QUANTUM AUTOMORPHISM GROUPS OF FINITE GRAPHS

JULIEN BICHON

ABSTRACT. A quantum analogue of the automorphism group of a finite graph
is introduced. These are quantum subgroups of the quantum permutation
groups defined by Wang. The quantum automorphism group is a stronger
invariant for finite graphs than the usual automorphism group. We get a
quantum dihedral group Dj.

1. INTRODUCTION

The problem of defining the quantum automorphism group of a quantum space
arises quite naturally in noncommutative geometry [3, 5]. In his paper [8], S. Wang
solves this problem for the finite space X,, with n points. The main step was to
formulate the universal problem the quantum automorphism group must solve. The
constructed object Agy¢(X,,) is a compact quantum group in the sense of Woronow-
icz [9] and is called “the quantum permutation group on n symbols”. Loosely
speaking Ag.:(X,,) is the C*-algebra of functions on the usual permutation group
where the commutativity relations have been forgotten (and is infinite-dimensional
for n > 4). Wang also discusses the quantum automorphism groups of noncommu-
tative finite-dimensional C*-algebras (see the remark at the end of section 2). The
representation theory of A,,:(X,) has been described recently by T. Banica [2]:
the irreducible representations of A, (X,) have the same fusion rules as the ones
of SO(3) (if n > 4).

In this paper we discuss the quantum automorphism groups of finite graphs.
These are quantum subgroups of the quantum permutation groups. Our results
clearly illustrate the richness of Wang’s principle for quantum automorphism groups.
For example let us consider the graph with n vertices and without edges: the quan-
tum automorphism group is obviously the quantum permutation group. Now let
us consider the complete graph with n vertices where every pair of vertices is an
edge: the quantum automorphism group is the usual permutation group. This
example shows that that the construction of the quantum automorphism group is
far more involved than a simple freeness procedure from the usual automorphism
group to the quantum one. It also shows that the quantum automorphism group
is a stronger invariant for finite graphs than the usual one.

For a special graph with 4 vertices and 4 edges (which is not a square) we obtain
a quantum dihedral group D4 whose C*-algebra is infinite-dimensional.

Our work is organized as follows. In section 2 we recall some basic definitions
and results on compact quantum groups and quantum automorphism groups and
in section 3 we describe the quantum automorphism groups of finite graphs.
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2. COMPACT QUANTUM GROUPS AND QUANTUM AUTOMORPHISM GROUPS

We first recall some basic notions and results which will be used freely in the
rest of the paper.

Let us recall that a compact quantum group [9, 11] is a pair (A, A) where A
is a C*-algebra (with unit) and A : A — A® A is a coassociative *-homomorphism
such that the sets A(A)(A® 1) and A(A)(1 ® A) are both dense in A ® A (where
® stands for the minimal C*-tensor product). By abuse of notation a compact
quantum group is often identified with its underlying C*-algebra. A morphism
between compact quantum groups A and B is a x-homomorphism 7 : A — B such
that Aom = (r® ) o A ([7]).

Given a compact quantum group A, there is a canonically defined Hopf *-algebra
A° (which we call the algebra of representative functions) which is dense in
A. The existence of the Haar measure on A [6, 11] shows that furthermore A°
is unitarizable [9]: for every matrix u = (u;;) € Myp(A) such that A(u;;) =
> uik ® ug; and e(ui;) = d;j, there exists a matrix F € GL,(C) such that the
matrix FuF~' is unitary (in other words every A°-comodule is unitarizable). If
7w : A — B is a morphism of compact quantum groups then 7(A°) C B° and 7 is
a Hopf algebra morphism ([7]).

Conversely if A° is a unitarizable Hopf x-algebra (a CQG algebra in [4]), the
upperbound of C*-semi-norms exists on A° (since A° is generated by the entries of
unitary matrices) and is a C*-norm (use the regular representation, see [4], 4.4).
Let C*(A°) be the enveloping C*-algebra of A°. Then C*(A°), endowed with the
obvious coproduct, is a compact quantum group. This construction is often useful
when one deals with universal problems ([10] or [8]). We will use it since it is
more precise than the direct C*-construction for the definitions by generators and
relations (no additional relations from C*-norms).

