An algebraic theory of order of integration schemes

Philippe Chartier and Ander Murua

Clermont-Ferrand, October 2008

Composition integration schemes based on Euler's method

The system of ODEs

Consider a smooth system of autonomous ODEs

$$
\begin{equation*}
\dot{y}=f(y), \quad f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d} \tag{1}
\end{equation*}
$$

A one-step integrator $\psi_{h}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ gives, for a given initial value $y\left(t_{0}\right)=y_{0}$, the numerical solution

$$
y\left(t_{k+1}\right) \approx y_{k+1}=\psi_{h}\left(y_{k}\right), \quad k=0,1,2, \ldots
$$

for the time grid $t_{k}=t_{0}+k h$.
Euler method: $\psi_{h}(y)=y+h f(y)$. Local error:

$$
\psi_{h}(y(t))=y(t+h)+\mathcal{O}\left(h^{2}\right) \quad \text { as } \quad h \rightarrow 0
$$

Composition integration schemes based on Euler's method

The system of ODEs

Consider a smooth system of autonomous ODEs

$$
\begin{equation*}
\dot{y}=f(y), \quad f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d} \tag{1}
\end{equation*}
$$

A one-step integrator $\psi_{h}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ gives, for a given initial value $y\left(t_{0}\right)=y_{0}$, the numerical solution

$$
y\left(t_{k+1}\right) \approx y_{k+1}=\psi_{h}\left(y_{k}\right), \quad k=0,1,2, \ldots
$$

for the time grid $t_{k}=t_{0}+k h$.
Euler method: $\psi_{h}(y)=y+h f(y)$. Local error:

$$
\psi_{h}(y(t))=y(t+h)+\mathcal{O}\left(h^{2}\right) \quad \text { as } \quad h \rightarrow 0 .
$$

A more precise integrator can be obtained from $\chi_{h}(y)=y+h f(y)$

$$
\psi_{h}(y)=\chi_{h / 2} \circ \chi_{h / 2}^{-1}(y)
$$

In that case $\psi_{h}(y(t))=y(t+h)+\mathcal{O}\left(h^{3}\right)$. So that it is of order 2 .

Composition integration schemes based on Euler's method

The system of ODEs

Consider a smooth system of autonomous ODEs

$$
\begin{equation*}
\dot{y}=f(y), \quad f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d} . \tag{2}
\end{equation*}
$$

A one-step integrator $\psi_{h}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ gives, for a given initial value $y\left(t_{0}\right)=y_{0}$, the numerical solution

$$
y\left(t_{k+1}\right) \approx y_{k+1}=\psi_{h}\left(y_{k}\right), \quad k=0,1,2, \ldots
$$

for the time grid $t_{k}=t_{0}+k h$.
Euler method: $\psi_{h}(y)=y+h f(y)$. Local error:

$$
\psi_{h}(y(t))=y(t+h)+\mathcal{O}\left(h^{2}\right) \quad \text { as } \quad h \rightarrow 0 .
$$

An integrator of order 4 from $\chi_{h}(y)=y+h f(y)$

$$
\psi_{h}=\chi_{a_{6} h} \circ \chi_{a_{5} h}^{-1} \circ \chi_{a_{4} h} \circ \chi_{a_{3} h}^{-1} \circ \chi_{a_{2} h} \circ \chi_{a_{1} h}^{-1} .
$$

where

$$
a_{1}=-\frac{193}{396} \quad a_{2}=\frac{97}{132} \quad a_{3}=\frac{89}{66} \quad a_{4}=\frac{25}{198} \quad a_{5}=\frac{1}{4} \quad a_{6}=\frac{5}{4}
$$

Composition integration schemes based on Euler's method

The system of ODEs

Consider a smooth system of autonomous ODEs

$$
\begin{equation*}
\dot{y}=f(y), \quad f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d} \tag{3}
\end{equation*}
$$

and explicit Euler $\chi_{h}(y)=y+h f(y)$, which for any solution $y(t)$ of (3) gives

$$
\chi_{h}(y(t))=y(t+h)+\mathcal{O}\left(h^{2}\right) \quad \text { as } \quad h \rightarrow 0 .
$$

Composition integration schemes based on Euler's method

The system of ODEs

Consider a smooth system of autonomous ODEs

$$
\begin{equation*}
\dot{y}=f(y), \quad f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d} \tag{3}
\end{equation*}
$$

and explicit Euler $\chi_{h}(y)=y+h f(y)$, which for any solution $y(t)$ of (3) gives

$$
\chi_{h}(y(t))=y(t+h)+\mathcal{O}\left(h^{2}\right) \quad \text { as } \quad h \rightarrow 0 .
$$

We can define for each $\left(a_{1}, \ldots, a_{2 m}\right) \in \mathbb{R}^{2 m}$, a new integrator
Composition integration schemes based on Euler's method

$$
\begin{equation*}
\psi_{h}=\chi_{a_{2 m} h} \circ \chi_{a_{2 s-1} h}^{-1} \circ \cdots \circ \chi_{a_{2} h} \circ \chi_{a_{1} h}^{-1} . \tag{4}
\end{equation*}
$$

Conditions on $\left(a_{1}, \ldots, a_{2 m}\right)$ for $\psi_{h}(y(t))=y(t+h)+\mathcal{O}\left(h^{n+1}\right)$?

