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Abstract - This paper describes a numerical method to simulate the debonding of adhesively bonded joints.
Assuming that the adhesive thickness and the adhesive Young’s modulus are small with respect to the character-
istic length of the joint and to the Young’s modulus of the adherents, a simplified model is derived in the case of
large displacements using the asymptotic expansion technique. Then, the problem of the crack growth is stated,
in the case of a stable growth, as the search of the local minima of the total energy of the joint, sum of the
mechanical energy and the Griffith’s fracture energy. This is made using the Newton’s method. To this end, the
expressions of the first and second derivatives of the mechanical energy with respect to a crack front displace-
ment are derived analytically. Finally, numerical examples are presented, highlighting the unstable character of
the crack growth at initiation.

Keywords: bonded joint; brittle fracture mechanics; numerical analysis

1 Introduction

Both civil and military aircraft structures are made of complex assemblies. For such structures, the
main used technique for bonding is the riveting. Unfortunately, when applied to composite materials
structural elements, riveting leads to stress concentrations near the holes which are responsible for
delamination. Another attractive technique, essentially considered at the moment for repair, is the
gluing. If it avoids the piercing of the composite, it does not suppress the zones of stress concentration.
Such zones exist near the intersections of the adherent / adhesive interfaces with the free edges. Due
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to the thinness of the adhesive layer, an accurate determination of the stresses in these zones in a
global analysis of the structures is irrelevant as it requires a fine mesh leading to a great increase of
the number of degrees of freedom and ill-conditioning (Geymonat et al. (1998)).

There are two ways to study adhesively bonded joints. The first way consists in developing nu-
merical methods to determine the stress singularities and intensity factors leading to the development
of specific post-processors (Destuynder et al. (1988)). The second way consists in developing sim-
plified models of the adhesive behaviour. The first approach in this way is based on the analysis of
the stress field within the joint. Initiated by the work of Goland and Reissner (1944), it was developed
by Wooley and Carver (1971), Delale et al. (1981), Harris and Adams (1984). As the assumption
of slender substrates is often made, this approach is devoted to plates assembly. Another approach
consists in replacing the adhesive layer by a springs layer. These springs connect the displacements
jumps through the adhesive to the stress vector, the constitutive law being either rheological (Rose
(1987), Reddy and Roy (1988), Edlund (1994)) or obtained using an asymptotic expansion technique
(Klarbring (1991), Destuynder et al. (1992), Geymonat et al. (1999)). In this simplified model, the
joint disappears from a geometrical point of view and is replaced by its mid-surface.

In the case of small displacements, a fracture model of the debonding was rigourously developed
(Destuynder et al. (1992)) justifying (Bruno and Grimaldi (1990)). It is assumed that the crack
was developing in the whole thickness of the joint, the crack front remaining perpendicular to the
interfaces. Only the expression of the energy release rate was obtained, the crack growth was not
studied. The crack growth was modelled in the case of delamination in composite plates assuming,
if the growth is stable, that the front at arrest minimizes the total energy of the plate, sum of the
mechanical energy and of the Griffith’s fracture energy (Ousset (1999)). This approach comes into
the framework of a revisiting brittle theory developed in (Francfort and Marigo (1998)) and based on
minimization of energy.

As the adhesive is assumed much less stiff than the adherents, large displacements will occur in
the joint before debonding. As a consequence, the purpose of this paper is to extend the previous
approaches in the case of large displacements. The problem will be presented in the paragraph 2 and
the simplified model will be developed using the asymptotic expansions technique. The crack growth
model will be described in the paragraph 3 and the expressions of the first and second derivatives
of the mechanical energy with respect to a crack extension will be derived using the so-called � -
method (Destuynder and Djaoua (1981)). Some comments on the simplified model will be made in
the paragraph 4. Then, the numerical approximation and the algorithm are detailed in paragraph 5.
At last, some numerical applications will be presented in the paragraph 6. In this paper, the repeated
summation convention is used: Latin ���������	� ... (resp. Greek 
����� ...) indices and exponents take their
values in the set {1,2,3} (resp. {1,2}).
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2 Problem statement

2.1 The 3D elasticity problem

Let us consider, in the Euclidean space ��� referred to the orthonormal frame �����	��
 �	���������� , a bonded
assembly (see Fig. 1) ��� formed by two adherents ���� connected by an adhesive layer ���� of thickness��� :

������� ���� � �� � � � � �� "!$#&% ���' �
�(�'*) � (1)

where � is a small dimensionless parameter, � is a global characteristic length of the structure and  is
the mid-surface of � � � . We define the two surfaces  ,+� � � +�.- � � � and  0/� � � /�1- � � � . Besides, the
stiffness of the adhesive is assumed to be of order � compared to the adherent’s ones. The structure
is fixed on the part 2	�35476 ���� and is submitted to surface loads 8:9<;>=?�A@$B���2 �C �D�E� on 2 �CF476 ����
such that 2 �3 - 2 �C �HG ; 8 is the loading factor. It is assumed that a crack is developing on the whole
thickness of the adhesive and that the crack front I C remains orthogonal to the mid-surface  during
propagation. To simplify the present analysis, we assume that the crack front I C is unloaded.
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Figure 1: Bonded assembly.

A Lagrangian formulation is used to describe the large displacement motion of the structure and
it is assumed that the elastic materials are of the St-Venant Kirchhoff type (Ciarlet (1988)). The
constitutive equations are then linear relations between the Green-Lagrange strain tensor _`�bac;�� and
the second Piola-Kirchhoff stress tensor dc; :

d ; �e� ��f _`��a ; � � _`��a��g�
h
' �Ai�jkil%nmo�p� � iq�rms�utwvxa � (2)

where � � is the fourth order material stiffness tensor and let y � be its inverse, z is the gradient of the
transformation {}| {�t~a��A{g� , mo� is the identity tensor of �u� and v�a������ 3�����	�� � . Then, the mechanical
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energy of ��� is written as :� ��a ; ��d ; ��I C �g� h
'
���
����� ��d ;	� _`�ba ; �D��
o�n%n8

�����
9 ;	� a ; 
o2 � (3)

where ��� is the trace operator. The minimum of
�

with respect to a�; is characterized by the following
variational problem :��� �

� ��� �by � f d ; ��� ��
o��� � � �
� ��� � ��� _`��a ; �D��
o��� � � =�� �A���R� �� �

� ��� ��d ; � i j � v�� ��
o��� �F8 � ���� 9 ; � ��
o2 ���}=�� �A���R� � (4)

with �>�A��� �"�! ��F= �#"%$'& (��A���R�D�E�*),+- �/. �102 and � ����� � � ��@$B 3,�A��� � �54 (Ciarlet (1988)). We assume
that the formulation (4) has at least one solution �ba�; �(d�;(� in �>�A���R��!�� �A��� � .
2.2 The elastic interface model

To take into account the hypothesis on the stiffness of the constituents, three tensors � + �D� / and �<�
are introduced such that � � � �0� on ���� , � � � �g� on �u�� and �<�!6 � �0� . In order to derive a
simplified model taking into account both the material and the geometrical hypothesis, an asymptotic
analysis is made, following the method developed in (Ciarlet and Destuynder (1979)). The mechanical
energy (3) and the variational formulation (4) are expressed in domains � � and � � independent of� performing a scaling in the direction 7 �� in the adhesive by setting 7 �� � � 7 � . The unknowns are
written as :

a ; ��{ ; �g� ac� � ��{<� � d ; �A{ ; �$��d � � ��{<� �
whereas the applied load is scaled as :

