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General invariants encountered in physics

Examples of first integrals

Conservation of energy in Hamiltonian systems

Hamiltonian system

ṗ = −
∂H
∂q

, q̇ =
∂H
∂p

.

Theorem
d
dt H(p, q) = ∂H

∂p ṗ + ∂H
∂q q̇ = 0 hence H(p, q) = Const
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General invariants encountered in physics

Examples of first integrals

Conservation of energy in Hamiltonian systems

Conservation of total and angular momentum in N-Body
systems

N-Body system

ṗi = −
N

∑

j=1

νij(qi − qj), q̇i =
pi

mi
ν symmetric

Theorem
∑N

i=1 pi = Const and
∑N

i=1 qi × pi = Const
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General invariants encountered in physics

Examples of first integrals

Conservation of energy in Hamiltonian systems

Conservation of total and angular momentum in N-Body
systems

Conservation of mass in chemical reactions

Chemical reactions

A
k1→ B ẏ1 = −k1y1 + k3y2y3

B + B
k2→ B + C ẏ2 = k1y1 − k3y2y3 − k2y2

2

B + C
k3→ A + C ẏ3 = k2y2

2

Theorem
d
dt (y1 + y2 + y3) = 0 hence I(y) = y1 + y2 + y2 = Const.
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General invariants encountered in physics

Examples of first integrals

Conservation of energy in Hamiltonian systems

Conservation of total and angular momentum in N-Body
systems

Conservation of mass in chemical reactions

Conservation of the spectrum by matrix flows

Isospectral matrix equations

L̇ = B(L) L − L B(L) with B(L) skew-symmetric.

Theorem

Let U̇ = B(L(t))U, U(0) = I. Then, L(t) = U(t)L0U(t)−1.
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General invariants encountered in physics

Examples of first integrals

Conservation of energy in Hamiltonian systems

Conservation of total and angular momentum in N-Body
systems

Conservation of mass in chemical reactions

Conservation of the spectrum by matrix flows

Conservation of volume in divergence-free systems

Divergence-free system

ẏ = f (y) with div(f ) = 0.

Theorem

The flow ϕt preserves the volume, i.e.
∫

ϕt (A) dy =
∫

A dy.



logo

Problems and motivations Setting of the problem Conditions for invariants-preservation Conditions for volume-preservation

Improved qualitative behavior of geometric integrators

A prey-predator model in normal form

U̇ = eV − 2 = f (V )

V̇ = 1 − eU = g(U)
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3
Lotka−Volterra equations in normal form: explicit Euler method

U

V
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Improved qualitative behavior of geometric integrators

A prey-predator model in normal form

U̇ = eV − 2 = f (V )

V̇ = 1 − eU = g(U)
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Lotka−Volterra equations in normal form: implicit Euler method
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V
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Improved qualitative behavior of geometric integrators

2-D Kepler Problem

H(p, q) =
1
2

pT p −
1

√

qT q
= T (p) + V (q) ⇐⇒ q̈ = −V ′(q).

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
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3

q1

q2

Euler explicit/implicit
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Improved qualitative behavior of geometric integrators

2-D Kepler Problem

H(p, q) =
1
2

pT p −
1

√

qT q
= T (p) + V (q) ⇐⇒ q̈ = −V ′(q).
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Midpoint Rule
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Improved qualitative behavior of geometric integrators

2-D Kepler Problem

H(p, q) =
1
2

pT p −
1

√

qT q
= T (p) + V (q) ⇐⇒ q̈ = −V ′(q).
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Invariant and volume preservation for split systems

The two classes of problems considered

We consider systems of ODEs of the form

Split vector fields systems

ẏ = f [1](y) + f [2](y) + . . . + f [N](y),

such that each individual vector field has the invariant function I

Common Invariant

0 = (∇y I(y))T f [ν](y), ν = 1, . . . , N,
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Invariant and volume preservation for split systems

The two classes of problems considered

We consider systems of ODEs of the form

Split vector fields systems

ẏ = f [1](y) + f [2](y) + . . . + f [N](y),

or preserves the volume form

Divergence-free

0 = div f [ν](y), ν = 1, . . . , N



logo

Problems and motivations Setting of the problem Conditions for invariants-preservation Conditions for volume-preservation

Invariant and volume preservation for split systems

Invariant preserving integrators

A one-step method

is a map from the phase-space to itself, which, given an
approximation y of the solution at time t , produces an
approximation Φf

h at time t + h.