Composition integration schemes based on Euler's method

The system of ODEs

Consider a smooth system of autonomous ODEs

$$
\begin{equation*}
\dot{y}=f(y), \quad f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d} \tag{3}
\end{equation*}
$$

and explicit Euler $\chi_{h}(y)=y+h f(y)$, which for any solution $y(t)$ of (3) gives

$$
\chi_{h}(y(t))=y(t+h)+\mathcal{O}\left(h^{2}\right) \quad \text { as } \quad h \rightarrow 0 .
$$

We can define for each $\left(a_{1}, \ldots, a_{2 m}\right) \in \mathbb{R}^{2 m}$, a new integrator
Composition integration schemes based on Euler's method

$$
\begin{equation*}
\psi_{h}=\chi_{a_{2 m} h} \circ \chi_{a_{2 s-1} h}^{-1} \circ \cdots \circ \chi_{a_{2} h} \circ \chi_{a_{1} h}^{-1} . \tag{4}
\end{equation*}
$$

Conditions on $\left(a_{1}, \ldots, a_{2 m}\right)$ for $\psi_{h}(y(t))=y(t+h)+\mathcal{O}\left(h^{n+1}\right)$?
For arbitrary $\chi_{h}(y)=y+h f(y)+\mathcal{O}\left(h^{2}\right)$, more order conditions?

Example

$$
\begin{aligned}
& \mathcal{S}=\{e\} \cup \bigcup_{m \geq 1} \mathbb{R}^{2 m}, \quad \lambda \cdot\left(a_{1}, \ldots, a_{2 m}\right)=\left(\lambda a_{1}, \ldots, \lambda a_{2 m}\right), \\
& \left(a_{1}, \ldots, a_{2 m}\right) \circ\left(a_{2 m+1}, \ldots, a_{2(m+k)}\right)=\left(a_{1}, \ldots, a_{2(m+k)}\right) .
\end{aligned}
$$

Example

$$
\begin{aligned}
& \mathcal{S}=\{e\} \cup \bigcup_{m \geq 1} \mathbb{R}^{2 m}, \quad \lambda \cdot\left(a_{1}, \ldots, a_{2 m}\right)=\left(\lambda a_{1}, \ldots, \lambda a_{2 m}\right), \\
& \left(a_{1}, \ldots, a_{2 m}\right) \circ\left(a_{2 m+1}, \ldots, a_{2(m+k)}\right)=\left(a_{1}, \ldots, a_{2(m+k)}\right) .
\end{aligned}
$$

Definition

We say that $(\mathcal{S}, \circ, e, \nu)$ is a scaled semigroup (resp. scaled group) if (\mathcal{S}, \circ, e) is a semigroup (resp. group) with neutral element e and

$$
\begin{aligned}
\nu: \mathbb{R} \times \mathcal{S} & \rightarrow \mathcal{S} \\
(\lambda, s) & \mapsto \lambda \cdot s
\end{aligned}
$$

is a map satisfying that, for all $s, s^{\prime} \in \mathcal{S}, \lambda, \mu \in \mathbb{R}$,

- $1 \cdot s=s$ and $0 \cdot s=e$,
- $\lambda \cdot(\mu \cdot s)=(\lambda \mu) \circ s$,
- $\lambda \circ\left(s \circ s^{\prime}\right)=(\lambda \cdot s) \circ\left(\lambda \cdot s^{\prime}\right)$ and $\lambda \cdot e=e$.

Definition

A map $\theta: \mathcal{S} \rightarrow \hat{S}$ is a morphism of scaled semigroups if it is a morphism of semigroups satisfying that $\lambda \cdot \theta(s)=\theta(\lambda \cdot s)$ for all $\lambda \in \mathbb{R}$ and $s \in \mathcal{S}$.

Let \mathcal{A} be an associative algebra with unity $1_{\mathcal{A}}$, and consider

$$
\begin{aligned}
& \mathcal{A}[[h]]=\left\{\sum_{n=0}^{\infty} h^{n} A_{n}: \forall n \geq 0, \quad A_{n} \in \mathcal{A}\right\} \\
& G(\mathcal{A})=\left\{1_{\mathcal{A}}+\sum_{n=1}^{\infty} h^{n} A_{n}: \forall n \geq 1, \quad A_{n} \in \mathcal{A}\right\}
\end{aligned}
$$

where h is an indeterminate variable. Clearly, $\mathcal{A}[[h]]$ has an algebra structure, and $G(\mathcal{A}) \subset \mathcal{A}[[h]]$ is a scaled group with

$$
\lambda \cdot\left(1_{\mathcal{A}}+\sum_{n=1}^{\infty} h^{n} A_{n}\right)=1_{\mathcal{A}}+\sum_{n=1}^{\infty} h^{n} \lambda^{n} A_{n}
$$

Example

For each $n \geq 1$ and each $s=\left(a_{1}, \ldots, a_{2 m}\right)$, consider the linear differential operator $\theta_{n}(s)$ that gives a smooth function $\theta_{n}(s)[g]$ for each $g \in \mathrm{C}^{\infty}\left(\mathbb{R}^{d} ; \mathbb{R}\right)$ as follows:

$$
\begin{equation*}
\theta_{n}(s)[g](y)=\left.\frac{1}{n!} \frac{d^{n}}{d h^{n}} g\left(\psi_{h}(y)\right)\right|_{h=0} \tag{5}
\end{equation*}
$$

so that formally,

$$
g\left(\psi_{h}(y)\right)=\theta(s)[g](y), \quad \text { where } \quad \theta(s)=I+\sum_{n \geq 1} h^{n} \theta_{n}(s)
$$

where / represents the identity operator. Here, $\mathcal{C}=\mathrm{C}^{\infty}\left(\mathbb{R}^{d} ; \mathbb{R}\right)$ is a commutative algebra, $\mathcal{A}=\operatorname{End}_{\mathbb{R}} \mathcal{C}$ is an associative algebra with unity I, and $\theta: \mathcal{S} \rightarrow G(\mathcal{A})$ is a morphism of scaled semigroups.