9 ; �A{ ; �g� � 9 
 ��{0� �
Then, the solution �ba � � ��{<� ��d � � ��{<�D� is formally sought under the form of a power expansion of � :

��ac� � �({0� ��d � � �({0� �g� � �ba �A{<� ��d ��{g�D� t � B ��a � �A{g� �(d � ��{g�D� t98 � � B � � (5)

and the terms of same order in � are identified. Coming back to the initial variable {s; , the leading
term of the expansion verifies the following properties :: The adherents perform small displacements, so that the strain tensor is reduced to its linear part :

_`�ba ; �<�w_ - ;=<?> �ba ; ��@ h
' �D� v�a ; �BA�t v�a ; � in � �� �
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: In the adhesive, the displacements are linear with respect to 7 �� :
a ; �A{ ; �$� a��`� 7 �� � t a���� 7 �� �' t 7 ����� ) a ; #R� 7 �� � in � � � � (6)

where a � � 7 �� �*� a � 7 �� � ���B � �(a � � 7 �� � � a � 7 �� � % ���B � and the displacement jump ) a ; #R� 7 �� � �a���� 7 �� � % a	��� 7 �� � whereas the stresses are independent of 7 �� :
 � �<�� � � �<� � ���� )� �� #ot � �<�� � ���� �
)�� �� #ot h

' ��� )� �� # )�� �� #�� in � � � � (7): The continuity of the stress vector at the interfaces  u� leads to the relation :
 � �< � � 
 � �< � t )� �< #��� 
 � �� � on  � � (8): To be admissible, the solution a must satisfy the orientation-preserving condition 
���� i ��a ; ���0 in ��� (Ciarlet (1988)). This condition is, at the first order, automatically verified in the ad-
herents where 
���� i �ba�;(�0� h t��>� � � , whereas in the adhesive, 
���� i �ba�;��0� )�� �� # t ��� t �>� � B	�
prescribes the condition :

)�� �� #���% ��� � (9)

Finally, the mechanical energy associated to the simplified model is :� ��a ; ��d ; ��� C �g� h
'
� � �
� ��� �Ad ; � _�� � ��! ��a ; � ��
o� (10)

%
h
'
�#"�$ 
 �� � )�� �� # t 
 �� � �

)� �� # t h
' �(� )� �� # )� �� # �&% 
  % 8 � ���� 9 ; � a ; 
 2 (11)

where the term over ���� has been integrated in the thickness. This functional admits non unique
local minima (Krasucki et al. (2001)) in the functional space '�>�A���� � �! ���( = �*)�$	�A���� �D�k� � ��( �0 on 2 �3 2 , characterized by the following variational equation :��� �

� ��� ��d ;	� v�� �5
o�}t � "�$ 
 �� � ) + � # t 
 �� � �
) + � # t h

��� )�� �� # ) + � # �&% 
  �r8 ����� 9 ; � � 
o2 ���}=+'� ��� �� � �
(12)

As in the linear case (Klarbring (1991), Destuynder et al. (1992), Geymonat et al. (1999)), in the
simplified model the joint disappears from a geometrical point of view and is replaced by an energy
of adhesion defined on its mid-surface. Finally, the tangent stiffness operator of problem (12) is :

� ��a ; � � � �-, �
� � �
� ��� �b� � f v ,�� v�����
o� t � " 
 �� � � � � ). � # 
  *t � " h

��� 
 � � �ba ; � ). � # ) + � # 
  
t
h
���

� "�/ �� � � � �
)�. � #ot h

��� )�. ; # )� �; #�� �
) + � # t h

��� )�� �� # ) + � #�� 
  � (13)
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3 The debonding model

To simplify the expression, we note in the following, a for a�; and d for d�; .
3.1 Overview of the crack growth model

As the elastic interface model reduces the adhesive domains to its mid-surface  , the crack front I C is
described by the line � C � I C -  (see figure 3). The propagation of � C , assumed quasi-static, is taken
into account by introducing a total energy �>��a � � C � sum of the mechanical energy

� ��a � � C � defined
by the relation (11) and the Griffith’s fracture energy � � � C � :

�>�ba � � C �g� � ��a ��� C � t�� �*� C � � (14)

The fracture energy is proportional to the delaminated area :

� �*� C �$��� �
� "

�

� 
  � (15)

where � � is the critical energy release rate assumed constant along � C and  �
�

the delaminated part of . Then, the model of propagation is stated as follow: let � C be the crack front at starting and let the
loading factor 8 be unchanged during the growth, it is assumed that the unknown front at arrest and
the displacement field a ensure the stationarity of �>�ba � � C � seen as a function of two variables :

find �ba � � C � such that �>�ba � � C �$��� �	��
� & ��� �>� � � ��� ��� =�� �5� �c= I � (16)

where I is the set of the admissible front’s positions. In order to write the stationarity of � with
respect to � C , the virtual kinematics of the delamination front is described by a plane vector field� ��{0� � � � $ ��{<� ��� B ��{<� � 0s� where the components � �

are regular functions defined in � with support �� restricted to a small neighbourhood of � C . The assumption that I C remains perpendicular to the
interfaces during growth dictates the condition ) � #Y� 0 on  .

If the front � C intersects the boundary of  ,
�

must satisfy in addition the kinematical condition� �� � 0 on  �� - 6  where � is the unit normal. Then, in order to obtain the derivatives of �
with respect to the front in the direction

�
, it is used the so-called � -method (Destuynder and Djaoua

(1981), Ousset (1999)): let � be a dimensionless small parameter and a family of mappings associated
to the field

�
:

��� f {�= ����| {���= � � � � {�� ��{ t�� � �A{<� �
Let �ba ��d`� and �ba � �(d � � be the solution of problem (12) set in � and � �

respectively for the same
load. The first and second derivatives of the energy � defined as :

� 
 $ � � � �<��� ��� � �"! �
� %��
� � � 
 B � � � � � �g��� �	� �#�$! �

� %%�5%&�'� 
 $ � � �
� B � (17)
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Figure 2: Virtual propagation of I C .
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Figure 3: Virtual propagation of � C .

are obtained in the following way: the integrals and derivatives over � � � are expressed as integrals and
derivatives over ��� using the two following relations :

( {�� � 
������Ams�ut��*) � � ( {}� � h t���
 �#+ � t�� B 
������+) � � � ( { � (18)

6
6 { � �

6
6 { � �Ams�ut��*) � � / $ � 6

6 { � �Ams��% ��) � t�� B ) � � ) � � t 8�� � B � � (19)

making clear the � dependence, then the solution is expanded as a formal power series of � : ��a � ��d � �g���a ��d`��t ����a 
 �(d 
 ��t � B,�ba � ��d � ��t 8 ��� B	� and terms of same order are identified. The results of the
computation concerning the simplified model, are given in the next sections.