The modified vector field

associated to a numerical integrator Φf
h is the vector field f̃h

such that the exact solution of ż = f̃h(z), z(t) = y at time t + h
is Φf

h(y).

Invariant-preserving integrators(1)

Φf
h preserves I if I

(

Φf
h(y)

)

= I(y) for any y .
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Invariant and volume preservation for split systems

Invariant preserving integrators

A one-step method

is a map from the phase-space to itself, which, given an
approximation y of the solution at time t , produces an
approximation Φf

h at time t + h.

The modified vector field

associated to a numerical integrator Φf
h is the vector field f̃h

such that the exact solution of ż = f̃h(z), z(t) = y at time t + h
is Φf

h(y).

Invariant-preserving integrators(2)

Φf
h preserves I if

(

∇I(y)
)T f̃h(y) = 0 for any y .
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Invariant and volume preservation for split systems

Volume-preserving integrators

A one-step method

is a map from the phase-space to itself, which, given an
approximation y of the solution at time t , produces an
approximation Φf

h(y) at time t + h.

The modified vector field

associated to a numerical integrator Φf
h is the vector field f̃h

such that the exact solution of ż = f̃h(z), z(t) = y at time t + h
is Φf

h(y).

Volume-preserving integrators(1)

Φf
h preserves the volume if det

(

∂Φf
h(y)

∂y

)

= 1 for any y .
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Invariant and volume preservation for split systems

Volume-preserving integrators

A one-step method

is a map from the phase-space to itself, which, given an
approximation y of the solution at time t , produces an
approximation Φf

h(y) at time t + h.

The modified vector field

associated to a numerical integrator Φf
h is the vector field f̃h

such that the exact solution of ż = f̃h(z), z(t) = y at time t + h
is Φf

h(y).

Volume-preserving integrators(2)

Φf
h preserves the volume if div

(

f̃h(y)
)

= 0 for any y .
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Invariant and volume preservation for split systems

Volume-preserving integrators

A one-step method

is a map from the phase-space to itself, which, given an
approximation y of the solution at time t , produces an
approximation Φf

h(y) at time t + h.

The modified vector field

associated to a numerical integrator Φf
h is the vector field f̃h

such that the exact solution of ż = f̃h(z), z(t) = y at time t + h
is Φf

h(y).

The conditions for preserving the volume are easier to obtain in
terms of the modified vector field.
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The Hopf algebra of coloured trees

Trees and forests [Merson 57, Butcher 68]

Definition
The set of trees T and forests F are defined recursively by:

1 e ∈ F

2 if t1, . . . , tn ∈ T n, then u = t1 . . . tn ∈ F

3 if u ∈ F and ν ∈ {1, . . . , N}, then t = [u]ν = B+
ν (u) ∈ T .

Example

B+
1 ( ) =

[ ]

1
= and B+

2 ( ) =
[ ]

2
=

B−( ) = and B−( ) =
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The Hopf algebra of coloured trees

Order and symmetry

Definition

Consider n distinct trees t1, ..., tn and let u = t r1
1 . . . t rn

n and
t = [u]ν . Then,

|t | = 1 + |u| = 1 + r1|t1| + . . . + rn|tn|

σ(u) = r1! . . . rn! (σ(t1))r1 . . . (σ(tn))rn and σ(t) = σ(u)

Example

Forest u 3

Order |u| 4 11 17 11
Symmetry σ(u) 2! 1! 3! 1! 3!(2!)3 2! 3! 1! 1!
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The Hopf algebra of coloured trees

Structure (Connes and Kreimer 98, Brouder 04)

Definition
The set F can be naturally endowed with an algebra structure
H on R:

∀ (u, v) ∈ F2,∀ (λ, µ) ∈ R
2, λu + µv ∈ H,

∀ (u, v) ∈ F2, u v ∈ H (note that uv = vu),

∀ u ∈ F , u e = e u = u.