Example (cont.)

Given $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, let us consider $X_{n} \in \mathcal{A}=\operatorname{End}_{\mathbb{R}} \mathcal{C}$ is such that, for $g \in \mathcal{C}=\mathrm{C}^{\infty}\left(\mathbb{R}^{d} ; \mathbb{R}\right)$ and $y \in \mathbb{R}^{d}$,
$X_{n}[g](y)=\left.\frac{1}{n!} \frac{d^{n}}{d h^{n}} g\left(\chi_{h}(y)\right)\right|_{h=0}=\frac{1}{n!} g^{(n)}(y)(f(y), \ldots, f(y))$.
We have that $g\left(\psi_{h}(y)\right)=\theta(s)[g](y)$, where

$$
\theta(s)=X\left(a_{1} h\right)^{-1} X\left(a_{2} h\right) \cdots X\left(a_{2 m-1} h\right)^{-1} X\left(a_{2 m} h\right)
$$

with $X(a h)=I+\sum_{n \geq 1} a^{n} h^{n} X_{n}$.

Example (cont.)

Given $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, let us consider $X_{n} \in \mathcal{A}=\operatorname{End}_{\mathbb{R}} \mathcal{C}$ is such that, for $g \in \mathcal{C}=\mathrm{C}^{\infty}\left(\mathbb{R}^{d} ; \mathbb{R}\right)$ and $y \in \mathbb{R}^{d}$,
$X_{n}[g](y)=\left.\frac{1}{n!} \frac{d^{n}}{d h^{n}} g\left(\chi_{h}(y)\right)\right|_{h=0}=\frac{1}{n!} g^{(n)}(y)(f(y), \ldots, f(y))$.
We have that $g\left(\psi_{h}(y)\right)=\theta(s)[g](y)$, where

$$
\theta(s)=X\left(a_{1} h\right)^{-1} X\left(a_{2} h\right) \cdots X\left(a_{2 m-1} h\right)^{-1} X\left(a_{2 m} h\right)
$$

with $X(a h)=I+\sum_{n \geq 1} a^{n} h^{n} X_{n}$.
For any solution $y(t)$ of the ODE system,
$g(y(t+h))=g(y)+\sum_{n \geq 1} \frac{h^{n}}{n!} F^{n}[g](y(t))=\exp (h F)[g](y(t))$,
where $F[g](y)=g^{\prime}(y) f(y)$. (as expected, $\left.X_{1}=F\right)$.

Let us denote in addition $L(\mathcal{A})=h \mathcal{A}[[h]]$. The exponential and the logarithm

$$
\exp : L(\mathcal{A}) \longrightarrow G(\mathcal{A}), \quad \log : G(\mathcal{A}) \longrightarrow L(\mathcal{A})
$$

are reciprocal bijections defined in the usual way.
We are interested in morphisms of scaled semigroups of the form

$$
\begin{aligned}
\theta: \mathcal{S} & \rightarrow G(\mathcal{A}) \\
s & \mapsto 1_{\mathcal{A}}+\sum_{n \geq 1} h^{n} \theta_{n}(s)
\end{aligned}
$$

Definition

We write $\theta(s) \stackrel{(n)}{\equiv} \theta\left(s^{\prime}\right)$ if $\theta_{k}(s)=\theta_{k}\left(s^{\prime}\right)$ for $k=1, \ldots, n$.
We want to characterize $\theta(s) \stackrel{(n)}{\equiv} \theta\left(s^{\prime}\right)$ in terms of functions on \mathcal{S}.

Example (Composition based on Euler's method for $\dot{y}=y$)

$$
\mathcal{S}=\{e\} \cup \bigcup_{m \geq 1} \mathbb{R}^{2 m}, \mathcal{A}=\mathbb{R} \text { and }
$$

$$
\theta\left(a_{1}, \ldots, a_{2 m}\right)=1+\sum_{n \geq 1} h^{n} \theta_{n}\left(a_{1}, \ldots, a_{2 m}\right)=\prod_{j=1}^{m} \frac{1+a_{2 j-1} h}{1+a_{2 j} h}
$$

Consider the logarithm

$$
\begin{aligned}
\log \left(\theta\left(a_{1}, \ldots, a_{2 m}\right)\right) & =\sum_{j=1}^{m} \log \left(1+a_{2 j-1} h\right)-\log \left(1+a_{2 j} h\right) \\
& =\sum_{k \geq 1} \frac{(-1)^{k+1}}{k} h^{n} u_{k}\left(a_{1}, \ldots, a_{2 m}\right)
\end{aligned}
$$

where $u_{k}\left(a_{1}, \ldots, a_{2 m}\right)=\sum_{j=1}^{2 m}(-1)^{j} a_{j}^{k}$.
Thus, $\theta(s) \stackrel{(n)}{=} \theta\left(s^{\prime}\right)$ if and only if $u_{k}(s)=u_{k}\left(s^{\prime}\right)$ for $1 \leq k \leq n$.

Consider the (commutative) algebra $\mathbb{R}^{\mathcal{S}}$ of functions $u: \mathcal{S} \rightarrow \mathbb{R}$, with unity $\mathbb{1} \in \mathbb{R}^{\mathcal{S}}$ (i.e., defined as $\mathbb{1}(s)=1$ for all $s \in \mathcal{S}$).
Given a morphism $\theta: \mathcal{S} \rightarrow G(\mathcal{A})$, a linear form $\gamma \in \mathcal{A}^{*}$ and $n \geq 1$, consider the function $u_{\theta, n, \gamma} \in \mathbb{R}^{\mathcal{S}}$ defined by

$$
u_{\theta, n, \gamma}(s)=\gamma\left(\theta_{n}(s)\right)
$$

Observe that $u_{\theta, n, \gamma}(\lambda \cdot s)=\lambda^{n} u_{\theta, n, \gamma}(s)$.