3.2 First derivatives of the displacements and the stresses

The first order Lagrangian derivative �ba 
 �(d 
 � are needed to compute the second derivative of
�

; they
are the solution of the following variational problem,--------------. --------------/

d 
 �w� � f � v�a 
 % v�a � v � � on � �� �
 $� � � /
�� � � ���� )� $� # � 
 $� � � /

�� � � ����
�
)� $� # t h

��� )� $� # )�� � # � on  ��� � �
� ��� �Ad 
 � v����5
 �xt �#"�$ 
 $� � ) + � # t 
 $� � �

) + � # t h
��� )� ; # ) + ; # � t

h
��� 
 � � )� $; # ) + ; # % 
  

�
� � �
� ��� ��d ��a�� � v����5
 �#+ � 
o�}t � ��

� ��� ��d � � � � v�a � v � ��
o�
%
� " $ 
 � � ) + � # t 
 � � �

) + � #ot h
��� ) + ; # )� ; #��&% 
 � + � 
  ��� = '�>�A� � � � (20)

This equation shows that the Lagrangian derivatives are solution of a linear problem involving the
tangent stiffness operator � �ba � � � � a 
 of problem (4), whereas in the loading term (the right-hand side
of the relation),

�
acts as a parameter.
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3.3 First and second derivatives of the total energy

Let us note
� 
 $ � � � � the first derivative of the mechanical energy and �:� � � @ % � 
 $ � � � � the energy

release rate. After classical computation, � is expressed as a function of the displacement a and the
stress d only. We obtain :

��� � �$�
����
� ��� ��d � v�a � v � ��
o� % h

'
��� �

��� ��d � v�a��5
 �#+ � 
o�%
h
'
� "�$ 
 � � )�� � #ot 
 � � �

)� � # t h
' ��� )� � # )� � # ��% 
 �#+ � 
  � (21)

Integrating by parts and using both the constitutive (7) and the local equilibrium equations derived
from the equations (12), it is found (see Appendix B) that the energy release rate can be written as a
curvilinear integral along the front � C , as follows :

��� � �$�
h
'
�
�

� $ 
 � � )�� � #ot 
 � � �
)� � # t h

' ��� )�� ; # )� ; # �&% � �� 
�� @ �
�

�
� � �� 
�� � (22)

The integrand � is the so-called delamination force or local energy release rate and can be viewed as
the dual variable of

� � � on � C . For numerical computations, expression (21) is used as it is less mesh
sensitive than expression (22). It gives accurate results with relatively coarse finite elements meshes.
Let us remark that the quantity � , which is a function of the displacement jump across  ,

�5�
h
'

� 
 � � )�� � # t 
 � � � )� � # t h
' ��� )�� ; # )� ; # � � �

h
' ���

� / �� � � � )� � # B t / �� � � � � )� � # t h
' �(� )� ; # )� ; # � B �

(23)

is strictly positive, even if a crack doesn’t exist.

Finally, the second derivative takes the following form :� 
 B � � � � � �g� % h
'
��� �
� ��� �Ad � v�a 
 � v � ��
o��% h

'
��� �
� ��� �Ad 
 � v�a � v � ��
o�

t
h
'
� � �
� ��� ��d 
 � v�a��5
 �#+ � 
o� t

� � �
� ��� ��d � v�a � v � � v � �5
o�

%
h
'
� � �
� ��� �Ad � v�a � v � �5
 � + � 
o�}t h

'
� � �
� ��� ��d � v�a��5
������ v � ��
o�

t
h
'
� "�$ 
 $� � )�� � # t 
 $� � �

)� � # t h
' ��� )� ; # )� ; #��&% 
 � + � 
  

t
h
'
� " $ 
 � � )�� � # t 
 � � �

)� � # t h
' ��� )� ; # )� ; #��&% 
������ v � �5
  � (24)
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where det stands for the determinant � 
������Rv � ��� � $'& $ � B & B % � $'& B � B & $ � . � 
 B � is a quadratic form asso-
ciated to a symmetric bilinear form that depends on the solution ��a �(d�� and on the first Lagrangian
derivatives �ba 
 ��d 
 � .
In view of the definition of � , the derivation of the expansion for the fracture energy derivatives is
straightforward :

� 
 $ � � � �g� % � �
�#"

�

� 
 � + � 
  ��� �
�
�

�
� � � 
�� � � 
 B � � � � � �g� % � �

�#"
�

� 
������ v � ��
  � (25)

3.4 Conditions on
�

The front � C cannot move back; this requirement is satisfied if and only if :
� � ��� 0 (26)

where � is the unit normal to front in the direction of delamination growth. Due to this irreversibility
condition, the problem to be solved is a constrained minimization one and can be solved using a fixed
point algorithm. On the other hand, the mapping introduced in section (3.1) must be defined in such a
way that the delaminated area increases. This requirement takes the following form :� "

�

� 
  �% � " �� � 
  � � % �
� "

�

� 
 � + � 
  ~%%� B
�#"

�

� 
������ v � �5
  � 0 � � � 0 �
A sufficient condition for

�
is then

�
�

"
� 
 �#+ � 
  �� 0 and

�
�

"
� 
������ v � �5
  �� 0 which is equivalent, in

the case of constant � � and according to the relations (25), to � 
 $ � � � � � 0 and � 
 B � � � � � � � 0 . The
first inequality is satisfied as soon as condition (26) is satisfied. The set �� of admissible displacement
fields of the front is so :� ��� �

� = �*) $ �A ��	�D� B � � ���� 0 on � C � � � � � 0 on  �� - 6  �#� 
 B � � � � � � � 0	� � (27)

The spectrum of the operator � 
 B � is real and symmetric with respect to zero (Münch and Ousset
(2002) or Appendix A). As a consequence, the sets  � � � 
 B � � � � � ��� 02 and � � are not empty.

Let us now consider stable debonding. According to Nguyen (2000), the debonding is stable, for a
fixed level of loading, if

� 
 B � � � � � � � 0 � � = � � . This condition ensures that, in the vicinity of a
stable crack front location at arrest, the total energy � is strictly convex : � 
 B � � � � � ��� � 
 B � � � � � ��t
� 
 B � � � � � ��� 0 . As a consequence, the growth arrest corresponds to a local minimum of � . According
to relations (22) and (25 $ ) this local minimum

� = � � is characterized by the following variational
inequality :

� 
 $ � ��
� % � �g�
�
�

�
�	� � %�� ����
� % � � �� 
o2 � 0 �
� =�� � � (28)

9



10 F. KRASUCKI A. MÜNCH Y. OUSSET

This equation is nothing but the variational form of the well-known Griffith’s criterion; it implies
� � � � along the front only if � and � C are smooth enough. Inequation (28) is non linear with
respect to the variable

�
and can be solve introducing a Lagrangian @�� � ������� � 
 $ � � � ��tH��� ��
�� � �D� ,

where 
�� � ��� % � � � and � the function dual of 
 and using an interior point technique (Herskovits
(1992)). In fact, when the growth is stable, the situation

� ���� 0 never occurs. The minimum
�

is
then characterized by the simpler nonlinear relation � 
 $ � � � � � 0 solved using a Newton’s method:
the front displacement � =�� � is computed by solving the following variational problem :

� 
 B � ��� � � �<�5% � 
 $ � � � � � � =�� � � (29)

Let us insist on the point that � 
 B � is a non local operator. Consequently, the points of the front are not
moved independently. The displacement � is proportional to the value � % � � not locally on each
point of � C but in a variational sense : if �.= ) 0 �#� # designs the curvilinear abscissa along the front � C ,
then the quantity 	1��
&� (for any 
 fixed in ) 0 � � # ) depends non only to ����
&��% � � but also to ����,��% � �
for all �"= ) 0 � � # .
4 Comments on the simplified model

4.1 Convergence of the elastic interface model toward the perfect interface
model

The elastic interface model assumes that both the joint thickness and the adhesive Young’s modulus
tend to zero simultaneously as � . This assumption can shock the physical sense as the Young’s modu-
lus is a fixed data. One can wonder what the model becomes if the joint thickness only tends to zero.
This question is answered here in the case of small displacements. In this case, the joint strain energy
appears clearly as a penalization of the perfectly bonded interface model condition ) a ; # � 0 on  .

