An algebraic theory of order of integration schemes

Philippe Chartier and Ander Murua

Clermont-Ferrand, October 2008

The system of ODEs

Consider a smooth system of autonomous ODEs

$$\dot{y} = f(y), \quad f: \mathbb{R}^d \to \mathbb{R}^d.$$
 (1)

A one-step integrator $\psi_h : \mathbb{R}^d \to \mathbb{R}^d$ gives, for a given initial value $y(t_0) = y_0$, the numerical solution

$$y(t_{k+1}) \approx y_{k+1} = \psi_h(y_k), \quad k = 0, 1, 2, \dots$$

for the time grid $t_k = t_0 + kh$. Euler method: $\psi_h(y) = y + hf(y)$. Local error:

$$\psi_h(y(t)) = y(t+h) + \mathcal{O}(h^2)$$
 as $h \to 0$.

The system of ODEs

Consider a smooth system of autonomous ODEs

$$\dot{y} = f(y), \quad f: \mathbb{R}^d \to \mathbb{R}^d.$$
 (1)

A one-step integrator $\psi_h : \mathbb{R}^d \to \mathbb{R}^d$ gives, for a given initial value $y(t_0) = y_0$, the numerical solution

$$y(t_{k+1}) \approx y_{k+1} = \psi_h(y_k), \quad k = 0, 1, 2, \dots$$

for the time grid $t_k = t_0 + kh$. Euler method: $\psi_h(y) = y + hf(y)$. Local error:

$$\psi_h(y(t)) = y(t+h) + \mathcal{O}(h^2)$$
 as $h \to 0$.

A more precise integrator can be obtained from $\chi_h(y) = y + hf(y)$

$$\psi_h(y) = \chi_{h/2} \circ \chi_{h/2}^{-1}(y)$$

In that case $\psi_h(y(t)) = y(t+h) + \mathcal{O}(h^3)$. So that it is of order 2.

The system of ODEs

Consider a smooth system of autonomous ODEs

$$\dot{y} = f(y), \quad f : \mathbb{R}^d \to \mathbb{R}^d.$$
 (2)

A one-step integrator $\psi_h : \mathbb{R}^d \to \mathbb{R}^d$ gives, for a given initial value $y(t_0) = y_0$, the numerical solution

$$y(t_{k+1}) \approx y_{k+1} = \psi_h(y_k), \quad k = 0, 1, 2, \dots$$

for the time grid $t_k = t_0 + kh$. Euler method: $\psi_h(y) = y + hf(y)$. Local error:

$$\psi_h(y(t)) = y(t+h) + \mathcal{O}(h^2)$$
 as $h \to 0$.

An integrator of order 4 from $\chi_h(y) = y + hf(y)$

$$\psi_h = \chi_{a_6h} \circ \chi_{a_5h}^{-1} \circ \chi_{a_4h} \circ \chi_{a_3h}^{-1} \circ \chi_{a_2h} \circ \chi_{a_1h}^{-1}.$$

where

$$a_1 = -\frac{193}{396}$$
 $a_2 = \frac{97}{132}$ $a_3 = \frac{89}{66}$ $a_4 = \frac{25}{198}$ $a_5 = \frac{1}{4}$ $a_6 = \frac{5}{4}$

The system of ODEs

Consider a smooth system of autonomous ODEs

$$\dot{y} = f(y), \quad f : \mathbb{R}^d \to \mathbb{R}^d,$$
 (3)

個 と く ヨ と く ヨ と

and explicit Euler $\chi_h(y) = y + hf(y)$, which for any solution y(t) of (3) gives

$$\chi_h(y(t)) = y(t+h) + \mathcal{O}(h^2)$$
 as $h o 0$.

The system of ODEs

Consider a smooth system of autonomous ODEs

$$\dot{y} = f(y), \quad f : \mathbb{R}^d \to \mathbb{R}^d,$$
 (3)

and explicit Euler $\chi_h(y) = y + h f(y)$, which for any solution y(t) of (3) gives

$$\chi_h(y(t)) = y(t+h) + \mathcal{O}(h^2)$$
 as $h o 0$.

We can define for each $(a_1,\ldots,a_{2m})\in\mathbb{R}^{2m}$, a new integrator

Composition integration schemes based on Euler's method

$$\psi_h = \chi_{a_{2m}h} \circ \chi_{a_{2s-1}h}^{-1} \circ \cdots \circ \chi_{a_2h} \circ \chi_{a_1h}^{-1}.$$
(4)

Conditions on (a_1, \ldots, a_{2m}) for $\psi_h(y(t)) = y(t+h) + \mathcal{O}(h^{n+1})$?

