Preserving invariants and volume for split systems

Philippe Chartier ${ }^{1} \quad$ Ander Murua ${ }^{2}$
${ }^{1}$ IPSO
INRIA-Rennes and ENS Cachan, Antenne de Bretagne
${ }^{2}$ Department of Computer Science
University of the Basque Country
Clermont 2008

Outline

(1) Problems and motivations

- General invariants encountered in physics
- Improved qualitative behavior of geometric integrators

2) Setting of the problem

- Invariant and volume preservation for split systems
- The Hopf algebra of coloured trees
- B -series and S -series for split vector fields
(3) Conditions for invariants-preservation
- Numerical methods preserving invariants
- The case of quadratic and cubic invariants
- B-series methods preserving all cubic invariants

4 Conditions for volume-preservation

- Volume-preserving B-series
- Connection with the preservation of cubic invariants
- volume preserving methods for split systems with a special stru
(5) From conditions for vector fields to conditions for integrators

Outline

(1) Problems and motivations

- General invariants encountered in physics
- Improved qualitative behavior of geometric integrators

2

Setting of the problem

- Invariant and volume preservation for split systems
- The Hopf algebra of coloured trees
- B-series and S-series for split vector fieldsConditions for invariants-preservation
- Numerical methods preserving invariants
- The case of quadratic and cubic invariants
- B-series methods preserving all cubic invariants

Conditions for volume-preservation

- Volume-preserving B-series
- Connection with the preservation of cubic invariants
- volume preserving methods for split systems with a special stru From conditions for vector fields to conditionsefor integra\$Qrs

Examples of first integrals

- Conservation of energy in Hamiltonian systems

Hamiltonian system

$$
\dot{p}=-\frac{\partial H}{\partial q}, \quad \dot{q}=\frac{\partial H}{\partial p}
$$

Theorem

$$
\frac{d}{d t} H(p, q)=\frac{\partial H}{\partial p} \dot{p}+\frac{\partial H}{\partial q} \dot{q}=0 \text { hence } H(p, q)=\text { Const }
$$

General invariants encountered in physics

Examples of first integrals

- Conservation of energy in Hamiltonian systems
- Conservation of total and angular momentum in N-Body systems

N-Body system

$$
\dot{p}_{i}=-\sum_{j=1}^{N} \nu_{i j}\left(q_{i}-q_{j}\right), \quad \dot{q}_{i}=\frac{p_{i}}{m_{i}} \quad \nu \text { symmetric }
$$

Theorem

$\sum_{i=1}^{N} p_{i}=$ Const and $\sum_{i=1}^{N} q_{i} \times p_{i}=$ Const

General invariants encountered in physics

Examples of first integrals

- Conservation of energy in Hamiltonian systems
- Conservation of total and angular momentum in N-Body systems
- Conservation of mass in chemical reactions

Chemical reactions

$$
\begin{array}{cccccc}
A & \xrightarrow{k_{1}} & B & \dot{y}_{1}= & -k_{1} y_{1}+k_{3} y_{2} y_{3} \\
B+B & \xrightarrow{k_{2}} & B+C & \dot{y}_{2} & = & k_{1} y_{1}-k_{3} y_{2} y_{3}-k_{2} y_{2}^{2} \\
B+C & \xrightarrow{k_{3}} & A+C & \dot{y}_{3} & = & k_{2} y_{2}^{2}
\end{array}
$$

Theorem

$$
\frac{d}{d t}\left(y_{1}+y_{2}+y_{3}\right)=0 \text { hence } I(y)=y_{1}+y_{2}+y_{2}=\text { Const. }
$$

General invariants encountered in physics

Examples of first integrals

- Conservation of energy in Hamiltonian systems
- Conservation of total and angular momentum in N-Body systems
- Conservation of mass in chemical reactions
- Conservation of the spectrum by matrix flows

Isospectral matrix equations

$$
\dot{L}=B(L) L-L B(L) \text { with } B(L) \text { skew-symmetric. }
$$

Theorem

Let $\dot{U}=B(L(t)) U, U(0)=I$. Then, $L(t)=U(t) L_{0} U(t)^{-1}$.

General invariants encountered in physics

Examples of first integrals

- Conservation of energy in Hamiltonian systems
- Conservation of total and angular momentum in N-Body systems
- Conservation of mass in chemical reactions
- Conservation of the spectrum by matrix flows
- Conservation of volume in divergence-free systems

Divergence-free system

$$
\dot{y}=f(y) \text { with } \operatorname{div}(f)=0 \text {. }
$$

Theorem

The flow φ_{t} preserves the volume, i.e. $\int_{\varphi_{t}(A)} d y=\int_{A} d y$.

A prey-predator model in normal form

$$
\begin{aligned}
\dot{U} & =e^{V}-2=f(V) \\
\dot{V} & =1-e^{U}=g(U)
\end{aligned}
$$

A prey-predator model in normal form

$$
\begin{aligned}
\dot{U} & =e^{V}-2=f(V) \\
\dot{V} & =1-e^{U}=g(U)
\end{aligned}
$$

2-D Kepler Problem

$$
H(p, q)=\frac{1}{2} p^{T} p-\frac{1}{\sqrt{q^{T} q}}=T(p)+V(q) \Longleftrightarrow \ddot{q}=-V^{\prime}(q)
$$

Euler explicit/implicit

2-D Kepler Problem

$$
H(p, q)=\frac{1}{2} p^{T} p-\frac{1}{\sqrt{q^{T} q}}=T(p)+V(q) \Longleftrightarrow \ddot{q}=-V^{\prime}(q) .
$$

2-D Kepler Problem

$$
H(p, q)=\frac{1}{2} p^{T} p-\frac{1}{\sqrt{q^{T} q}}=T(p)+V(q) \Longleftrightarrow \ddot{q}=-V^{\prime}(q) .
$$

Outline

(1)

Problems and motivations

- General invariants encountered in physics
- Improved qualitative behavior of geometric integrators