Calculus in H

(2 + 3 )( − + 8 ) = 2 − 2 + 16

+ 3 − 3 + 24
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The Hopf algebra of coloured trees

The co-product

Definition
The tensor product of H with itself is the set of elements of the
form u ⊗ v such that for all (u, v , w , x) ∈ H4 and all (λ, µ) ∈ R

2:

(λu + µv) ⊗ w = λ(u ⊗ w) + µ(v ⊗ w),

w ⊗ (λu + µv) = λ(w ⊗ u) + µ(w ⊗ v),

(u ⊗ v)(w ⊗ x) = (uw ⊗ vx).

Definition
The co-product ∆ is a morphism from H to H⊗H defined by:

1 ∆(e) = e ⊗ e,
2 ∀ t ∈ T , ∆(t) = t ⊗ e + (idH ⊗ B+

µ(t)) ◦ ∆ ◦ B−(t),

3 ∀ u = t1 . . . tn ∈ F , ∆(u) = ∆(t1) . . . ∆(tn).
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The Hopf algebra of coloured trees

The co-product

Example

∆( ) = ⊗ e + (id ⊗ B+
2 )∆( )

= ⊗ e + (id ⊗ B+
2 )∆( )∆( )

= ⊗ e + (id ⊗ B+
2 ) ( ⊗ e + e ⊗ ) ( ⊗ e + e ⊗ )

= ⊗ e

+(id ⊗ B+
2 )

(

⊗ e + ⊗ + ⊗ + e ⊗
)

= ⊗ e + ⊗ + ⊗ + ⊗ + e ⊗
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B-series and S-series for split vector fields

Elementary differentials

Definition
Let t be a tree of T . The elementary differential F (t) associated
with t is the mapping from R

n to R
n, defined by:

1 F ( ν)(y) = f [ν](y),

2 F ([t1, . . . , tn]ν)(y) =
(

f [ν]
)(n)

(y)
(

F (t1)(y), . . . , F (tn)(y)
)

.

Example

F ( ) =
(

f [1]
)′

f [2]

F ( ) =
(

f [2]
)′′

(y)
(

f [1], f [2]
)

F ( ) =
(

f [1]
)′ (

f [2]
)′

f [1]
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B-series and S-series for split vector fields

Elementary differential operators

Definition
Let u = t1 . . . tk be a forest of F . The differential operator X (u)
associated with u is defined on D = C∞(Rn; Rm) by:

X (u) : D → D

g 7→ X (u)[g] = g(k)
(

F (t1), . . . , F (tk )
)

.

Example

X (e)[g] = g
X ( )[g] = g′f [1]

X ( )[g] = g′
(

f [1]
)′

f [2]

X ( )[g] = g(3)
(

(

f [1]
)′

f [1], f [2], f [1]
)
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B-series and S-series for split vector fields

B-series and S-series

Definition (B-Series (Hairer and Wanner 74))

Let a : T → R. The B-series B(a, y) is the formal series:

B(a, y) = a(e)y +
∑

t∈T

h|t|

σ(t)
a(t)F (t)

Example (Implicit/Explicit Euler)

y1 = y0 + h
(

f [1](y1) + f [2](y0)
)

= y0 + hF ( )(y0) + hF ( )(y0) + h2F ( )(y0) + h2F ( )(y0)

+ . . .
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B-series and S-series for split vector fields

B-series and S-series

Definition (Series of differential operators)

Let α : F → R. The S-series S(α) is the formal series

S(α)[g] =
∑

u∈F

h|u|

σ(u)
α(u)X (u)[g]

Example (Implicit/Explicit Euler)

g(y1) = g
(

y0 + hf [1](y1) + hf [2](y0)
)

= X (e)[g] + h(X ( )[g] + X ( )[g]) + h2(X ( )[g] + X ( )[g])

+
h2

2

(

X ( 2)[g] + 2X ( )[g] + X ( 2)[g]
)

+ . . .
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B-series and S-series for split vector fields

Composition of series and co-product in H

Theorem (Composition of B-series)

Let a and b be two mappings from T to R. The composition of
the two B-series B(a, y) and B(b, y), i.e. B(b, B(a, y)), is again
a B-series B(a.b, y), with coefficients a.b defined on T by

∀ t ∈ T , (a.b)(t) = (µR ◦ (a ⊗ b) ◦ ∆)(t).