Consider the (commutative) algebra $\mathbb{R}^{\mathcal{S}}$ of functions $u: \mathcal{S} \rightarrow \mathbb{R}$, with unity $\mathbb{1} \in \mathbb{R}^{\mathcal{S}}$ (i.e., defined as $\mathbb{1}(s)=1$ for all $s \in \mathcal{S}$).
Given a morphism $\theta: \mathcal{S} \rightarrow G(\mathcal{A})$, a linear form $\gamma \in \mathcal{A}^{*}$ and $n \geq 1$, consider the function $u_{\theta, n, \gamma} \in \mathbb{R}^{\mathcal{S}}$ defined by

$$
u_{\theta, n, \gamma}(s)=\gamma\left(\theta_{n}(s)\right)
$$

Observe that $u_{\theta, n, \gamma}(\lambda \cdot s)=\lambda^{n} u_{\theta, n, \gamma}(s)$.

Definition

Given $u \in \mathbb{R}^{\mathcal{S}}$, we say that u is homogeneous of degree $|u|=n$ if

$$
\forall(\lambda, s) \in \mathbb{R} \times \mathcal{S}, \quad u(\lambda \cdot s)=\lambda^{n} u(s)
$$

Convention: $0^{0}=1$. In particular, if $|u|=0$, then $u(s)=u(\lambda \cdot s)=u(0 \cdot s)=u(e)=u(e) \mathbb{1}(s)$, and thus $u=u(e) \mathbb{1}$.

Given a morphism $\theta: \mathcal{S} \rightarrow G(\mathcal{A})$, consider the subalgebra $\mathcal{H}^{\theta} \subset \mathbb{R}^{\mathcal{S}}$ generated by

$$
\left\{u_{\theta, n, \gamma}: n \geq 1, \quad \gamma \in \mathcal{A}^{*}\right\}
$$

and denote $\mathcal{H}_{n}^{\theta}=\left\{u \in \mathcal{H}^{\theta} \quad:|u|=n\right\}$. (In particular, $\mathcal{H}_{0}^{\theta}=\mathbb{R} \mathbb{1}$.)

Given a morphism $\theta: \mathcal{S} \rightarrow G(\mathcal{A})$, consider the subalgebra $\mathcal{H}^{\theta} \subset \mathbb{R}^{\mathcal{S}}$ generated by

$$
\left\{u_{\theta, n, \gamma}: n \geq 1, \quad \gamma \in \mathcal{A}^{*}\right\}, \quad\left(u_{\theta, n, \gamma}(s)=\gamma\left(\theta_{n}(s)\right)\right)
$$

and denote $\mathcal{H}_{n}^{\theta}=\left\{u \in \mathcal{H}^{\theta} \quad:|u|=n\right\}$. (In particular, $\mathcal{H}_{0}^{\theta}=\mathbb{R} \mathbb{1}$.)

Given a morphism $\theta: \mathcal{S} \rightarrow G(\mathcal{A})$, consider the subalgebra $\mathcal{H}^{\theta} \subset \mathbb{R}^{\mathcal{S}}$ generated by

$$
\left\{u_{\theta, n, \gamma}: n \geq 1, \quad \gamma \in \mathcal{A}^{*}\right\}, \quad\left(u_{\theta, n, \gamma}(s)=\gamma\left(\theta_{n}(s)\right)\right)
$$

and denote $\mathcal{H}_{n}^{\theta}=\left\{u \in \mathcal{H}^{\theta} \quad:|u|=n\right\}$. (In particular, $\mathcal{H}_{0}^{\theta}=\mathbb{R} \mathbb{1}$.)
Clearly, $\mathcal{H}^{\theta}=\bigoplus_{n \geq 0} \mathcal{H}_{n}^{\theta}$. Obviously, given $s, s^{\prime} \in \mathcal{S}$,

$$
\theta(s) \stackrel{(n)}{=} \theta\left(s^{\prime}\right) \quad \Longleftrightarrow \quad \forall u \in \bigoplus_{k \leq n} \mathcal{H}_{k}^{\theta}, \quad u(s)=u\left(s^{\prime}\right)
$$

If the subspace of \mathcal{A} spanned by the range of θ_{n} is finite dimensional, then \mathcal{H}_{n}^{θ} is finite dimensional.

Definition

Let \mathcal{S} be a scaled semigroup and \mathcal{A} an algebra, we say that a morphism of scaled semigroups $\theta: \mathcal{S} \rightarrow G(\mathcal{A})$ is of finite type if each \mathcal{H}_{n}^{θ} is finite dimensional.