(2) Setting of the problem

- Invariant and volume preservation for split systems
- The Hopf algebra of coloured trees
- B-series and S-series for split vector fields

Conditions for invariants-preservation

- Numerical methods preserving invariants
- The case of quadratic and cubic invariants
- B-series methods preserving all cubic invariants

Conditions for volume-preservation

- Volume-preserving B-series
- Connection with the preservation of cubic invariants
- volume preserving methods for split systems with a special stru From conditions for vector fields to conditionsefor integra\$Qrs

The two classes of problems considered

We consider systems of ODEs of the form

Split vector fields systems

$$
\dot{y}=f^{[1]}(y)+f^{[2]}(y)+\ldots+f^{[N]}(y),
$$

such that each individual vector field has the invariant function /
Common Invariant

$$
0=\left(\nabla_{y} l(y)\right)^{\top} f^{[\nu]}(y), \quad \nu=1, \ldots, N,
$$

The two classes of problems considered

We consider systems of ODEs of the form

Split vector fields systems

$$
\dot{y}=f^{[1]}(y)+f^{[2]}(y)+\ldots+f^{[N]}(y),
$$

or preserves the volume form

Divergence-free

$$
0=\operatorname{div} f^{[\nu]}(y), \quad \nu=1, \ldots, N
$$

Invariant preserving integrators

A one-step method

is a map from the phase-space to itself, which, given an approximation y of the solution at time t, produces an approximation Φ_{h}^{f} at time $t+h$.

The modified vector field

 associated to a numerical integrator Φ_{h}^{f} is the vector field \tilde{f}_{h} such that the exact solution of $\dot{z}=\tilde{f}_{h}(z), z(t)=y$ at time $t+h$ is $\Phi_{h}^{f}(y)$.
Invariant-preserving integrators(1)

Φ_{h}^{f} preserves I if $I\left(\Phi_{h}^{f}(y)\right)=I(y)$ for any y.

Invariant preserving integrators

A one-step method

is a map from the phase-space to itself, which, given an approximation y of the solution at time t, produces an approximation Φ_{h}^{f} at time $t+h$.

The modified vector field

 associated to a numerical integrator Φ_{h}^{f} is the vector field \tilde{f}_{h} such that the exact solution of $\dot{z}=\tilde{f}_{h}(z), z(t)=y$ at time $t+h$ is $\Phi_{h}^{f}(y)$.
Invariant-preserving integrators(2)

Φ_{h}^{f} preserves $/$ if $(\nabla /(y))^{T} \tilde{f}_{h}(y)=0$ for any y.

Volume-preserving integrators

A one-step method

is a map from the phase-space to itself, which, given an approximation y of the solution at time t, produces an approximation $\Phi_{h}^{f}(y)$ at time $t+h$.

The modified vector field

 associated to a numerical integrator Φ_{h}^{f} is the vector field \tilde{f}_{h} such that the exact solution of $\dot{z}=\tilde{f}_{h}(z), z(t)=y$ at time $t+h$ is $\Phi_{h}^{f}(y)$.
Volume-preserving integrators(1)

Φ_{h}^{f} preserves the volume if $\operatorname{det}\left(\frac{\partial \Phi_{h}^{f}(y)}{\partial y}\right)=1$ for any y.

Volume-preserving integrators

A one-step method

is a map from the phase-space to itself, which, given an approximation y of the solution at time t, produces an approximation $\Phi_{h}^{f}(y)$ at time $t+h$.

The modified vector field

 associated to a numerical integrator Φ_{h}^{f} is the vector field \tilde{f}_{h} such that the exact solution of $\dot{z}=\tilde{f}_{h}(z), z(t)=y$ at time $t+h$ is $\Phi_{h}^{f}(y)$.
Volume-preserving integrators(2)

Φ_{h}^{f} preserves the volume if $\operatorname{div}\left(\tilde{f}_{h}(y)\right)=0$ for any y.

Volume-preserving integrators

A one-step method

is a map from the phase-space to itself, which, given an approximation y of the solution at time t, produces an approximation $\Phi_{h}^{f}(y)$ at time $t+h$.

The modified vector field

 associated to a numerical integrator Φ_{h}^{f} is the vector field \tilde{f}_{h} such that the exact solution of $\dot{z}=\tilde{f}_{h}(z), z(t)=y$ at time $t+h$ is $\Phi_{h}^{f}(y)$.The conditions for preserving the volume are easier to obtain in terms of the modified vector field.

The Hopf algebra of coloured trees

Trees and forests [Merson 57, Butcher 68]

Definition

The set of trees \mathcal{T} and forests \mathcal{F} are defined recursively by:
(1) $e \in \mathcal{F}$
(2) if $t_{1}, \ldots, t_{n} \in \mathcal{T}^{n}$, then $u=t_{1} \ldots t_{n} \in \mathcal{F}$
(3) if $u \in \mathcal{F}$ and $\nu \in\{1, \ldots, N\}$, then $t=[u]_{\nu}=B_{\nu}^{+}(u) \in \mathcal{T}$.

Example

$$
\begin{array}{r}
B_{1}^{+}(\cdot \circ)=[\cdot \circ]_{1}=\vartheta \text { and } B_{2}^{+}(\cdot \cdot)=[\cdots]_{2}=\vartheta \\
B^{-}(\mathscr{V})=\cdots \text { and } B^{-}(\bigvee)=\vartheta
\end{array}
$$

The Hopf algebra of coloured trees

Order and symmetry

Definition

Consider n distinct trees t_{1}, \ldots, t_{n} and let $u=t_{1}^{t_{1}} \ldots t_{n}^{r_{n}}$ and $t=[u]_{\nu}$. Then,

- $|t|=1+|u|=1+r_{1}\left|t_{1}\right|+\ldots+r_{n}\left|t_{n}\right|$
- $\sigma(u)=r_{1}!\ldots r_{n}!\left(\sigma\left(t_{1}\right)\right)^{r_{1}} \ldots\left(\sigma\left(t_{n}\right)\right)^{r_{n}}$ and $\sigma(t)=\sigma(u)$

