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Composition integration schemes based on Euler’s method

The system of ODEs

Consider a smooth system of autonomous ODEs

ẏ = f (y), f : Rd → Rd . (1)

A one-step integrator ψh : Rd → Rd gives, for a given initial value
y(t0) = y0, the numerical solution

y(tk+1) ≈ yk+1 = ψh(yk), k = 0, 1, 2, . . .

for the time grid tk = t0 + kh.
Euler method: ψh(y) = y + h f (y). Local error:

ψh(y(t)) = y(t + h) +O(h2) as h → 0.

A more precise integrator can be obtained from χh(y) = y + hf (y)

ψh(y) = χh/2 ◦ χ−1
h/2(y)

In that case ψh(y(t)) = y(t + h) +O(h3). So that it is of order 2.
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A one-step integrator ψh : Rd → Rd gives, for a given initial value
y(t0) = y0, the numerical solution

y(tk+1) ≈ yk+1 = ψh(yk), k = 0, 1, 2, . . .

for the time grid tk = t0 + kh.
Euler method: ψh(y) = y + h f (y). Local error:

ψh(y(t)) = y(t + h) +O(h2) as h → 0.

An integrator of order 4 from χh(y) = y + hf (y)

ψh = χa6h ◦ χ
−1
a5h

◦ χa4h ◦ χ
−1
a3h

◦ χa2h ◦ χ
−1
a1h
.

where

a1 = −193
396 a2 = 97

132 a3 = 89
66 a4 = 25

198 a5 = 1
4 a6 = 5

4



Composition integration schemes based on Euler’s method

The system of ODEs

Consider a smooth system of autonomous ODEs

ẏ = f (y), f : Rd → Rd , (3)

and explicit Euler χh(y) = y + h f (y), which for any solution y(t)
of (3) gives

χh(y(t)) = y(t + h) +O(h2) as h → 0.

We can define for each (a1, . . . , a2m) ∈ R2m, a new integrator

Composition integration schemes based on Euler’s method

ψh = χa2mh ◦ χ−1
a2s−1h

◦ · · · ◦ χa2h ◦ χ
−1
a1h
. (4)

Conditions on (a1, . . . , a2m) for ψh(y(t)) = y(t + h) +O(hn+1)?
For arbitrary χh(y) = y + h f (y) +O(h2), more order conditions?
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Example

S = {e} ∪
⋃
m≥1

R2m, λ · (a1, . . . , a2m) = (λa1, . . . , λa2m),

(a1, . . . , a2m) ◦ (a2m+1, . . . , a2(m+k)) = (a1, . . . , a2(m+k)).

Definition

We say that (S, ◦, e, ν) is a scaled semigroup (resp. scaled group)
if (S, ◦, e) is a semigroup (resp. group) with neutral element e and

ν : R× S → S
(λ, s) 7→ λ · s

is a map satisfying that, for all s, s ′ ∈ S, λ, µ ∈ R,

1 · s = s and 0 · s = e,

λ · (µ · s) = (λµ) ◦ s,

λ ◦ (s ◦ s ′) = (λ · s) ◦ (λ · s ′) and λ · e = e.
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Definition

A map θ : S → Ŝ is a morphism of scaled semigroups if it is a
morphism of semigroups satisfying that λ · θ(s) = θ(λ · s) for all
λ ∈ R and s ∈ S.

Let A be an associative algebra with unity 1A, and consider

A[[h]] =

{ ∞∑
n=0

hnAn : ∀n ≥ 0, An ∈ A

}
,

G (A) =

{
1A +

∞∑
n=1

hnAn : ∀n ≥ 1, An ∈ A

}
,

where h is an indeterminate variable. Clearly, A[[h]] has an algebra
structure, and G (A) ⊂ A[[h]] is a scaled group with

λ ·

(
1A +

∞∑
n=1

hnAn

)
= 1A +

∞∑
n=1

hnλnAn.



Example

For each n ≥ 1 and each s = (a1, . . . , a2m), consider the linear
differential operator θn(s) that gives a smooth function θn(s)[g ]
for each g ∈ C∞(Rd ; R) as follows:

θn(s)[g ](y) =
1

n!

dn

dhn
g(ψh(y))|h=0 , (5)

so that formally,

g(ψh(y)) = θ(s)[g ](y), where θ(s) = I +
∑
n≥1

hnθn(s),

where I represents the identity operator. Here, C = C∞(Rd ; R) is
a commutative algebra, A = EndRC is an associative algebra with
unity I , and θ : S → G (A) is a morphism of scaled semigroups.