The system of ODEs

Consider a smooth system of autonomous ODEs

$$\dot{y} = f(y), \quad f : \mathbb{R}^d \to \mathbb{R}^d,$$
 (3)

and explicit Euler $\chi_h(y) = y + h f(y)$, which for any solution y(t) of (3) gives

$$\chi_h(y(t)) = y(t+h) + \mathcal{O}(h^2)$$
 as $h o 0$.

We can define for each $(a_1,\ldots,a_{2m})\in\mathbb{R}^{2m}$, a new integrator

Composition integration schemes based on Euler's method

$$\psi_h = \chi_{a_{2m}h} \circ \chi_{a_{2s-1}h}^{-1} \circ \cdots \circ \chi_{a_2h} \circ \chi_{a_1h}^{-1}.$$
(4)

Conditions on (a_1, \ldots, a_{2m}) for $\psi_h(y(t)) = y(t+h) + \mathcal{O}(h^{n+1})$? For arbitrary $\chi_h(y) = y + h f(y) + \mathcal{O}(h^2)$, more order conditions?

Example

$$S = \{e\} \cup \bigcup_{m \ge 1} \mathbb{R}^{2m}, \quad \lambda \cdot (a_1, \dots, a_{2m}) = (\lambda a_1, \dots, \lambda a_{2m}),$$
$$(a_1, \dots, a_{2m}) \circ (a_{2m+1}, \dots, a_{2(m+k)}) = (a_1, \dots, a_{2(m+k)}).$$

◆□ > ◆□ > ◆ 目 > ◆目 > ● 目 ● の < ⊙

Example

$$S = \{e\} \cup \bigcup_{m \ge 1} \mathbb{R}^{2m}, \quad \lambda \cdot (a_1, \dots, a_{2m}) = (\lambda a_1, \dots, \lambda a_{2m}),$$
$$(a_1, \dots, a_{2m}) \circ (a_{2m+1}, \dots, a_{2(m+k)}) = (a_1, \dots, a_{2(m+k)}).$$

Definition

We say that (S, \circ, e, ν) is a scaled semigroup (resp. scaled group) if (S, \circ, e) is a semigroup (resp. group) with neutral element e and

$$u : \mathbb{R} \times S \rightarrow S \ (\lambda, s) \mapsto \lambda \cdot s$$

is a map satisfying that, for all $s,s'\in\mathcal{S},\,\lambda,\mu\in\mathbb{R},$

•
$$1 \cdot s = s$$
 and $0 \cdot s = e$,

•
$$\lambda \cdot (\mu \cdot s) = (\lambda \mu) \circ s$$

• $\lambda \circ (s \circ s') = (\lambda \cdot s) \circ (\lambda \cdot s')$ and $\lambda \cdot e = e$.

Definition

A map $\theta : S \to \hat{S}$ is a morphism of scaled semigroups if it is a morphism of semigroups satisfying that $\lambda \cdot \theta(s) = \theta(\lambda \cdot s)$ for all $\lambda \in \mathbb{R}$ and $s \in S$.

Let \mathcal{A} be an associative algebra with unity $1_{\mathcal{A}}$, and consider

$$\begin{aligned} \mathcal{A}[[h]] &= \left\{ \sum_{n=0}^{\infty} h^n A_n : \forall n \ge 0, \quad A_n \in \mathcal{A} \right\}, \\ \mathcal{G}(\mathcal{A}) &= \left\{ 1_{\mathcal{A}} + \sum_{n=1}^{\infty} h^n A_n : \forall n \ge 1, \quad A_n \in \mathcal{A} \right\}, \end{aligned}$$

where *h* is an indeterminate variable. Clearly, $\mathcal{A}[[h]]$ has an algebra structure, and $G(\mathcal{A}) \subset \mathcal{A}[[h]]$ is a scaled group with

$$\lambda \cdot \left(1_{\mathcal{A}} + \sum_{n=1}^{\infty} h^n A_n \right) = 1_{\mathcal{A}} + \sum_{n=1}^{\infty} h^n \lambda^n A_n.$$

Example

For each $n \ge 1$ and each $s = (a_1, \ldots, a_{2m})$, consider the linear differential operator $\theta_n(s)$ that gives a smooth function $\theta_n(s)[g]$ for each $g \in C^{\infty}(\mathbb{R}^d; \mathbb{R})$ as follows:

$$\theta_n(s)[g](y) = \frac{1}{n!} \frac{d^n}{dh^n} g(\psi_h(y))|_{h=0}, \qquad (5)$$

so that formally,

$$g(\psi_h(y)) = heta(s)[g](y), \quad ext{where} \quad heta(s) = I + \sum_{n \geq 1} h^n heta_n(s),$$

where *I* represents the identity operator. Here, $C = C^{\infty}(\mathbb{R}^d; \mathbb{R})$ is a commutative algebra, $\mathcal{A} = \text{End}_{\mathbb{R}}C$ is an associative algebra with unity *I*, and $\theta : S \to G(\mathcal{A})$ is a morphism of scaled semigroups.