Example

(a.b)( ) = µR ◦ (a ⊗ b)
“

⊗ e + ⊗ + ⊗ + ⊗ + e ⊗

”

= a( )b(e) + a( )a( )b( ) + a( )b( ) + a( )b( ) + a(e)b( )
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B-series and S-series for split vector fields

Composition of series and co-product in H

Theorem (Composition of S-series)

Let α and β be two mappings from F to R. The composition of
the two S-series S(α) and S(β), i.e. S(α)[S(β)[.]] is again a
S-series, with coefficients α.β defined on F by

∀ u ∈ F , (αβ)(u) = (µR ◦ (α ⊗ β) ◦ ∆)(u).

Example

(α.β)( ) = µR ◦ (α ⊗ β)
“

⊗ e + ⊗ + ⊗ + ⊗ + e ⊗

”

= α( )β(e) + α( )β( ) + α( )β( ) + α( )β( ) + α(e)β( )
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Numerical methods preserving invariants

The action of a function I on a B-series
It can be viewed as S-series:

I(B(a, y)) = S(α)[I] ⇐⇒ α ∈ Alg(H, R) and α|T ≡ a.

A B-series integrator B(a, y) preserves I iff

∀ y ∈ R
n, I

(

B(a, y)
)

= I(y),

i.e.

S(α)[I] = I,

where α is the unique algebra-morphism extending a onto H.
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Numerical methods preserving invariants

The annihilating left ideal I[I] of I

Using the assumption of a common invariant I

For ν = 1, . . . , N, X ( ν)[I] = (∇I)f [ν] = 0. Hence,

N
∑

ν=1

S(ων)[hX ( ν)[I]] = S(ω′)[I] = 0.

Lemma

For any (ω1, . . . , ωN) ∈ (H∗)N , we have ω′(e) = 0 and

∀ u = t1 · · · tm ∈ F , ω′(u) =

m
∑

i=1

ωµ(ti )

(

B−(ti )
∏

j 6=i

tj
)

.
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Numerical methods preserving invariants

Integrators preserving general invariants

Theorem

Let α ∈ Alg(H, R). Then α satisfies S(α)[I] = I that for all
couples (f , I) of a vector field f and a first integral I, if and only if
α(e) = 1 and α satisfies the condition

α(t1) · · ·α(tm) =
∑m

j=1 α(tj ◦
∏

i 6=j ti)

for all m ≥ 2 and all ti ’s in T .

Theorem

Let β ∈ VF(H, R). Then β satisfies S(β)[I] = 0 that for all
couples (f , I) if and only if α satisfies the condition

0 =
∑m

j=1 β(tj ◦
∏

i 6=j ti)

for all m ≥ 2 and all t ’s in T .
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The case of quadratic and cubic invariants

For quadratic

first integral I, the condition becomes

∀ (t1, t2) ∈ T 2, b(t1 ◦ t2) + b(t2 ◦ t1) = 0.

while for cubic invariants I, one needs in addition that

∀ (t1, t2, t3) ∈ T 3, b(t1 ◦ t2t3) + b(t2 ◦ t1t3) + b(t3 ◦ t1t2) = 0

Theorem
A B-series integrator that preserves all cubic polynomial
invariants does in fact preserve polynomial invariants of any
degree and can be formally interpreted as the exact flow of a
vector field lying in the Lie-algebra generated by f [1], . . . , f [N].
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Split systems with zero-divergence

Divergence-free B-series

For systems of the form

ẏ =
∑N

ν=1 f [ν](y) with divf [ν] = 0,

a B-series modified vector field is divergence free if

div(hf̃h(y)) =
∑

t∈T

h|t|

σ(t)
b(t)div(F (t)(y)) = 0.

Question
How to compute and represent the terms in div(F (t)(y)?
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Volume-preserving B-series

A convenient formula for the derivative of an
elementary differential

Notation

For t = [t1, . . . , tl ]ν ∈ T , F ∗(t) =
∂ l+1f [ν]

∂y l+1

(

F (t1), . . . , F (tl )
)

.

The formula

dF (t)
σ(t)

=
F ∗(t)
σ(t)

+
∑

t1◦t2◦···◦tm=t

F ∗(t1)
σ(t1)

F ∗(t2)
σ(t2)

. . .
F ∗(tm)

σ(tm)
.