Example (cont.)

Given f : Rd → Rd , let us consider Xn ∈ A = EndRC is such that,
for g ∈ C = C∞(Rd ; R) and y ∈ Rd ,

Xn[g ](y) =
1

n!

dn

dhn
g(χh(y))|h=0 =

1

n!
g (n)(y)(f (y), . . . , f (y)).

We have that g(ψh(y)) = θ(s)[g ](y), where

θ(s) = X (a1h)−1X (a2h) · · ·X (a2m−1h)−1X (a2mh),

with X (ah) = I +
∑
n≥1

an hnXn.

For any solution y(t) of the ODE system,

g(y(t + h)) = g(y) +
∑
n≥1

hn

n!
F n[g ](y(t)) = exp(h F )[g ](y(t)),

where F [g ](y) = g ′(y)f (y). (as expected, X1 = F ).
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Let us denote in addition L(A) = hA[[h]]. The exponential and
the logarithm

exp : L(A) −→ G (A), log : G (A) −→ L(A)

are reciprocal bijections defined in the usual way.
We are interested in morphisms of scaled semigroups of the form

θ : S → G (A)

s 7→ 1A +
∑
n≥1

hnθn(s).

Definition

We write θ(s)
(n)
≡ θ(s ′) if θk(s) = θk(s ′) for k = 1, . . . , n.

We want to characterize θ(s)
(n)
≡ θ(s ′) in terms of functions on S.



Example (Composition based on Euler’s method for ẏ = y)

S = {e} ∪
⋃

m≥1 R2m, A = R and

θ(a1, . . . , a2m) = 1 +
∑
n≥1

hnθn(a1, . . . , a2m) =
m∏

j=1

1 + a2j−1h

1 + a2jh
.

Consider the logarithm

log(θ(a1, . . . , a2m)) =
m∑

j=1

log(1 + a2j−1h)− log(1 + a2jh)

=
∑
k≥1

(−1)k+1

k
hnuk(a1, . . . , a2m),

where uk(a1, . . . , a2m) =
∑2m

j=1(−1)jak
j .

Thus, θ(s)
(n)
≡ θ(s ′) if and only if uk(s) = uk(s ′) for 1 ≤ k ≤ n.



Consider the (commutative) algebra RS of functions u : S → R,
with unity 11 ∈ RS (i.e., defined as 11(s) = 1 for all s ∈ S).

Given a morphism θ : S → G (A), a linear form γ ∈ A∗ and n ≥ 1,
consider the function uθ,n,γ ∈ RS defined by

uθ,n,γ(s) = γ(θn(s)).

Observe that uθ,n,γ(λ · s) = λn uθ,n,γ(s).

Definition

Given u ∈ RS , we say that u is homogeneous of degree |u| = n if

∀(λ, s) ∈ R× S, u(λ · s) = λnu(s).

Convention: 00 = 1. In particular, if |u| = 0, then
u(s) = u(λ · s) = u(0 · s) = u(e) = u(e)11(s), and thus u = u(e)11.
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Given a morphism θ : S → G (A), consider the subalgebra
Hθ ⊂ RS generated by

{uθ,n,γ : n ≥ 1, γ ∈ A∗},

(uθ,n,γ(s) = γ(θn(s)))

and denote Hθ
n = {u ∈ Hθ : |u| = n}. (In particular, Hθ

0 = R11.)

Clearly, Hθ =
⊕

n≥0Hθ
n. Obviously, given s, s ′ ∈ S,

θ(s)
(n)
≡ θ(s ′) ⇐⇒ ∀u ∈

⊕
k≤n

Hθ
k , u(s) = u(s ′).

If the subspace of A spanned by the range of θn is finite
dimensional, then Hθ

n is finite dimensional.