Given $f : \mathbb{R}^d \to \mathbb{R}^d$, let us consider $X_n \in \mathcal{A} = \operatorname{End}_{\mathbb{R}}\mathcal{C}$ is such that, for $g \in \mathcal{C} = \operatorname{C}^{\infty}(\mathbb{R}^d; \mathbb{R})$ and $y \in \mathbb{R}^d$,

$$X_n[g](y) = \frac{1}{n!} \frac{d^n}{dh^n} g(\chi_h(y))|_{h=0} = \frac{1}{n!} g^{(n)}(y)(f(y), \dots, f(y)).$$

We have that $g(\psi_h(y)) = \theta(s)[g](y)$, where

$$\theta(s) = X(a_1h)^{-1}X(a_2h)\cdots X(a_{2m-1}h)^{-1}X(a_{2m}h),$$

with $X(ah) = I + \sum_{n \ge 1} a^n h^n X_n$.

Given $f : \mathbb{R}^d \to \mathbb{R}^d$, let us consider $X_n \in \mathcal{A} = \operatorname{End}_{\mathbb{R}}\mathcal{C}$ is such that, for $g \in \mathcal{C} = \operatorname{C}^{\infty}(\mathbb{R}^d; \mathbb{R})$ and $y \in \mathbb{R}^d$,

$$X_n[g](y) = \frac{1}{n!} \frac{d^n}{dh^n} g(\chi_h(y))|_{h=0} = \frac{1}{n!} g^{(n)}(y)(f(y), \dots, f(y)).$$

We have that $g(\psi_h(y)) = \theta(s)[g](y)$, where

$$\theta(s) = X(a_1h)^{-1}X(a_2h)\cdots X(a_{2m-1}h)^{-1}X(a_{2m}h),$$

with
$$X(ah) = I + \sum_{n \ge 1} a^n h^n X_n$$
.
For any solution $y(t)$ of the ODE system,

$$g(y(t+h)) = g(y) + \sum_{n\geq 1} \frac{h^n}{n!} F^n[g](y(t)) = \exp(hF)[g](y(t)),$$

where F[g](y) = g'(y)f(y). (as expected, $X_1 = F$).

Let us denote in addition L(A) = hA[[h]]. The exponential and the logarithm

$$\exp: L(\mathcal{A}) \longrightarrow G(\mathcal{A}), \quad \log: G(\mathcal{A}) \longrightarrow L(\mathcal{A})$$

are reciprocal bijections defined in the usual way. We are interested in morphisms of scaled semigroups of the form

$$: \mathcal{S} \rightarrow G(\mathcal{A})$$

 $s \mapsto 1_{\mathcal{A}} + \sum_{n \geq 1} h^n \theta_n(s).$

Definition

We write
$$\theta(s) \stackrel{(n)}{\equiv} \theta(s')$$
 if $\theta_k(s) = \theta_k(s')$ for $k = 1, ..., n$.

6

We want to characterize $\theta(s) \stackrel{(n)}{\equiv} \theta(s')$ in terms of functions on S.

Example (Composition based on Euler's method for $\dot{y} = y$)

$$\mathcal{S} = \{e\} \cup igcup_{m \geq 1} \mathbb{R}^{2m}$$
, $\mathcal{A} = \mathbb{R}$ and

$$\theta(a_1,\ldots,a_{2m}) = 1 + \sum_{n\geq 1} h^n \theta_n(a_1,\ldots,a_{2m}) = \prod_{j=1}^m \frac{1+a_{2j-1}h}{1+a_{2j}h}.$$

Consider the logarithm

$$\log(\theta(a_1, \dots, a_{2m})) = \sum_{j=1}^m \log(1 + a_{2j-1}h) - \log(1 + a_{2j}h)$$
$$= \sum_{k \ge 1} \frac{(-1)^{k+1}}{k} h^n u_k(a_1, \dots, a_{2m}),$$

where $u_k(a_1, \ldots, a_{2m}) = \sum_{j=1}^{2m} (-1)^j a_j^k$. Thus, $\theta(s) \stackrel{(n)}{\equiv} \theta(s')$ if and only if $u_k(s) = u_k(s')$ for $1 \le k \le n$. Consider the (commutative) algebra \mathbb{R}^{S} of functions $u : S \to \mathbb{R}$, with unity $\mathbb{1} \in \mathbb{R}^{S}$ (i.e., defined as $\mathbb{1}(s) = 1$ for all $s \in S$).