Example

Forest u	-•!	$v \vee!$	$\%^{33} \mathrm{~V}$ 彦	v:8	
Order \|u		4	11	17	11
Symmetry $\sigma(u)$	$2!$	1!3!1!	$3!(2!)^{3} 2$!	$3!1!1!$	

The Hopf algebra of coloured trees

Structure (Connes and Kreimer 98, Brouder 04)

Definition

The set \mathcal{F} can be naturally endowed with an algebra structure \mathcal{H} on \mathbb{R} :

- $\forall(u, v) \in \mathcal{F}^{2}, \forall(\lambda, \mu) \in \mathbb{R}^{2}, \lambda u+\mu v \in \mathcal{H}$,
- $\forall(u, v) \in \mathcal{F}^{2}, u v \in \mathcal{H}$ (note that $u v=v u$),
- $\forall u \in \mathcal{F}, u e=e u=u$.

Calculus in \mathcal{H}

The Hopf algebra of coloured trees

The co-product

Definition

The tensor product of \mathcal{H} with itself is the set of elements of the form $u \otimes v$ such that for all $(u, v, w, x) \in \mathcal{H}^{4}$ and all $(\lambda, \mu) \in \mathbb{R}^{2}$:

$$
\begin{aligned}
& (\lambda u+\mu v) \otimes w=\lambda(u \otimes w)+\mu(v \otimes w), \\
& w \otimes(\lambda u+\mu v)=\lambda(w \otimes u)+\mu(w \otimes v), \\
& (u \otimes v)(w \otimes x)=(u w \otimes v x) .
\end{aligned}
$$

Definition

The co-product Δ is a morphism from \mathcal{H} to $\mathcal{H} \otimes \mathcal{H}$ defined by:
(1) $\Delta(e)=e \otimes e$,
(2) $\forall t \in \mathcal{T}, \Delta(t)=t \otimes e+\left(i d_{\mathcal{H}} \otimes B_{\mu(t)}^{+}\right) \circ \Delta \circ B^{-}(t)$,
(3) $\forall u=t_{1} \ldots t_{n} \in \mathcal{F}, \Delta(u)=\Delta\left(t_{1}\right) \ldots \Delta\left(t_{n}\right)$.

The Hopf algebra of coloured trees

The co-product

Example

$$
\begin{aligned}
& \Delta\left(\gamma^{\circ}\right)=\quad{ }^{\circ} \otimes e+\left(i d \otimes B_{2}^{+}\right) \Delta(\cdot \circ) \\
& =\dot{\gamma} \otimes e+\left(i d \otimes B_{2}^{+}\right) \Delta(\cdot) \Delta(\circ) \\
& =\vartheta \bullet \otimes e+\left(i d \otimes B_{2}^{+}\right)(\cdot \otimes e+e \otimes \cdot)(\circ \otimes e+e \otimes \circ) \\
& =\dot{\gamma} \otimes e \\
& +\left(i d \otimes B_{2}^{+}\right)(\cdot \circ \otimes e+\cdot \otimes \circ+\circ \otimes \cdot+\boldsymbol{e} \otimes \cdot \circ)
\end{aligned}
$$

B-series and S-series for split vector fields

Elementary differentials

Definition

Let t be a tree of \mathcal{T}. The elementary differential $F(t)$ associated with t is the mapping from \mathbb{R}^{n} to \mathbb{R}^{n}, defined by:
(1) $F\left(\cdot{ }_{\nu}\right)(y)=f^{[\nu]}(y)$,
(2) $F\left(\left[t_{1}, \ldots, t_{n}\right]_{\nu}\right)(y)=\left(f^{[\nu]}\right)^{(n)}(y)\left(F\left(t_{1}\right)(y), \ldots, F\left(t_{n}\right)(y)\right)$.

Example

$$
\begin{aligned}
F(\dot{\ell}) & =\left(f^{[1]}\right)^{\prime} f^{[2]} \\
F\left(\mathfrak{\zeta}^{\circ}\right) & =\left(f^{[2]}\right)^{\prime \prime}(y)\left(f^{[1]}, f^{[2]}\right) \\
F(\dot{\varrho}) & =\left(f^{[1]}\right)^{\prime}\left(f^{[2]}\right)^{\prime} f^{[1]}
\end{aligned}
$$

B-series and S-series for split vector fields

Elementary differential operators

Definition

Let $u=t_{1} \ldots t_{k}$ be a forest of \mathcal{F}. The differential operator $X(u)$ associated with u is defined on $\mathcal{D}=C^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}^{m}\right)$ by:

$$
\begin{aligned}
X(u): \mathcal{D} & \rightarrow \mathcal{D} \\
g & \mapsto X(u)[g]=g^{(k)}\left(F\left(t_{1}\right), \ldots, F\left(t_{k}\right)\right) .
\end{aligned}
$$

Example

$$
\begin{aligned}
X(e)[g] & =g \\
X(\cdot)[g] & =g^{\prime} f^{[1]} \\
X(f)[g] & =g^{\prime}\left(f^{[1]}\right)^{\prime} f^{[2]} \\
X(f \circ \cdot)[g] & =g^{(3)}\left(\left(f^{[1]}\right)^{\prime} f^{[1]}, f^{[2]}, f^{[1]}\right)
\end{aligned}
$$

B-series and S-series for split vector fields

B-series and S-series

Definition (B-Series (Hairer and Wanner 74))

Let $a: \mathcal{T} \rightarrow \mathbb{R}$. The B -series $B(a, y)$ is the formal series:

$$
B(a, y)=a(e) y+\sum_{t \in \mathcal{T}} \frac{h^{|t|}}{\sigma(t)} a(t) F(t)
$$