Theorem

If each \mathcal{H}_{n}^{θ} is finite dimensional, then given $u \in \mathcal{H}_{n}^{\theta}(n \geq 0)$, there exist $m \geq 1$ and $v_{1}, w_{1}, \ldots, v_{m}, w_{m}$ with $\left|v_{j}\right|+\left|w_{j}\right|=n$ such that

$$
\forall\left(s, s^{\prime}\right) \in \mathcal{S} \times \mathcal{S}, \quad u\left(s \circ s^{\prime}\right)=\sum_{j=1}^{m} v_{j}(s) w_{j}\left(s^{\prime}\right)
$$

Given a subspace V of $\mathbb{R}^{\mathcal{S}}$, we make the standard identification of $V \otimes V$ with a subspace of $\mathbb{R}^{\mathcal{S} \times \mathcal{S}}$. That is, given $u_{i}, v_{i} \in V, \lambda_{i} \in \mathbb{R}$

$$
\forall\left(s, s^{\prime}\right) \in \mathcal{G} \times \mathcal{G}, \quad\left(\sum_{i} \lambda_{i} u_{i} \otimes v_{i}\right)\left(s, s^{\prime}\right)=\sum_{i} \lambda_{i} u_{i}(s) v_{i}\left(s^{\prime}\right)
$$

Definition

Given $u \in \mathbb{R}^{\mathcal{S}}$, we define $\Delta u \in \mathbb{R}^{\mathcal{S} \times \mathcal{S}}$, as

$$
\Delta u\left(s, s^{\prime}\right)=u\left(s \circ s^{\prime}\right), \quad \text { for } \quad s, s^{\prime} \in \mathcal{S}
$$

According to previous theorem, if for given $\theta: \mathcal{S} \rightarrow G(\mathcal{A})$ each \mathcal{H}_{n}^{θ} is finite dimensional, then $\Delta \mathcal{H}^{\theta} \subset \mathcal{H}^{\theta} \otimes \mathcal{H}^{\theta}$.

Furthermore, the semigroup structure of \mathcal{S} together with $\mathcal{H}_{0}^{\theta}=\mathbb{R} \mathbb{1}$ implies that $\Delta \mathbb{1}=\mathbb{1} \otimes \mathbb{1}$ and for each $u \in \mathcal{H}_{n}^{\theta}$ with $n \geq 1$

$$
\Delta u-u \otimes \mathbb{1}-\mathbb{1} \otimes u \in \bigoplus_{k=1}^{n-1} \mathcal{H}_{k}^{\theta} \otimes \mathcal{H}_{n-k}^{\theta}
$$

Furthermore, the semigroup structure of \mathcal{S} together with $\mathcal{H}_{0}^{\theta}=\mathbb{R} \mathbb{1}$ implies that $\Delta \mathbb{1}=\mathbb{1} \otimes \mathbb{1}$ and for each $u \in \mathcal{H}_{n}^{\theta}$ with $n \geq 1$

$$
\Delta u-u \otimes \mathbb{1}-\mathbb{1} \otimes u \in \bigoplus_{k=1}^{n-1} \mathcal{H}_{k}^{\theta} \otimes \mathcal{H}_{n-k}^{\theta}
$$

Definition (Representative funcions of a scaled semigroup)

Given a scaled semigroup \mathcal{S}, we define $H(\mathcal{S})=\bigoplus_{n \geq 0} H(\mathcal{S})_{n}$, where

$$
\begin{aligned}
H(\mathcal{S})_{0}= & \left\{u \in \mathbb{R}^{\mathcal{S}}:|u|=0\right\}=\mathbb{R} \mathbb{1}, \quad \text { and for } \quad n \geq 1, \\
H(\mathcal{S})_{n}= & \left\{u \in \mathbb{R}^{\mathcal{S}}:|u|=n,\right. \\
& \left.\Delta u-u \otimes \mathbb{1}-\mathbb{1} \otimes u \in \bigoplus_{0 \leq k<n} H(\mathcal{S})_{k} \otimes H(\mathcal{S})_{n-k}\right\} .
\end{aligned}
$$

We say that u is a representative function of \mathcal{S} if $u \in H(\mathcal{S})$.

Some immediate results:

- The scaled semigroup structure of \mathcal{S} gives a connected graded Hopf algebra structure to $H(\mathcal{S})$.
- For each $\theta: \mathcal{S} \rightarrow G(\mathcal{A}), \mathcal{H}^{\theta}$ is a Hopf subalgebra of $H(\mathcal{S})$.

Lemma

Given $u \in \mathbb{R}^{\mathcal{S}}, u \in H(\mathcal{S})_{n}(n \geq 1)$ if and only if there exists an algebra \mathcal{A}, a morphism of scaled semigroups $\theta: \mathcal{S} \rightarrow G(\mathcal{A})$ of finite type and a linear form $\gamma \in \mathcal{A}^{*}$ such that

$$
\forall s \in \mathcal{S}, \quad u(s)=\gamma\left(\theta_{n}(s)\right)
$$

Example (The group of composition integration schemes)

Consider again the scaled semigroup

$$
\begin{aligned}
& \mathcal{S}=\{e\} \cup \bigcup_{m \geq 1} \mathbb{R}^{2 m}, \quad \lambda \cdot\left(a_{1}, \ldots, a_{2 m}\right)=\left(\lambda a_{1}, \ldots, \lambda a_{2 m}\right), \\
& \left(a_{1}, \ldots, a_{2 m}\right) \circ\left(a_{2 m+1}, \ldots, a_{2(m+k)}\right)=\left(a_{1}, \ldots, a_{2(m+k)}\right),
\end{aligned}
$$

and let \sim be the finest equivalence relation satisfying that $(a, a) \sim e$ and $\left(a_{1}, \ldots, a_{j-1}, b, b, a_{j}, \ldots, a_{2 m}\right) \sim\left(a_{1}, \ldots, a_{2 m}\right)$.
Clearly, $\mathcal{G}_{c}=\mathcal{S} / \sim$ has a scaled group structure inherited from the scaled semigroup structure of \mathcal{S}. Each element in $\psi=\mathcal{G}_{c} \backslash\{e\}$ can be uniquely written as

$$
\psi=\chi\left(a_{1}\right)^{-1} \circ \chi\left(a_{2}\right) \circ \cdots \circ \chi\left(a_{2 m-1}\right)^{-1} \circ \chi\left(a_{2 m}\right)
$$

where $a_{j-1} \neq a_{j}(2 \leq j \leq 2 m)$ and $\chi(a)$ represented by $(0, a) \in \mathcal{S}$.

