and coincides
with the Hochschild cohomological dimension, defined for any algebra.

Appendix B. An explicit complex for Gerstenhaber-Schack cohomology

In this second appendix we present an explicit complex to compute Gerstenhaber-Schack
cohomology in the cosemisimple case.

We begin with the following construction. For any n ∈ N, we define the comodule A�n as
follows:

A�0 = C, A�1 = C�A = Acoad, A
�2 = A�1 �A, . . . , A�(n+1) = A�n �A, . . .

It is straighforward to check that after the obvious vector space identification of A�n with A⊗n,
the right A-module structure of A�n is given by right multiplication and its comodule structure
is given by

ad(n)
r : A�n −→ A�n ⊗A

a1 ⊗ · · · ⊗ an 7−→ a1(2) ⊗ · · · ⊗ an(2) ⊗ S(a1(1) · · · an(1))a1(3) · · · an(3)
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Proposition B.1. Let A be a cosemisimple Hopf algebra and let V be a Yetter-Drinfeld module
over A. The Gerstenhaber-Schack cohomology H∗GS(A, V ) is the cohomology of the complex

0→ HomA(C, V )
∂−→ HomA(A�1, V )

∂→ · · · ∂→ HomA(A�n, V )
∂−→ HomA(A�n+1, V )

∂−→ · · ·
where the differential ∂ : HomA(A�n, V ) −→ HomA(A�n+1, V ) is given by

∂(f)(a1 ⊗ · · · ⊗ an+1) =ε(a1)f(a2 ⊗ · · · ⊗ an+1) +
n∑
i=1

(−1)if(a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1)

+ (−1)n+1f(a1 ⊗ · · · ⊗ an) · an+1

Proof. One checks that the standard resolution of the trivial module of Proposition 4.7 yields a
resolution of the trivial Yetter-Drinfeld module by free (hence projective by cosemisimplicity)
Yetter-Drinfled modules

· · · −→ A�n+1 −→ A�n −→ · · · −→ A�2 −→ A�1 ε−→ C→ 0

and one thus gets the above complex by applying the functor HomYDAA
(−, V ) to this resolution.

�

Notice that the previous complex is a subcomplex of the ones that computes H∗(A, εV ), hence
this yields a map H∗GS(A, V )→ H∗(A, εV ) which is not injective in general, but is injective under
the additional assumption that S2 = id (see [10], this is another proof of Theorem 9.14 in this
case).
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