When A° is a matrix Hopf x-algebra, i.e. is generated as a x-algebra by entries
u;; of a matrix u = (us;) € My, (A°) such that A(us;) = Y uik @ug; and e(u;;) = dy;
(this condition is equivalent for A° to be a finite-type *-algebra), there is an easy
way to see if A° is unitarizable: indeed A is unitarizable if and only if there are
matrices F' € GL(C) and G € GL,(C) such that the matrices FuF ! and GuG !
are unitary, see [4], 2.4 (S. Wang pointed out that the proof of this proposition in
[4] is false, The conclusion is true however).

An action of a compact quantum group A on a C*-algebra Z is a unital -
homomorphism «a : Z — Z ® A such that there is a dense sub-x-algebra Z° of
Z for which « restricts to a coaction a : Z° — Z°® A° : ie. Z° is a right
A°-comodule algebra. The category of compact quantum transformation
groups of Z is the category whose objects are compact quantum groups acting on
Z and whose morphisms are coaction preserving morphisms of compact quantum
groups (see [8] for more details).

Definition 2.1. (8], 2.3) Let Z be a C*-algebra. The quantum automorphism
group of 7 is a compact quantum group A acting on Z bya:7Z — Z Q@ A and
satisfying the following universal property:
If B is a compact quantum group acting on Z by §: 7 — Z Q A, there is a
unique compact quantum group morphism w : A — B such that (1@ w) oa =
When X is a compact space, the quantum automorphism group of X is the
quantum automorphism group of the C*-algebra C(X).
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Remarks.1) When Z is a finite-dimensional C*-algebra, it is natural to think that
the quantum automorphism group must be compact. For general C*-algebras, the
object defined above should be called the compact quantum automorphism group.
2) Tt is clear that the quantum automorphism group, if it exists, is unique up to
isomorphism. It may not exist (see [8]).

Let n € N* and let X,, be the space with n points. The C*-algebra C'(X,,) is the
universal x-algebra with generators (e;)1<i<n and relations e} = e; ; e;e; = djje;
and Y  e; =1;1<4,j <n. The following theorem gives the first example of
quantum automorphism group:

Theorem 2.2. ([8], 3.1) Let A2,,(X,) be the universal (complex) algebra with
generators (xi;)1<ij<n ond with relations:

TijTik = OjkTij 3 TjiThi = OjrTji ; Zﬂfil =1= lei ; 1<4,5,k<n
1 1
1) There is a Hopf *-algebra structure on A%, (X,) defined by:

aut

oy =mij 5 Awy) =z @ zky 5 e(wij) =855 5 S(@ij) =255 1<4,5<n
k

Furthermore A2,,,(X,) is a unitarizable Hopf *-algebra.

2) Let Agut(X,,) be the enveloping C*-algebra of AS,,.(Xy). There is an action of

aut
Aput(Xy) on C(X,,) defined by a(e;) = Ej e; @ xj; and A (X,) is the quantum
automorphism group of the space X,,. The spectrum of Aqut(X,) is the symmetric
group Sy,.
The above quantum group is called the quantum permutation group on n
symbols. When n > 4 then A,,;(X,,) is a noncommutative and infinite-dimensional

C*-algebra.

Remark. Let Z be a finite-dimensional noncommutative C*-algebra. Wang shows
in [8] that the quantum automorphism of Z does not exist. However if ) = Tr is a
trace on Z, he shows the existence of the quantum automorphism group of the pair
(Z,) (see [8] for the definition). We note here that this result can be obtained in
the algebraic category of quantum transformation groups of (Z, ), and the Hopf
algebra representing the algebraic quantum automorphism group is a unitarizable
Hopf x-algebra whose enveloping C*-algebra is isomorphic with the quantum group
described in theorem 5.1 of [8].

3. QUANTUM AUTOMORPHISM GROUP OF A FINITE GRAPH

In this paper a finite graph G = (V| E) is understood to be a pair G = (V, E)
which consists of a finite set of vertices V and a set of edges E CV x V.