Example (cont.)

For an arbitrary algebra \mathcal{A} and any morphism of scaled groups

$$
\begin{aligned}
\theta: \mathcal{G}_{c} & \rightarrow G(\mathcal{A}) \\
s & \mapsto 1_{\mathcal{A}}+\sum_{n \geq 1} h^{n} \theta_{n}(s)
\end{aligned}
$$

with the notation $X_{n}=\theta_{n}(\chi(1)) \in \mathcal{A}$, one necessarily has for each $\psi=\chi\left(a_{1}\right)^{-1} \circ \chi\left(a_{2}\right) \circ \cdots \circ \chi\left(a_{2 m-1}\right)^{-1} \circ \chi\left(a_{2 m}\right) \in \mathcal{G}_{c}$ that

$$
\theta(\psi)=X\left(a_{1} h\right)^{-1} X\left(a_{2} h\right) \cdots X\left(a_{2 m-1} h\right)^{-1} X\left(a_{2 m} h\right)
$$

where $X(a h)=1_{\mathcal{A}}+\sum_{n \geq 1} h^{n} a^{n} X_{n}$ and

$$
X(a h)^{-1}=1_{\mathcal{A}}+\sum_{n \geq 1} a^{n} h^{n} \sum_{j_{1}+\cdots+j_{r}=n}(-1)^{r} X_{j_{1}} \cdots X_{j_{r}} .
$$

Example (cont.)

That shows that, for each $\psi \in \mathcal{G}_{c}$,

$$
\theta(\psi)=1_{\mathcal{A}}+\sum_{n \geq 1} h^{n} \sum_{j_{1}+\cdots+j_{r}=n} u_{j_{1} \cdots j_{r}}(\psi) X_{j_{1}} \cdots X_{j_{r}},
$$

for some $u_{j_{1} \cdots j_{r}} \in \mathbb{R}^{\mathcal{G}_{c}}$ with $\left|u_{j_{1} \cdots j_{r}}\right|=j_{1}+\cdots+j_{r}$.

Example (cont.)

That shows that, for each $\psi \in \mathcal{G}_{c}$,

$$
\theta(\psi)=1_{\mathcal{A}}+\sum_{n \geq 1} h^{n} \sum_{j_{1}+\cdots+j_{r}=n} u_{j_{1} \cdots j_{r}}(\psi) X_{j_{1}} \cdots X_{j_{r}}
$$

for some $u_{j_{1} \cdots j_{r}} \in \mathbb{R}^{\mathcal{G}_{c}}$ with $\left|u_{j_{1} \cdots j_{r}}\right|=j_{1}+\cdots+j_{r}$. Actually,

$$
\begin{aligned}
u_{i}\left(a_{1}, \ldots, a_{2 m}\right) & =\sum_{1 \leq j \leq 2 m}(-1)^{j} a_{j}^{i}, \\
u_{i_{1} i_{2}}\left(a_{1}, \ldots, a_{2 m}\right) & =\sum_{1 \leq j_{1} \leq j_{2}^{*} \leq j_{2} \leq 2 m}(-1)^{j_{1}+j_{2}} a_{j_{2}}^{i_{2}} a_{j_{1}}^{i_{1}}, \\
u_{i_{1} i_{2} i_{3}}\left(a_{1}, \ldots, a_{2 m}\right) & =\sum_{1 \leq j_{1} \leq j_{2}^{*} \leq j_{2} \leq j_{3}^{*} \leq j_{3} \leq 2 m}(-1)^{j_{1}+j_{2}+j_{3}} a_{j_{3}}^{i_{3}} a_{j_{2}}^{i_{2}} a_{j_{1}}^{i_{1}},
\end{aligned}
$$

and so on. Notation: $j^{*}=j-1$ if j is even, and $j^{*}=j$ if j is odd. From previous lemma, $H\left(\mathcal{G}_{c}\right)$ is spanned by the functions $u_{j_{1} \cdots j_{r}}$.

For a given \mathcal{S}, one is not always interested in characterizing

$$
\begin{equation*}
\theta(s) \stackrel{(n)}{=} \theta\left(s^{\prime}\right) \tag{6}
\end{equation*}
$$

for all posible morphisms $\theta: \mathcal{S} \rightarrow G(\mathcal{A})$. Recall that a characterization of (6) for one particular morphism θ is obtained with the Hopf subalgebra $\mathcal{H}^{\theta} \subset H(\mathcal{S})$ (instead of the whole $H(\mathcal{S})$).

For a given \mathcal{S}, one is not always interested in characterizing

$$
\begin{equation*}
\theta(s) \stackrel{(n)}{=} \theta\left(s^{\prime}\right) \tag{6}
\end{equation*}
$$

for all posible morphisms $\theta: \mathcal{S} \rightarrow G(\mathcal{A})$. Recall that a characterization of (6) for one particular morphism θ is obtained with the Hopf subalgebra $\mathcal{H}^{\theta} \subset H(\mathcal{S})$ (instead of the whole $H(\mathcal{S})$).