Definition

Let S be a scaled semigroup and A an algebra, we say that a
morphism of scaled semigroups θ : S → G (A) is of finite type if
each Hθ

n is finite dimensional.
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Theorem

If each Hθ
n is finite dimensional, then given u ∈ Hθ

n (n ≥ 0), there
exist m ≥ 1 and v1,w1, . . . , vm,wm with |vj |+ |wj | = n such that

∀(s, s ′) ∈ S × S, u(s ◦ s ′) =
m∑

j=1

vj(s)wj(s
′).

Given a subspace V of RS , we make the standard identification of
V ⊗ V with a subspace of RS×S . That is, given ui , vi ∈ V , λi ∈ R

∀(s, s ′) ∈ G × G, (
∑

i λi ui ⊗ vi )(s, s
′) =

∑
i λi ui (s)vi (s

′).

Definition

Given u ∈ RS , we define ∆u ∈ RS×S , as

∆u(s, s ′) = u(s ◦ s ′), for s, s ′ ∈ S.

According to previous theorem, if for given θ : S → G (A) each Hθ
n

is finite dimensional, then ∆Hθ ⊂ Hθ ⊗Hθ.



Furthermore, the semigroup structure of S together with Hθ
0 = R11

implies that ∆11 = 11⊗ 11 and for each u ∈ Hθ
n with n ≥ 1

∆u − u ⊗ 11− 11⊗ u ∈
n−1⊕
k=1

Hθ
k ⊗Hθ

n−k .

Definition (Representative funcions of a scaled semigroup)

Given a scaled semigroup S, we define H(S) =
⊕

n≥0 H(S)n,
where

H(S)0 = {u ∈ RS : |u| = 0} = R11, and for n ≥ 1,

H(S)n =
{
u ∈ RS : |u| = n,

∆u − u ⊗ 11− 11⊗ u ∈
⊕

0≤k<n

H(S)k ⊗ H(S)n−k

}
.

We say that u is a representative function of S if u ∈ H(S).
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Some immediate results:

The scaled semigroup structure of S gives a connected graded
Hopf algebra structure to H(S).

For each θ : S → G (A), Hθ is a Hopf subalgebra of H(S).

Lemma

Given u ∈ RS , u ∈ H(S)n (n ≥ 1) if and only if there exists an
algebra A, a morphism of scaled semigroups θ : S → G (A) of
finite type and a linear form γ ∈ A∗ such that

∀s ∈ S, u(s) = γ(θn(s)).



Example (The group of composition integration schemes)

Consider again the scaled semigroup

S = {e} ∪
⋃
m≥1

R2m, λ · (a1, . . . , a2m) = (λa1, . . . , λa2m),

(a1, . . . , a2m) ◦ (a2m+1, . . . , a2(m+k)) = (a1, . . . , a2(m+k)),

and let ∼ be the finest equivalence relation satisfying that
(a, a) ∼ e and (a1, . . . , aj−1, b, b, aj , . . . , a2m) ∼ (a1, . . . , a2m).
Clearly, Gc = S/ ∼ has a scaled group structure inherited from the
scaled semigroup structure of S. Each element in ψ = Gc\{e} can
be uniquely written as

ψ = χ(a1)
−1 ◦ χ(a2) ◦ · · · ◦ χ(a2m−1)

−1 ◦ χ(a2m)

where aj−1 6= aj (2 ≤ j ≤ 2m) and χ(a) represented by (0, a) ∈ S.



Example (cont.)

For an arbitrary algebra A and any morphism of scaled groups

θ : Gc → G (A)

s 7→ 1A +
∑
n≥1

hnθn(s),

with the notation Xn = θn(χ(1)) ∈ A, one necessarily has for each
ψ = χ(a1)

−1 ◦ χ(a2) ◦ · · · ◦ χ(a2m−1)
−1 ◦ χ(a2m) ∈ Gc that

θ(ψ) = X (a1h)−1X (a2h) · · ·X (a2m−1h)−1X (a2mh),

where X (ah) = 1A +
∑

n≥1 hnanXn and

X (ah)−1 = 1A +
∑
n≥1

an hn
∑

j1+···+jr=n

(−1)rXj1 · · ·Xjr .



Example (cont.)

That shows that, for each ψ ∈ Gc ,

θ(ψ) = 1A +
∑
n≥1

hn
∑

j1+···+jr=n

uj1···jr (ψ) Xj1 · · ·Xjr ,

for some uj1···jr ∈ RGc with |uj1···jr | = j1 + · · ·+ jr .