Given a morphism $\theta: S \to G(\mathcal{A})$, a linear form $\gamma \in \mathcal{A}^*$ and $n \ge 1$, consider the function $u_{\theta,n,\gamma} \in \mathbb{R}^S$ defined by

$$u_{\theta,n,\gamma}(s) = \gamma(\theta_n(s)).$$

Observe that $u_{\theta,n,\gamma}(\lambda \cdot s) = \lambda^n u_{\theta,n,\gamma}(s)$.

Consider the (commutative) algebra \mathbb{R}^{S} of functions $u : S \to \mathbb{R}$, with unity $\mathbb{1} \in \mathbb{R}^{S}$ (i.e., defined as $\mathbb{1}(s) = 1$ for all $s \in S$).

Given a morphism $\theta: S \to G(A)$, a linear form $\gamma \in A^*$ and $n \ge 1$, consider the function $u_{\theta,n,\gamma} \in \mathbb{R}^S$ defined by

$$u_{\theta,n,\gamma}(s) = \gamma(\theta_n(s)).$$

Observe that $u_{\theta,n,\gamma}(\lambda \cdot s) = \lambda^n u_{\theta,n,\gamma}(s)$.

Definition

Given $u \in \mathbb{R}^{S}$, we say that u is homogeneous of degree |u| = n if

$$\forall (\lambda, s) \in \mathbb{R} \times S, \quad u(\lambda \cdot s) = \lambda^n u(s).$$

Convention: $0^0 = 1$. In particular, if |u| = 0, then $u(s) = u(\lambda \cdot s) = u(0 \cdot s) = u(e) = u(e)\mathbb{1}(s)$, and thus $u = u(e)\mathbb{1}$. Given a morphism $\theta: S \to G(A)$, consider the subalgebra $\mathcal{H}^{\theta} \subset \mathbb{R}^{S}$ generated by

$$\{u_{\theta,n,\gamma} : n \geq 1, \quad \gamma \in \mathcal{A}^*\},\$$

and denote $\mathcal{H}_n^{\theta} = \{ u \in \mathcal{H}^{\theta} : |u| = n \}$. (In particular, $\mathcal{H}_0^{\theta} = \mathbb{R}\mathbf{1}$.)

Given a morphism $\theta : S \to G(A)$, consider the subalgebra $\mathcal{H}^{\theta} \subset \mathbb{R}^{S}$ generated by

 $\{u_{\theta,n,\gamma} : n \ge 1, \quad \gamma \in \mathcal{A}^*\}, \quad (u_{\theta,n,\gamma}(s) = \gamma(\theta_n(s)))$

and denote $\mathcal{H}_n^{\theta} = \{ u \in \mathcal{H}^{\theta} : |u| = n \}$. (In particular, $\mathcal{H}_0^{\theta} = \mathbb{R}\mathbf{1}$.)

Given a morphism $\theta : S \to G(A)$, consider the subalgebra $\mathcal{H}^{\theta} \subset \mathbb{R}^{S}$ generated by

 $\{u_{\theta,n,\gamma} : n \ge 1, \quad \gamma \in \mathcal{A}^*\}, \quad (u_{\theta,n,\gamma}(s) = \gamma(\theta_n(s)))$

and denote $\mathcal{H}_{n}^{\theta} = \{ u \in \mathcal{H}^{\theta} : |u| = n \}$. (In particular, $\mathcal{H}_{0}^{\theta} = \mathbb{R}\mathbb{1}$.) Clearly, $\mathcal{H}^{\theta} = \bigoplus_{n \geq 0} \mathcal{H}_{n}^{\theta}$. Obviously, given $s, s' \in S$,

$$heta(s) \stackrel{(n)}{\equiv} heta(s') \quad \Longleftrightarrow \quad \forall u \in \bigoplus_{k \leq n} \mathcal{H}^{ heta}_k, \quad u(s) = u(s').$$

If the subspace of \mathcal{A} spanned by the range of θ_n is finite dimensional, then \mathcal{H}_n^{θ} is finite dimensional.

Definition

Let S be a scaled semigroup and A an algebra, we say that a morphism of scaled semigroups $\theta : S \to G(A)$ is of finite type if each \mathcal{H}_n^{θ} is finite dimensional.

