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Abstract. These are the notes for a mini-course given at the conference “Topological quantum
groups and harmonic analysis”, May 15-19, 2017 at SNU (Seoul National University), Korea.
We introduce and discuss the classical homological invariants associated to discrete quantum
groups (compact Hopf algebras), with a special emphasis on cohomological dimension, and
present some recent computations.
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Introduction

These are the notes for a series of lectures given at the conference “Topological quantum
groups and harmonic analysis”, May 15-19, 2017 at SNU (Seoul National University), Korea.
We introduce and discuss the classical homological invariants associated to discrete quantum
groups (compact Hopf algebras): cohomological dimension, cohomology, L2-Betti numbers,
bialgebra cohomology, with a special emphasis on cohomological dimension, and we present
some recent computations involving the “free” quantum groups O+

n , U+
n and S+

n .
These notes are organized as follows. Section 1 gives an overview of the Hopf algebraic

approach to the theory of compact/discrete quantum groups. In Section 2, we discuss exact
sequences of (compact) Hopf algebras. Section 3 presents the basic homological algebra ma-
terial: projective modules, projective dimension, Ext-spaces, and we define the cohomology of
Hopf algebras. In Section 4 we define the cohomological dimension of a Hopf algebra, discuss
some basic facts and present computations for our main examples. Section 5 gives a brief defi-
nition of L2-Betti numbers and surveys some recent computations. Section 6 presents bialgebra
cohomology, and the final Section 7 lists a number of open questions.

Warning. Before starting, I would like to say a few words about what can be expected from
the homological invariants we will discuss. As they are invariants, the most optimistic hope
is that they will help to classify the objects we study (just like the theorem of invariance of
domain can be proved by using singular homology). However, this is not so often the case. Just
as in the classical theory of discrete groups, the homological invariants rather serve, on one
hand, as a measure of some kind of complexity for discrete quantum groups, providing a rough
classification into subclasses with well-identified properties, and on the other hand, as a tool to
attack various non-trivial problems, as in usual group theory [25].

1. Hopf algebras and discrete/compact quantum groups

In this section we give an overview of the Hopf algebraic approach to the theory of com-
pact/discrete quantum groups, through what we call compact Hopf algebras. The main refer-
ence is the book [46], and [68, 39] form convenient references as well.

We warn the reader that the presentation is designed to highlight the facts that we believe
to be the most important and useful for the rest of the notes, but does not follow the logical
order that one would need for a complete course on the subject.

1.1. Hopf ∗-algebras: basic definitions and examples.

Definition 1.1. A Hopf algebra is an algebra A together with algebra maps

(1) ∆ : A −→ A⊗A (comultiplication)
(2) ε : A −→ C (counit)
(3) S : A −→ Aop (antipode)

satisfying the following axioms:

(a) (∆⊗ idA) ◦∆ = (idA ⊗∆) ◦∆ (Coassociativity)
(b) (ε⊗ idA) ◦∆ = idA = (idA ⊗ ε) ◦∆ (counit axiom)
(c) m ◦ (idA ⊗ S) ◦∆ = u ◦ ε = m ◦ (S ⊗ idA) ◦∆ (antipode axiom),

where m : A⊗A→ A and u : C→ A are the respective multiplication and unit of A.

The most popular Hopf algebra textbook is [64]. The interested reader will find an historical
account of the theory of Hopf algebras in [4].

Definition 1.2. A Hopf ∗-algebra is a ∗-algebra A, which is a Hopf algebra as well, and such
that the comultiplication ∆ : A→ A⊗A is ∗-algebra map.

Remark 1.3. If A is Hopf ∗-algebra, it is automatic that ε : A→ C is a ∗-algebra map and that
S is bijective, with S−1(a) = S(a∗)∗ for any a ∈ A.
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Example 1.4. Let Γ be a discrete group, and let CΓ be its group ∗-algebra with C-basis {eg, g ∈
Γ}, and e∗g = eg−1 . This is a Hopf ∗-algebra with, for any g ∈ Γ,

∆(eg) = eg ⊗ eg, ε(eg) = 1, S(eg) = eg−1

Example 1.5. Let G be a compact group. Recall that a representative function on G is a
continuous function f ∈ C(G) such that the set

Gf = {x.f, x ∈ G}, where x.f(y) = f(x−1y)

generates a finite-dimensional subspace of C(G). This is equivalent to say that f is a coefficient
of a finite-dimensional representation of G.

The set of representative functions on G is denoted O(G). In fact O(G) is a ∗-subalgebra of
C(G), and is dense in C(G) by the Peter-Weyl theorem. The group structure ofG induces a Hopf
∗-algebra structure on O(G). The multiplication of m : G×G→ G induces a comultiplication

∆ : O(G) −→ O(G×G) ' O(G)⊗O(G)

f 7−→ f ◦m 7−→ ∆(f)

The counit is defined by

ε : O(G) −→ C
f 7−→ f(1)

and the antipode is induced by the inversion map in G

S : O(G) −→ O(G)

f 7−→ S(f), S(f)(x) = f(x−1)

Example 1.6. Let again G be a compact group, with G a subgroup of the unitary group Un.
Let uij , 1 ≤ i, j ≤ n, be the coordinate functions on G: for g = (gij) ∈ G, uij(g) = gij . The
elements uij belong to O(G) (and in fact generate O(G) as a ∗-algebra), and we have

∆(uij) =
n∑
k=1

uik ⊗ ukj , ε(uij) = δij , S(uij) = (u−1)ij

where u−1 stands for the inverse of the matrix u = (uij) ∈Mn(O(G)).

The above example exactly paves the way to construct examples, by the following useful
result. The proof is left as an exercise.

Lemma 1.7. Let A be ∗-algebra endowed with ∗-algebra maps ∆ : A −→ A⊗A and ε : A −→ C,
and an algebra map S : A −→ Aop. Assume that there exists a matrix u = (uij) ∈Mn(A) such
that the following conditions hold:

(1) u = (uij) and u = (u∗ij) are invertible matrices;

(2) A is generated, as a ∗-algebra, by the coefficients of the matrix u;
(3) for any i, j, we have

∆(uij) =

n∑
k=1

uik ⊗ ukj , ε(uij) = δij , S(uij) = (u−1)ij , S(u∗ij) = (u−1)ij

Then A, endowed with the above structure maps, is a Hopf ∗-algebra.

One defines morphisms of Hopf ∗-algebras in the obvious way, we get a category, and the
constructions of examples 1.4 and 1.5 define functors.

There are important groups naturally attached to a Hopf (∗-)algebra.

Definition 1.8. Let A be a Hopf algebra.

(1) An element a ∈ A is said to be group-like if ∆(a) = a ⊗ a and ε(a) = 1. The set
of group-like elements in A is denoted Gr(A), the multiplication of A induces a group
structure on Gr(A), with for a ∈ Gr(A), a−1 = S(a).
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(2) The set of algebra maps A −→ C, denoted G(A), is a group under the law

φ · ψ := (φ⊗ ψ) ◦∆

The unit element is ε and the inverse of φ ∈ G(A) is φ ◦ S.
(3) If A is a Hopf ∗-algebra, let GR(A) be the set of ∗-algebra maps A −→ C: this a subgroup

of the group G(A). We endow GR(A) with the weakest topology making the evaluations
GR(A) −→ C, φ 7−→ φ(a) (a ∈ A) continuous, making GR(A) into a topological group.

These constructions allow us to reconstruct the groups from the Hopf algebras in examples
1.4 and 1.5

Example 1.9. (1) If Γ is a discrete group, we have a group isomorphism Γ ' Gr(CΓ), x 7−→ ex
(exercise). Therefore the Hopf algebra CΓ completely determines the group Γ.

(2) Let G be a compact group. Then GR(O(G)) is a compact group, and

ι : G −→ GR(O(G))

x 7−→ ι(x), ι(x)(f) = f(x)

is a compact group isomorphim: this is the Tannaka duality theorem, which asserts in
particular that G can be reconstructed from the Hopf ∗-algebra O(G), and hence from its
finite-dimensional representations, see [21].

1.2. Compact Hopf algebras. We now define compact Hopf algebras. We first introduce a
piece of vocabulary, coming from Example 1.6.

Definition 1.10. Let A be a Hopf algebra and let u = (uij) ∈ Mn(A) be a matrix. We say
that u is a multiplicative matrix if for all i, j ∈ {1, . . . , n}, we have

∆(uij) =
n∑
k=1

uik ⊗ ukj , ε(uij) = δij

If A is a Hopf ∗-algebra, a multiplicative matrix u ∈ Mn(A) is said to be unitarisable if the
exists F ∈ GLn(C) such that the matrix FuF−1 is unitary.

Theorem-Definition 1.11. A Hopf ∗-algebra A is said to be compact if it satisfies the fol-
lowing equivalent conditions.

(1) Any multiplicative matrix u ∈Mn(A) is unitarisable.
(2) There exists a faithful state h : A→ C such that (idA⊗h)◦∆ = h(−)1A = (h⊗ idA)◦∆.
(3) A is generated, as a ∗-algebra, by a family of unitary multiplicative matrices uλ ∈

Mnλ(A), λ ∈ Λ, such that uλ is unitarizable for any λ.

The equivalences between these conditions is from [32], where unfortunately, the proof of
(3)⇒ (1) has a mistake. We refer to [46] for a complete proof.

Example 1.12. If Γ is a discrete group, the group algebra CΓ is compact. Conversely, if A is a
cocommutative compact Hopf algebra (for any a ∈ A, ∆(a) = τ∆(a), where τ : A⊗A→ A⊗A
is the canonical flip), then A ' CΓ, for Γ = Gr(A).

Example 1.13. If G is a compact group, then O(G) is a compact Hopf algebra (the functional h
in Theorem 1.11 is the usual Haar integral on G). Conversely, if A is a commutative compact
Hopf algebra, then A ' O(G), where G = GR(A): this is the Hopf algebraic version of the
Tannaka-Krein duality theorem, see [21].

Example 1.14. If A is a commutative and cocommutative compact Hopf algebra, then A ' O(G)

and A ' CΓ, for an abelian compact group G and an abelian discrete group Γ such that G ' Γ̂

and Γ ' Ĝ (the two groups are Pontryagin dual of each other).

In view of these examples, if A is an arbitrary compact Hopf algebra, we may formally write

A = O(G), A = CΓ, G = Γ̂, G = Γ̂
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for a compact quantum group G and a discrete quantum group Γ that are dual of each
other.

Remark 1.15. Let A is a compact Hopf algebra. If B ⊂ A is a Hopf ∗-subalgebra, then B is
a compact Hopf algebra as well. If f : A → B is a surjective Hopf ∗-algebra map, then B is
a compact Hopf algebra. These facts are consequences of the various equivalent definitions in
Theorem-Definition 1.11.