Actually,

ui (a1, . . . , a2m) =
∑

1≤j≤2m

(−1)j ai
j ,

ui1i2(a1, . . . , a2m) =
∑

1≤j1≤j∗2≤j2≤2m

(−1)j1+j2 ai2
j2
ai1
j1
,

ui1i2i3(a1, . . . , a2m) =
∑

1≤j1≤j∗2≤j2≤j∗3≤j3≤2m

(−1)j1+j2+j3 ai3
j3
ai2
j2
ai1
j1
,

and so on. Notation: j∗ = j − 1 if j is even, and j∗ = j if j is odd.
From previous lemma, H(Gc) is spanned by the functions uj1···jr .
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For a given S, one is not always interested in characterizing

θ(s)
(n)
≡ θ(s ′) (6)

for all posible morphisms θ : S → G (A). Recall that a
characterization of (6) for one particular morphism θ is obtained
with the Hopf subalgebra Hθ ⊂ H(S) (instead of the whole H(S)).

Theorem

Consider a scaled group G and a family {θj : G → G (Aj)}j∈J of
morphisms of scaled semigroups. Let H be a subalgebra of H(G)
with finite dimensional Hn = {u ∈ H : |u| = n} (n ≥ 1). The
following statement holds for arbitrary s, s ′ ∈ G and n ≥ 1

∀u ∈
⊕

0≤k≤n

Hk , u(s) = u(s ′) ⇐⇒ ∀j ∈ J , θj(s)
(n)
≡ θj(s ′),

iff H is the Hopf subalgebra of H(G) generated by
⋃
j∈J

Hθj
.



For a given S, one is not always interested in characterizing

θ(s)
(n)
≡ θ(s ′) (6)

for all posible morphisms θ : S → G (A). Recall that a
characterization of (6) for one particular morphism θ is obtained
with the Hopf subalgebra Hθ ⊂ H(S) (instead of the whole H(S)).

Theorem

Consider a scaled group G and a family {θj : G → G (Aj)}j∈J of
morphisms of scaled semigroups. Let H be a subalgebra of H(G)
with finite dimensional Hn = {u ∈ H : |u| = n} (n ≥ 1). The
following statement holds for arbitrary s, s ′ ∈ G and n ≥ 1

∀u ∈
⊕

0≤k≤n

Hk , u(s) = u(s ′) ⇐⇒ ∀j ∈ J , θj(s)
(n)
≡ θj(s ′),

iff H is the Hopf subalgebra of H(G) generated by
⋃
j∈J

Hθj
.



Definition

We say that (G,H) is a group of abstract integration schemes if G
is a scaled subgroup and H =

⊕
n≥0Hn is a graded Hopf

subalgebra of H(G) satisfying the following:

Each Hn is finite dimensional.

H separates the elements in G, i.e., ∀(s, s ′) ∈ G, ∃u ∈ H such
that u(s) 6= u(s ′).

As an algebra H is freely generated (as a consequence of Milnor
and Moore theorem).

If H 6= H(G), then the functions in H

characterize θ(s)
(n)
≡ θ(s ′) for a strict subclass of morphisms

θ : G → G (A) of finite type (precisely, the morphisms θ such that
Hθ ⊂ H).
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We say that (G,H) is a group of abstract integration schemes if G
is a scaled subgroup and H =

⊕
n≥0Hn is a graded Hopf

subalgebra of H(G) satisfying the following:

Each Hn is finite dimensional.

H separates the elements in G, i.e., ∀(s, s ′) ∈ G, ∃u ∈ H such
that u(s) 6= u(s ′).

As an algebra H is freely generated (as a consequence of Milnor
and Moore theorem). If H 6= H(G), then the functions in H

characterize θ(s)
(n)
≡ θ(s ′) for a strict subclass of morphisms

θ : G → G (A) of finite type (precisely, the morphisms θ such that
Hθ ⊂ H).



Theorem (G dense in G)

Let (G,H) be a group of abstract integration schemes, and let G
denote the group of characters of H. For each α ∈ G and each
n ≥ 1, there exists ψ ∈ G such that

∀u ∈
⊕
k≤n

Hk , u(ψ) = α(u). (7)

Let T be a set of homogeneous functions on G that freely generate
the algebra H, then

u(ψ) = α(u), ∀u ∈ T with |u| ≤ n,

provides necessary and sufficient independent conditions for (7).