Example (Implicit/Explicit Euler)

$$
\begin{aligned}
y_{1}= & y_{0}+h\left(f^{[1]}\left(y_{1}\right)+f^{[2]}\left(y_{0}\right)\right) \\
= & y_{0}+h F(\cdot)\left(y_{0}\right)+h F(\circ)\left(y_{0}\right)+h^{2} F(\cdot)\left(y_{0}\right)+h^{2} F(\rho)\left(y_{0}\right) \\
& +\ldots
\end{aligned}
$$

B-series and S-series for split vector fields

B-series and S-series

Definition (Series of differential operators)

Let $\alpha: \mathcal{F} \rightarrow \mathbb{R}$. The S-series $S(\alpha)$ is the formal series

$$
S(\alpha)[g]=\sum_{u \in \mathcal{F}} \frac{h^{|u|}}{\sigma(u)} \alpha(u) X(u)[g]
$$

Example (Implicit/Explicit Euler)

$$
\begin{aligned}
g\left(y_{1}\right)= & g\left(y_{0}+h f^{[1]}\left(y_{1}\right)+h f^{[2]}\left(y_{0}\right)\right) \\
= & X(e)[g]+h(X(\cdot)[g]+X(\circ)[g])+h^{2}(X(!)[g]+X(\circ)[g]) \\
& +\frac{h^{2}}{2}\left(X\left(\cdot^{2}\right)[g]+2 X(\cdot \circ)[g]+X\left(\circ^{2}\right)[g]\right)+\ldots
\end{aligned}
$$

B-series and S-series for split vector fields

Composition of series and co-product in \mathcal{H}

Theorem (Composition of B-series)

Let a and b be two mappings from \mathcal{T} to \mathbb{R}. The composition of the two B-series $B(a, y)$ and $B(b, y)$, i.e. $B(b, B(a, y))$, is again a B-series $B(a . b, y)$, with coefficients a.b defined on \mathcal{T} by

$$
\forall t \in \mathcal{T}, \quad(a . b)(t)=\left(\mu_{\mathbb{R}} \circ(a \otimes b) \circ \Delta\right)(t) .
$$

Example

$$
\begin{aligned}
& (a . b)(\mathcal{O})=\mu_{\mathbb{R}} \circ(a \otimes b)(\hat{O} \otimes e+\cdots \otimes 0+\bullet \otimes \boldsymbol{O}+o \otimes \sigma+e \otimes \dot{O}) \\
& =a(\mathrm{O}) b(e)+a(\bullet) a(\circ) b(\circ)+a(\bullet) b\left(\delta_{0}\right)+a(\circ) b(\delta)+a(e) b(\text { К })
\end{aligned}
$$

B-series and S-series for split vector fields

Composition of series and co-product in \mathcal{H}

Theorem (Composition of S-series)

Let α and β be two mappings from \mathcal{F} to \mathbb{R}. The composition of the two S-series $S(\alpha)$ and $S(\beta)$, i.e. $S(\alpha)[S(\beta)[]$.$] is again a$ S-series, with coefficients $\alpha . \beta$ defined on \mathcal{F} by

$$
\forall u \in \mathcal{F}, \quad(\alpha \beta)(u)=\left(\mu_{\mathbb{R}} \circ(\alpha \otimes \beta) \circ \Delta\right)(u)
$$

Example

$$
\begin{aligned}
& (\alpha . \beta)(\bigvee)=\mu_{\mathbb{R}} \circ(\alpha \otimes \beta)(\bigvee \otimes e+\cdots \otimes \circ+\cdots \otimes \boldsymbol{O}+\circ \otimes \boldsymbol{\sigma}+e \otimes \hat{\zeta})
\end{aligned}
$$

Outline

```
Problems and motivations
- General invariants encountered in physics
- Improved qualitative behavior of geometric integrators
Setting of the problem
- Invariant and volume preservation for split systems
- The Hopf algebra of coloured trees
- B-series and S-series for split vector fields
```

(3) Conditions for invariants-preservation

- Numerical methods preserving invariants
- The case of quadratic and cubic invariants
- B-series methods preserving all cubic invariants

Conditions for volume-preservation

- Volume-preserving B-series
- Connection with the preservation of cubic invariants
- volume preserving methods for split systems with a special stru From conditions for vector fields to conditionsefor integrawQrs

The action of a function / on a B-series

It can be viewed as S-series:

$$
I(B(a, y))=S(\alpha)\left[I \Longleftrightarrow \alpha \in \operatorname{Alg}(\mathcal{H}, \mathbb{R}) \text { and } \alpha_{\mid \mathcal{T}} \equiv a .\right.
$$

A B-series integrator $B(a, y)$ preserves $/$ iff

$$
\forall y \in \mathbb{R}^{n}, I(B(a, y))=I(y),
$$

i.e.

$$
S(\alpha)[I]=I,
$$

where α is the unique algebra-morphism extending a onto \mathcal{H}.

The annihilating left ideal $\mathcal{I}[/]$ of /

Using the assumption of a common invariant /

For $\nu=1, \ldots, N, X\left(\cdot{ }_{\nu}\right)[l]=(\nabla I) f^{[\nu]}=0$. Hence,

$$
\sum^{N} S\left(\omega_{\nu}\right)\left[h X\left(\cdot{ }_{\nu}\right)[I]\right]=S\left(\omega^{\prime}\right)[I]=0 .
$$

Lemma

For any $\left(\omega_{1}, \ldots, \omega_{N}\right) \in\left(\mathcal{H}^{*}\right)^{N}$, we have $\omega^{\prime}(e)=0$ and

$$
\forall u=t_{1} \cdots t_{m} \in \mathcal{F}, \quad \omega^{\prime}(u)=\sum_{i=1}^{m} \omega_{\mu\left(t_{i}\right)}\left(B^{-}\left(t_{i}\right) \prod_{j \neq i} t_{j}\right) .
$$

Numerical methods preserving invariants

Integrators preserving general invariants

Theorem

Let $\alpha \in \operatorname{Alg}(\mathcal{H}, \mathbb{R})$. Then α satisfies $S(\alpha)[I]=I$ that for all couples (f, I) of a vector field f and a first integral I, if and only if $\alpha(e)=1$ and α satisfies the condition

$$
\alpha\left(t_{1}\right) \cdots \alpha\left(t_{m}\right)=\sum_{j=1}^{m} \alpha\left(t_{j} \circ \prod_{i \neq j} t_{i}\right)
$$

for all $m \geq 2$ and all t_{i} 's in \mathcal{T}.