To construct examples outside classical compact and discrete groups, we can use Lemma 1.7.

Example 1.16 (SU(2) and its quantum q-deformation SUq(2), [87]). Let q ∈ R∗. The ∗-algebra
O(SUq(2)) is, as an algebra, presented by generators u11, u12, u21, u22, submitted to the relations

u12u11 = qu11u12, u21u11 = qu11u21, u22u12 = qu12u22, u22u21 = qu21u22

u12u21 = u21u12, u11u22 − u22u11 = (q−1 − q)u12u21

u11u22 − q−1u12u21 = 1

Its ∗-structure is defined by

u∗11 = u22, u
∗
22 = u11, u

∗
12 = −q−1u21, u

∗
21 = −qu12

and O(SUq(2)) is a Hopf ∗-algebra with

∆(uij) =

2∑
k=1

uik ⊗ ukj , ε(uij) = δij

and

S(u11) = u22, S(u12) = −qu12, S(u21) = −q−1u21, S(u22) = u11

See Lemma 1.7. Moreover it is easily checked that the matrix u = (uij) ∈ M2(O(SUq(2))) is
unitary and hence O(SUq(2)) is a compact Hopf algebra by Theorem 1.11.

If q = 1, then O(SU1(2)) is commutative with GR(O(SU1(2))) ' SU(2) and thus by the
Tannaka-Krein Theorem, we have O(SU1(2)) ' O(SU(2)).

If q 6= 1, then O(SUq(2)) is noncommutative and noncommutative (this is not completely
obvious). The corresponding compact quantum group, of great historical importance, was in-
troduced by Woronowicz [87], and is called the quantum group SUq(2). There are also quantum
groups SUq(n) [89] and q-deformations for other classical groups [71], that we do not discuss
here.

We now present the series of “free” examples O+
n , U+

n , S+
n , introduced by Wang in the nineties.

Example 1.17 (On and its free version O+
n , [33], [83]). Let n ≥ 1. Consider the commutative

algebra

A = C[xij , 1 ≤ i, j ≤ n | xxt = In = xtx]

where x = (xij), and where the notation means that we exactly have all the relations making
the written matrix relations written hold. There are algebra maps

∆ : A −→ A⊗A, ε : A −→ C, and S : A −→ A

defined by (1 ≤ i, j ≤ n)

∆(xij) =

n∑
k=1

xik ⊗ xkj , ε(xij) = δij , S(xij) = xji

that endow A with a Hopf algebra structure (Lemma 1.7. Moreover A has a ∗-algebra structure,
with x∗ij = xij , and is a Hopf ∗-algebra. The matrix x is then unitary, and Theorem 1.11 ensures

that A is a compact Hopf algebra. We have GR(A) ' On, and the Tannaka-Krein duality
theorem ensures that A ' O(On).
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The free version “O+
n ” of On is obtained by removing the commutativity relations in the

above presentation of O(On). More precisely let

Ao(n) = C〈xij , 1 ≤ i, j ≤ n | xxt = In = xtx〉
where x = (xij). We have algebra maps

∆ : Ao(n) −→ Ao(n)⊗Ao(n), ε : Ao(n) −→ C, et S : Ao(n) −→ Ao(n)op

defined by (1 ≤ i, j ≤ n)

∆(xij) =

n∑
k=1

xik ⊗ xkj , ε(xij) = δij , S(xij) = xji

othat endow Ao(n) with a Hopf algebra structure. Moreover Ao(n) has a ∗-algebra structure,
with x∗ij = xij , and is a Hopf ∗-algebra, non commutative and non-cocommutative if n ≥ 2

(since it has CZ∗n2 and O(On) as Hopf ∗-algebra quotients). The matrix x is then unitary, and
Theorem 1.11 ensures that Ao(n) is a compact Hopf algebra. We put Ao(n) = O(O+

n ), and call
O+
n the free orthogonal quantum group (one can show that Ao(2) ' O(SU−1(2)).

Example 1.18 (Un ant its free version U+
n , [83]). Let n ≥ 1. Consider the commutative ∗-algebra

A = C[uij , u
∗
ij , 1 ≤ i, j ≤ n | uu∗ = In = u∗u]

where u = (uij), and where the notation means that we exactly have all the relations making
the written matrix relations written hold. There are ∗-algebra maps

∆ : A −→ A⊗A, ε : A −→ C, and S : A −→ A

defined by (1 ≤ i, j ≤ n)

∆(uij) =
n∑
k=1

uik ⊗ ukj , ε(uij) = δij , S(uij) = u∗ji

that endow A with a Hopf ∗-algebra structure (Lemma 1.7). The matrix u and u are then
unitary, and Theorem 1.11 ensures that A is a compact Hopf algebra. We have GR(A) ' Un,
and the Tannaka-Krein duality theorem ensures that A ' O(Un).

The “free” version U+
n of Un is obtained by removing the commutativity relations in the

above presentation of O(Un) (in a more subtle manner than for On). More precisely consider
the ∗-algebra

Au(n) = C〈uij , u∗ij , 1 ≤ i, j ≤ n | uu∗ = In = u∗u, uut = In = utu〉

where u = (uij). We have ∗-algebra maps

∆ : Au(n) −→ Au(n)⊗Au(n), ε : Au(n) −→ C, et S : Au(n) −→ Au(n)op

defined by (1 ≤ i, j ≤ n)

∆(uij) =
n∑
k=1

uik ⊗ ukj , ε(uij) = δij , S(uij) = u∗ji

that endow Au(n) with a Hopf ∗-algebra structure (Lemma 1.7), noncommutative and nonco-
commutative if n ≥ 2 (since it has CFn and O(Un) as Hopf ∗-algebra quotients). Moreover, the
matrices u and u are unitary, and Theorem 1.11 ensures that A is a compact Hopf algebra. We
put Au(n) = O(U+

n ), and call U+
n the free unitary quantum group.

Example 1.19 (Sn ant its free version S+
n , [84]). Let n ≥ 1. Consider the commutative algebra

A presented by generators xij , 1 ≤ i, j ≤ n, submitted to the relations of permutation matrices
(1 ≤ i, j, k ≤ n)

n∑
l=1

xil = 1 =
n∑
l=1

xli, xijxik = δjkxij , xjixki = δjkxji
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We have algebra maps

∆ : A −→ A⊗A, ε : A −→ C, and S : A −→ A

defined by (1 ≤ i, j ≤ n)

∆(xij) =
n∑
k=1

xik ⊗ xkj , ε(xij) = δij , S(xij) = xji

that endow A with a Hopf algebra structure. Moreover A has a ∗-algebra structure, with
x∗ij = xij , and is a Hopf ∗-algebra. The matrix x is then unitary, and Theorem 1.11 ensures

that A is a compact Hopf algebra. We have GR(A) ' Sn, and the Tannaka-Krein duality
theorem ensures that A ' O(Sn).

The free version “S+
n ” of Sn is obtained by removing the commutativity relations in the

above presentation of O(Sn). More precisely let As(n) be the algebra presented by generators
xij , 1 ≤ i, j ≤ n, submitted to the relations of permutation matrices (1 ≤ i, j, k ≤ n)

n∑
l=1

xil = 1 =
n∑
l=1

xli, xijxik = δjkxij , xjixki = δjkxji

We have algebra maps

∆ : As(n) −→ As(n)⊗As(n), ε : As(n) −→ C, and S : As(n) −→ As(n)op

defined by (1 ≤ i, j ≤ n)

∆(xij) =
n∑
k=1

xik ⊗ xkj , ε(xij) = δij , S(xij) = xji

that endow As(n) with a Hopf algebra structure. Moreover As(n) has a ∗-algebra structure,
with x∗ij = xij , and is a Hopf ∗-algebra. The matrix x is then unitary, and Theorem 1.11 ensures

that As(n) is a compact Hopf algebra, noncommutative and noncocommutative if n ≥ 4. We
put As(n) = O(S+

n ), and call S+
n the quantum permutation group on n points (an alternative

terminology could be the free permutation quantum group S+
n , but this terminology is not too

much in use). The quantum permutation group S+
n is the largest compact quantum group

acting on the classical set formed by n points, whence his name, see [84].

1.3. Comodules. We now discuss comodules over a (compact) Hopf algebra, which correspond
to representations of the corresponding (compact) quantum group, and are crucial in analysing
its structure.

Definition 1.20. Let A be a Hopf algebra. A (right) A-comodule is a vector space V endowed
with a linear map α : V −→ V ⊗ A (called coaction) such that the following conditions are
satisfied:

(1) (α⊗ idA) ◦ α = (idV ⊗∆) ◦ α;
(2) (idV ⊗ ε) ◦ α = idV .

Example 1.21. The comultiplication ∆ : A −→ A ⊗ A endows A with a right A-comodule
structure, called the regular A-comodule.

Example 1.22. Let Γ be a group and V be a vector space. A CΓ-comodule structure on V is
the same as a Γ-grading on V, i.e. a direct sum decomposition V = ⊕g∈ΓVg.

Example 1.23. Let G be a compact group. An O(G)-comodule structure on a finite-dimensional
vector space precisely corresponds to a (continuous) representation G→ GL(V ), see Proposition
1.24.
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One defines morphisms of comodules in a straightforward manner: if A is a Hopf algebra
and V = (V, αV ) and W = (W,αW ) are A-comodules, an A-comodule morphism V −→W is a
linear map f : V −→W such that the following diagram commutes:

V
f //

αV
��

W

αW
��

V ⊗A
f⊗idA// W ⊗A

One also says that an A-comodule morphism is an A-colinar map.
The category of A-comodules is denoted Comod(A), while the full subcategory of finite-

dimensional A-comodules is denoted Comodf (A). Both are abelian subcategories of Vect, the
category of vector spaces, which means that the standard operations in linear algebra such as
direct sums, kernels, cokernels can be performed inside these categories.

Finite-dimensional comodules can be described by by means of multiplicative matrices, as
shown by the following result, whose verification is an easy exercise.

Proposition 1.24. Let A be a Hopf algebra and let V be a finite-dimensional vector space.

(1) Assume that V has an A-comodule structure with coaction α : V −→ V ⊗A. Let v1, . . . , vn
be a basis of V and let x = (xij) ∈Mn(A) be the matrix such that ∀i,

αV (vi) =
n∑
j=1

vj ⊗ xji

Then x = (xij) is a multiplicative matrix.
(2) Conversely, if x = (xij) ∈ Mn(A) is a multiplicative matrix, for each basis of V , the above

formula defines an A-comodule structure on V .
(3) If V is an A-comodule with corresponding multiplicative x = (xij) ∈ Mn(A) associated to

the choice of a basis of V , then A(V ) = Span(xij , 1 ≤ i, j ≤ dim(V )) does not depend on the
choice of the basis, and is a subcoalgebra of A (i.e. ∆(A(V )) ⊂ A(V )⊗A(V )). Moreover if
W is a comodule isomorphic to V , then A(V ) = A(W ).