The linear elastic interface model is stated as follows: find a ; =�" such that :� � � �
� ��� �Ad�; � v�� ��
o����t $ � � " /

�< � < � )� �< # ) + < # 
  � � � �� 9$; � � 
o2 ��� =�" �
d�;0� �0� f v�au; = ���� �

(30)

where " is the space " �  ���� + - � �� =n�*) $ �A� � � � � � � � 0 on 2 3 2 equipped with the norm ��� +������ such
that :

��� ����� B � �
��� �
� ��� �Ad � � � � v�����
o� � t � " /

�< � < � ) + < # B 
  � (31)

for which " is an Hilbert space (the Korn’s inequalities ensure that (31) is a norm equivalent to
the classical norm). Then, the solution of the problem (30) is formally sought under the form of a
power expansion of � : ��d`; �(a0;����q�Ad�� �(a��p��t � ��d 
 �Da 
 � t 8�� � � . Transferring this expansion into the

10
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variational equation of (30) and identifying the terms of the same order in � , one obtains that ��d � �(a����
satisfies the following equations :� � � �

� ��� �Ad�� � v����5
 ��� � ���� 9 ; � � 
o2 ��� =�� �
d���� �0� f v�a�� = ���� �

(32)

with �5�  ���=�" � �x=n�*)�$������D�k� ��� �r���� �  2 . The limit model is nothing but the perfectly bonded
interface model where ) a ��#Y� 0 on  . Then, the formal expansion is justified with the

Theorem 1 As � tends to zero, we have the following convergence results:: ) au;E#Y| 0 in � � B �A g�D�E� as � ,: a0;u| a�� in " ,: d�;0| d�� in � � B
"
�����D�B4 ,: � � � � �g| �

! � � � in � . �

Proof : The proof of the first three points follows the approach presented by Lions (1973), Chapter I
and is detailed, for instance, in (Ait Moussa (1996)). Now, as

�
is a regular vector field, one can take

the limit of the energy release rate expression

�
� � � �$� %

h
'
� � �
� � � �Ad ;*� v�a ; ��
 � + � 
o�xt

� � �
� ��� �Ad ; � v�a ;	� v � �5
 �n% h

' �
� " / �< � < � )� �< # B 
 � + � 
  �

This gives

�
� � � �$| �

! � � �$� %
h
'
� � �
� ��� �Ad � � v�a � ��
 �#+ � 
 �xt

� � �
� � � �Ad ��� v�a ��� v � ��
o� ��� (33)

On the other hand, � being fixed, it was mentioned previously that the local energy release rate given
by the expression (22) is always strictly positive, even if there is not a crack. It is tempting to take this
value as the value for crack initiation. Theorem 1 indicates that it depends on the joint thickness and
tends to zero with � . As a consequence, it cannot be taken as crack initiation value. It is now admitted
that crack initiation can be detected using a maximum tensile stress criterion of the form 
 � � � 
 � � � .
However, for a given thickness of the joint, the stress criterion, the maximum jump of the normal
displacement criterion ( )�� � # � )� � � # ) and the debonding force criterion ( � � � � ) are equivalent. For
example, in the case of a DCB specimen in small displacement, the constitutive equations (7) and the
expression (22) give :

)� � � #Y� ���/
�� � � �


 � � � � ��� � � ���' / �� � � � � 
 � � � � B � (34)

The link between these criterions is studied experimentally in (Chai (1986)) and theoretically in
(Leguillon (2002)).

11



12 F. KRASUCKI A. MÜNCH Y. OUSSET

4.2 Connection with the damage interface models

It is now common to use damage interface models to simulate delamination growth in layered compos-
ite structures (Ladevèze (1992), Allix and Corigliano (1999), Alfano and Crisfield (2001)). Among
these models, one of the most used is the Tvergaard’s model (Tvergaard (1990), Chaboche et al.
(2001)) which considers a zero thickness interface equipped, for example in the case of a DCB speci-
men submitted to a monotone loading in mode I, with the following constitutive equation :

� A�� ���� �
'��
� 
 � � � )� � #)� A�� ���� � # � h % 
 � B � 
 � )� � #)�� A�� ���� � # � (35)

Here, the models parameters 
 � � � and )� A�� ���� � # are the maximum tensile stress that the interface can
support and the normal displacement jump at fracture respectively, whereas 
 = ) 0 � h # is a decohesion
indicator viewed as a damage parameter equal to zero for a perfectly bonded interface and equal to
one for a broken interface. The two parameters are connected writing that the area under the loading
curve is equal to the critical energy release rate � �
	 :��� 3�������� ���

!

'��
� 
 � � � )�� � #)� A�� ���� � # � h % )� � #)�� A�� ���� � # � B 
 )�� � #Y����� � � (36)

This gives : 
 � � � � h��
� � � �
)�� A�� ���� � # � (37)

In fact, the interface between two lamina is not a perfect interface but rather a thin matrix layer of
thickness � . In the present case, the debonding force derived from the expression (12) takes the
following form :

�H�
h
'

/
�� � � �� �

)� � # t h
' � )�� � # B � B � (38)

Then, the Griffith’s criterion � � � � � gives the following expression of the normal displacement
jump at debonding :

)� � � #Y�5% �ut � ���� h t � ��� �/
�� � � � � ��� �*�! " � � (39)

Then, assuming that debonding occurs for the same value of the normal displacement jump ( )� A�� ���� � #Y�)� � �	# ), the parameters of the Tvergaard’s model can be identified. The loading curves of both the
models are reported in the figure 4: the coefficient have been identified in order that the two models
are energetically equivalent, and the complete decohesion occurs for the same jump # � .

12
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Figure 4: � A�� ���� and � > ;� vs. )� � # .
With the numerical values �(� � 0 � h � � �

/
�� � � � � � 0 0 0 MPa and � � � 0 � ' � h@? ) � � , we obtain)� � � #Y� )� A�� ���� � # 6 0 � 0 0 0 � � � � and 
 � � � 6BADC h � h�� MPa. For the springs layer model, the critical trac-

tion of decohesion is � � 6EA � 0 � � h MPa. However, when irreversible mechanisms can be neglected,
cohesive models should be avoided for at least two reasons : firstly, their numerical resolution leads to
serious mesh dependencies both noted in (Alfano and Crisfield (2001)) and (Chaboche et al. (2001)).
In order to solve this problem, very fine meshes are needed near the crack front. On contrary, the use
of the � -method to obtain the energy release rate, a global quantity, with the relation (21), allow to
use relatively coarse meshes. Secondly, the strong nonlinear character of the cohesive law requires
a larger number of iteration of a Newton’s method. Numerical comparisons has been performed on
structural examples (Roudolff and Ousset (2002)) and confirmed this last point.