The grafting operation is meant to operate from right to left.

div(F (t)
σ(t) =

Tr
(

F∗(t)
)

σ(t) +
∑

t1◦t2◦···◦tm=t
Tr

(

F∗(t1)...F∗(tm)
)

σ(t1)...σ(tm) .
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Volume-preserving B-series

The set of aromatic trees AT

Definition
An aromatic tree o is a coloured oriented graph with exactly one
cycle, such that if all the arcs in the cycle are removed, then the
resulting coloured oriented graph is identified with a forest
t1 · · · tm. If the arcs of o that form the cycle go from the root of ti
to the root of ti+1 (i = 1, . . . , m−1) and from the root of tm to the
root of t1 then we write o = (t1 · · · tm). The set of aromatic trees
is denoted AT and the set of n-th order aromatic trees AT n.

o = = (t1t2t1t2) t1 = = , t2 = = .
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Volume-preserving B-series

1-cuts of aromatic trees

Definition
For any aromatic tree o = (t1 . . . tm) ∈ AT , C(o) is the
unordered list of trees obtained from o by breaking any edge of
the cycle. If we denote for i = 1, . . . , m,
si = ti ◦ ti+1 ◦ . . . ◦ tm ◦ t1 ◦ . . . ◦ ti−1, then:

C(o) = {s1, . . . , sm}. (1)

Now, let πm be the circular permutation of {1, . . . , m} and let θ

be

θ = #
{

l ∈ {0, . . . , m − 1} : (tπl
m(1), . . . , tπl

m(m)) = (t1, . . . , tm)
}

,

so that, for each i , there are θ copies of si in the list C(o). Then
the symmetry coefficient of o is defined as σ(o) = θ

∏

i σ(ti).
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Volume-preserving B-series

The list C(o) = {s1, s2, s3, s4} for o = (t1t2t1t2)

s1 = = = t1 ◦ t2 ◦ t1 ◦ t2,

s2 = = = t2 ◦ t1 ◦ t2 ◦ t1,

s3 = = = t1 ◦ t2 ◦ t1 ◦ t2,

s4 = = t2 ◦ t1 ◦ t2 ◦ t1 = .
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Volume-preserving B-series

Divergence of a B-series vector field

Definition (Elementary divergence)

The divergence div(o) associated with an aromatic tree
o = (t1 . . . tm) is defined by:

div(o) = Tr
(

F ∗(t1) . . . F ∗(tm)
)

.

Collecting the terms

div
(

B(b)
)

=
∑

t∈T

b(t)h|t|
∑

m≥2

∑

t1◦···◦tm=t

div
(

(t1 . . . tm)
)

σ(t1) · · · σ(tm)

=
∑

n≥2

hn
∑

o∈AT n

(

∑

t∈C(o)

b(t)
)div(o)

σ(o)
.
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Volume-preserving B-series

Divergence-free conditions

Theorem
A modified field given by the B-series B(b, y) is divergence-free
up to order p if the following condition is satisfied:

∑

t∈C(o)

b(t) = 0 for all o ∈ AT with |o| ≤ p.

Example

For o = (t1t2t1t2),

2b(t1 ◦ t2 ◦ t1 ◦ t2) + 2b(t2 ◦ t1 ◦ t2 ◦ t1) = 0.
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Connection with the preservation of cubic invariants

2-3 cycles conditions and conditions for quadratic/cubic
invariants

1 2-cycles clearly coincide with the conditions for quadratic
invariants.

2 for 3-cycles conditions

0 = b(t1 ◦ t2 ◦ t3) + b(t2 ◦ t1 ◦ t3) + b(t3 ◦ t2 ◦ t1),

= b(t1 ◦ (t2 ◦ t3)) + b(t2 ◦ (t1 ◦ t3)) + b(t3 ◦ (t2 ◦ t1)),

= −b((t2 ◦ t3) ◦ t1) − b((t1 ◦ t3) ◦ t2) − b((t2 ◦ t1) ◦ t3),

= −b(t2 ◦ t1t3) − b(t1 ◦ t2t3) − b(t2 ◦ t1t3).

Theorem

A volume-preserving B-series integrator can be formally
interpreted as the exact flow of a vector field lying in the
Lie-algebra generated by f [1], . . . , f [N].
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volume preserving methods for split systems with a special s tructure

The conditions for a special class of systems

3-cycle systems





ṗ
q̇
ṙ



 =





F(q)
G(r)
H(p)



 = f [1](q) + f [2](r) + f [3](p).