Theorem

Let $\beta \in \operatorname{VF}(\mathcal{H}, \mathbb{R})$. Then β satisfies $S(\beta)[I]=0$ that for all couples (f, I) if and only if α satisfies the condition

$$
0=\sum_{j=1}^{m} \beta\left(t_{j} \circ \prod_{i \neq j} t_{i}\right)
$$

For quadratic

first integral I, the condition becomes

$$
\forall\left(t_{1}, t_{2}\right) \in \mathcal{T}^{2}, \quad b\left(t_{1} \circ t_{2}\right)+b\left(t_{2} \circ t_{1}\right)=0
$$

while for cubic invariants I, one needs in addition that

$$
\forall\left(t_{1}, t_{2}, t_{3}\right) \in \mathcal{T}^{3}, \quad b\left(t_{1} \circ t_{2} t_{3}\right)+b\left(t_{2} \circ t_{1} t_{3}\right)+b\left(t_{3} \circ t_{1} t_{2}\right)=0
$$

Theorem

A B-series integrator that preserves all cubic polynomial invariants does in fact preserve polynomial invariants of any degree and can be formally interpreted as the exact flow of a vector field lying in the Lie-algebra generated by $f^{[1]}, \ldots, f^{[N]}$.

Outline

(1)

Problems and motivations

- General invariants encountered in physics
- Improved qualitative behavior of geometric integrators Setting of the problem
- Invariant and volume preservation for split systems
- The Hopf algebra of coloured trees
- B-series and S-series for split vector fields

Conditions for invariants-preservation

- Numerical methods preserving invariants
- The case of quadratic and cubic invariants
- B-series methods preserving all cubic invariants

4 Conditions for volume-preservation

- Volume-preserving B-series
- Connection with the preservation of cubic invariants
- volume preserving methods for split systems with a special stru

Split systems with zero-divergence

Divergence-free B-series

For systems of the form

$$
\dot{y}=\sum_{\nu=1}^{N} f^{[\nu]}(y) \text { with } \operatorname{div} f^{[\nu]}=0
$$

a B-series modified vector field is divergence free if

$$
\operatorname{div}\left(h \tilde{f}_{h}(y)\right)=\sum_{t \in \mathcal{T}} \frac{h^{|t|}}{\sigma(t)} b(t) \operatorname{div}(F(t)(y))=0
$$

Question

How to compute and represent the terms in $\operatorname{div}(F(t)(y) ?$

Volume-preserving B-series

A convenient formula for the derivative of an elementary differential

Notation

For $t=\left[t_{1}, \ldots, t_{l}\right]_{\nu} \in \mathcal{T}, \quad F^{*}(t)=\frac{\partial^{I+1} f^{[\nu]}}{\partial y^{\prime+1}}\left(F\left(t_{1}\right), \ldots, F\left(t_{l}\right)\right)$.

The formula

$$
\frac{d F(t)}{\sigma(t)}=\frac{F^{*}(t)}{\sigma(t)}+\sum_{t_{1} \hat{t}_{2}, \ldots o t_{m}=t} \frac{F^{*}\left(t_{1}\right)}{\sigma\left(t_{1}\right)} \frac{F^{*}\left(t_{2}\right)}{\sigma\left(t_{2}\right)} \cdots \frac{F^{*}\left(t_{m}\right)}{\sigma\left(t_{m}\right)} .
$$

The grafting operation is meant to operate from right to left.

$$
\frac{\operatorname{div}(F(t)}{\sigma(t)}=\frac{\operatorname{Tr}\left(F^{*}(t)\right)}{\sigma(t)}+\sum_{t_{1} \circ t_{2} \circ \cdots \circ t_{m}=t} \frac{\operatorname{Tr}\left(F^{*}\left(t_{1}\right) \ldots F^{*}\left(t_{m}\right)\right)}{\sigma\left(t_{1}\right) \ldots \sigma\left(t_{m}\right)}
$$

The set of aromatic trees $\mathcal{A T}$

Definition

An aromatic tree o is a coloured oriented graph with exactly one cycle, such that if all the arcs in the cycle are removed, then the resulting coloured oriented graph is identified with a forest $t_{1} \cdots t_{m}$. If the arcs of o that form the cycle go from the root of t_{i} to the root of $t_{i+1}(i=1, \ldots, m-1)$ and from the root of t_{m} to the root of t_{1} then we write $o=\left(t_{1} \cdots t_{m}\right)$. The set of aromatic trees is denoted $\mathcal{A T}$ and the set of n-th order aromatic trees $\mathcal{A} \mathcal{T}_{n}$.
$0=\underset{0 \rightarrow 0}{\substack{0 \\ 0 \rightarrow 0}}=\left(t_{1} t_{2} t_{1} t_{2}\right) \quad t_{1}=0 \rightarrow 0<0=$.

1-cuts of aromatic trees

Definition

For any aromatic tree $o=\left(t_{1} \ldots t_{m}\right) \in \mathcal{A T}, C(o)$ is the unordered list of trees obtained from o by breaking any edge of the cycle. If we denote for $i=1, \ldots, m$, $s_{i}=t_{i} \circ t_{i+1} \circ \ldots \circ t_{m} \circ t_{1} \circ \ldots \circ t_{i-1}$, then:

$$
\begin{equation*}
C(o)=\left\{s_{1}, \ldots, s_{m}\right\} . \tag{1}
\end{equation*}
$$

Now, let π_{m} be the circular permutation of $\{1, \ldots, m\}$ and let θ be
$\theta=\#\left\{I \in\{0, \ldots, m-1\}: \quad\left(t_{\pi_{m}^{\prime}(1)}, \ldots, t_{\pi_{m}^{\prime}(m)}\right)=\left(t_{1}, \ldots, t_{m}\right)\right\}$,
so that, for each i, there are θ copies of s_{i} in the list $C(o)$. Then the symmetry coefficient of o is defined as $\sigma(o)=\theta \prod_{i} \sigma\left(t_{i}\right)$.