5 Crack growth algorithm

5.1 Numerical approximation of the displacement field

In this paragraph, we describe the discretization used for the displacement field and give the tangent
stiffness matrix in the joint associated to the Newton’s method on the equation (12). A sixteen nodes
finite element is used: the shape function are quadratic with respect to the in-plane variables and linear
with respect to the out-of-plane variable. In the adherents �c�� , and in the joint ���� associated to the

13



14 F. KRASUCKI A. MÜNCH Y. OUSSET

complete model, the � -th component displacement field is written as follow :

� < � �	��� ��� � � �� ��� $ � � � �	���s� $ h t	�' � � "
< t

h %
�' � �
�< % � ��� h �,C�� � �	��� ��� �0= ) % h � h # � � (40)

� �
are the in-plane shape function and � � "

< (resp. � �
�< ) the � -th displacement component of the node

�
� "

(resp. �
�
� ), � � h � � located at the upper interface � $ � h

(resp. lower interface ��� % h ). When
the simplified model is used, the joint is replaced by its mid-surface and the nodes �

� "
and �

�
� , are,

in the reference configuration, geometrically merged in the plane � � 0 . The displacement jump is
then discretized in the following way :

)� < # � �	��� � 0s� @ � "
< � �	��� � 0s� % � �< ��� ��� � 0 � � �� ��� $ � � ��� ���o��� � � "

< % � �
�< � � ��� h �,C � (41)

and imply that, for � ��� � h � C :

� )� < # ) + � # ����� ��� � 0 � � ��
� & > � $ � � ��� ���o� � > ��� ���o�

� + > ��+ > "� � A � h % h% h h � � � � �<� � "
< � � (42)

Then, the Newton’s equation associated to the equation (12) is, for all ��= '� ����� � :

� ��a ! � � � � , �"8
� � ��

9 ;*� � 
o2 % � � �
� ��� � � � f v�a ! � v�����
o�

%
�#"	$ 
 � � ��a ! � ) + � #ot 
 � � � � > � �

) + � # t h
�(� )� > � # ) + � # ��% 
  � (43)

where , @ a ! � 
 %5a ! and � is the index of the incremental method. If  �� 2 is the vector of
the nodal value of length

�
�  �� 2 �  �+ $ � + B � � � � � + � 2 with + � � � + � �$ � + � �B � + � �� � + � "

$ � + � "B � + � "
� � , then the

approximations of the integrals in the left hand side of (43) take the form :

 �� 2/A � � � "
)�� # 
  <� �  , 2 � (44)

where the symmetric matrix )� # is made of symmetric matrices ) I <�� #������ of order 6 such that :

�
� � � � % h � t h f � ��� � � � % h �:t h f � � � ��I <�� � h f � � h f � � � ����� � h � �

with

) I <�� #Y� � < ��� ���o� � � � �	���o� � )�� # � � � % )�� # � � �% )�� # � � � )�� # � � � � � (45)

14



NUMERICAL SIMULATION OF DEBONDING OF ADHESIVELY BONDED JOINT 15

and ,--. --/ � ;�; ��� �� � � ���� t�� �� � � ���� � 3 � � "
 ��� � " t � �� � � ���� �
� h t ' # ; � � � 3 � ���� t $B � 3�� � � 3�� �
 ��� � " � � �:� h �,C

� ; � � � � ; � � �� � � ���� � 3 � ���� �
# � � t � 3 � ���� � ���#� � h � C � ���� � (46)

( # <�� is the Kronecker’s symbol).

5.2 Approximation of the crack front and definition of the � field

The front � C is approximated using � � -spline functions. This allows us to disconnect the � C description
from the finite element mesh. The curve � C is described by nodes 7 < and the part of � C located between
two nodes constitutes a spline element. Then, the parametric equation of the � -th element is :

7���
 �0� (� < � $ � < ��
 �
	 < +
� / $� � (47)

where 	 <� are the geometrical spline coordinates and 
 is the curvilinear abscissa along � C . Finally, in
the neighbourhood of the � -th spline element,

�
is defined as :

� ��
 �
� �<����� � (� < � $ � < ��
&��� � ��� � 
� � (48)

where � is the transverse local coordinate and � is a smooth bell-shaped function equal to 1 for � � 0
and 0 for � ��� � . Let � be a point of  , � be its orthogonal projection onto � C and � the unit normal
to � C at � , then � is defined by the relation :

��� ��� � t�� ���
The

�
degrees of freedom are the spline coordinates 	 � . Generally, their number is lower than the

number of all the nodes of the finite element mesh located on � C , reducing in this way the size of the
problems (20) and (29).

The discretized form of relation (21) and (25 $ ) can be written as � ��� j � ��� � and  � 2 A � ��� � � respectively
whereas the right-hand side of problem (20) is discretized as : �� 2/A � ) i1# �  � 2 �
Finally, the second derivatives (24) and (25 B ) take the following forms : � 2/A � ) � 
 B � # �  � 2 �  � 2/A � ) � 
 B � # �  � 2 �

where ) � 
 B � # and ) � 
 B � # are symmetric matrices, ) � 
 B � # being fully populated.

15



16 F. KRASUCKI A. MÜNCH Y. OUSSET

5.3 Debonding algorithm

The debonding algorithm is described in the case of displacement control. Let

: )���� # be the tangent stiffness matrix ;

:  / 2 be the vector of internal residual forces ;

: 8 be the loading factor ;

: � the number of the control degree of freedom ;

: )�� # be the matrix of the eigenvectors of ) � 
 B � # associated to positive eigenvalues ;

then, the algorithm is as follow :

16
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loop � f control displacement increment � > � �
loop � f front increment �

> & �C �
loop � f equilibrium equations � � � < 2"�  � � > & � & <� 2�t � 8 <  � > & �C 2 �

)�� > & �� # �  � � > & � & <� 2"� %  / > & � & < 2�t 8 > & � & <  �� 2 �
)�� > & �� # �  � > & �C 2"�  �� 2 �

� 8 < � %  � � > & � & <� 2 � � > & �C 2 � � � > & � & < + $ 2c�  � > & � & < 2�t  � � < 2 �
8 > & � & < + $ �r8 > & � & < t � 8 < �

if ���? / > & � & < + $ 2 ��� ��� 
�� � � � � � end of loop ���
compute ) � > & �� # at the new equilibrium point �
compute � � � and � � � � �
compute ) a
	 
�� # solving )�� > & �� # � ) a
	 
�� #Y� ) z > & � # �
compute ) � 
 B � # � ) � 
 B � # � ) � # �
compute  � 2 solving

f
� )�� # A � ) � 
 B � # � )�� # � �  � 2"� )�� # A � � ����� � � � � � � � )�� # �  � 2 �

if ��� � � � ��� ��� 
�� � � � � move the front:

�
> & � + $C f 7 > & � + $ � 7 > & � t � " �~� 7 > & � � �

remeshing and go to loop ���
if ���� � 2 ��� � � 
�� � � � � end of loop �	�� > + $� � � > � t � � > � �

end of loop � �
This algorithm can be repeated until � C 4 6  , i.e. when the mid-surface of the joint is completely
broken and the two adherents are disconnected. Before we give some applications, let us make two
comments with regard to the present algorithm:

1. There are several ways to compute the new displacement field after remeshing. Here, we have
presented the case where the new equilibrium point is sought starting from the displacements
obtained with the previous mesh. Unfortunately, if the front displacement is too large, the equi-
librium cannot be recovered. To prevent divergence, small increments of the front displacement
must be made: this is the role of the real �

"
= # 0 � h # . Another way is to restart the compu-

tation from unloading. This way seems more costly, but it allows greater displacement front
increments.