Let s : E — V (resp. t : E — V) be the source map (resp. the target map). The
source and target maps induce *-homomorphisms s.,t. : C(V) — C(E).

An (usual) automorphism of a graph is a permutation of the vertices which
preserves the set of edges.

Definition 3.1. An action of a compact quantum group A on a finite graph
G = (V, E) consists of an action of A on the set of vertices a: C(V) — C(V)® A
and an action of A on the set of edges § : C(E) — C(E) ® A such that the
following diagram (x) commutes:
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cV)e W) 222 c(v)eC(V)® A
mo(s*®t*)l l(mo(s,,@t*))@id,q

cE -5 cE)eA
where m : C(E) @ C(E) — C(E) is the multiplication map of C(E) and a®Qa is
the tensor product of the coaction o by itself.

The quantum automorphism group of a finite graph G = (V,E) is a
compact quantum group A acting on G bya: C(V) — C(V)®A and 8 : C(E) —
C(E) ® A, and satisfying the following universal property:

If B is a compact quantum group acting on G by o' : C(V) — C(V) ® B and
B : C(E) — C(E) ® B, there is a unique morphism of compact quantum groups
¢: A—> B such that (id®@ p)oa=a' and (id® ¢) o f = f'.

It is easy to see that this definition coincide with the usual one for compact
groups. In the group case the action on the edges is entirely determined by the
action on the vertices. This is also true in the quantum case (since the map m o
(s« ® ty) is surjective).

Notations. Let G = (V, E) be a finite graph with n vertices V = {1,...,n} and
m edges E = {v1,...,7m}. Let (€;)i<i<n be the elements of C(V') defined by
ei(k) = i, 1 < k < n and let (fj)i<j<m be the elements of C(E) defined by
fitn) =0, 1<1<m.

Theorem 3.2. Let G = (V,E) be a finite graph with n vertices and m edges:
E = {v,...,ym}. Let A% .(G) be the universal complex algebra with generators

aut
(Xij)1<i,j<n and relations:

n n
(3.1) X3 Xik = 6juXsj 3 XjiXpi = 61 Xji ; ZXz’l =1= ZXli , 1<4,5,k<n

=1 =1
(3.2) X1 iXe(r)k = Xi(r; )6 Xs(r;)i = 0
Xis(v) Xkt(v) = Xnt(r)Xis(vy) =0 » B E€E, (k)¢ E
(3.3) Xs(v)s(n) Xe(vntn) = Xeptn) Xs(rp)s(n) > Vin € E

B4) Y Xatrser) Xemtn) = 1= Y Xatrys) Xeryewy + % EE
=1 =1

1) There is a Hopf *-algebra structure on AS,,(G) defined by:

X =Xij 5 AXy) = ZXik ® Xij 5 e(Xyj) =045 5 S(Xyj) = Xji 5 1<4,5<n
k=1

and A2, (G) is o unitarizable Hopf *-algebra.

2) Let Agut(G) be the enveloping C*-algebra of A,.(G). The formulas:

n
a(ei)zzek®in ;, 1<i<n
k=1

BU) =D F1® Xotyystrn Xemytny) » 1<5<m
=1
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define an action of Agui(G) on G and Ay (G) is the quantum automorphism group
of G. The spectrum of Agut(G) is the usual automorphism group of G.

Proof. Let I be the two-sided ideal of A2, ,(X,,) generated by relations (3.2), (3.3)
and (3.4). Obviously we have A2,,(G) =2 A2,,(Xn)/I. It is easy to see that I is a
x-ideal and hence A9, ,(G) is a *-algebra. We must prove that the maps ¢, A and
S of the theorem are well defined. It is easy to check that the character € and the
anti-homomorphism S are well defined. Let v; € E and (i,k) € V x V such that
(i,k) ¢ E. We have

AX o )iXerpn) = D Xatr)pXe(r)a ® XpiXak
p,q
= Z Xs(v)pXt(v;)a ® XpiXqk (by (3.2))
7,9 (p,q)€EE
= > Xa(r)sem Xetreen) @ XamyiXeyyr =0 (by (3.2)).
=1