Volume-preserving B-series

The list $C(0)=\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}$ for $0=\left(t_{1} t_{2} t_{1} t_{2}\right)$

Divergence of a B-series vector field

Definition (Elementary divergence)

The divergence div(o) associated with an aromatic tree $o=\left(t_{1} \ldots t_{m}\right)$ is defined by:

$$
\operatorname{div}(0)=\operatorname{Tr}\left(F^{*}\left(t_{1}\right) \ldots F^{*}\left(t_{m}\right)\right) .
$$

Collecting the terms

$$
\begin{aligned}
\operatorname{div}(B(b)) & =\sum_{t \in \mathcal{T}} b(t) h^{|t|} \sum_{m \geq 2} \sum_{t_{1} \cdots \cdots t_{m}=t} \frac{\operatorname{div}\left(\left(t_{1} \ldots t_{m}\right)\right)}{\sigma\left(t_{1}\right) \cdots \sigma\left(t_{m}\right)} \\
& =\sum_{n \geq 2} h^{n} \sum_{o \in \mathcal{A} \mathcal{T}_{n}}\left(\sum_{t \in C(o)} b(t)\right) \frac{\operatorname{div}(o)}{\sigma(o)} .
\end{aligned}
$$

Divergence-free conditions

Theorem

A modified field given by the B-series $B(b, y)$ is divergence-free up to order p if the following condition is satisfied:

$$
\sum_{t \in C(o)} b(t)=0 \text { for all } o \in \mathcal{A T} \text { with }|o| \leq p
$$

Example

For $0=\left(t_{1} t_{2} t_{1} t_{2}\right)$,

$$
2 b\left(t_{1} \circ t_{2} \circ t_{1} \circ t_{2}\right)+2 b\left(t_{2} \circ t_{1} \circ t_{2} \circ t_{1}\right)=0
$$

2-3 cycles conditions and conditions for quadratic/cubic invariants

(1) 2-cycles clearly coincide with the conditions for quadratic invariants.
(2) for 3-cycles conditions

$$
\begin{aligned}
0 & =b\left(t_{1} \circ t_{2} \circ t_{3}\right)+b\left(t_{2} \circ t_{1} \circ t_{3}\right)+b\left(t_{3} \circ t_{2} \circ t_{1}\right), \\
& =b\left(t_{1} \circ\left(t_{2} \circ t_{3}\right)\right)+b\left(t_{2} \circ\left(t_{1} \circ t_{3}\right)\right)+b\left(t_{3} \circ\left(t_{2} \circ t_{1}\right)\right), \\
& =-b\left(\left(t_{2} \circ t_{3}\right) \circ t_{1}\right)-b\left(\left(t_{1} \circ t_{3}\right) \circ t_{2}\right)-b\left(\left(t_{2} \circ t_{1}\right) \circ t_{3}\right), \\
& =-b\left(t_{2} \circ t_{1} t_{3}\right)-b\left(t_{1} \circ t_{2} t_{3}\right)-b\left(t_{2} \circ t_{1} t_{3}\right) .
\end{aligned}
$$

Theorem

A volume-preserving B-series integrator can be formally interpreted as the exact flow of a vector field lying in the Lie-algebra generated by $f^{[1]}, \ldots, f^{[N]}$.

The conditions for a special class of systems

3-cycle systems

$$
\left(\begin{array}{l}
\dot{p} \\
\dot{q} \\
\dot{r}
\end{array}\right)=\left(\begin{array}{c}
\mathcal{F}(q) \\
\mathcal{G}(r) \\
\mathcal{H}(p)
\end{array}\right)=f^{[1]}(q)+f^{[2]}(r)+f^{[3]}(p) .
$$

Black trees

For $u=\left[v_{1}, \ldots, v_{m}\right]$. , one has

$$
F^{*}(u)=\frac{\partial^{m+1} f^{[1]}}{\partial(p, q, r)^{m+1}}\left(F\left(v_{1}\right), \ldots, F\left(v_{m}\right)\right)=\left(\begin{array}{ccc}
0 & \times & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

The conditions for a special class of systems

3-cycle systems

$$
\left(\begin{array}{c}
\dot{p} \\
\dot{q} \\
\dot{r}
\end{array}\right)=\left(\begin{array}{c}
\mathcal{F}(q) \\
\mathcal{G}(r) \\
\mathcal{H}(p)
\end{array}\right)=f^{[1]}(q)+f^{[2]}(r)+f^{[3]}(p) .
$$

White trees

For $v=\left[w_{1}, \ldots, w_{n}\right]_{\circ}$, one has

$$
F^{*}(v)=\frac{\partial^{n+1} f^{[2]}}{\partial(p, q, r)^{n+1}}\left(F\left(w_{1}\right), \ldots, F\left(w_{n}\right)\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & \times \\
0 & 0 & 0
\end{array}\right) .
$$

The conditions for a special class of systems

3-cycle systems

$$
\left(\begin{array}{c}
\dot{p} \\
\dot{q} \\
\dot{r}
\end{array}\right)=\left(\begin{array}{c}
\mathcal{F}(q) \\
\mathcal{G}(r) \\
\mathcal{H}(p)
\end{array}\right)=f^{[1]}(q)+f^{[2]}(r)+f^{[3]}(p) .
$$

Square trees

For $w=\left[u_{1}, \ldots, u_{r}\right] \square$, one has

$$
F^{*}(w)=\frac{\partial^{r+1} f^{[3]}}{\partial(p, q, r)^{r+1}}\left(F\left(w_{1}\right), \ldots, F\left(w_{n}\right)\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
\times & 0 & 0
\end{array}\right) .
$$