17



18 F. KRASUCKI A. MÜNCH Y. OUSSET

2. The remeshing step can be time consuming for complex structures. Some authors have recently
proposed a method without remeshing where the description of the crack front is independent
of the mesh structure (Moes et al. (1999), Wells and Sluys (2001)).

6 Numerical applications

6.1 Analytical solution for the linear beam problem

The first application concerns the analytical resolution of the beam problem: two homogeneous and
isotropic beams of thickness � are bonded together by an adhesive of thickness ��� . The assembly
is clamped at 7n� 0 and is submitted to a normal displacement # at the end of the lower and upper
delaminated arms at 7 ��@ (see Figure 5).

�

�

�

����

�

�

�	��
� �	�����

� ��
�
 � �����


����� ��������������

�

�

�

�

Figure 5: The beam problem.

As in the previous sections, the adhesive is modelled by its mid-line  . Thanks to the symmetry of
the problem, the jump )�� $ # across  is zero and the energy of the problem is (to simplify, we neglect
the large displacement) :� � � � / �

! � 
 $ � 
 B � 
 $ �B
 7 B 
 7 t � �
� / � � 
 B � 
 B � 
 B �B
�7 B 
 7 t h

' � ��(�
� � / �
! )�� B # B 
 7 � (49)

with the flexural moment � 
 < � � � � � �$�B � " 3 "� � " and � < the Young’s modulus of the � -th beam and � � the
Young’s modulus of the joint. The displacements verify the following differential equations :
 ( � 
 $ �B
 7 ( t

h,' � ���� � $ � � � 
 $ �B � 0 7 = # 0 ��@ %! ) � 
 ( � 
 B �B
�7 ( � 0 7 = # @x%! ��@ ) � (50)
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showing that the displacement � 
 $ �B (resp. � 
 B �B ) is generated by the basis  � � � � �*8 �o� 
 7Y� ��� � � � � ��� � 
 7Y� 2 ,

r� � � � ���� �  � � �  � (resp.  h ��7 � 7 B ��7&� 2 ). The figure 6 depicts the evolution of the displacement � 
 $ �B @$B )� 
 $ �B # for several values of � and  � � 0 � � �(@ � � 0 � � � # � h � � � � $ ��� B � h A 0 0 0 0 � �

 � � � �� 0 0 0 � �
 � �.� � � � and � � h 0 � � .
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Figure 6: � B � 7Y� @ $B )� B #R� 7Y� ��7 = ) ' 0 ��@~%  # .
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Figure 7: )�� B # ��@x%  � vs. � in a loglog scale.

The jump )� B # presents some oscillations near the crack front induced by the elastic joint. At some
points of  , the jump is negative ; however, the orientation-preserving condition (9) is satisfied. The
energy release rate, calculated for  large enough, is a decreasing function of  : the propagation of the
crack is stable. When � tends to zero, the model reproduces the results of fracture mechanics theory
for a perfectly bonded interface. On this example, for 7 ��@}%  , the jump )�� B # converges to zero as
approximatively / � f )� B #R� 7Y�g�r� � � !10 (B4 � � (see figure 7 for 7 �r@ %  ) and the energy release rate � to
the fracture mechanics ones �3254 as approximatively �  � f �6254>� 7Y� % ��� 7Y�$��� � �  � � .
6.2 Opening debonding

The second example was devoted to the study of a double cantilever beam of length @ and width � (see
figure 1) where the crack is initially straight � C �  �{�=~ � 7 $ ��@ %  2 ,  = ) 0 �(@$# . The structure was
clamped on the side 2 3 �  �{ = ������7 $ � 0 2 and submitted to normal load 9}�?� 0 � 0 � � �� � � � +� �5% � /� ,
on the opposite sides  /7 $ � @ 2 . The modified Newton’s algorithm was displacement controlled and
let � � be the normal displacement at the end of the upper delaminated arm. The constituents are made
of isotropic homogeneous materials and the characteristics of the assembly are reported in the table
1. The figure 8 compares, for  � � 0 � � , the energy release rate along the front � C , obtained from
the relation (21) (curve with 7 symbol) and the relation (22) (curve with t symbol) to the energy
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� � � � �"� � � @ � � ��� � �h A 0 0 0 0 � �
 0 � C � 0 0 0 � �

 0 � C A � 0 � � � 0 � � � � � 0 � h � � 0 � C � C ? ) � �

Table 1: Material and geometrical characteristics.

release rate along the front I C -  + obtained from the complete model (curve with � symbol). The
three computations are very close. Varying the parameter � , we obtain that the energy release rate
� � obtained from the complete model converges toward � obtained from (21) as � showing, on this
example, that the simplified model is of order one: this result is in good agreement with the used
asymptotic expansion (5). Let us remark that the energy release rate is approximately constant along
the front except near the edges.
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Figure 8: Local energy release rate along � C .
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Figure 9: Delamination force ���A@ %  � ;B � vs. a.

The figure 9 shows the typical variations of the delamination force � (expression 23) at the point� 7 $ ��7 B ���7�A@ %  � ;B � of the front with respect to the delamination length  . For  � 0 , � is strictly
positive; it increases first with  and then it decreases. As a consequence, the crack growth just after
initiation is unstable. The growth stability is recovered once the crack length has reached the value
 � . Here,  � ranges in the interval ) � � � � � � � � �># , whereas the value � � � of the control variable � � at
crack initiation is taken equal arbitrarily to 0 � h � � . When  is large enough (approximatively three or
four times the thickness of the joint), the delamination force becomes lower than its initial value. Let
us now take arbitrarily the delamination � � equal to 0 � C � C ? ) � � . The delamination force, obtained
from the relation (22) reaches this value along the front, except on the border where � is slightly
smaller, when the imposed displacement � � reach the critical value � � � � 0 � 0 h � � . The figure similar
to figure 9 indicates that the length  � of the front � C , approximately constant along � C is in the ranges) ' � A � � � C � �># . Then, the algorithm of propagation is used, starting with � � � � � � t�� and a straight
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crack of length lower than
' � A � � , for instance

h � � . The different front locations are reported in the
figure 10 for � � ranging from 0 � 0 h � � to 0 � 0 � � � .
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Figure 10: Front positions for � � from 0 � 0 h � � to 0 � 0 � � � .