Theorem

If each \mathcal{H}_n^{θ} is finite dimensional, then given $u \in \mathcal{H}_n^{\theta}$ $(n \ge 0)$, there exist $m \ge 1$ and $v_1, w_1, \ldots, v_m, w_m$ with $|v_j| + |w_j| = n$ such that

$$\forall (s,s') \in \mathcal{S} \times \mathcal{S}, \quad u(s \circ s') = \sum_{j=1}^{m} v_j(s) w_j(s').$$

Given a subspace V of \mathbb{R}^{S} , we make the standard identification of $V \otimes V$ with a subspace of $\mathbb{R}^{S \times S}$. That is, given $u_i, v_i \in V$, $\lambda_i \in \mathbb{R}$

$$\forall (s,s') \in \mathcal{G} \times \mathcal{G}, \quad (\sum_i \lambda_i \, u_i \otimes v_i)(s,s') = \sum_i \lambda_i \, u_i(s) v_i(s').$$

Definition

Given
$$u \in \mathbb{R}^{S}$$
, we define $\Delta u \in \mathbb{R}^{S \times S}$, as

$$\Delta u(s,s') = u(s \circ s'), \quad ext{for} \quad s,s' \in \mathcal{S}.$$

According to previous theorem, if for given $\theta : S \to G(\mathcal{A})$ each \mathcal{H}_n^{θ} is finite dimensional, then $\Delta \mathcal{H}^{\theta} \subset \mathcal{H}^{\theta} \otimes \mathcal{H}^{\theta}$.

Furthermore, the semigroup structure of S together with $\mathcal{H}_0^{\theta} = \mathbb{R}\mathbf{1}$ implies that $\Delta \mathbf{1} = \mathbf{1} \otimes \mathbf{1}$ and for each $u \in \mathcal{H}_n^{\theta}$ with $n \ge 1$

$$\Delta u - u \otimes \mathbf{1} - \mathbf{1} \otimes u \in \bigoplus_{k=1}^{n-1} \mathcal{H}_k^{\theta} \otimes \mathcal{H}_{n-k}^{\theta}.$$

Furthermore, the semigroup structure of S together with $\mathcal{H}_0^{\theta} = \mathbb{R}\mathbf{1}$ implies that $\Delta \mathbf{1} = \mathbf{1} \otimes \mathbf{1}$ and for each $u \in \mathcal{H}_n^{\theta}$ with $n \ge 1$

$$\Delta u - u \otimes \mathbf{1} - \mathbf{1} \otimes u \in \bigoplus_{k=1}^{n-1} \mathcal{H}_k^{\theta} \otimes \mathcal{H}_{n-k}^{\theta}.$$

Definition (Representative functions of a scaled semigroup)

Given a scaled semigroup S, we define $H(S) = \bigoplus_{n \ge 0} H(S)_n$, where

$$H(\mathcal{S})_0 = \{ u \in \mathbb{R}^{\mathcal{S}} : |u| = 0 \} = \mathbb{R}\mathbf{1}, \text{ and for } n \ge 1, \\ H(\mathcal{S})_n = \{ u \in \mathbb{R}^{\mathcal{S}} : |u| = n, \\ \Delta u - u \otimes \mathbf{1} - \mathbf{1} \otimes u \in \bigoplus_{0 \le k < n} H(\mathcal{S})_k \otimes H(\mathcal{S})_{n-k} \}$$

We say that u is a representative function of S if $u \in H(S)$.

Some immediate results:

- The scaled semigroup structure of S gives a connected graded Hopf algebra structure to H(S).
- For each $\theta: S \to G(A)$, \mathcal{H}^{θ} is a Hopf subalgebra of H(S).

Lemma

Given $u \in \mathbb{R}^{S}$, $u \in H(S)_{n}$ $(n \ge 1)$ if and only if there exists an algebra \mathcal{A} , a morphism of scaled semigroups $\theta : S \to G(\mathcal{A})$ of finite type and a linear form $\gamma \in \mathcal{A}^{*}$ such that

$$\forall s \in S, \quad u(s) = \gamma(\theta_n(s)).$$

Example (The group of composition integration schemes)

Consider again the scaled semigroup

$$S = \{e\} \cup \bigcup_{m \ge 1} \mathbb{R}^{2m}, \quad \lambda \cdot (a_1, \dots, a_{2m}) = (\lambda a_1, \dots, \lambda a_{2m}),$$
$$(a_1, \dots, a_{2m}) \circ (a_{2m+1}, \dots, a_{2(m+k)}) = (a_1, \dots, a_{2(m+k)}),$$

and let \sim be the finest equivalence relation satisfying that $(a, a) \sim e$ and $(a_1, \ldots, a_{j-1}, b, b, a_j, \ldots, a_{2m}) \sim (a_1, \ldots, a_{2m})$. Clearly, $\mathcal{G}_c = \mathcal{S} / \sim$ has a scaled group structure inherited from the scaled semigroup structure of \mathcal{S} . Each element in $\psi = \mathcal{G}_c \setminus \{e\}$ can be uniquely written as

$$\psi = \chi(a_1)^{-1} \circ \chi(a_2) \circ \cdots \circ \chi(a_{2m-1})^{-1} \circ \chi(a_{2m})$$

where $a_{j-1} \neq a_j$ $(2 \leq j \leq 2m)$ and $\chi(a)$ represented by $(0, a) \in S$.