In the same way we have

AKXy )rXs(ry)i) = 0= AXistr)) Xha(r)) = AXkary) Xis(ay))-
Let v;, v € E. We have

AXatystn) Xe(pytn)) = 2Xs<mz‘Xt<mk ® Xis() Xkt(m)
(by 3:2)) = IZZ Xatr)sn) Xer)tenn) @ Xs(y)stn) Xe(nnen)
(by (3.3)) = IXZ Xirp)tnn) X s stnn) ® Xy ttm) Xty sn)
(by (3.2)) = En: Xiy)iXs(ri)k @ Xit(y) Xks(m)
i,k

= AXeyy)tm X s(r)s(m))-
Now let v; € V. We have:

NE

D Xa)iXetmpk ® Xis(y) Xni(a;)
k,i

(by 32)) = D Xatw)str) Xeemtn) @ Xa(u)stry) Xetv )ty
L

— 101=A(1) (by (3.4)).

In the same way A(Y %, Xy, s(v) Xe(v)t(v)) = A(1). Therefore A is a well
defined algebra morphism and in this way A2, ,(G) is a bialgebra. It is clear that

aut

the antihomomorphism S is an antipode for this bialgebra and hence AJ,,(G) is a

Hopf *-algebra which is clearly unitarizable. There is an obvious surjective Hopf
x-algebra morphism 7 : A2 ,(X,) — A9,:(G) defined by 7(z;;) = X;;.

A Xatysern) Xe(uytrs))
=1

n

~
I
-

3
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2) By relations (3.1) and theorem 2.2 we have an action a : C(V) — C(V) ®
Aqut(G) as defined in the theorem. Let v;, 4 and v € E. By (3.3) we have
(Xsystr) Xetm)tern) ™ = Xsuystr) Xetnyetrs)
and by (3.1), (3.2) and (3.3) we have
Kosm)sr) Xen)t () Xs(n)s(r,0) Keu)t(ry) = 33" Xy sv) Ko tis) -
Finally using (3.4) we see that there is a *-homomorphism g : C(E) — C(E) ®
).

Aaut(G) as defined in the theorem and f is coassociative (see the calculations in i)
Let us check that the diagram (x) commutes. Let 4,k € V. We have a®a(e; ®ey)

Y opq Ep®€q®Xpi Xqr. Wealso have su(ei) = 32, (,)=; fi and tulen) = 35, 4= fi-

Hence
n
Z Z Ji @ XpiX g

P:q 1,(p,a)=m

m
= Y i © Xo(ay)iXa(ay)-
j=1

((mo (s« ® 1)) ®id) o (a@a)

On the other hand

Yo D1 Xetrpystw Ketuiitin)

Ln=(ik) §=1

= Y ® Xar)iXa(ay)i-

=1

Bomo (s, ®ty)(e; ® ex)

In this way we have defined an action of A,;(G) on the graph G.

Let B be a compact quantum group acting on G by o' : C(V) — C(V) ® B
and f' : C(E) — C(F) ® B. There are elements (ai;)i<i,j<n 0f B such that
o'(e;) = 32 €j ® aj; and by theorem 2.2 these elements satisfy relations (3.1) (the
elements a;; belong to the algebra of representative functions B°). There are also
elements (bj;)1<j1<m of B such that §'(f;) = >, fi ® b; and theorem 2.2 ensures
that they satisfy the same relations as (3.1). By the commutativity of the diagram
(%), we have bij = Gg(y,)s(+;)@¢()t(~;) @nd hence there is a surjective morphism of
compact quantum groups ¢g : Agut(X,) — B defined by ¢o(zir) = air. It remains
to check that the a;;,’s satisfy relations (3.2), (3.3) and (3.4). We have b}; = b;; and
hence