As expected, the front was curving near the edges of the specimen during the growth. The critical
values at initiation, including the strain � � � � � � 3 � � ���� t $B � 3�� � � � 3�� � �
 ��� � " , are reported in the table 2. Figures
11 and 12 represent the face 7 $ �r@ of the specimen just before and after the crack initiation.
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Figure 11: � � with � � � 0 � 0 h � � .
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Figure 12: � � with � � � 0 � 0 h � ��t�� .
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� � � )� � # � � � 
 � � � � � � �0 � 0 h � � 0 � 0 0�C�C � � 0 � C � C ? ) � � ' h
� � � � � �

 C � A �
Table 2: Critical values on initiation.

The variations of the loading factor 8 with respect to the control variable � � are reported in the figure
13 for two values of the control variable increment # � � . The point with the same abscissa correspond
to iterations on the front location (loop � in the algorithm). The convergence in the loop � is obtained
in four iterations for #"� 0 � 0 0 A � � and in twelve iterations for # � � � 0 � 0�A � � . Whatever the value of
the increment # � � , the equilibrium points of � in respect to the front location and to the displacement
field are on the same curve.
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Figure 13: Loading factor 8 vs. � � .
In this numerical example, an arbitrarily value of the critical energy release rate � � has been taken in
the interval ) 0 � C ? ) � � � 0 � � ? ) � �># . This interval of value is usually obtained for composite structures
without joint (see [Robinson and Song (1992)] for the DCB). For this interval, large values of the
strain � � � � , predominant here, are obtained (Table 2). This shows the presence of large displacement.
For bonded assemblies, this situation is accentuated : indeed, the critical energy release rate is an
increasing function of the softness of the adhesive (Chai (1986)) : this point signifies that for usual
soft adhesive, an important loading factor is required in order that the delamination force � (23),
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which is, for opening mode, an increasing function of the jump )�� ; # across  , reach the value � � . If
we note � ; � $B ��� /

�; � ; � )� ; # B the delamination force obtained with the Hooke’s law and if we neglect)� $ # and )�� B # with respect to )�� � # , we have the relative difference

��% � ;
� ; � )� � #��� t

h
�

� )� � #��� � B 6 � � � � (51)

showing that the difference on the energy release rate between Hooke’s law and nonlinear law derived
from the stored energy function of St-Venant Kirchhoff is very important for soft adhesive. Let us
add, due to the inequality � � � ; , that the critical loading factor, observed just before fracture, is
overestimated with the Hooke’s law. As a consequence, the nonlinear law permits to anticipate better
the fracture of the joint.

The following results illustrate the comments made in the paragraph 4.1. To this end, the computations
were made for two different values of the joint thickness. The figures 14 and 15 depict respectively
the jump )�� � # and 
 � � respectively at the point ��@ %  � ;B � of the front � C as a function of the crack
length  , whereas the values of the energy release rate are reported in the figure (16).
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Figure 14: )�� � #R�A@ %  � ;B � vs.  .
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Figure 15: 
 � � ��@ %! � ;B � vs.  in the joint.

When the thickness of the joint tends to zero, the jump converge as expected to zero, and the stress
becomes singular, except on  � 0 (no crack) where the stress, noted 
 � � �#0s� is finite. The curve
“ �(� � 0 “ on figure 16 corresponds to the energy release rate of the perfectly bonded model (expression
(33)) and is prolonged by continuity at the origin by zero. In view of this figure, it seems that the slopes
of the different curves near the origin have similar values. This point would be worth studying.
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Figure 16: Local energy release rate � ��@x%  � ;B � vs.  .

6.3 Circular assembly

A circular bonded assembly of radius
/
� h,' 0 � � was then studied. It was made of two plates of

thickness
�$#
B �

h � A � � bonded by an adhesive layer of thickness 0 � h � � , having a centered elliptical

hole ) �  �{ ��� 7 $ � 7 B � 7 � �u= � � � � "  � " t � ""� " � h 2 , % �  �
/

(figure 17).

The assembly was clamped on the outer boundary 2 3 �  /7 B $ t 7 BB � /
B ��7 � �'& � #

B 2 and submitted to

normal loads 9}�?� 0 � 0 � � �� � on 2 �C �  � "  � " t � ""� " � h ��7 � �(& � #
B 2 . Due to this boundary conditions, the

joint failed on 6 ) -  . Computations were made using the material characteristics reported in table
1. The first set of computations was devoted to the case of a circular hole. The process of the joint
failure was similar to the one of the DCB specimen studied in the paragraph 6.2. As the energy release
rate was constant along 6 ) -  , when the control displacement � � exceeded the critical value � � � , a
circular front of radius � was created in an unstable way. Then, the growth was stable and the crack
front remained circular. The critical values at initiation obtained with  .�'%`� h C � � are reported in
the table 3.

Figures 18 and 19 depict the evolution of the loading factor and the radius � in function of the pre-
scribed displacement.
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Figure 17: Holed assembly.

� � � )�� � # � � � 
 � � � � � � � �0 � 0 h 0 � � � 0 � 0 0�C � � � � 0 � C � �D? ) � � ' ' A � � � A � �
 C � � � h A � ����h � �

Table 3: Critical values on initiation.
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Figure 18: Loading factor 8 vs. � � .
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In the case of an elliptic hole (  � % ), the energy release rate varied along 6 ) -  as shown in the
figure 20 where the values along the part  � 7 $ � 7 B � � �� ��*8 � 
� % � ��� 
 � ��
 = ) 0 ��� B # 2 of 6 ) -  are
reported. The computations were made taking  � h

� � � � %�� h C � � and � � � 0 � 0 h 0 h � � .
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Figure 21: % � ���� - � � � �� vs. 
 .

The critical energy release rate was firstly reached on the point �#0 ��&�% � corresponding to 
5� & � B .However, the unstable character of the growth at initiation ensured that the bond failed on the whole
boundary of the hole. With such a choice of loading, the elliptic shape of the front increased the
instability. As it can be seen in the figure 21, the second derivative of the energy E was negative along6 ) -  and reached its minimum for 
F� &�� B where the energy release rate was maximum. As a
consequence, the normal crack length at initiation was maximal at these points. The different crack
positions for several values of the prescribed displacement are reported in the figure 22 that shows
that the crack front remained elliptic during the growth, with a decreasing ratio

�
� up to a value of

h � 0 �
approximately.

The variations of the loading factor and the distance of the front to the hole boundary with respect to
the prescribed displacement � � are reported in the figures 23 and 24 respectively.
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7 Conclusion

We have presented an elastic interface model to study adhesively bonded assemblies performing large
displacements. It is obtained by an asymptotic expansion technique making the assumption that both
the Young’s modulus ratio and the thickness ratio of the adhesive and of the adherents are small pa-
rameters of the same order. The main characteristic of the model is that the adhesive only has a non
linear behaviour expressed in terms of the displacements jumps. It differs therefore form the model
proposed by Edlund and Klarbring (Edlund and Klarbring (1992)) where the strains of the mid-surface
of the adhesive are taken into account. In addition, it is proved, in the case of small displacements,
that the model converges to the perfectly bonded interface model as the adhesive thickness only tends
to zero.
A debonding model based on a fracture mechanics approach is then proposed. It consists in mini-
mizing the total energy of the assembly with respect to any admissible crack front displacement. The
numerical applications have shown the robustness of the proposed algorithm. In addition, it has al-
lowed to show the unstable character of the debonding growth at initiation on a small length. The
simulation of the initiation was presented with the use of the explicit expression of the local energy
release rate. In the absence of joint ( ��� �!0 ), this expression is equal to zero and can not be used
to simulate the initiation of the crack between the two adherents. However, following the approach
developed in (Francfort and Marigo (1998)) and writing the conservation of the total energy between
the two equilibrium states, just before and after initiation, it is possible to determine simultaneously
the critical load and the first position of the crack front. A numerical simulation is given in (Münch
(2002)).
Besides, as the adhesive is assumed much less stiff than the adherents, the small strain’s assumption
can be questionable. In fact, the elastic interface model and the debonding model associated can be
extended to the large strain’s case using more general densities of energy than the St-Venant’s one.
This work is detailed in (Krasucki et al. (2002)).