The last part of the proposition, together with the fact that a finite-dimensional comodule V
is simple (i.e. has no non-trivial subcomodule) if and only if dim(A(V )) = dim(V )2 (this follows
from a classical result of Burnside), enables us to formulate the Peter-Weyl decomposition in
the compact Hopf algebra framework.

Theorem 1.25. Let A be a compact Hopf algebra.

(1) The category Comodf (A) is semisimple: every object is a direct sum of simple comodules.
(2) Let λ be the set of isomorphism classes of simple A-comodules. We have a (Peter-Weyl)

decomposition

A =
⊕
λ∈Λ

A(λ)

where each A(λ) is the subcoalgebra of coefficients of a simple comodule associated to λ.

The orthogonality relations [56, 88] even make the Peter-Weyl decomposition more precise:
see [46]. We will not need their precise form.

We end the subsection by briefly discussing the tensor category structure on the category of
comodules over a Hopf algebra.

If V = (V, αV ), W = (W,αW ) are comodules over A, their tensor product has a natural
A-comodule structure defined by

V ⊗W αV ⊗αW−→ V ⊗A⊗W ⊗A id⊗τ⊗id−→ V ⊗W ⊗A⊗A id⊗m−→ V ⊗W ⊗A
The natural associativity isomorphisms (V ⊗W )⊗Z ' V ⊗(W⊗Z) are morphisms of comodules,
and together with the trivial comodule C (defined by 1 7→ 1⊗ 1A)), these structures make the
category Comodf (A) into a tensor category, see [35, 45, 66].
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If now A is compact Hopf algebra, the set of isomorphism classes of simple A-comodules
together with the decompositions of tensor products of simple comodules into direct sums of
simple comodules produces a combinatorial data called the fusion rules of A (see e.g. [8]). The
fusion rules of the examples of quantum groups in the previous paragraph have been determined
in classic papers of Woronowicz ([87], for SUq(2), the fusion rules are the same as those of the
classical SU(2)) and Banica (([5] for O+

n which has the same fusion rules as those of SU(2), [6]
for U+

n which has noncommutative fusion rules, [7] for S+
n which has the same fusion rules as

SO(3) ' PU(2)).
There is also a stronger relation than the one of having the same fusion rules, the relation of

monoidal equivalence. We say that two Hopf algebras A and B are monoidally equivalent
if there exists a tensor category equivalence Comodf (A) '⊗ Comodf (B) (i.e an equivalence of
categories that preserves the tensor products up to isomorphism in a coherent way, we refer to
[35, 45, 66] for the precise definition). Among the previous quantum groups, let us mention the
monoidal equivalences

Comodf (Ao(n)) '⊗ Comodf (O(SUq(2)), for q + q−1 = −n, [12, 17]

and

Comodf (As(n)) '⊗ Comodf (O(PUq(2)), for q + q−1 =
√
n, [28, 65]

where PUq(2) is defined in Example 2.7.

1.4. Operator algebras associated compact Hopf algebras. Let A be compact Hopf al-
gebra, with Haar state h : A→ C. The formula

〈a, b〉 = h(b∗a)

defines a faithful, positive definite and sesquilinear form on A. The pair (A, 〈, 〉) is therefore
a pre-Hilbert space and we denote by L2(A) its Hilbert space completion. It follows from the
orthogonality relations that for any a ∈ A, there exists a constant Ca > 0 such that for any
b ∈ A

〈ab, ab〉 = h(b∗a∗ab) ≤ Cah(b∗b) = Ca〈b, b〉
This precisely means that the elements of A, acting by left multiplication on A, act continuously
and hence extend to bounded operators on L2(A). We get an injective ∗-algebra map

πh : A −→ B(L2(A))

We get a C∗-algebra and a von Neumann algebra

C∗red(A) = πh(A)
||.||
, L(A) = πh(A)′′

When A = CΓ is the group algebra of a discrete group we have

C∗red(CΓ) = C∗red(Γ), L(CΓ) = L(Γ)

and when A = O(G) for a compact group G, we have

C∗red(O(G)) = C(G), L(O(G)) = L∞(G)

1.5. Free products. Let A,B be algebras, and let A ∗ B be their free product (coproduct
in the category of unital algebras). For algebras defined by generators and relations, the free
product A ∗ B is constructed as the algebra presented by the generators of A and B, and the
only relations in A ∗B are those coming from those of A and B.

For the reader’s convenience, let us recall one other possible construction of A ∗B (see [67]).
First, let us say that a subspace X of an algebra A is an augmentation subspace of A if
A = C1⊕X. Now if X = Z1 and Y = Z2 are augmentation subspaces of A and B respectively,
we have

A ∗B = C1⊕

 ∞⊕
m=1

⊕
i1 6=i2 6=···6=im

Zi1 ⊗ · · · ⊗ Zim

 .
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The right-handed term is denoted X∗Y ; this is an augmentation subspace of A∗B. If {ai, i ∈ I},
{bj , j ∈ J} denote respective bases of X and Y , then the elements

ai1bj1 · · · aimbjmaim+1 , i1, . . . , im+1 ∈ I, j1, . . . , jm ∈ J, m ≥ 0

bj1ai1 · · · bjmaimbjm+1 , i1, . . . , im ∈ I, j1, . . . , jm+1 ∈ J,m ≥ 0

ai1bj1 · · · aimbjm , i1, . . . , im ∈ I, j1, . . . , jm ∈ J, m ≥ 1

bj1ai1 · · · bjmaim , i1, . . . , im ∈ I, j1, . . . , jm ∈ J, m ≥ 1

(1.1)

form a basis of X ∗ Y .
Now let A,B be compact Hopf algebras. Recall [83] that the free product algebra A ∗B has

a unique compact Hopf algebra structure such that the canonical morphisms A → A ∗ B and
B → A ∗ B are Hopf ∗-algebra maps. An A ∗ B-comodule is said to be a simple alternated
A∗B-comodule if it has the form V1⊗· · ·⊗Vn,where each Vi is a simple non-trivial A-comodule
or B-comodule, and if Vi is an A-comodule, then Vi+1 is an B-comodule, and conversely. It is
proved in [83, Theorem 3.10] that the simple A∗B-comodules are exactly the simple alternated
comodules. This result is obtained using the Peter-Weyl decompositions of A and B, together
with the above description of A ∗B.

1.6. Notations and further premiminaries. Let A be a Hopf algebra. The very convenient
Sweedler notation is, for a ∈ A,

∆(a) = a(1) ⊗ a(2)

With this notation, the Hopf algebra axioms become

(∆⊗ idA)∆(a) = a(1) ⊗ a(2) ⊗ a(3) = (idA ⊗∆)∆(a)

ε(a(1))a(2) = a = a(1)ε(a(2)), S(a(1))a(2) = ε(a)1 = a(1)S(a(2))

If V is an A-comodule with coaction α : V → V ⊗A, the Sweedler notation is

α(v) = v(0) ⊗ v(1)

and the comodule axioms are

(α⊗ idA)α(v) = v(0) ⊗ v(1) ⊗ v(2) = (idV ⊗∆)α(v), (idV ⊗ ε)α(v) = v(0)ε(v(1)) = v

We will consider module over A as well, and most often right A-modules. If α : A→ C is an
algebra map, we will denote by Cα the right one-dimensional A-module defined by 1 ·a = α(a)1.

If M , N are (right) A-modules, we denote by HomA(M,N) the space of A-linear maps from
M to N .

2. Exact sequences of compact Hopf algebras

In this section we discuss exact sequences of compact Hopf algebras. This relies on some
classical but technical and non-trivial Hopf algebra works, e.g. [3, 75, 76, 79]. Fortunately the
situation has been simplified thanks to a recent result by Chirvasitu [26].

2.1. Crossed product. We begin with a simple but important construction. Let Γ be a
discrete group acting on a Hopf ∗-algebra A, via a group morphism α : Γ → Aut(A) (where
Aut(A) means the group of Hopf ∗-algebra automorphisms of A). To this data, we associate,
as usual, the crossed product ∗-algebra A o Γ, which has A ⊗ CΓ as underlying vector space,
and product and involution defined by

a⊗ g · b⊗ h = aαg(b)⊗ gh, (a⊗ g)∗ = αg−1(a∗)⊗ g−1 a, b ∈ A, g, h ∈ G

Then Ao Γ has a natural Hopf ∗-algebra structure defined by

∆(a⊗ g) = a(1) ⊗ g ⊗ a(2) ⊗ g, ε(a⊗ g) = ε(a), S(a⊗ g) = αg−1(S(a))⊗ g−1

and is compact if A is.
10



2.2. Exact sequences. We now define exact sequences of compact Hopf algebras. We begin
with the following preliminary notation and results.

• Let B ⊂ A be a compact Hopf subalgebra (this means that A is a compact Hopf algebra
and that B is a Hopf subalgebra: B is then automatically a Hopf ∗-subalgebra and is
compact). Let B+ = Ker(ε) ∩ B and let B+A (resp. AB+) be the right (resp. left)
sub-A-module of A generated by B+. When B+A = AB+, then this space is a Hopf
∗-ideal, and hence the quotient A/B+A has a compact Hopf algebra structure such that
the canonical map p : A→ A/B+A is a Hopf ∗-algebra map.
• Let p : A→ L be a surjective morphism of compact Hopf algebras, and let

AcoL = {a ∈ A : (id⊗p)∆(a) = a⊗ 1}, coLA = {a ∈ A : (p⊗ id)∆(a) = 1⊗ a}
Both are ∗-subalgebras of A, and when AcoL = coLA, this is a compact Hopf subalgebra
of A.

Theorem-Definition 2.1. A sequence of compact Hopf algebra maps

C→ B
i→ A

p→ L→ C
with i injective and p surjective, is said to be exact if the following equivalent conditions hold.

(1) Ker(p) = Ai(B)+ = i(B)+A and i(B) = AcoL = coLA.
(2) Ker(p) = Ai(B)+ = i(B)+A.
(3) i(B) = AcoL = coLA.

Comments on the proof. Clearly (1)⇒ (2) and (1)⇒ (3). To prove (2)⇒ (1), one can combine
results of Chirvasitu [26] (faithful flatness of A as an B-module) and of Takeuchi [79, Theorem
1] (regarding this last reference, the reader will find [64, Proposition 3.4.3] of easier access). For
(3)⇒ (1), [79, Theorem 2] does the job, since L is compact, and hence cosemisimple (regarding
the proof of (3) ⇒ (1), the reader might like to consult [85] for a more direct argument in the
cosemisimple case). �

Example 2.2. If Γ is a discrete group acting on a compact Hopf ∗-algebra A, then

C→ A
i→ Ao Γ

ε⊗id→ CΓ→ C
is an exact sequence of compact Hopf algebras.