Tt(m)t(vs) Bs(m)s(r3) = Dslm)s(ry) A(n)ecy) - Vi W€ B

and relations (3.3) hold. We have " b; =1 = Y, b;;,Vy; € E and hence
relations (3.4) are satisfied. Using once again the commutativity of the diagram (x),
we get ag(y,;)i0¢(; )k = 0 whenever (i, k) € E. Using the involution and the antipode
of B, it is easy to see that the other relations in (3.2) are fulfilled. Thus we have
a morphism of quantum groups ¢ : A, (G) — B such that (id ® ¢) o a =
and (id ® ¢) o B = f': this morphism is obviously unique and Ag.:(G) is the
quantum automorphism group of G. The last statement follows immediately from
the universal property of A,.+(G). O

Let us take a look at some examples. First let us consider the graph G = (V, E)
with n vertices and E = . It is obvious that A,.:(G) is the quantum permutation
group Agu:(X,). Less trivially, let us consider the graph G = (V, E) with n vertices



QUANTUM AUTOMORPHISM GROUPS OF FINITE GRAPHS 7

V ={1,..,n} and E = {(i,4),i € E}. Then it is easy to check that relations (3.2),
(3.3) and (3.4) all follow from (3.1) and hence Ayt (G) = Agut (Xn)-

Now let us consider the complete graph G = (V, E) with n vertices and E =
V x V. Then relations (3.3) imply that A,.:(G) is a commutative C*-algebra.
Since the spectrum of A4, (G) is the usual automorphism group of G (in this case
the symmetric group S,), we have A,,:(G) = C(S,). Hence the quantum auto-
morphism group and the usual one coincide in this example.

These simple examples show that the quantum automorphism group is a stronger
invariant for finite graphs than the usual automorphism group.

Another elementary example is the following one. Let us consider the polygonal
graph G with n vertices V = {1,...,n} and E = {v,..., 7o} where v; = (i,i + 1),
1<i<n-—1and vy, = (n,1). It is easily seen that A,,:(G) = C(Z/nZ), the
algebra of functions on the cyclic group Z/nZ.

We now examine a less trivial example:

Proposition 3.3. Let G = (V,E) be the graph with 4 vertices V = {1,2,3,4}
and 4 edges E = {’71772:’737’74} where "= (172) y Y2 = (2: 1); 7= (3a4) and
va = (4,3). Then Agu(G) is a noncommutative infinite-dimensional C*-algebra
whose spectrum is the dihedral group Dy.

The quantum group above will be called the quantum dihedral group D,.

Proof. Tt is easily seen that the usual automorphism group of the above graph is a
finite group with 8 elements which is the dihedral group D4 and hence by theorem
3.2 the spectrum of A,,:(G) is the group Djy.

Let us now describe the %-algebra A2,,(G). First let us translate relations (3.2).
We get the following relations (3.2):

X11 X3 = X3 X131 = 0= X3 X1 = X131 X390,

X11Xo4 = X4 X171 = 0= X2 X711 = X711 Xypo,

X12X03 = X3 X712 = 0 = X35 X321 = X321 X309,

X12Xo4 = X4 X12 = 0 = X2 X1 = X1 Xyo,

X13X01 = X091 X13 = 0 = X3; X152 = X12 X3,

X13X20 = X2 X413 = 0 = X31 X929 = X025 X34,

X14 X0 = X9 X14 = 0 = X1 X9 = X9 Xy,

X14Xo1 = X1 X14 = 0= X150 X 41 = X431 Xyo,

X31X43 = Xy3X31 = 0= X13X34 = X34X13,

X351 X4 = X4a X3 = 0= X13X 4 = X4 X3,

X32Xy3 = Xy3X32 = 0 = Xo3X34 = X34 Xo3,

X30Xy4 = X4 X3 = 0 = X3 X4y = Xy4Xo3,

X33 X4 = X1 X33 = 0= X33X14 = X14 X33,

X33Xy2 = Xy2X33 = 0 = X33X24 = X4 X33,

X34 X2 = X2 X34 = 0 = Xy3 X34 = X4 X3,

X34 Xy1 = X1 X34 = 0= X4 X3 = Xy3X14.
Relations (3.3) are translated in the following relations (3.3)’:

X11 X2 = Xoo X111, X31Xyo = Xg2X3y,

X12Xo1 = X1 X2, X3 Xg1 = X1 X3o,

X13Xo4 = Xa X1z , X33X44 = X4 X3,

X14Xo3 = Xo3X14 , X34 Xy3 = Xy3X34.
Relations (3.4) become relations (3.4)’:
X1 X2+ Xo1 X192+ X31 X4+ X1 X390 = 1 = X171 Xop + X195 X091 + X13 X4 + X174 Xos,
X120 Xo1 +Xoo X1 + X320 X41 + X2 X31 = 1 = X1 X2+ X9 X1 + X3 X 14 + X4 X3,
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X13Xo4+ Xo3 X14+ X33 X4+ Xy3 X34 = 1 = X31 Xyp + X390 X1 + X33 Xyg + X34 Xy3,
X14 X034+ X04 X134+ X34 X4z +Xy4 X33 = 1 = X1 X3o + Xy X31 + X3 X34 + X4 X33.
Combining (3.1), (3.2)’, (3.3)’, (3.4)’ we get the following useful relations:

X111 =Xoo = X11 X992 = X2 X11 , X2 = Xo1 = X12 X1 = Xo1 X0,

X1z = Xog = X13Xo4 = Xou X1z, Xia = Xo3 = X114 X3 = Xo3X14,

X311 = Xyo = X1 Xyp = XypX31 , Xz = Xy1 = XXy = X1 X390,

X33 = Xyg = X33Xyq = X4 X33, X3q = Xy3 = X34Xy3 = Xy3X34.

We are now able to describe the algebra A9,,(G) in a simpler way. Let B° be
the universal *-algebra with generators (y;)1<i<s and relations:

yi=yi=vi, 1<i<8 ; pyi=0=yi,2<i<6 ;
Y2ui =0=yiy2 , 3<i<6 ; Y3y =0=wysys, i €{4,7,8} ;
Yayi =0=yiys , 1 € {7,8} ; ysyi=0=yiys, i €{6,7,8} ;
Yeyi =0=1yiye , i € {7,8} ; yrys =0=ysyr.
Nty tystya=yi+y+ystye=1=ys+ys+yr+ys=ys+ys +yr +ys.
The reader will easily check that there is a *-homomorphism ¢ : B° — A2 .(G)

defined by ¢(y1) = X11, ¢(y2) = Xi2, ¢(y3) = Xi3, ©(ya) = X4, ©(y5) = X31,

e(ys) = Xs2, p(yr) = X33, p(ys) = Xsa.
In the same way there is a x-homomorphism ¢ : A% ,(G) — B° defined by

aut

P(X11) = P(Xa2) = y1, P(Xi2) = P(Xo1) = 2, P(Xu3) = P(Xa4) = y3, P(X14) =
PY(X23) = ya, ¥(X31) = P(Xa2) = y5, ¥(X32) = P(Xa1) = ys, ¥(X33) = P(Xaa) =
y7, Y(X34) = P(Xa3) = ys.

We have ¢ o1 =id and ¢ o ¢ = id and therefore the *-algebras B° and A2,,(G)
are isomorphic.

Let us now show that B is noncommutative and infinite-dimensional. There is
a representation 7 : B — M,(C) defined by:

s = (g o) mm=(g 1) mm=(1 g ) =2 7)

and m(y3) = m(ya) = m(ys) = 7(ys) = 0. We have m(y1y7) = m(y1) while 7(y7y1) =
m(y7): B is not commutative.

Let us suppose that B¢ is finite-dimensional. Then B° would be a finite-
dimensional C*-algebra since B® = A? .(G). But w(B°) is contained in the algebra
of lower-triangular matrices. This means that the representation 7 is not semisim-
ple: we have a contradiction. Hence A,,:(G) = C*(B°) is infinite-dimensional.
O

Proposition 3.3 gives a concrete example of non-trivial quantum subgroup (i.e.
noncommutative and noncocommutative) of A,.;:(X,). It is expected that the
construction described in [1] furnishes many other examples of this kind.
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