Black trees
For u = [v1, . . . , vm] , one has

F ∗(u) =
∂m+1f [1]

∂(p, q, r)m+1

(

F (v1), . . . , F (vm)
)

=





0 × 0
0 0 0
0 0 0



 .
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volume preserving methods for split systems with a special s tructure

The conditions for a special class of systems

3-cycle systems





ṗ
q̇
ṙ



 =





F(q)
G(r)
H(p)



 = f [1](q) + f [2](r) + f [3](p).

White trees
For v = [w1, . . . , wn] , one has

F ∗(v) =
∂n+1f [2]

∂(p, q, r)n+1

(

F (w1), . . . , F (wn)
)

=





0 0 0
0 0 ×
0 0 0



 .
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volume preserving methods for split systems with a special s tructure

The conditions for a special class of systems

3-cycle systems





ṗ
q̇
ṙ



 =





F(q)
G(r)
H(p)



 = f [1](q) + f [2](r) + f [3](p).

Square trees

For w = [u1, . . . , ur ]�, one has

F ∗(w) =
∂r+1f [3]

∂(p, q, r)r+1

(

F (w1), . . . , F (wn)
)

=





0 0 0
0 0 0
× 0 0



 .
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volume preserving methods for split systems with a special s tructure

The conditions for a special class of systems

3-cycle systems





ṗ
q̇
ṙ



 =





F(q)
G(r)
H(p)



 = f [1](q) + f [2](r) + f [3](p).

Consequence

div(o) 6= 0 iff o = (u1v1w1u2v2w2 . . . umvmwm), m ≥ 1.
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volume preserving methods for split systems with a special s tructure

Volume-preserving RK-methods for 3-cycle
systems

Theorem
A one-stage additive Runge-Kutta method formed of
(A[i ], b[i ]) = (θi , 1), i = 1, 2, 3, is volume-preserving for 3-cycle
systems iff

(θ1 − 1)(θ2 − 1)(θ3 − 1) = θ1θ2θ3.

Example

An implicit ”non-symplectic” RK-method

P = p0 + h
3F(Q) p1 = p0 + hF(Q)

Q = q0 + 4h
3 G(R) q1 = q0 + hG(R)

R = r0 + h
3H(P) p1 = p0 + hH(P)
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Outline
1 Problems and motivations

General invariants encountered in physics
Improved qualitative behavior of geometric integrators

2 Setting of the problem
Invariant and volume preservation for split systems
The Hopf algebra of coloured trees
B-series and S-series for split vector fields

3 Conditions for invariants-preservation
Numerical methods preserving invariants
The case of quadratic and cubic invariants
B-series methods preserving all cubic invariants

4 Conditions for volume-preservation
Volume-preserving B-series
Connection with the preservation of cubic invariants
volume preserving methods for split systems with a special structure

5 From conditions for vector fields to conditions for integrat ors
Substitution law
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Substitution law

From integrators to vector fields and vice-versa

q

1

BACKWARD ERROR ANALYSIS

ẏ = f (y)

ż = fh(z)

z(0), z(h), z(2h), . . .

=

y0, y1, y2, y3, . . .

numericalmethod

exact

solution

Back to the black forest
Though what follows is valid for multicoloured trees, for
simplicity we now turn back to the monocolour situation.
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Substitution law

From partitions and skeletons to the formula

Definition
Given a partition p of t , the corresponding skeleton χp is the
tree obtained by contracting each tree of p to a single vertex
and by re-establishing the cut edges.

Table: The 8 partitions of a tree of order 4 with associated skeleton
and forest

p

χp

vp
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Substitution law

Theorem

For b(∅) = 0, the vector field h−1Bf (b, y) inserted into Bg(a, y),
i.e. with g = h−1Bf (b, y) gives a B-series

Bg(a, y) = Bf (b ⋆ a, y).

We have (b ⋆ a)(∅) = a(∅) and for all t ∈ T ,

(b ⋆ a)(t) =
∑

p∈P(t)

a(χp)b(vp).
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Substitution law

Table: Substitution law ⋆ for the first trees.