Theorem

Consider a scaled group \mathcal{G} and a family $\left\{\theta^{j}: \mathcal{G} \rightarrow G\left(\mathcal{A}^{j}\right)\right\}_{j \in \mathcal{J}}$ of morphisms of scaled semigroups. Let \mathcal{H} be a subalgebra of $\mathcal{H}(\mathcal{G})$ with finite dimensional $\mathcal{H}_{n}=\{u \in \mathcal{H}:|u|=n\}(n \geq 1)$. The following statement holds for arbitrary $s, s^{\prime} \in \mathcal{G}$ and $n \geq 1$
$\forall u \in \bigoplus \mathcal{H}_{k}, \quad u(s)=u\left(s^{\prime}\right) \Longleftrightarrow \forall j \in \mathcal{J}, \quad \theta^{j}(s) \stackrel{(n)}{\equiv} \theta^{j}\left(s^{\prime}\right)$,
iff \mathcal{H} is the Hopf subalgebra of $H(\mathcal{G})$ generated by $\bigcup_{j \in \mathcal{J}} \mathcal{H}^{\theta^{j}}$.

Definition

We say that $(\mathcal{G}, \mathcal{H})$ is a group of abstract integration schemes if \mathcal{G} is a scaled subgroup and $\mathcal{H}=\bigoplus_{n \geq 0} \mathcal{H}_{n}$ is a graded Hopf subalgebra of $H(\mathcal{G})$ satisfying the following:

- Each \mathcal{H}_{n} is finite dimensional.
- \mathcal{H} separates the elements in \mathcal{G}, i.e., $\forall\left(s, s^{\prime}\right) \in \mathcal{G}, \exists u \in H$ such that $u(s) \neq u\left(s^{\prime}\right)$.

As an algebra \mathcal{H} is freely generated (as a consequence of Milnor and Moore theorem).

Definition

We say that $(\mathcal{G}, \mathcal{H})$ is a group of abstract integration schemes if \mathcal{G} is a scaled subgroup and $\mathcal{H}=\bigoplus_{n \geq 0} \mathcal{H}_{n}$ is a graded Hopf subalgebra of $H(\mathcal{G})$ satisfying the following:

- Each \mathcal{H}_{n} is finite dimensional.
- \mathcal{H} separates the elements in \mathcal{G}, i.e., $\forall\left(s, s^{\prime}\right) \in \mathcal{G}, \exists u \in H$ such that $u(s) \neq u\left(s^{\prime}\right)$.

As an algebra \mathcal{H} is freely generated (as a consequence of Milnor and Moore theorem). If $\mathcal{H} \neq H(\mathcal{G})$, then the functions in \mathcal{H} characterize $\theta(s) \stackrel{(n)}{=} \theta\left(s^{\prime}\right)$ for a strict subclass of morphisms $\theta: \mathcal{G} \rightarrow G(\mathcal{A})$ of finite type (precisely, the morphisms θ such that $\left.\mathcal{H}^{\theta} \subset \mathcal{H}\right)$.

Theorem (\mathcal{G} dense in $\overline{\mathcal{G}}$)

Let $(\mathcal{G}, \mathcal{H})$ be a group of abstract integration schemes, and let $\overline{\mathcal{G}}$ denote the group of characters of \mathcal{H}. For each $\alpha \in \overline{\mathcal{G}}$ and each $n \geq 1$, there exists $\psi \in \mathcal{G}$ such that

$$
\begin{equation*}
\forall u \in \bigoplus_{k \leq n} \mathcal{H}_{k}, \quad u(\psi)=\alpha(u) \tag{7}
\end{equation*}
$$

Let \mathcal{T} be a set of homogeneous functions on \mathcal{G} that freely generate the algebra \mathcal{H}, then

$$
u(\psi)=\alpha(u), \quad \forall u \in \mathcal{T} \text { with }|u| \leq n
$$

provides necessary and sufficient independent conditions for (7).

- The coalgebra structure of \mathcal{H} endows its linear dual \mathcal{H}^{*} with an algebra structure. ($\left\{\nu_{\lambda}\right\}$ induce $\left\{\bar{\nu}_{\lambda}\right\}$).
- The subset $\overline{\mathcal{G}} \subset \mathcal{H}^{*}$ of algebra maps $\alpha: \mathcal{H} \rightarrow \mathbb{R}$ is a group (the group of characters). It is a scaled group with $\bar{\nu}_{\lambda}(\alpha)=\lambda \cdot \alpha$

$$
\lambda \cdot \alpha(u)=\lambda^{n} \alpha(u) \quad \forall u \in \mathcal{H}_{n} .
$$

- The map $\pi: \mathcal{G} \rightarrow \overline{\mathcal{G}}$ such that $\forall \psi \in \mathcal{G}, \pi(\psi)$ is defined by $\pi(\psi)(u)=u(\psi)$ is a monomorphism of (scaled) groups. So that \mathcal{G} can be seen as a scaled subgroup of $\overline{\mathcal{G}}$.
- There is a subset $\mathfrak{g} \subset \mathcal{H}^{*}$ that is a Lie algebra under the bracket $[\alpha, \beta]=\alpha \beta-\beta \alpha$ (the Lie algebra of infinitesimal characters), such that $\exp : \mathfrak{g} \rightarrow \overline{\mathcal{G}}$ is a bijection.

Example (cont.)