Example 2.3. A sequence 1 → Γ1 → Γ2 → Γ3 → 1 of morphisms of discrete groups is exact if
and only if the corresponding sequence of compact Hopf algebras C→ CΓ1 → CΓ2 → CΓ3 → C
is exact.

Example 2.4. A sequence 1→ N → G→ H → 1 of morphisms of compact groups is exact if and
only if the corresponding sequence of compact Hopf algebras C→ O(H)→ O(G)→ O(N)→ C
is exact.

2.3. Cocentral exact sequences. The main example of exact sequence of Hopf algebras we
will use is of a special type, that we discuss now. One advantage is that in this restricted setting,
we can prove quite simply and directly exactness in all the possible senses of Theorem-Definition
2.1.

A Hopf algebra map f : A → B is said to be cocentral if f(a(1))⊗ a(2) = f(a(2))⊗ a(1) for
any a ∈ A.

Example 2.5. Let H ⊂ G be a closed subgroup of classical compact group. Then the restriction
map

p : O(G) −→ O(H)

f 7−→ f|H

is cocentral if and only if H ⊂ Z(G). Indeed, p is cocentral if and only if

f(xh) = f(hx), ∀f ∈ O(G), ∀x ∈ G, ∀h ∈ H
and the conclusion follows since O(G) separates the points of G.
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Proposition 2.6. Let p : A→ CΓ be surjective cocentral morphism of compact Hopf algebras.
Then AcoCΓ = coCΓA, and the sequence

C→ AcoCΓ i→ A
p→ CΓ→ C

is exact.

Proof. The cocentrality condition clearly ensures that AcoCΓ = coCΓA, so we can use the previous
theorem to conclude that the sequence is exact. We give direct proof of exactness in this
particular setting. We have to show that letting B = AcoCΓ, we have Ker(p) = AB+ = B+A.

The map (id⊗ p)∆ : A→ A⊗CΓ endows A with a CΓ-comodule structure, so the structure
of comodules of a group algebra (Example 1.22) gives a decomposition A =

⊕
g∈ΓAg with

Ag = {a ∈ A |a(1) ⊗ p(a(2)) = a⊗ g}

and A1 = AcoCΓ = B, p|Ag = ε(−)g, AgAh ⊂ Agh, ∆(Ag) ⊂ Ag ⊗ Ag, S(Ag) ⊂ Ag−1 . For fixed
g, h ∈ Γ take b ∈ Ah−1 such that ε(b) = 1 (such a b exists by surjectivity of p). Then for any
a ∈ Agh we have

a = ab(1)S(b(2)) ∈ AgAh.
The same argument shows that if a ∈ A+

gh, then a ∈ A+
g Ah, hence A+

g Ah = A+
gh. Similarly one

checks that A+
gh = AgA

+
h . Now let a ∈ Ker(p), and write a =

∑
g∈Γ ag, with ag ∈ Ag. Since

a ∈ Ker(p), each ag belongs to A+
g = A+

gg−1g
= A+

1 Ag ∈ B+A, and to A+
g = A+

gg−1g
= AgA

+
1 ⊂

AB+. This finishes the proof. �

Example 2.7. It is an immediate verification that the Hopf ∗-algebra map

O(SUq(2)) −→ CZ2

uij 7−→ δijg

where g denotes the generator of the cyclic group of order 2, is cocentral. We thus get a cocentral
exact sequence

C→ O(PUq(2))→ O(SUq(2))→ CZ2 → C
where O(PUq(2)) = O(SUq(2)coCZ2 is the subalgebra generated by the elements uijukl, 1 ≤
i, j, k, l ≤ 2.

2.4. Graded twisting. To finish the section, we discuss a construction of a new Hopf compact
Hopf algebra from an old one, called graded twisting [20], combining crossed products and
cocentral Hopf algebra maps.

Definition 2.8. Let A be a compact Hopf algebra and let Γ be a discrete group. An invariant
cocentral action of Γ on A is a pair (p, α) where

(1) p : A→ CΓ is a cocentral surjective Hopf ∗-algebra map,
(2) α : Γ→ Aut(A) is an action of Γ by Hopf ∗-algebra automorphisms on A, with pαg = p

for all g ∈ Γ.

Recall from the proof of Proposition 2.6 that p : A→ CΓ as above gives a decomposition (a
Γ-grading)

A =
⊕
g∈Γ

Ag with Ag = {a ∈ A |a(1) ⊗ p(a(2)) = a⊗ g}

and A1 = AcoCΓ = B, p|Ag = ε(−)g, AgAh ⊂ Agh, ∆(Ag) ⊂ Ag ⊗Ag, S(Ag) ⊂ Ag−1 .
In terms of this Γ-grading, the last condition is equivalent to αg(Ah) = Ah for all g, h ∈ Γ.

Definition 2.9. Given an invariant cocentral action (p, α) of a discrete group Γ on a compact
Hopf algebra A, the graded twisting At,α of A is the Hopf ∗-subalgebra

At,α =
∑
g∈Γ

Ag ⊗ g ⊂ Ao Γ,

12



A graded twisting of a compact Hopf algebra is clearly again a compact Hopf algebra. Notice
A and At,α are isomorphic as coalgebras, via

j : A→ At,α,
∑
g

ag 7→
∑
g

ag ⊗ g.

Proposition 2.10. Let A be compact Hopf algebra, and let At,α be a graded twisting of A by a
discrete group Γ. Then we have cocentral exact sequences

C→ B → A→ CΓ→ C, C→ B → At,α → CΓ→ C
for the same compact Hopf algebra B

Proof. The first exact sequence arises, by Proposition 2.6, from the given invariant cocentral
action (p, α), with B = A1 = AcoCΓ. For the second one, let p̃ be the restriction of ε ⊗ id :
A o Γ → CΓ to At,α. It is then a direct verification to check that p̃ is a cocentral surjective
Hopf ∗-algebra map, with (At,α)coCΓ = AcoCΓ ⊗ C ' AcoCΓ, and hence Proposition 2.6 again
furnishes the cocentral exact sequence. �

We now will use the graded twisting to relate the quantum groups O+
n and U+

n .
Consider the compact Hopf algebra Ao(n) ∗ Ao(n) (the free product of the compact Hopf

algebra Ao(n) by itself): Ao(n) ∗Ao(n) is the algebra generated by two copies of Ao(n) without
futher relations than those of Ao(n). In other words it is the algebra presented by generators
xij , yij , 1 ≤ i, j ≤ n, submitted to the relations

xxt = xtx = In = yty = yyt

and whose Hopf ∗-algebra structure is induced by those of the two copies of Ao(n).
We then have:

• A cocentral Hopf ∗-algebra map

p : Ao(n) ∗Ao(n)→ CZ2, xij , yij 7→ δijg

• An action α of Z2 on Ao(n) ∗Ao(n) given by the automorphism that exchanges the two
copies.

It is then straighforward to check that we have in this way an invariant cocentral action of Z2

on Ao(n) ∗Ao(n), so that we can form the graded twisting (Ao(n) ∗Ao(n))t,α.

Proposition 2.11. The Hopf ∗-algebra map

θ : Au(n) −→ (Ao(n) ∗Ao(n))t,α

uij , u
∗
ij 7−→ xij ⊗ g, yij ⊗ g

is an isomorphism.

Proof. Of course, the first thing to do is to check that this algebra map is indeed well-defined:
this is straightforward. To construct the inverse, notice that we have:

• A cocentral Hopf ∗-algebra map

q : Au(n)→ CZ2, uij 7→ δijg

• An action β of Z2 on Ao(n) ∗Ao(n) given by the automorphism uij 7→ u∗ij .

It is straighforward to check that we have in this way an invariant cocentral action of Z2 on
Au(n), and we can form the graded twisting Au(n)t,β. We then have a Hopf ∗-algebra map

π : Ao(n) ∗Ao(n) −→ Au(n)t,β ⊂ Au(n) o Z2

xij , yij 7−→ uij ⊗ g, u∗ij ⊗ g

We have a Z2-action on Au(n) o Z2 given by β̃g(a⊗ t) = βg(a)⊗ t, and π above is equivariant
with respect to these actions (the first one is the given one on Ao(n) ∗ Ao(n)), so π induces a
∗-algebra map

π ⊗ id : (Ao(n) ∗Ao(n)) o Z2 → (Au(n) o Z2) o Z2
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We then have the ∗-algebra map

(π ⊗ id)θ : Au(n) −→ (Au(n) o Z2) o Z2

uij , u
∗
ij 7−→ uij ⊗ g ⊗ g, u∗ij ⊗ g ⊗ g

which thus satisfies (π ⊗ id)θ(a) = a ⊗ h ⊗ h for any a ∈ Au(n)h, h ∈ {1, g}. Hence θ is
injective and π is surjective. A similar reasoning, exchanging the roles of θ and π, shows that
π is injective and θ is surjective, and this finishes the proof. �

3. Homological algebra

We now present the necessary homological algebra background to define the homological
invariants we are interested in.

3.1. Projective modules. Let A be an algebra and let M be an A-module. The functor
HomA(M,−) from A-modules to vector spaces is left exact: if

0→ X
i→ Y

p→ Z → 0

is an exact sequence of A-modules (in the usual sense: i is injective, p is surjective, and Im(i) =
Ker(p)), then the sequence

0→ HomA(P,X)
i◦−→ HomA(P, Y )

p◦−→ HomA(P,Z)

is exact. Projective modules are precisely those for which this functor is exact.

Proposition-Definition 3.1. A (right) A-module P is said to be projective if one of the
equivalent following conditions holds.

(1) The functor HomA(P,−) is exact.
(2) For any surjective A-linear p : M → N and any A-linear map φ : P → N , there exists

an A-linear map ψ : P → N such that pψ = φ.
(3) Any surjective A-linear map f : M → P admits a section, i.e. there exists an A-linear

map s : P →M such that fs = idP .
(4) There exists a free A-module F and an A-module Q such that F ' P ⊕Q as A-modules.

The proof, left as an exercise, can be found in any algebra textbook. Notice that if M =
⊕i∈IMi is a direct sum of A-modules , then M is projective if and only if each Mi is.

For a Hopf algebra A, projectivity of the trivial A-module Cε has very important consequences
on the structure of A.

Proposition 3.2. Let A be a Hopf algebra. The following properties are equivalent.

(1) The trivial A-module Cε is projective.
(2) There exists t ∈ A such that ta = ε(a)t, for any a ∈ A, and ε(t) = 1.
(3) The algebra A is semisimple and finite-dimensional.

Proof. (1)⇒ (2): the counit can be interpreted as a surjective A-linear map ε : A→ Cε. Hence
if Cε is projective, the previous proposition furnishes a section to ε, and hence the announced
t. An algebra is semisimple precisely when all its modules are projective, so (3)⇒ (1) is trivial.