The coalgebra structure of H endows its linear dual H∗ with
an algebra structure. ({νλ} induce {ν̄λ}).
The subset G ⊂ H∗ of algebra maps α : H → R is a group
(the group of characters). It is a scaled group with
ν̄λ(α) = λ · α

λ · α(u) = λn α(u) ∀u ∈ Hn.

The map π : G → G such that ∀ψ ∈ G, π(ψ) is defined by
π(ψ)(u) = u(ψ) is a monomorphism of (scaled) groups. So
that G can be seen as a scaled subgroup of G.

There is a subset g ⊂ H∗ that is a Lie algebra under the
bracket [α, β] = αβ − βα (the Lie algebra of infinitesimal
characters), such that exp : g → G is a bijection.



Example (cont.)

Consider H = H(Gc). Given an algebra A (for instance,
A = EndRC∞(Rd ; R)) and θ : Gc → G (H), we define for each
α ∈ H∗ the algebra morphism θ̄ : H∗ → A[[h]] as

θ̄(α) = α(11) 1A +
∑
n≥1

hn
∑

j1+···+jr=n

α(uj1···jr ) Xj1 · · ·Xjr .

Given g1, g2 ∈ C∞(Rd ; R), if α ∈ G, then

θ̄(α)[g1g2] = θ̄(α)[g1] θ̄(α)[g2].

And if α ∈ g, then

θ̄(α)[g1g2] = g1 θ̄(α)[g2] + g2θ̄(α)[g1].



Theorem

Let (G,H) be a group of abstract integration schemes, and let
θ : G → G (A) (with A certain algebra) be a morphism of scaled
groups such that Hθ ⊂ H. Then, there exists a unique algebra
morphism θ̄ : H∗ → A[[h]] such the θ̄(π(ψ)) = θ(ψ). When
restricted to G, it is a morphism θ̄ : G → G (A) of scaled groups.

Observations:

In applications to numerical analysis, there is typically a
distinguished element α ∈ G such that

θ̄(α) = 1A +
∑
n≥1

θ̄n(α) hn

represents the exact solution to be approximated.

Backward error analysis: For each ψ ∈ G, θ(ψ) = exp(θ̄(β)),
where β = log(π(ψ)) ∈ g.



Theorem

Let G be a scaled group, and let H be a subalgebra of H(G) with
finite dimensional Hn = {u ∈ H : |u| = n} (n ≥ 1). Assume that
the following statement holds for arbitrary s, s ′ ∈ G and n ≥ 1:

∀u ∈
⊕

0≤k≤n

Hk , u(s) = u(s ′) =⇒ θ(s)
(n)
≡ θ(s ′)

for arbitrary algebras A and arbitrary morphisms of scaled groups
θ : G → G (A). Then H = H(G).

Theorem

Let S be a scaled semigroup. For arbitrary s, s ′ ∈ S and n ≥ 1, the
following two statements are equivalent:

∀u ∈
⊕

0≤k≤n H(S)k , u(s) = u(s ′).

θ(s)
(n)
≡ θ(s ′) for arbitrary algebras A and arbitrary morphisms

of scaled semigroups θ : S → G (A) of finite type.



Example (cont.)

H(Gc) is isomorphic to the quasi-shuffle Hopf algebra of Hoffman,
thus is freely generated by the functions uj1···jr indexed by the set
of Lyndon words j1 · · · jr on the alphabet {1, 2, 3, . . .}

L = {uj1···jr : (j1 · · · jk) < (jk+1 · · · jr ) for each 1 ≤ k < r}

The first sets Ln = {uj1···jr ∈ L : |uj1···jr | = j1 + · · ·+ jr = n} are

L1 = {u1}, L2 = {u2}, L3 = {u12, u3}, L4 = {u112, u13, u4},
L5 = {u1112, u113, u122, u14, u23, u5}.

Theorem Given ψ,ψ′ ∈ Gc , θ(ψ)
(n)
≡ θ(ψ′) for arbitrary algebras A

and any morphism θ : S → G (A), if and only if

∀u ∈
n⋃

k≥1

Lk , u(ψ) = u(ψ′).