Consider $\mathcal{H}=H\left(\mathcal{G}_{c}\right)$. Given an algebra \mathcal{A} (for instance, $\mathcal{A}=\operatorname{End}_{\mathbb{R}} \mathrm{C}^{\infty}\left(\mathbb{R}^{d} ; \mathbb{R}\right)$) and $\theta: \underline{\mathcal{G}}_{c} \rightarrow G(\mathcal{H})$, we define for each $\alpha \in \mathcal{H}^{*}$ the algebra morphism $\bar{\theta}: \mathcal{H}^{*} \rightarrow \mathcal{A}[[h]]$ as

$$
\bar{\theta}(\alpha)=\alpha(\mathbb{1}) 1_{\mathcal{A}}+\sum_{n \geq 1} h^{n} \sum_{j_{1}+\cdots+j_{r}=n} \alpha\left(u_{j_{1} \cdots j_{r}}\right) X_{j_{1}} \cdots X_{j_{r}} .
$$

Given $g_{1}, g_{2} \in \mathrm{C}^{\infty}\left(\mathbb{R}^{d} ; \mathbb{R}\right)$, if $\alpha \in \overline{\mathcal{G}}$, then

$$
\bar{\theta}(\alpha)\left[g_{1} g_{2}\right]=\bar{\theta}(\alpha)\left[g_{1}\right] \bar{\theta}(\alpha)\left[g_{2}\right]
$$

And if $\alpha \in \mathfrak{g}$, then

$$
\bar{\theta}(\alpha)\left[g_{1} g_{2}\right]=g_{1} \bar{\theta}(\alpha)\left[g_{2}\right]+g_{2} \bar{\theta}(\alpha)\left[g_{1}\right] .
$$

Theorem

Let $(\mathcal{G}, \mathcal{H})$ be a group of abstract integration schemes, and let $\theta: \mathcal{G} \rightarrow G(\mathcal{A})$ (with \mathcal{A} certain algebra) be a morphism of scaled groups such that $\mathcal{H}^{\theta} \subset \mathcal{H}$. Then, there exists a unique algebra morphism $\bar{\theta}: \mathcal{H}^{*} \rightarrow \mathcal{A}[[h]]$ such the $\bar{\theta}(\pi(\psi))=\theta(\psi)$. When restricted to $\overline{\mathcal{G}}$, it is a morphism $\bar{\theta}: \overline{\mathcal{G}} \rightarrow G(\mathcal{A})$ of scaled groups.

Observations:

- In applications to numerical analysis, there is typically a distinguished element $\alpha \in \overline{\mathcal{G}}$ such that

$$
\bar{\theta}(\alpha)=1_{\mathcal{A}}+\sum_{n \geq 1} \bar{\theta}_{n}(\alpha) h^{n}
$$

represents the exact solution to be approximated.

- Backward error analysis: For each $\psi \in \mathcal{G}, \theta(\psi)=\exp (\bar{\theta}(\beta))$, where $\beta=\log (\pi(\psi)) \in \mathfrak{g}$.

Theorem

Let \mathcal{G} be a scaled group, and let \mathcal{H} be a subalgebra of $\mathcal{H}(\mathcal{G})$ with finite dimensional $\mathcal{H}_{n}=\{u \in \mathcal{H}:|u|=n\} \quad(n \geq 1)$. Assume that the following statement holds for arbitrary $s, s^{\prime} \in \mathcal{G}$ and $n \geq 1$:

$$
\forall u \in \bigoplus_{0 \leq k \leq n} \mathcal{H}_{k}, \quad u(s)=u\left(s^{\prime}\right) \quad \Longrightarrow \quad \theta(s) \stackrel{(n)}{=} \theta\left(s^{\prime}\right)
$$

for arbitrary algebras \mathcal{A} and arbitrary morphisms of scaled groups $\theta: \mathcal{G} \rightarrow G(\mathcal{A})$. Then $\mathcal{H}=H(\mathcal{G})$.

Theorem

Let \mathcal{S} be a scaled semigroup. For arbitrary $s, s^{\prime} \in \mathcal{S}$ and $n \geq 1$, the following two statements are equivalent:

- $\forall u \in \bigoplus_{0 \leq k \leq n} H(\mathcal{S})_{k}, \quad u(s)=u\left(s^{\prime}\right)$.
- $\theta(s) \stackrel{(n)}{=} \theta\left(s^{\prime}\right)$ for arbitrary algebras \mathcal{A} and arbitrary morphisms of scaled semigroups $\theta: \mathcal{S} \rightarrow G(\mathcal{A})$ of finite type.

Example (cont.)

$H\left(\mathcal{G}_{c}\right)$ is isomorphic to the quasi-shuffle Hopf algebra of Hoffman, thus is freely generated by the functions $u_{j_{1} \cdots j_{r}}$ indexed by the set of Lyndon words $j_{1} \cdots j_{r}$ on the alphabet $\{1,2,3, \ldots\}$

$$
\mathcal{L}=\left\{u_{j_{1} \cdots j_{r}}:\left(j_{1} \cdots j_{k}\right)<\left(j_{k+1} \cdots j_{r}\right) \text { for each } 1 \leq k<r\right\}
$$

The first sets $\mathcal{L}_{n}=\left\{u_{j_{1} \cdots j_{r}} \in \mathcal{L}:\left|u_{j_{1} \cdots j_{r}}\right|=j_{1}+\cdots+j_{r}=n\right\}$ are
$\mathcal{L}_{1}=\left\{u_{1}\right\}, \quad \mathcal{L}_{2}=\left\{u_{2}\right\}, \quad \mathcal{L}_{3}=\left\{u_{12}, u_{3}\right\}, \quad \mathcal{L}_{4}=\left\{u_{112}, u_{13}, u_{4}\right\}$, $\mathcal{L}_{5}=\left\{u_{1112}, u_{113}, u_{122}, u_{14}, u_{23}, u_{5}\right\}$.

Theorem Given $\psi, \psi^{\prime} \in \mathcal{G}_{c}, \theta(\psi) \stackrel{(n)}{=} \theta\left(\psi^{\prime}\right)$ for arbitrary algebras \mathcal{A} and any morphism $\theta: \mathcal{S} \rightarrow G(\mathcal{A})$, if and only if

$$
\forall u \in \bigcup_{k \geq 1}^{n} L_{k}, \quad u(\psi)=u\left(\psi^{\prime}\right)
$$