It remains to prove that (2)⇒ (3). Assume that such a t exists. Given an A-module M , we
denote by MA the space of A-invariants:

MA = {x ∈M | x · a = ε(a)x, ∀a ∈ A}

It is not difficult to check that for t as in (2), one has MA = M · t.
Now if M , N are A-modules, then Hom(M,N) admits a right A-module structure defined by

f · a(x) = f(x · S(a(1))) · a(2)

and we have then HomA(M,N) = Hom(M,N)A (check this). So for f ∈ Hom(M,N), we have
f · t HomA(M,N). If N ⊂ M is a sub-A-module, let p : M → N be a C-linear map such that
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p|N = idN . One sees easily that still p · t|N = idN , so we have the direct sum of A-modules
M = N ⊕Ker(p · t), and A is indeed semisimple.

To conclude that A is finite-dimensional, we will show that the linear map

A∗ −→ A

ω 7−→ ω(t(1))t(2)

is injective (see Lemma 1.2 in [81] for a left-handed version), which will force A to be finite-
dimensional.

For a ∈ A, we have

ta = ε(a)t⇒ ta(1) ⊗ a(2) = t⊗ a⇒ t(1)a(1) ⊗ t(2)a(2) ⊗ a(3) = t(1) ⊗ t(2) ⊗ a
⇒ t(1)a(1) ⊗ t(2)a(2)S(a(3)) = t(1) ⊗ t(2)S(a)⇒ t(1)a⊗ t(2) = t(1) ⊗ t(2)S(a)

Hence if ω is in the kernel of the above map, we have ω(t(1)a)t(2) = 0 for any a ∈ A. Writing

∆(t) =
∑m

i=1 ai⊗ bi with b1, . . . , bm linearly independent, we thus have ω(aia) = 0 for any i and
any a. Hence ω(aiS(bi)a) = 0 for any i, and

0 =
m∑
i=1

ω(aiS(bi)a) = ω(t(1)S(t(2))a) = ε(t)ω(a) = ω(a)

Hence ω = 0, as needed. �

The question whether a Hopf algebra is projective as a module over a its Hopf subalgebras
is a crucial one in Hopf algebra theory, and has a negative answer in full generality [74]. Here
is a positive basic result.

Proposition 3.3. Let p : A→ CΓ be surjective cocentral morphism of compact Hopf algebras,
with Γ a discrete group. Let B = AcoCΓ. Then A is projective as (left or right) B-module.

Proof. We retain the notation in the proof of Proposition 2.6, where we have shown that A1 =
B = AgAg−1 for any g ∈ Γ. If we choose xi ∈ Ag and yi ∈ Ag−1 such that

∑n
i=1 xiyi = 1, then

we can define a right A1-module map Ag → Bn by a 7→ (yia)ni=1 and its left inverse Bn → Ag
by (ai)

n
i=1 7→

∑
i xiai. Hence each Ag is B-projective and so is A. �

In fact, projectivity over Hopf subalgebras holds generally in the compact case.

Theorem 3.4. Let B ⊂ A be a compact Hopf subalgebra. Then A is projective as a left and
right B-module.

About the proof. The proof follows by combining [26, Theorem 2.1] (faithful flatness of A as a
B-module) and [75, Corollary 1.8]. The proofs of these results require some work and material
that we do not wish to develop here. �

3.2. Projective dimension of a module. We now define the projective dimension of a mod-
ule, which measures how far it is from being projective. It is the key step towards the definition
of the cohomological dimension of a Hopf algebra in the next section.

Definition 3.5. Let M be an A-module. A resolution of M is an exact sequence of A-modules

· · · → Pn+1
∂n+1→ Pn

∂n→ Pn−1 → · · · → P2
∂2→ P1

∂1→ P0
ε→M → 0

The resolution P∗ →M is said to be

(1) finite if there exists n ≥ 0 such that for any k > n, Pk = 0, the smallest such n being
called the length of the resolution;

(2) projective if the Pi’s are projective A-modules;
(3) free is the Pi’s are free A-modules.
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Of course we make the convention that the 0-module is free. It is not difficult to prove that
any A-module admits a free (and hence projective) resolution, that one can construct step by
step.

Definition 3.6. The projective dimension of a non-zero A-module M is defined to be

pdA(M) = min{n : M admits a projective resolution of length n} ∈ N ∪ {∞}
and we make the convention that the projective dimension of the zero module is zero.

Examples 3.7. (1) An A-module M is projective if and only if pdA(M) = 0.
(2) Let A = CZ = C[t, t−1] be the group algebra of Z. Then A+ is easily seen to be free as

an A-module (freely generated by t− 1), so we have a free resolution of Cε
0→ A+ → A

ε→ Cε → 0

and hence pd(Cε) ≤ 1. Since A is infinite-dimensional, we have pdA(Cε) > 0, so
pdA(Cε) = 1. More generally, one can show that if A = CFn is the group algebra of the
free group on n ≥ 1 generators, then pdA(Cε) = 1 (see e.g. [86, Chapter 6])

(3) If A is a Hopf algebra, the standard resolution of the trivial object Cε is the free reso-
lution (A acting by multiplication on the left)

· · · −→ A⊗n+1 −→ A⊗n −→ · · · −→ A⊗A −→ A
ε−→ Cε → 0

where each map A⊗n+1 → A⊗n is given by

a1 ⊗ · · · ⊗ an+1 7→ ε(a1)a2 ⊗ · · · ⊗ an+1 +
n∑
i=1

(−1)ia1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1

To checks exactness, one shows that the identity of this complex is homotopic to the
zero map, see e.g. [86].

3.3. Ext spaces. We now provide another interpretation of projective dimension, in terms of
certain cohomology spaces.

Definition 3.8. A cochain complex C∗ = (C∗, d∗) consists of a sequence of complex vector
spaces and linear maps

0→ C0
d0→ C1

d1→ C2 → · · · → Cn
dn→ Cn+1

dn+1→ Cn+2 → · · ·
such that for any n ≥ 0, we have dn+1dn = 0. For n ≥ 0, the n-th cohomology space of the
complex C∗ is then defined by

Hn(C∗) = Ker(dn)/Im(dn−1)

making the convention that d−1 = 0.

Definition 3.9. A chain complex C∗ = (C∗, d∗) consists of a sequence of complex vector
spaces and linear maps

· · · → Cn+2
dn+2→ Cn+1

dn+1→ Cn → · · · → C2
d2→ C1

d1→ C0 → 0

such that for any n ≥ 0, we have dndn+1 = 0. For n ≥ 0, the n-th homology space of the
complex C∗ is then defined by

Hn(C∗) = Ker(dn)/Im(dn+1)

making the convention that d0 = 0.

Remark 3.10. If M is an A-module, a resolution of M

· · · → Pn+1
∂n+1→ Pn → · · · → P2

∂2→ P1
∂1→ P0

ε→M → 0

as in Definition 3.5 can be seen as a chain complex with trivial homology. Forgetting M , we
get a chain complex P∗

· · · → Pn+1
∂n+1→ Pn → · · · → P2

∂2→ P1
∂1→ P0 → 0

16



with H0(P∗) 'M and Hn(P∗) = 0 is n ≥ 1

We can now define the Ext-spaces between two A-modules.

Theorem-Definition 3.11. Let M , N be right A-modules. Let P∗ → M → 0 be a projective
resolution of M

· · · → Pn+1
∂n+1→ Pn → · · · → P2

∂2→ P1
∂1→ P0

ε→M → 0

and consider the associated complex HomA(P∗, N)

0→ HomA(P0, N)
−◦∂1−→ HomA(P1, N)

−◦∂2−→ HomA(P2, N)
−◦∂3−→ · · ·

Then the cohomology spaces H∗(HomA(P∗, N)) do not depend on the choice of the projective
resolution P∗, and are denoted Ext∗A(M,N).

For the proof, see any homological algebra textbook, for example [86]. It is easy to see that
Ext0

A(M,N) ' HomA(M,N), and in fact the equivalences classes of elements in ExtnA(M,N)
truly correspond to equivalences classes of exact sequences of A-modules of length n+2 starting
at N and finishing at M , see [86] again.

The Ext-spaces and the projective dimension are related as follows.

Proposition 3.12. Let M be an A-module. The following assertions are equivalent.

(1) pdA(M) ≤ n.
(2) ExtiA(M,−) = 0 for i > n.
(3) Extn+1

A (M,−) = 0.
(4) For any exact sequence of A-modules 0→ K → Pn−1 → · · · → P1 → P0 →M → 0 with

each Pi projective, then K is projective.

(5) For any exact sequence of A-modules 0→ L
i→ Pn → Pn−1 → · · · → P1 → P0 →M → 0

with each Pi projective, there exists r ∈ HomA(Pn, L) such that ri = idL.

Proof. (2)⇒ (3) is obvious, and so are (4)⇒ (1) and (1)⇒ (2), just by writing the definitions.

Assume that (3) holds, and let 0 → K
i→ Pn−1

dn−1→ Pn−2 → · · · → P1 → P0 → M → 0 be
an exact sequence of A-modules with each Pi projective. Complete this exact sequence to a
projective resolution

// · · ·Pn+2
dn+2 // Pn+1

dn+1 //

q "" ""

Pn
dn //

p "" ""

Pn−1
dn−1 // · · · // P0

// M // 0

L

j

OO

K

i

OO

We are going to show that Pn ' K ⊕L as A-modules, so that K, being a direct summand of a
projective module, will be projective, and this will prove that (3)⇒ (4).

We have an exact sequence 0→ L
j→ Pn

p→ K → 0, and hence to show that Pn ' K ⊕ L, it
is enough to show that there exists an A-linear map r : Pn → L such that rj = idL. Consider
q ∈ HomA(Pn+1, L). We have qdn+2 = 0 since jqdn+2 = dn+1dn+2 = 0 and j is injective. Hence
since Extn+1

A (M,L) = 0, there exists r ∈ HomA(Pn, L) such that q = rdn+1. Then rjq = q, and
since q is surjective, we have rj = idL, as needed.

Assume now that (4) holds, and let 0 → L
i→ Pn → Pn−1 → · · · → P1 → P0 → M → 0 be

exact with each Pi projective. We then have an exact sequence

0→ Pn/Im(i)→ Pn−1 → · · · → P1 → P0 →M → 0

By (4), we have that Pn/Im(i) is a projective A-module, so Pn ' Pn/Im(i) ⊕ L as A-modules
and (5) follows. The proof of (5)⇒ (1) is left as an exercise. �

Corollary 3.13. We have, for any A-module M

pdA(M) = sup{n : ExtnA(M,N) 6= 0 for some A-module N}
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3.4. Cohomology of a Hopf algebra. Let A be Hopf algebra. If M is a right A-module, the
Ext-spaces

Ext∗A(Cε,M)

serve as cohomology spaces for A. It is thus tempting to denote them H∗(A,M), but we will not
do exactly that, since it is contrary to some more usual notations. Indeed, in general, if A is an
algebra and M is an A-bimodule, then H∗(A,M) denotes usually the Hochschild cohomology
of A with coefficients in M .