Appendix A. Spectrum of the operator � 
 B �
The purpose of this appendix is to show that the spectrum of the operator � 
 B � admits real positive elements.
Using the Green formula, we first write

� 
 B ���������	��
��� ��� "
�

������� ������� �	� 
�� � � � � ��! �#"�$ �%�'&)(*��(+&,���'&-�/. �10 & (52)

Let us note 24365 7 ��8:9 the curvilinear abscissa along the front ; C and < the transverse local coordinate to the
front. The vector

�
is expressed along the front as follows :�%
=� $�> 
@? � BA> � 
=�CBED ? �CFE(G&

(53)

Then, thanks to the relation � ���� -IHJ � 
LK & 3 D ? K & M ( and the relation�N"�$ �O�P&)(*��(+&-QR�P&-�%
TS � $S 2 � B �S � BS 2 � $ � (54)
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we write

� 
 B � � �P������
 � � � �
�

� ! S � $S 2 � B � S � BS 2 � $ . �10 & (55)

Then, since � 
 B � is a symmetric bilinear form, the use of the relation :

� 
 B � � �P� � � 
 �� ! � 
 B � � � ? � ��� ? � � � � 
 B � � � � � ��� � � � .
gives :

� 
 B � � �'� � � 
 � � � �
�

� ! S � $S 2 � B � S � BS 2 � $ . �#0 & (56)

Then, the elements � of the spectrum characterized by the relation :

� 
 B � � �P� � � 
 � � �P� � ��� � � � � �'& � �#0
(57)

are solution of the following parabolic differential system ( � 
  � / $� � ):

! 7 � �� 7 . ! � �  � 3� � "� 3 . ? ! � � 77 � � . ! � $� B . 
 ! 77 . & (58)

The characteristic polynomial � is obtained with the choice
� 
 �
	 3���

, �3�� . Let us remark that the condition� � 2 
 7 � 7 �G
L� � 2 
=8 � 7 � implies  
 "�� � � 
 B > �; 3�� . This implies :

! � � �  � � . ! �� $ ��	 3�� B � 	 3 . 
 ! 77 . (59)

and finally :

� � � � 
 � B ?  B 
 � B � � B 
 7 & (60)

The eigenvalues of � 
 B � are :

� > 
�� � �����8 � 3�� &
(61)

and we conclude that the spectrum is symmetrical with respect to zero. The sets � � � � 
 B � ���������! and " � defined
in (27) are not empty. #
Appendix B. Expression of the energy release rate as a curvilinear integral
The purpose of this appendix is to show how we express the energy release rate $ defined on the vicinity�
� of ; C as a curvilinear integral along ; C . The starting point is the expression (21). We decompose % �� as
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follow % �� 
��
�

� % � ;
�
� design a cylinder of radius � centered on the crack front ; C�� �

. Let us note� � � 
 � � % � , ; � 
 � � S % � and $ � ��� the part of $ � ��� restricted to
�
� such that :

$ � � � 
 $ � ��� ? � � � �
	 ��� &-Q� &-Q � � � % � � � � � �
	 ����&-Q�+� �N"�$ � � %� � � "
� �

��� �� � 5 � � 9 ? � �� � ! 5 � � 9 ? � ���� 5 � � 9 5 � � 9 .�� �N"�$ � � � &
(62)

Using the green formula and the fact that the normal vector to

�
is directed by > � , the first term on % � becomes

: � � � �
	 ��� &-Q� &-QR� � � % 
� � � � � � <�� � � & � � � � & < � % � �
�
�
�

� <�� � � & � � ��� < ��� � � "
� � 5 � � � � � & � 9 � � �	� (63)

where
(

is the outer normal to
�
� . Let us note that the jump term [.] is not present in the two others terms of$ � ��� � $ � � � , due to the relation
�P&)(4
=� � � � � 7 on

�
: we obtain

$ � ��� 
 $ � � � ? � � � � � � <�� � � & < � & � � � � % � � � � � � <�� � � & � � < � � � % ? � � �
�
� �
	 ����&-Q�+� �P&)( ���

� �
�
�
�

� <�� � � & � � ��� < ��� ? � � "
� �

� � � � 5 � � 9 ? �
� � ! 5 � � 9 ? � ���� 5 � ; 9 5 � ; 9 .!� & � � � � �� � "

� � 5 � � � � � & � 9 � � �	� ? � � � � � � � � 5 � � 9 ? �
� � ! 5 � � 9 ? � ��"� 5 � ; 9 5 � ; 9 .!� �P&)( �10 &

(64)

Terms on % � vanish. Indeed, they are equal to $B � � <�� � < & � � & � � � � <� � � & � � & < then, according to

� <� & � 
 7 , they are
also equal to $B � <�� & � � � & < � $B � <� � 3 & <�� . Using the symmetries of the stiffness tensor � and

� <�� 
 $B � <�� B � � � B & � ? �'� & B �
in the adherents, the remaining term is equal to zero. In a similarly way, the terms on

� � � vanish. Indeed, the
stresses

�
� � are constant in the joint and we have 5 � � � � � & � 9�
 �

� � 5 � � & � 9 . Then, according to the relations of
transmission (8), it comes : �

� � 5 � � & � 9 
 �
� � 5 � � 9 & � 
 �

�� � 5 � � 9 & � ? �
�� � 5 � � 9��� 5 � � 9 & �

whereas the symmetry of the relation
�$#1�

in the joint leads to :� � � �� � 5 � � 9 ? � �� � ! 5 � � 9 ? � ��"� 5 � ; 9 5 � ; 9 .!� & � 
 � �� � 5 � � 9 & � ? � �� � � 5 � � 9 & � ? 5 � ; 9��� 5 � ; 9 & � �@� (65)

then to :

$ � ���G
 $ � � � ? � � �
�
� �
	 ����&-Q�+� �P&)( ��� � �

�
�
�

� <�� � � & � � ��� < ���
(66)? � � � � � � �� � 5 � � 9 ? � �� � ! 5 � � 9 ? � ��"� 5 � ; 9 5 � ; 9 .����P&)( �10 &

Finally, $ being independent of � , the former expression remains true for � arbitrarily small. If the adherents
are convex, the study of the stress’s singularity, in the case of weak interface, permits to conclude, in a similarly
way as for the linear case (Destuynder et al. (1992)), that $ � � � and integrals on S % � converge toward zero with� . Finally, we obtain the expression (22) which shows that the energy release is independent of the vector

�
in

a vicinity of ; C . #
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