For an arbitrary algebra ${\mathcal A}$ and any morphism of scaled groups

$$egin{array}{rcl} \mathcal{G}_{c} &
ightarrow & G(\mathcal{A}) \ s & \mapsto & 1_{\mathcal{A}} + \sum_{n \geq 1} h^{n} heta_{n}(s), \end{array}$$

with the notation $X_n = \theta_n(\chi(1)) \in \mathcal{A}$, one necessarily has for each $\psi = \chi(a_1)^{-1} \circ \chi(a_2) \circ \cdots \circ \chi(a_{2m-1})^{-1} \circ \chi(a_{2m}) \in \mathcal{G}_c$ that

$$\theta(\psi) = X(a_1h)^{-1}X(a_2h)\cdots X(a_{2m-1}h)^{-1}X(a_{2m}h),$$

where $X(ah) = 1_{\mathcal{A}} + \sum_{n \geq 1} h^n a^n X_n$ and

$$X(ah)^{-1} = 1_{\mathcal{A}} + \sum_{n \ge 1} a^n h^n \sum_{j_1 + \dots + j_r = n} (-1)^r X_{j_1} \cdots X_{j_r}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣�?

That shows that, for each $\psi \in \mathcal{G}_c$,

$$\theta(\psi) = 1_{\mathcal{A}} + \sum_{n \geq 1} h^n \sum_{j_1 + \dots + j_r = n} u_{j_1 \dots j_r}(\psi) X_{j_1} \dots X_{j_r},$$

for some $u_{j_1\cdots j_r} \in \mathbb{R}^{\mathcal{G}_c}$ with $|u_{j_1\cdots j_r}| = j_1 + \cdots + j_r$.

That shows that, for each $\psi \in \mathcal{G}_c$,

$$\theta(\psi) = 1_{\mathcal{A}} + \sum_{n \geq 1} h^n \sum_{j_1 + \dots + j_r = n} u_{j_1 \dots j_r}(\psi) X_{j_1} \dots X_{j_r},$$

for some $u_{j_1\cdots j_r} \in \mathbb{R}^{\mathcal{G}_c}$ with $|u_{j_1\cdots j_r}| = j_1 + \cdots + j_r$. Actually,

$$\begin{array}{lll} u_i(a_1,\ldots,a_{2m}) &=& \sum_{1 \leq j \leq 2m} (-1)^j \, a_j^i, \\ u_{i_1 i_2}(a_1,\ldots,a_{2m}) &=& \sum_{1 \leq j_1 \leq j_2^* \leq j_2 \leq 2m} (-1)^{j_1+j_2} \, a_{j_2}^{i_2} a_{j_1}^{i_1}, \\ u_{i_1 i_2 i_3}(a_1,\ldots,a_{2m}) &=& \sum_{1 \leq j_1 \leq j_2^* \leq j_2 \leq j_3^* \leq j_3 \leq 2m} (-1)^{j_1+j_2+j_3} \, a_{j_3}^{i_3} a_{j_2}^{i_2} a_{j_1}^{i_1}, \end{array}$$

and so on. Notation: $j^* = j - 1$ if j is even, and $j^* = j$ if j is odd. From previous lemma, $H(\mathcal{G}_c)$ is spanned by the functions $u_{j_1\cdots j_r}$. For a given S, one is not always interested in characterizing

$$\theta(s) \stackrel{(n)}{\equiv} \theta(s') \tag{6}$$

for all posible morphisms $\theta : S \to G(A)$. Recall that a characterization of (6) for one particular morphism θ is obtained with the Hopf subalgebra $\mathcal{H}^{\theta} \subset H(S)$ (instead of the whole H(S)).

For a given \mathcal{S} , one is not always interested in characterizing

$$\theta(s) \stackrel{(n)}{\equiv} \theta(s') \tag{6}$$

for all posible morphisms $\theta : S \to G(A)$. Recall that a characterization of (6) for one particular morphism θ is obtained with the Hopf subalgebra $\mathcal{H}^{\theta} \subset H(S)$ (instead of the whole H(S)).