Definition 3.14. The cohomology of a Hopf algebra with coefficients in a right A-
module M , denoted H∗(A, εM), is defined by

H∗(A, εM) = Ext∗A(Cε,M)

Remark 3.15. Given a right A-module as above, the cohomology H∗(A, εM) as above coincides
with the Hochschild cohomology H∗(A, εM), where εM is the A-bimodule having M as underly-
ing right A-module, and trivial left A-module structure given by a · x = ε(a)x. So our notation
is consistent with the usual one in the literature.

Remark 3.16. The cohomology of a discrete group Γ is defined similarly as above, but using the
integral group ring ZΓ. Since we cannot seriously impose that the Hopf algebras we are interest
in are defined over Z, our definition is not a full generalization of ordinary group cohomology,
but rather of group cohomology with coefficients into CΓ-modules.

Remark 3.17. The cohomology of a Hopf algebra only depends of the underlying augmented
algebra.

Using the standard resolution of the trivial module (Examples 3.7) together with Theorem
3.11, we get, after some identifications, a more concrete definition for cohomology.

Proposition 3.18. Let A be Hopf algebra and let M be a right A-module. Then the cohomology
H∗(A, εM) is the cohomology of the complex

0 −→ Hom(C,M)
δ−→ Hom(A,M)

δ−→ · · · δ−→ Hom(A⊗n,M)
δ−→ Hom(A⊗n+1,M)

δ−→ · · ·
where the differential δ : Hom(A⊗n,M) −→ Hom(A⊗n+1,M) is given by

δ(f)(a1 ⊗ · · · ⊗ an+1) =ε(a1)f(a2 ⊗ · · · ⊗ an+1) +

n∑
i=1

(−1)if(a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1)

+ (−1)n+1f(a1 ⊗ · · · ⊗ an) · an+1

We thus have in particular

H0(A, εM) = MA = {x ∈M | x · a = ε(a)x, ∀a ∈ A}
and

H1(A, εM) = Der(A, εM)/InnDer(A, εM)

where Der(A, εM) is the vector space of derivations d : A→ M , i.e. d(ab) = ε(a)d(b) + d(a) · b
for any a, b, and InnDer(A, εM) is the subspace of inner derivations, i.e. those of type defined
by d(a) = ε(a)x− x · a for some x in M .

In higher degrees, the concrete description is rarely useful to proceed with concrete com-
putations, and the best is often to search for short of simple resolutions of the trivial module
Cε.

Example 3.19. Let G be a classical compact Lie group. Then

H∗(O(G), εCε) ' Λ∗(g)

where g is the (complexification of the) Lie algebra ofG. This follows from the HKR (Hochschild-
Kostant-Rosenberg) theorem [44], with some other considerations. All this involves some stan-
dard but quite non-trivial commutative algebra material, that we do not wish to discuss here.
See [86, 58] (the reader might also like to read [47])

18



Remark 3.20. The second cohomology space H2(A, εCε) has some interest in quantum proba-
bility and the study of Lévy processes on quantum groups, because its vanishing implies that
A has the property called AC in [38]: all cocycles can be completed to a Schürmann triple. See
[38] for details.

4. Cohomological dimension of a Hopf algebra

We now define and study the cohomological dimension of a (compact) Hopf algebra, and
study the examples presented in Section 1.

4.1. Definition, basic results and examples. The cohomological dimension of a Hopf alge-
bra is defined using the trivial module:

Definition 4.1. The cohomological dimension of a Hopf algebra A is defined by

cd(A) = pdA(Cε) ∈ N ∪ {∞}

We thus have, by Proposition 3.12,

cd(A) = sup{n : Hn(A, εM) 6= 0 for some A-module M}
= min{n : Hn+1(A, εM) = 0 for any A-module M}

Example 4.2. If Γ is a discrete group, then cd(CΓ) = cdC(Γ), the cohomological dimension of
Γ with coefficients C. We have cd(CΓ) = 0 if and only if Γ is finite (see Proposition 4.5). If Γ
is finitely generated, then cd(CΓ) = 1 if and only if Γ contains a free normal subgroup of finite
index, see [34, 30, 31]. If Γ is the fundamental group of an aspherical manifold of dimension n,
then cd(CΓ) = n, see [25].

Example 4.3. If A = O(G), the algebra of representative functions on a compact Lie group G,
then cd(O(G)) = dimG, the usual dimension of G, i.e. the linear dimension of the Lie algebra
of G.

Since the trivial module Cε is a distinguished one, the above definition of the cohomologi-
cal dimension of a Hopf algebra is perfectly natural, and two isomorphic Hopf algebras have
the same cohomological dimension. In fact the following result shows that the cohomological
dimension does not even depend on the choice of special module.

Proposition 4.4. Let A be a Hopf algebra. Then

cd(A) = Sup{pdA(M), M ∈ Mod(A)}

Proof. It is clear that cd(A) is smaller than the quantity on the right, and to prove the equality,
we can assume that n = cd(A) is finite. Before proceeding, following the argument in [59], we
need some preliminaries. If M , N are A-modules, then their tensor product M ⊗ N has an
A-module structure defined by

(x⊗ y) · a = x · a(1) ⊗ y · a(2)

This defines (exact) functors −⊗N and M ⊗− on the category of A-modules. The map

Mt ⊗A −→M ⊗A
x⊗ a 7−→ x · a(1) ⊗ a(2)

is an isomorphism of A-modules (check this, using the antipode), where Mt ⊗ A is the free
A-module whose A-module structure is given by multiplication on the right. Hence if F is a
free A-module, then N ⊗F is a free A-module, and if P is projective, then N ⊗P is a projective
A-module.

Consider now a projective resolution

0→ Pn → Pn−1 → · · · → P1 → P0 → Cε → 0
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For an A-module M , the previous considerations ensure that tensoring this resolution by M on
the left yields a projective resolution

0→M ⊗ Pn →M ⊗ Pn−1 → · · · →M ⊗ P1 →M ⊗ P0 →M ⊗ Cε 'M → 0

and hence pdA(M) ≤ n, as needed. �

Therefore the cohomological dimension of a Hopf algebra coincides with its right global
dimension, one of the most classical homological invariants of an algebra, see [86], and only
depends on the algebra structure.

Proposition 4.5. Let A be compact Hopf algebra. Then cd(A) = 0 if and only if A is finite-
dimensional.

Proof. This follows from Proposition 3.2, since a finite-dimensional compact Hopf algebra, being
a C∗-algebra, is a finite product of full matrix algebras, and hence is semisimple. �

Proposition 4.6. Let B ⊂ A be a compact Hopf subalgebra. Then cd(B) ≤ cd(A).

Proof. We know from Theorem 3.4 that A is projective as a B-module, so the restriction of
a projective A-module to a B-module is a projective B-module. The result follows, since the
restriction of an A-projective resolution of Cε is a B-projective resolution. �

Proposition 4.7. Let C → B → A → L → C be an exact sequence of compact Hopf algebras.
Then cd(A) ≤ cd(B) + cd(L), and if L is finite-dimensional, then cd(B) = cd(A).

This is [15, Proposition 3.2], using Stefan’s spectral sequence [77]. We will not use the
inequality, and we give an indepent proof of the last equality. We begin with a Lemma.

Lemma 4.8. Let C → B → A
p→ L → C be an exact sequence of compact Hopf algebras as

above, with L finite-dimensional. Let τ ∈ L be a such that τp(a) = ε(a)τ for any a ∈ A, with
ε(τ) = 1, and let t ∈ A be such that p(t) = τ (Proposition 3.2).

(1) Let M be a right A-module, and let MB = {x ∈M | x · b = ε(b)x, ∀b ∈ B} be the space
of B-invariants. Then the A-module structure on M induces an L-module structure on
MB with (MB)L = MA.

(2) Let V,W be right A-modules and let f : V → W be a B-linear map. Then the linear

map f̃ : V → W defined by f̃(v) = f(v · S(t(1))) · t(2) is A-linear. If there exists an

A-linear map j : W → V such that fj = idW , then f̃ j = idW as well.

Proof. (1) For x ∈MB and b ∈ B+, we have x · b = 0. Moreover, for x ∈MB, a ∈ A, one easily
sees, using that AB+ = B+A, that x · a ∈ MB. Hence the formula x · p(a) = x · a provides a
well-defined L-module structure on MB. The last equality is immediate.

(2) Recall that Hom(V,W ) admits a right A-module structure defined by

f · a(v) = f(v · S(a(1))) · a(2)

and that
HomA(V,W ) = Hom(V,W )A = (Hom(V,W )B)L

Recall also that if M is a right L-module over the semisimple algebra L, then ML = M · τ .
Hence, since f ∈ HomB(V,W ) = Hom(V,W )B, we have f ·τ ∈ (Hom(V,W )B)L = HomA(V,W ).

We now have f · τ = f · p(t) = f · t, and it is clear that f · t is the map f̃ in the statement. The
last statement is an immediate verification. �

Proof of the equality in Proposition 4.7. We already know that cd(B) ≤ cd(A), and to prove
the equality we can assume that m = cd(B) is finite. Consider a resolution of the trivial
A-module

· · · → Pn → Pn−1 → · · · → P1 → P0 → Cε
by projective A-modules. These are in particular projective as B-modules, so since m = cd(B),
Proposition 3.12 yields an exact sequence of B-modules, and of A-modules

0→ K
i→ Pm → Pm−1 → · · · → P1 → P0 → C
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together with r : Pm → K, a B-linear map such that ri = idK . The previous lemma yields
an A-linear map r̃ : Pm → K such that r̃i = idK . We thus obtain, since a direct summand of
a projective is projective, a length m resolution of Cε by projective modules over A, and we
conclude that cd(A) ≤ m, as required. �

Corollary 4.9. Let A be compact Hopf algebra, and let At,α be a graded twisting of A by a
finite group Γ. We have cd(A) = cd(At,α).

Proof. This follows from the previous proposition, combined with Proposition 2.10. �

In fact, with some more work, the last part of Proposition 4.7 can be strengthened, as follows
[18].

Proposition 4.10. Let B ⊂ A be a compact Hopf subalgebra. If A is finitely generated as a
B-module, then cd(B) = cd(A).

4.2. Example: the quantum group SUq(2). The aim of this subsection is to compute the
cohomological dimension of O(SUq(2)):

Theorem 4.11. We have, for any q ∈ R∗, cd(O(SUq(2))) = 3 = cd(O(PUq(2))).

Combining Example 2.7, and Proposition 4.7, we have cd(O(SUq(2))) = cd(O(PUq(2))) and
hence it remains to compute cd(O(SUq(2))). The main tool is the following result.