(b ⋆ a)(∅) = a(∅)

(b ⋆ a)( ) = a( )b( )

(b ⋆ a)( ) = a( )b( ) + a( )b( )2

(b ⋆ a)( ) = a( )b( ) + 2a( )b( )b( ) + a( )b( )3

(b ⋆ a)( ) = a( )b( ) + 2a( )b( )b( ) + a( )b( )3

Remark
This law essentially coincides with the convolution product in
the Hopf algebra of Calaque, Ebrahimi-Fard and Manchon.
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The character ω and its role

Let ω denote the inverse element of 1
γ
− δ∅ for ⋆. The backward

error coefficients b can be computed as follows:

Backward error character ω

∀t ∈ T , b(t) = ((a − δ∅) ⋆ ω)(t).

Lemma
The coefficients ω satisfy the following relation for all m-uplets,
m ≥ 2, of trees (u1, . . . , um) ∈ T m:

∑

I ∪ J = {1, . . . , m},
I ∩ J = ∅

ω
(

×i∈I ui ◦
∏

j∈J

uj

)

= 0,

with the conventions u ◦ ∅ = u and ∅ ◦ u = ∅.
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The character ω and its role

From 1-cuts to multicuts
Let a ∈ Alg(H, R) and b ∈ VF(H, R). Then one has

∀o = (t1 . . . tm) ∈ AT ,
∑

t∈C(o)

b(t) = 0 iff

∀o = (t1 . . . tm) ∈ AT ,

m
∑

k=1

(−1)k+1
∑

t∈Ck (o)

a(u) = 0.
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The character ω and its role

Consider the case m = 3, and, for instance, o = (t1t2t3). We
have to compute

b(t1 ◦ t2 ◦ t3) + b(t2 ◦ t3 ◦ t1) + b(t3 ◦ t1 ◦ t2)

in terms of the a’s. Given (p1, p2, p3) in P(t1) × P(t2) × P(t3), a
partition p ∈ P(t1 ◦ t2 ◦ t3) is of the form

Table: Terms in the substitution law for t1 ◦ t2 ◦ t3

p p1 ◦ p2 ◦ p3 p1 ◦ p2 ⋄ p3 p1 ⋄ p2 ◦ p3 p1 ⋄ p2 ⋄ p3
χp χp1 × χp2 × χp3 χp1 × χp2 ◦ χp3 χp1 ◦ χp2 × χp3 χp1 ◦ χp2 ◦ χp3
vp v∗p1

v∗p2
v∗p3

rp1 ◦ rp2 ◦ rp3 v∗p1
v∗p2

v∗p3
(rp1 ◦ rp2 )rp3 v∗p1

v∗p2
v∗p3

rp1 (rp2 ◦ rp3 ) v∗p1
v∗p2

v∗p3
rp1 rp2 rp3
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The character ω and its role

Hence,

b(t1 ◦ t2 ◦ t3) =
∑

(p1,p2,p3)

a(v∗
p1

v∗
p2

v∗
p3

) ×

(

ω(χp1 × χp2 × χp3)a(rp1 ◦ rp2 ◦ rp3) 1-cut term

+ω(χp1 × χp2 ◦ χp3)a(rp1 ◦ rp2)a(rp3) 2-cut term

+ω(χp1 ◦ χp2 × χp3)a(rp1)a(rp2 ◦ rp3) 2-cut term

+ω(χp1 ◦ χp2 ◦ χp3)a(rp1)a(rp2)a(rp3) 3-cut term
)
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The character ω and its role

For b(t1 ◦ t2 ◦ t3) + b(t2 ◦ t3 ◦ t1) + b(t3 ◦ t1 ◦ t2) we get:

1-cut terms

ω(χp1×χp2×χp3)
(

a(rp1◦rp2◦rp3)+a(rp2◦rp3◦rp1)+a(rp3◦rp1◦rp2)
)

.

2-cut terms

a(rp3)a(rp1 ◦ rp2)
(

ω(χp1 × χp2 ◦ χp3) + ω(χp3 ◦ χp1 × χp2)
)

+ . . .

where
ω(χp1 × χp2 ◦ χp3) + ω(χp3 ◦ χp1 × χp2) = −ω(χp1 × χp2 × χp3)

3-cut terms
a(rp1)a(rp2 )a(rp3)

(

ω(χp1 ◦χp2◦χp3)+ω(χp2 ◦χp3 ◦χp1)+ω(χp3 ◦χp1 ◦χp2)
)

i.e., a(rp1)a(rp2)a(rp3)ω(χp1 × χp2 × χp3).
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The character ω and its role

THIS IS THE END
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