Theorem

Consider a scaled group \mathcal{G} and a family $\{\theta^j : \mathcal{G} \to \mathcal{G}(\mathcal{A}^j)\}_{j \in \mathcal{J}}$ of morphisms of scaled semigroups. Let \mathcal{H} be a subalgebra of $\mathcal{H}(\mathcal{G})$ with finite dimensional $\mathcal{H}_n = \{u \in \mathcal{H} : |u| = n\}$ $(n \ge 1)$. The following statement holds for arbitrary $s, s' \in \mathcal{G}$ and $n \ge 1$

$$\forall u \in \bigoplus_{0 \leq k \leq n} \mathcal{H}_k, \quad u(s) = u(s') \quad \Longleftrightarrow \quad \forall j \in \mathcal{J}, \quad \theta^j(s) \stackrel{(n)}{\equiv} \theta^j(s'),$$

iff \mathcal{H} is the Hopf subalgebra of $H(\mathcal{G})$ generated by $\bigcup_{j\in\mathcal{J}}\mathcal{H}^{\theta^{j}}$

Definition

We say that $(\mathcal{G}, \mathcal{H})$ is a group of abstract integration schemes if \mathcal{G} is a scaled subgroup and $\mathcal{H} = \bigoplus_{n \ge 0} \mathcal{H}_n$ is a graded Hopf subalgebra of $H(\mathcal{G})$ satisfying the following:

- Each \mathcal{H}_n is finite dimensional.
- *H* separates the elements in *G*, i.e., ∀(s, s') ∈ *G*, ∃u ∈ H such that u(s) ≠ u(s').

As an algebra ${\cal H}$ is freely generated (as a consequence of Milnor and Moore theorem).

Definition

We say that $(\mathcal{G}, \mathcal{H})$ is a group of abstract integration schemes if \mathcal{G} is a scaled subgroup and $\mathcal{H} = \bigoplus_{n \ge 0} \mathcal{H}_n$ is a graded Hopf subalgebra of $H(\mathcal{G})$ satisfying the following:

• Each \mathcal{H}_n is finite dimensional.

H separates the elements in *G*, i.e., ∀(s, s') ∈ *G*, ∃u ∈ H such that u(s) ≠ u(s').

As an algebra \mathcal{H} is freely generated (as a consequence of Milnor and Moore theorem). If $\mathcal{H} \neq H(\mathcal{G})$, then the functions in \mathcal{H} characterize $\theta(s) \stackrel{(n)}{\equiv} \theta(s')$ for a strict subclass of morphisms $\theta: \mathcal{G} \to \mathcal{G}(\mathcal{A})$ of finite type (precisely, the morphisms θ such that $\mathcal{H}^{\theta} \subset \mathcal{H}$).

Theorem (\mathcal{G} dense in $\overline{\mathcal{G}}$)

Let $(\mathcal{G}, \mathcal{H})$ be a group of abstract integration schemes, and let $\overline{\mathcal{G}}$ denote the group of characters of \mathcal{H} . For each $\alpha \in \overline{\mathcal{G}}$ and each $n \geq 1$, there exists $\psi \in \mathcal{G}$ such that

$$\forall u \in \bigoplus_{k \le n} \mathcal{H}_k, \quad u(\psi) = \alpha(u).$$
(7)

Let ${\cal T}$ be a set of homogeneous functions on ${\cal G}$ that freely generate the algebra ${\cal H},$ then

$$u(\psi) = \alpha(u), \quad \forall u \in \mathcal{T} \text{ with } |u| \leq n,$$

provides necessary and sufficient independent conditions for (7).

- The subset G
 ⊂ H* of algebra maps α : H → R is a group (the group of characters). It is a scaled group with ν
 λ(α) = λ · α

$$\lambda \cdot \alpha(u) = \lambda^n \alpha(u) \quad \forall u \in \mathcal{H}_n.$$

- The map π : G → G
 G such that ∀ψ ∈ G, π(ψ) is defined by π(ψ)(u) = u(ψ) is a monomorphism of (scaled) groups. So that G can be seen as a scaled subgroup of G.
- There is a subset g ⊂ H* that is a Lie algebra under the bracket [α, β] = αβ − βα (the Lie algebra of infinitesimal characters), such that exp : g → G is a bijection.

Consider $\mathcal{H} = H(\mathcal{G}_c)$. Given an algebra \mathcal{A} (for instance, $\mathcal{A} = \operatorname{End}_{\mathbb{R}} \operatorname{C}^{\infty}(\mathbb{R}^d; \mathbb{R})$) and $\theta : \mathcal{G}_c \to \mathcal{G}(\mathcal{H})$, we define for each $\alpha \in \mathcal{H}^*$ the algebra morphism $\overline{\theta} : \mathcal{H}^* \to \mathcal{A}[[h]]$ as

$$\bar{\theta}(\alpha) = \alpha(1) \mathbf{1}_{\mathcal{A}} + \sum_{n \geq 1} h^n \sum_{j_1 + \dots + j_r = n} \alpha(u_{j_1 \dots j_r}) X_{j_1} \dots X_{j_r}.$$