Theorem 4.12. Let A = O(SUq(2)). There exists a free resolution of A-modules

0→ A
φ1−→ (C2 ⊗ C2)⊗A φ2−→ (C2 ⊗ C2)⊗A φ3−→ A

ε−→ Cε → 0

and hence cd(O(SUq(2))) ≤ 3.

Sketch of proof. For x ∈ A, denoting e1, e2 the canonical basis of C2, and a = u11, b = u12,
c = u21, d = u22, the maps φ1, φ2, φ3, are defined by

φ1(x) =e∗1 ⊗ e1 ⊗ ((−q−1 + qd)x) + e∗1 ⊗ e2 ⊗ (−cx)

+ e∗2 ⊗ e1 ⊗ (−bx) + e∗2 ⊗ e2 ⊗ ((−q + q−1a)x)

φ2(e∗1 ⊗ e1 ⊗ x) =e∗1 ⊗ e1 ⊗ x+ e∗2 ⊗ e1 ⊗ (−qbx) + e∗2 ⊗ e2 ⊗ ax
φ2(e∗1 ⊗ e2 ⊗ x) =e∗1 ⊗ e1 ⊗ bx+ e∗1 ⊗ e2 ⊗ (1− q−1a)x

φ2(e∗2 ⊗ e1 ⊗ x) =e∗2 ⊗ e1 ⊗ (1− qd)x+ e∗2 ⊗ e2 ⊗ cx
φ2(e∗2 ⊗ e2 ⊗ x) =e∗1 ⊗ e1 ⊗ dx+ e∗1 ⊗ e2 ⊗ (−q−1cx) + e∗2 ⊗ e2 ⊗ x
φ3(e∗1 ⊗ e1 ⊗ x) =(a− 1)x, φ3(e∗1 ⊗ e2 ⊗ x) = bx,

φ3(e∗2 ⊗ e1 ⊗ x) =cx, φ3(e∗2 ⊗ e2 ⊗ x) = (d− 1)x

The exactness, about one page computation, is shown in [14, Lemma 5.6], using well-known
ring-theoretic properties of A, that can be found in [23] (in particular that A is an integral
domain). �

Corollary 4.13. We have

Hp(O(SU(2)), εCε) '


C if p = 0, 3

C3 if p = 1, 2

0 otherwise

Hp(O(SU−1(2)), εCε) '

{
C if p = 0, 1, 2, 3

0 otherwise

and for q 6= ±1,

Hp(O(SUq(2)), εCε) '

{
C if p = 0, 1

0 otherwise
Hp(O(SUq(2)), εCψ) '

{
C if p = 2, 3

0 otherwise

where ψ : O(SUq(2))→ C is the algebra map defined by ψ(a) = q2, ψ(d) = q−2, ψ(b) = ψ(c) = 0.

Proof. Exercise, using the previous resolution. �
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Proof of Theorem 4.11. We have cd(O(SUq(2))) ≤ 3 by Theorem 4.12, and cd(O(SUq(2))) ≥ 3
by Corollary 4.13: the result follows. �

Remark 4.14. The fact that for q 6= ±1, H2(O(SUq(2)), εCε) = 0 = H3(O(SUq(2)), εCε), in
contrast with the classical case, is known as the dimension drop, see [43] for this question.

The homological study of O(SUq(2)) has been the subject of numerous papers, see [43, 63, 72],
for example. For other q-deformations of classical compact Lie groups, we refer the reader to
[22, 42, 24], and the references therein.

4.3. Example : free orthogonal quantum groups. We now study the case of free orthog-
onal quantum groups:

Theorem 4.15. For n ≥ 2, we have cd(Ao(n)) = 3.

The reader will notice that the cohomological dimension does not depend on n. This might
look surprising, but recall that the cohomological dimension of the free group Fn also does not
depend on n.

Theorem 4.16. For n ≥ 2, there exists a free resolution of Ao(n)-modules

0→ Ao(n)
φ1−→ (Cn ⊗ Cn)⊗Ao(n)

φ2−→ (Cn ⊗ Cn)⊗Ao(n)
φ3−→ Ao(n)

ε−→ Cε → 0

and hence cd(Ao(n)) ≤ 3.

About the proof. The resolution, due to Collins-Härtl-Thom, is given in [27], to which we refer for
an explicit form. Unfortunately, the verification of exactness is a tedious and long computation,
involving computer calculations. Another way to proceed is to use the monoidal equivalence
Comodf (Ao(n)) '⊗ Comodf (O(SUq(2)) mentionned in Section 1, to remark that the objects
in the resolution in Theorem 4.12 carry a natural comodule structure, so that they are Yetter-
Drinfeld modules, and to transport it via the monoidal equivalence. See [14]. �

Corollary 4.17. For n ≥ 2, we have

Hp(Ao(n), εCε) '


C if p = 0, 3

C
n(n−1)

2 if p = 1, 2

0 otherwise

Proof. Exercise, using the previous resolution, to be found in [27]. �

The proof of Theorem 4.15, similarly to the previous section, follows from the combination
of the previous two results.

4.4. Example : free unitary quantum groups. The computation here is as follows:

Theorem 4.18. For n ≥ 2, we have cd(Au(n)) = 3.

In view of Proposition 2.11 and of Corollary 4.9, we have cd(Au(n)) = cd(Ao(n) ∗ Ao(n)).
The proof of Theorem 4.18 is then a consequence of Theorem 4.15 and of the following result.

Proposition 4.19. Let A, B be non trivial compact Hopf algebras. We have

cd(A ∗B) =

{
1 if cd(A) = 0 = cd(B)

max(cd(A), cd(B)) if max(cd(A), cd(B)) ≥ 1

Proof. See [11, Corollary 2.5], or [16]. �

One has H0(Au(n), εCε) ' C, as always, and one can check that H1(Au(n), εCε) ' Mn(C),
but the computation of the full cohomology H∗(Au(n), εCε) has not been done yet.
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Remark 4.20. Another approach to prove Theorem 4.18 would be by using results from [6] and
from [7](the proofs require having done the full analysis of the categories of comodules): there
are Hopf ∗-algebra embeddings

Au(n) ↪→ Ao(n) ∗ C[t, t−1], PAo(n) ↪→ Au(n)

where PAo(n) is the Hopf ∗-subalgebra of Ao(n) generated by the elements xijxkl (and with
PAo(2) = O(PU(2))) and one gets the result by combining Theorem 4.15 together with propo-
sitions 4.6 and 4.19.

4.5. Example : the quantum permutation group. We finish the section with the quantum
permutation group.

Theorem 4.21. For n ≥ 4, we have cd(As(n)) = 3.

Idea of the proof. This is proved in [15]. The resolution in Theorem 4.12 induces a length 3
projective resolution for O(PUq(2)), that, thanks to appropriate comodule structures, one can
transport through the monoidal equivalence Comodf (As(n)) '⊗ Comodf (O(PUq(2)), and from
this one gets cd(As(n)) ≤ 3. To check the equality, one uses bialgebra cohomology, see [15]. �

In fact we have:

Theorem 4.22. We have, for n ≥ 4,

Hp(As(n), εCε) '

{
C if p = 0, 3

0 otherwise

Idea of the proof. This is proved in [18]. At p = 0 this is clear and at p = 1 this is rather
immediate. The computation at p = 2 is done quite directly, but requires some work, while
the computation at p = 3 involves a Poincaré type duality between cohomology and homology
(that we have not defined). �

5. L2-Betti-numbers

In this section we survey the recent computation of L2-Betti numbers of our favourite quan-
tum groups. We begin by recalling the definition of the L2-Betti numbers.

5.1. Preliminary remark. Let A be an algebra and M , N be right A-modules. If N is a
left B-module for another algebra B such that N is a B-A-bimodule, then the space of right
A-linear maps HomA(M,N) carries a natural left B-module structure defined by

(b · f)(x) = b · (f(x)

Now if A is a Hopf algebra and M is a B-A-bimodule, this remark ensures that the Ext-spaces

Ext∗A(Cε,M)

carry a natural left B-module structure. Indeed, if P∗ → Cε → 0 is a projective resolution of
Cε

· · · → Pn+1
∂n+1→ Pn → · · · → P2

∂2→ P1
∂1→ P0

ε→ Cε → 0

the associated complex HomA(P∗,M)

0→ HomA(P0,M)
−◦∂1−→ HomA(P1,M)

−◦∂2−→ HomA(P2,M)
−◦∂3−→ · · ·

carries a natural leftB-module structure, and hence so do the cohomology spaces Ext∗A(Cε,M) =
H∗(HomA(P∗,M)) (the B-module structure does not depend either on the choice of the pro-
jective resolution P∗).
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5.2. Lück’s dimension function for finite von Neumann algebras. We now briefly re-
call how Lück’s dimension function for modules over finite von Neumann algebras [60, 61] is
constructed. Expositions of the theory can be found in [48, 73].

Let (M, τ) be a finite von Neumann algebra: M is a von Neumann algebra and τ :M→ C
is a normal faithful tracial state. Let P be a finitely generated projective left M-module:
there exists an idempotent matrix a = (aij) ∈ Mn(M) such that P ' Mna. The Murray-von
Neumann dimension of P is defined by

dimM(P ) =

n∑
i=1

τ(aii)

and is independent of the choice of the matrix a. Now, if M is an arbitrary M-module, the
Lück dimension of M is defined by

dimM(M) = Sup{dimM(P ), P is a finitely generated projective submodule of M} ∈ [0,∞]

The above dimension extends the Murray von Neumann dimension to any module, and has
some rather good an natural properties.

5.3. Definition of L2-Betti numbers. Let A be a compact Hopf algebra of Kac type: the
square of the antipode is the identity, or equivalently the Haar integarl h : A → C is a trace.
Let L(A) be the von Neumann algebra associated to A and h (see Section 1). Then h extends
to a normal faithful state on L(A), so that (L(A), h) is a finite von Neumann algebra. The
embedding A ⊂ L(A) endows L(A) with a right A-module structure, and hence L(A) is a
L(A)-A-bimodule. The preliminary remark thus ensures that the Ext-spaces

Ext∗A(Cε,L(A))

carry a natural left L(A)-module structure. We thus have the necessary material to define

Definition 5.1. For p ≥ 0, the p-th L2-Betti number of a compact Hopf algebra of Kac type
is defined by

β(2)
p (A) = dimL(A)(Ext∗A(Cε,L(A))

The above L2-Betti numbers were defined by Kyed [49], using Tor, that we have not defined
here. Work of Thom [80] and Reich [70] ensure that the two definitions coincide. Here are some
general properties.