The conditions for a special class of systems

3-cycle systems

$$
\left(\begin{array}{l}
\dot{p} \\
\dot{q} \\
\dot{r}
\end{array}\right)=\left(\begin{array}{c}
\mathcal{F}(q) \\
\mathcal{G}(r) \\
\mathcal{H}(p)
\end{array}\right)=f^{[1]}(q)+f^{[2]}(r)+f^{[3]}(p) .
$$

Consequence

$$
\operatorname{div}(o) \neq 0 \text { iff } o=\left(u_{1} v_{1} w_{1} u_{2} v_{2} w_{2} \ldots u_{m} v_{m} w_{m}\right), m \geq 1 .
$$

Volume-preserving RK-methods for 3-cycle systems

Theorem

A one-stage additive Runge-Kutta method formed of $\left(A^{[]]}, b^{[l]}\right)=\left(\theta_{i}, 1\right), i=1,2,3$, is volume-preserving for 3 -cycle systems iff

$$
\left(\theta_{1}-1\right)\left(\theta_{2}-1\right)\left(\theta_{3}-1\right)=\theta_{1} \theta_{2} \theta_{3}
$$

Example

An implicit "non-symplectic" RK-method

$$
\begin{aligned}
P & =p_{0}+\frac{h}{3} \mathcal{F}(Q) \quad p_{1}=p_{0}+h \mathcal{F}(Q) \\
Q & =q_{0}+\frac{4 h}{3} \mathcal{G}(R) \quad q_{1}=q_{0}+h \mathcal{G}(R) \\
R & =r_{0}+\frac{h}{3} \mathcal{H}(P) \quad p_{1}=p_{0}+h \mathcal{H}(P)
\end{aligned}
$$

Outline

1

Problems and motivations

- General invariants encountered in physics
- Improved qualitative behavior of geometric integrators Setting of the problem
- Invariant and volume preservation for split systems
- The Hopf algebra of coloured trees
- B-series and S-series for split vector fields
(3) Conditions for invariants-preservation
- Numerical methods preserving invariants
- The case of quadratic and cubic invariants
- B-series methods preserving all cubic invariants
(4) Conditions for volume-preservation
- Volume-preserving B-series
- Connection with the preservation of cubic invariants
- volume preserving methods for split systems with a special stru
(5) From conditions for vector fields to conditions for integrators

Substitution law

From integrators to vector fields and vice-versa

Backward error analysis

Back to the black forest

Though what follows is valid for multicoloured trees, for simplicity we now turn back to the monocolour situation.

Substitution law

From partitions and skeletons to the formula

Definition

Given a partition p of t, the corresponding skeleton χ_{p} is the tree obtained by contracting each tree of p to a single vertex and by re-establishing the cut edges.

Table: The 8 partitions of a tree of order 4 with associated skeleton and forest

p	\ddots							
x_{p}	\cdot	\ddots	\ddots	\ddots	\ddots	\ddots	\vdots	\ddots
v_{p}	\ddots	$\cdot \vartheta$	$\cdot \ddots$	$\cdot \ddots$	\cdots	$\cdots!$	$\cdots!$	\cdots

Theorem

For $b(\emptyset)=0$, the vector field $h^{-1} B_{f}(b, y)$ inserted into $B_{g}(a, y)$, i.e. with $g=h^{-1} B_{f}(b, y)$ gives a B-series

$$
B_{g}(a, y)=B_{f}(b \star a, y)
$$

We have $(b \star a)(\emptyset)=a(\emptyset)$ and for all $t \in \mathcal{T}$,

$$
(b \star a)(t)=\sum_{p \in \mathcal{P}(t)} a\left(\chi_{p}\right) b\left(v_{p}\right)
$$

Table: Substitution law \star for the first trees.

$$
\begin{aligned}
(b \star a)(\emptyset) & =a(\emptyset) \\
(b \star a)(\cdot) & =a(\cdot) b(\cdot) \\
(b \star a)(!) & =a(\cdot) b(!)+a(!) b(\cdot)^{2} \\
(b \star a)(\zeta) & =a(\cdot) b(\zeta)+2 a(!) b(\cdot) b(!)+a(\zeta) b(\cdot)^{3} \\
(b \star a)(!) & =a(\cdot) b(!)+2 a(!) b(\cdot) b(!)+a(!) b(\cdot)^{3}
\end{aligned}
$$

Remark

This law essentially coincides with the convolution product in the Hopf algebra of Calaque, Ebrahimi-Fard and Manchon.

Let ω denote the inverse element of $\frac{1}{\gamma}-\delta_{\emptyset}$ for \star. The backward error coefficients b can be computed as follows:

Backward error character ω

$$
\forall t \in \mathcal{T}, b(t)=\left(\left(a-\delta_{\emptyset}\right) \star \omega\right)(t) .
$$

Lemma

The coefficients ω satisfy the following relation for all m-uplets, $m \geq 2$, of trees $\left(u_{1}, \ldots, u_{m}\right) \in \mathcal{T}^{m}$:

$$
\sum_{\substack{I \cup J=\{1, \ldots, m\}, I \cap J=\emptyset}} \omega\left(x_{i \in I} u_{i} \circ \prod_{j \in J} u_{j}\right)=0,
$$

with the conventions $u \circ \emptyset=u$ and $\emptyset \circ u=\emptyset$.