Given $g_1, g_2 \in C^{\infty}(\mathbb{R}^d; \mathbb{R})$, if $\alpha \in \overline{\mathcal{G}}$, then

$$\bar{\theta}(\alpha)[g_1g_2] = \bar{\theta}(\alpha)[g_1]\bar{\theta}(\alpha)[g_2].$$

And if $\alpha \in \mathfrak{g}$, then

$$\bar{\theta}(\alpha)[g_1g_2] = g_1 \bar{\theta}(\alpha)[g_2] + g_2 \bar{\theta}(\alpha)[g_1].$$

Theorem

Let $(\mathcal{G}, \mathcal{H})$ be a group of abstract integration schemes, and let $\theta : \mathcal{G} \to \mathcal{G}(\mathcal{A})$ (with \mathcal{A} certain algebra) be a morphism of scaled groups such that $\mathcal{H}^{\theta} \subset \mathcal{H}$. Then, there exists a unique algebra morphism $\overline{\theta} : \mathcal{H}^* \to \mathcal{A}[[h]]$ such the $\overline{\theta}(\pi(\psi)) = \theta(\psi)$. When restricted to $\overline{\mathcal{G}}$, it is a morphism $\overline{\theta} : \overline{\mathcal{G}} \to \mathcal{G}(\mathcal{A})$ of scaled groups.

Observations:

• In applications to numerical analysis, there is typically a distinguished element $\alpha \in \overline{\mathcal{G}}$ such that

$$ar{ heta}(lpha) = \mathbf{1}_{\mathcal{A}} + \sum_{n\geq 1} ar{ heta}_n(lpha) h^n$$

represents the exact solution to be approximated.

Backward error analysis: For each ψ ∈ G, θ(ψ) = exp(θ(β)), where β = log(π(ψ)) ∈ g.

Theorem

Let \mathcal{G} be a scaled group, and let \mathcal{H} be a subalgebra of $\mathcal{H}(\mathcal{G})$ with finite dimensional $\mathcal{H}_n = \{u \in \mathcal{H} : |u| = n\}$ $(n \ge 1)$. Assume that the following statement holds for arbitrary $s, s' \in \mathcal{G}$ and $n \ge 1$:

$$orall u \in igoplus_{0 \leq k \leq n} \mathcal{H}_k, \quad u(s) = u(s') \implies heta(s) \stackrel{(n)}{\equiv} heta(s')$$

for arbitrary algebras \mathcal{A} and arbitrary morphisms of scaled groups $\theta: \mathcal{G} \to \mathcal{G}(\mathcal{A})$. Then $\mathcal{H} = \mathcal{H}(\mathcal{G})$.

Theorem

Let S be a scaled semigroup. For arbitrary $s, s' \in S$ and $n \ge 1$, the following two statements are equivalent:

- $\forall u \in \bigoplus_{0 \le k \le n} H(S)_k$, u(s) = u(s').
- $\theta(s) \stackrel{(n)}{\equiv} \theta(s')$ for arbitrary algebras \mathcal{A} and arbitrary morphisms of scaled semigroups $\theta : S \to G(\mathcal{A})$ of finite type.

 $H(\mathcal{G}_c)$ is isomorphic to the quasi-shuffle Hopf algebra of Hoffman, thus is freely generated by the functions $u_{j_1\cdots j_r}$ indexed by the set of Lyndon words $j_1\cdots j_r$ on the alphabet $\{1, 2, 3, \ldots\}$

$$\mathcal{L} = \{u_{j_1 \cdots j_r} \ : \ (j_1 \cdots j_k) < (j_{k+1} \cdots j_r) ext{ for each } 1 \leq k < r\}$$

The first sets $\mathcal{L}_n = \{u_{j_1\cdots j_r} \in \mathcal{L} : |u_{j_1\cdots j_r}| = j_1 + \cdots + j_r = n\}$ are

$$\mathcal{L}_1 = \{u_1\}, \quad \mathcal{L}_2 = \{u_2\}, \quad \mathcal{L}_3 = \{u_{12}, u_3\}, \quad \mathcal{L}_4 = \{u_{112}, u_{13}, u_4\}, \\ \mathcal{L}_5 = \{u_{1112}, u_{113}, u_{122}, u_{14}, u_{23}, u_5\}.$$

Theorem Given $\psi, \psi' \in \mathcal{G}_c$, $\theta(\psi) \stackrel{(n)}{\equiv} \theta(\psi')$ for arbitrary algebras \mathcal{A} and any morphism $\theta : \mathcal{S} \to \mathcal{G}(\mathcal{A})$, if and only if

$$\forall u \in \bigcup_{k\geq 1}^n L_k, \quad u(\psi) = u(\psi').$$