• If A = CΓ, the group algebra of a discrete group Γ, then β
(2)
p (CΓ) = β

(2)
p (Γ), the usual

L2-Betti number of Γ, whose theory is developped in [62], where the reader will find
the history and connections with geometry and topology. As an example, for the free

groups, one has β
(2)
p (Fn) = 0 is p 6= 1, and β

(2)
1 (Fn) = n− 1.

• We have β
(2)
0 (A) = 0 if A is infinite-dimensional, and β

(2)
0 (A) = 1

dim(A) otherwise [51].

• If A is coamenable (the counit extends to a bounded operator on the reduced C∗-

algebra C∗red(A), see [66]), then β
(2)
p (A) = 0 if p ≥ 1 [50]. This holds in particular if

A is commutative, so L2-Betti numbers are truly meaningful if we view compact Hopf
algebras as group algebras of discrete quantum groups.

• If n = cd(A), then β
(2)
p (A) = 0 for any p > n.

• For a tensor product of compact Hopf algebras of Kac type, one has [52]

β(2)
p (A⊗B) =

∑
k+l=p

β
(2)
k (A)β

(2)
l (B)

• For a free product of non-trivial compact Hopf algebras of Kac type, one has [19]

β(2)
p (A ∗B) =


0 if p = 0

β
(2)
1 (A)− β(2)

0 (A) + β
(2)
1 (B)− β(2)

0 (B) + 1 if p = 1

β
(2)
p (A) + β

(2)
p (B) if p ≥ 2
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5.4. Computations for Ao(n), Au(n) and As(n). We now record the computation of the
L2-Betti numbers for our favourite algebras.

Theorem 5.2. The L2-Betti numbers of Ao(n), Au(n) and As(n) are as follows.

(1) For n ≥ 2, β
(2)
p (Ao(n)) = 0 for any p ≥ 0.

(2) For n ≥ 2, β
(2)
p (Au(n)) = 0 for any p 6= 1, β

(2)
1 (Au(n)) = 1.

(3) For n ≥ 4, β
(2)
p (As(n)) = 0 for any p ≥ 0.

The vanishing of β
(2)
1 (Ao(n)) was proved by Vergnioux [82], while the vanishing of the other

L2-Betti numbers for Ao(n) was proved by Collins-Härtl-Thom using their resolution 4.16.

Vergnioux also proved that β
(2)
1 (Au(n)) 6= 0 in [82], and Kyed-Raum [54] proved that precisely

β
(2)
1 (Au(n)) = 1. This has been reproved in [19], where moreover all the other L2-Betti numbers

have been computed, using the above formula for free products, graded twisting (Proposition
2.11) and a formula for L2-Betti numbers of compact Hopf algebras involved in an exact se-
quence, which implies that L2-Betti numbers are invariant under graded twisting by a finite
abelian group.

The computation for As(n) is from the recent deep paper [55] by Kyed-Raum-Vaes-Valvekens,
where much more is done. Using the definition of L2-Betti numbers for C∗-tensor categories by
Popa-Shlyakhtenko-Vaes [69] (which uses the extended dimension function for quasi-finite von
Neumann algebras [53]), L2-Betti numbers are defined for compact Hopf algebras that are not
necessarily of Kac type, extending the previous definition, and are shown to be invariant under
unitary monoidal equivalence.

6. Bialgebra cohomology

As said earlier, the cohomological dimension of a Hopf algebra depends only of its underlying
algebra, while the cohomology spaces depend only the underlying augmented algebra (the alge-
bra together with the counit). It is thus of course desirable to have a cohomology that takes the
whole Hopf algebra structure into account. At least one such cohomology exists: the bialgebra
cohomology by Gerstenhaber-Schack [41]. We present briefly this cohomology, in the case when
A is a compact Hopf algebra.

Before giving the definition, we need the following notation: for a Hopf algebra A, we denote
by Homc(A⊗n,C) the set of linear maps f : A⊗n → C that satisfy

f(a1(1) ⊗ · · · ⊗ an(1))a1(2) ⊗ · · · ⊗ an(2) = f(a1(2) ⊗ · · · ⊗ an(2))a1(1) ⊗ · · · ⊗ an(1)

for any a1, . . . , an ∈ A. This is a subspace of Hom(A⊗n,C).

Definition 6.1. Let A be a compact Hopf algebra. The bialgebra cohomology of A, denoted
by H∗b (A), is defined to be the cohomology of the complex

0 −→ Homc(C,C)
δ−→ Homc(A,C)

δ−→ · · · δ−→ Homc(A⊗n,C)
δ−→ Homc(A⊗n+1,M)

δ−→ · · ·
where the differential δ : Homc(A⊗n,M) −→ Homc(A⊗n+1,M) is given by

δ(f)(a1 ⊗ · · · ⊗ an+1) =ε(a1)f(a2 ⊗ · · · ⊗ an+1) +
n∑
i=1

(−1)if(a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1)

+ (−1)n+1f(a1 ⊗ · · · ⊗ an)ε(an+1)

Of course one has to check that δ(Homc(A⊗n,C)) ⊂ Homc(A⊗n+1,C), and then the above
complex is a subcomplex of the complex that defines H∗(A, εCε) in Proposition 3.18, and hence
this yields a linear mapH∗b (A)→ H∗(A, εCε) which is not injective in general (e.g. forO(SUq(2))
when q 6= ±1). Here are some general properties of H∗b .

• H0
b (A) ' C, and if A is cocommutative, then H∗b (A) = H∗(A, εCε).

• H∗b is a monoidal invariant: if Comodf (A) '⊗ Comodf (B), then H∗b (A) ' H∗b (B), see
[15]. This was not true for H∗(−, εCε).
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• If A is of Kac type, then the above map H∗b (A)→ H∗(A, εCε) is injective [15, Proposition
5.9].

Remark 6.2. Of course the above complex makes sense for any Hopf algebra, but is only known to
coincide with the bialgebra cohomology of Gerstenhaber-Schack in the cosemisimple case (hence
in particular when A is compact), see [15]. This is the same complex as the one defined in [40] in
the study of additive deformations of Hopf algebras, which are of interest in quantum probability.
This complex is also the complex that defines the so-called Davydov-Yetter cohomology of the
tensor category of comodules over A (see [35, Chapter 7] and the references therein).

Theorem 6.3. For A = O(SUq(2)), A = Ao(n) (n ≥ 2), A = As(n)(n ≥ 4), we have

Hp
b (A) '

{
C if p = 0, 3

0 otherwise

The result is from [14, 15]. It is not difficult to show that H1
b (Au(n)) ' C, but the full

computation is not known for Au(n).
Notice that the above computation for As(n) was used to show that cd(As(n)) = 3 and to

compute H∗(As(n), εCε) in [15, 18]. Hence bialgebra cohomology can be useful in the study of
ordinary cohomology.

To conclude, we wish to point out that bialgebra cohomology is the case of trivial coeffi-
cients of Gersthenhaber-Schack cohomology, a cohomology theory whose coefficients are Yetter-
Drinfeld modules, see [15], and that Gersthenhaber-Schack cohomology is an Ext-functor on
Yetter-Drinfeld modules [78], so that the general principles of homological algebra can be ap-
plied to it.

7. Open questions

We conclude these notes by a series of open questions.

Question 7.1. What are the compact Hopf algebras of cohomological dimension one ?

Recall from Example 4.2 that Dunwoody’s theorem [34] states that a finitely generated dis-
crete group has cohomological dimension one if only if it constains a free subgroup of finite
index. So, is there an analogue of this theorem for compact Hopf algebras ? Notice that it is
not difficult to construct examples of noncommutative and noncocommutative compact Hopf al-
gebras of cohomological dimension one, using free product, crossed product or crossed coproduct
constructions. Of course, The ring-theoretic analogues of Bass-Serre techniques [29, 36] should
play a role here.

Question 7.2. Is is true that if A and B are monoidally equivalent compact Hopf algebras,
then cd(A) = cd(B) ?

The answer is known to be positive if A and B are of Kac type [15].

Question 7.3. What is the cohomological dimension of a free wreath product ?

We refer to [13] for the definition of a free wreath product. A positive answer to Question
7.2 together with the results in [57, 37] would allow an answer. L2-Betti numbers are computed
in [55].

Question 7.4. It is known that a finitely generated discrete subgroup of Un has finite complex
cohomological dimension [1]. Is there a generalization for compact Hopf algebras ?

Here the generalization would be in the setting of inner unitary Hopf algebras [9, 2], that
necessarily would be compact Hopf algebras of Kac type by [10].
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[5] T. Banica, Théorie des représentations du groupe quantique compact libre O(n), C. R. Acad. Sci. Paris Sér.
I Math. 322 (1996), no. 3, 241-244.

[6] T. Banica, Le groupe quantique compact libre U(n), Comm. Math. Phys. 190 (1997), no. 1, 143-172
[7] T. Banica, Symmetries of a generic coaction, Math. Ann. 314 (1999), no. 4, 763-780.
[8] T. Banica, Fusion rules for representations of compact quantum groups, Exposition. Math. 17 (1999), no. 4,
313-337.

[9] T. Banica, J. Bichon, Hopf images and inner faithful representations, Glasg. Math. J. 52 (2010), no. 3,
677-703.

[10] T. Banica, U. Franz, A. Skalski, Idempotent states and the inner linearity property, Bull. Pol. Acad. Sci.
Math. 60 (2012), no. 2, 123-132.

[11] G.M. Bergman, Modules over coproducts of rings, Trans. Amer. Math. Soc. 200 (1974), 1-32.
[12] J. Bichon, The representation category of the quantum group of a non-degenerate bilinear form, Comm.
Algebra 31, No. 10 (2003), 4831-4851.

[13] J. Bichon, Free wreath product by the quantum permutation group, Algebr. Represent. Theory 7 (2004),
no. 4, 343-362.

[14] J. Bichon, Hochschild homology of Hopf algebras and free Yetter-Drinfeld resolutions of the counit, Compos.
Math. 149 (2013), no. 4, 658-678.

[15] J. Bichon, Gerstenhaber-Schack and Hochschild cohomologies of Hopf algebras, Doc. Math. 21 (2016), 955-
986.

[16] J. Bichon, Cohomological dimensions of universal cosovereign Hopf algebras, Publ. Mat., to appear,
arXiv:1611.02069.

[17] J. Bichon, A. De Rijdt, S. Vaes, Ergodic coactions with large multiplicity and monoidal equivalence of
quantum groups, Comm. Math. Phys. 262 (2006), 703-728.

[18] J. Bichon, U. Franz, M. Gerhold, Homological properties of quantum permutation algebras, Preprint
arXiv:1704.00589.

[19] J. Bichon, D. Kyed, S. Raum, Higher L2-Betti numbers for universal quantum groups, arXiv:1612.07706.
[20] J. Bichon, S. Neshveyev, M. Yamashita, Graded twisting of categories and quantum groups by group actions,
Ann. Inst. Fourier (Grenoble) 66 (2016), no. 6, 2299-2338.
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