From 1-cuts to multicuts

Let $a \in \operatorname{Alg}(\mathcal{H}, \mathbb{R})$ and $b \in \operatorname{VF}(\mathcal{H}, \mathbb{R})$. Then one has

$$
\begin{array}{r}
\forall o=\left(t_{1} \ldots t_{m}\right) \in \mathcal{A T}, \sum_{t \in C(o)} b(t)=0 \text { iff } \\
\forall o=\left(t_{1} \ldots t_{m}\right) \in \mathcal{A T}, \sum_{k=1}^{m}(-1)^{k+1} \sum_{t \in C_{k}(o)} a(u)=0 .
\end{array}
$$

Consider the case $m=3$, and, for instance, $o=\left(t_{1} t_{2} t_{3}\right)$. We have to compute

$$
b\left(t_{1} \circ t_{2} \circ t_{3}\right)+b\left(t_{2} \circ t_{3} \circ t_{1}\right)+b\left(t_{3} \circ t_{1} \circ t_{2}\right)
$$

in terms of the a 's. Given $\left(p_{1}, p_{2}, p_{3}\right)$ in $\mathcal{P}\left(t_{1}\right) \times \mathcal{P}\left(t_{2}\right) \times \mathcal{P}\left(t_{3}\right)$, a partition $p \in \mathcal{P}\left(t_{1} \circ t_{2} \circ t_{3}\right)$ is of the form

Table: Terms in the substitution law for $t_{1} \circ t_{2} \circ t_{3}$

p	$p_{1} \circ p_{2} \circ p_{3}$	$p_{1} \circ p_{2} \diamond p_{3}$	$p_{1} \diamond p_{2} \circ p_{3}$	$p_{1} \diamond p_{2} \diamond p_{3}$
χ_{p}	$\chi p_{1} \times \chi p_{2} \times \chi_{p_{3}}$	$\chi p_{1} \times \chi p_{2} \circ \chi_{p_{3}}$	$\chi p_{1} \circ \chi p_{2} \times \chi p_{3}$	$\chi p_{1} \circ \chi_{p_{2}} \circ \chi p_{3}$
v_{p}	$v_{p_{1}}^{*} v_{p_{2}}^{*} v_{p_{3}}^{*} r_{p_{1}} \circ r_{p_{2}} \circ r_{p_{3}}$	$v_{p_{1}}^{*} v_{p_{2}}^{*} v_{p_{3}}^{*}\left(r_{p_{1}} \circ r_{p_{2}}\right) r_{p_{3}}$	$v_{p_{1}}^{*} v_{p_{2}}^{*} v_{p_{3}}^{*} r_{p_{1}}\left(r_{p_{2}} \circ r_{p_{3}}\right)$	$v_{p_{1}}^{*} v_{p_{2}}^{*} v_{p_{3}}^{*} r_{p_{1}} r_{p_{2}} r_{p_{3}}$

Hence,

$$
\begin{array}{r}
b\left(t_{1} \circ t_{2} \circ t_{3}\right)=\sum_{\left(p_{1}, p_{2}, p_{3}\right)} a\left(v_{p_{1}}^{*} v_{p_{2}}^{*} v_{p_{3}}^{*}\right) \times \\
\left(\omega\left(\chi_{p_{1}} \times \chi_{p_{2}} \times \chi_{p_{3}}\right) a\left(r_{p_{1}} \circ r_{p_{2}} \circ r_{p_{3}}\right)\right. \\
1 \text {-cut term } \\
+\omega\left(\chi_{p_{1}} \times \chi_{p_{2}} \circ \chi_{p_{3}}\right) a\left(r_{p_{1}} \circ r_{p_{2}}\right) a\left(r_{p_{3}}\right) \\
+\omega\left(\chi_{p_{1}} \circ \chi_{p_{2}} \times \chi_{p_{3}}\right) a\left(r_{p_{1}}\right) a\left(r_{p_{2}} \circ r_{p_{3}}\right) \\
\text { 2-cut term } \\
+\omega\left(\chi_{p_{1}} \circ \chi_{p_{2}} \circ \chi_{p_{3}}\right) a\left(r_{p_{1}}\right) a\left(r_{p_{2}}\right) a\left(r_{p_{3}}\right) \\
\text { 3-cut term })
\end{array}
$$

For $b\left(t_{1} \circ t_{2} \circ t_{3}\right)+b\left(t_{2} \circ t_{3} \circ t_{1}\right)+b\left(t_{3} \circ t_{1} \circ t_{2}\right)$ we get:
1-cut terms

$$
\omega\left(\chi_{p_{1}} \times \chi_{p_{2}} \times \chi_{p_{3}}\right)\left(a\left(r_{p_{1}} \circ r_{p_{2}} \circ r_{p_{3}}\right)+a\left(r_{p_{2}} \circ r_{p_{3}} \circ r_{p_{1}}\right)+a\left(r_{p_{3}} \circ r_{p_{1}} \circ r_{p_{2}}\right)\right) .
$$

2-cut terms

$$
a\left(r_{p_{3}}\right) a\left(r_{p_{1}} \circ r_{p_{2}}\right)\left(\omega\left(\chi_{p_{1}} \times \chi_{p_{2}} \circ \chi_{p_{3}}\right)+\omega\left(\chi_{p_{3}} \circ \chi_{p_{1}} \times \chi_{p_{2}}\right)\right)+\ldots
$$

where

$$
\omega\left(\chi_{p_{1}} \times \chi_{p_{2}} \circ \chi_{p_{3}}\right)+\omega\left(\chi_{p_{3}} \circ \chi_{p_{1}} \times \chi_{p_{2}}\right)=-\omega\left(\chi_{p_{1}} \times \chi_{p_{2}} \times \chi_{p_{3}}\right)
$$

3-cut terms

$$
\begin{aligned}
& a\left(r_{p_{1}}\right) a\left(r_{p_{2}}\right) a\left(r_{p_{3}}\right)\left(\omega\left(\chi_{p_{1}} \circ \chi_{p_{2}} \circ \chi_{p_{3}}\right)+\omega\left(\chi_{p_{2}} \circ \chi_{p_{3}} \circ \chi_{p_{1}}\right)+\omega\left(\chi_{p_{3}} \circ \chi_{p_{1}} \circ \chi_{p_{2}}\right)\right) \\
& \text { i.e., } a\left(r_{p_{1}}\right) a\left(r_{p_{2}}\right) a\left(r_{p_{3}}\right) \omega\left(\chi_{p_{1}} \times \chi_{p_{2}} \times \chi_{p_{3}}\right) .
\end{aligned}
$$

THIS IS THE END

