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†INRIA-Rocquencourt - B.P. 105 - 78153 Le Chesnay Cedex, France
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The incompressible singularity found in 3D elasticity when Poisson’s ratio approaches
1/2 is not present in classical shell models, nor in the limit models obtained from 3D
elasticity when performing an asymptotic analysis with respect to the thickness param-
eter. However, some specific shell models – such as the 3D-shell model – do retain the
incompressible singularity. These observations raise the issue of how adequately shell
models can represent incompressible conditions, which this paper aims at investigating.
We first perform a combined asymptotic analysis of 3D elasticity with respect to both
the thickness parameter and Poisson’s ratio and we obtain a commuting property, which
is very valuable as a justification of the concept of an ”incompressible shell”, and sub-
stantiates the use of classical shell models with incompressible materials. We then show
that the 3D-shell model does not enjoy a similar commuting property; nevertheless we
propose a simple modification of this model for which commuting is obtained, hence
consistency with incompressibility is recovered. We also illustrate our discussions with
some numerical results.
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1. Introduction

As is well-known, the singularity corresponding to material incompressibility

– as characterized e.g. in isotropic linear three-dimensional (3D) elasticity by the

denominator “1 − 2ν” (ν denoting Poisson’s ratio) in the expression of the first

Lamé constant λ – is not present in most classical shell models. In particular, this

singularity is not seen in the membrane-bending and shear-membrane-bending shell

models discussed in Ref.10 – also sometimes called the “Koiter model” and “Naghdi

model”, respectively, see e.g. Ref.11 – nor in the “basic shell model” that underlies

the very widespread family of shell finite element procedures known as “general

shell elements”, see in particular Refs.8,10. Very clearly indeed, what removes the

incompressible singularity from the formulation of these shell models is the use of
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a plane stress assumption that results – via the elimination of the twice-transverse

strains – in a strain energy which features the first Lamé constant only in the

combined expression (µ denoting the second Lamé constant)

2λµ

λ + 2µ
, (1.1)

which of course has a finite limit when λ tends to infinity.

We note that the incompressible singularity is also not present in the limit mod-

els obtained by an asymptotic analysis performed with 3D elasticity formulations,

see Ref.11 and references therein, in which no plane stress assumption is needed.

However, one could argue that the primary concern in such an analysis – as, indeed,

with classical shell models – lies in the “thinness” of the structure and that incom-

pressibility is considered in a secondary stage only. The following question then

very naturally arises: what results if we consider incompressibility first, namely

if we use an incompressible (or “almost incompressible”) material in a structure

that “happens to be thin”? In more mathematical terms, the issue is therefore

essentially whether or not we can exchange the asymptotic limits corresponding

to incompressibility on the one hand and thinness (i.e. decreasing thickness) on

the other hand. Clearly, for the concept of an “incompressible shell” to make any

sense we need such a commuting property, which would also provide a justification

of the validity of classical shell models in incompressible conditions. This valid-

ity is all the more questionable a priori as some shell models which do not make

use of the plane stress assumption – such as the 3D-shell model discussed in Ref.7

– do retain the incompressible singularity, hence appear to have a rather different

asymptotic behavior in the incompressible limit. All these questions are of much

concern in various practical applications, such as in the tyre industry where thin

layers made of incompressible materials are frequently encountered, as is also the

case in biomechanics.

In this paper, we therefore undertake to analyse the interplay of the two above

asymptotic behaviors. We first perform such an analysis with a 3D linear elastic

formulation and we – indeed – obtain a commuting property, which thus gives a

justification of the concept of an “incompressible shell” and of the use of classi-

cal shell models in incompressible conditions. By contrast, when considering the

3D-shell model we show that the two limits do not commute in general, in essence

because the incompressible constraint is “too strong” for the displacement fields

used, namely displacements that satisfy a quadratic kinematical assumption in the

transverse direction. We note that the excessive impact of incompressibility on sim-

ilar shell models was already identified in Ref.2, although not based on asymptotic

considerations. We then propose a modified 3D-shell model in order to alleviate the

incompressibility constraint and recover the commuting property.

The outline of the paper is as follows. In Section 2, we give the geometri-

cal definitions and notation needed in the paper, and we recall some basic results

concerning 3D incompressible elasticity. In Section 3, we analyse the asymptotic
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behavior of the 3D formulation with respect to both incompressibility and thickness

and we establish a commuting property. Next, in Section 4 we consider the 3D-shell

model, and also the modified version thereof introduced to recover the commuting

property (in addition, some technical results needed in this section are given in an

appendix). Section 5 presents some numerical results that illustrate our theoretical

discussions. Finally we give some concluding remarks in Section 6.

2. Overview of the three-dimensional elasticity model in curvilinear co-

ordinates

2.1. Geometry and notation

Throughout this paper Latin indices i, j, k, . . . are assumed to vary in {1, 2, 3}
while Greek indices (except for ε and ν) vary in {1, 2}, and we use the Ein-

stein convention pertaining to implicit summation of repeated indices. In the

ξ1
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φ

ω

e2

e3

a1

a2

a3

Figure 1: Definition of the midsurface S

three-dimensional (3D) Euclidean space E equipped with the orthonormal frame

(O; e1, e2, e3), we consider the surface S described by the injective mapping φ

defined over ω, the closure of a domain ω of R
2 called the reference domain, see

Fig. 1. The mapping φ is assumed to be “smooth”, namely as regular as needed in

our analysis, and such that for any point (ξ1, ξ2) in ω the vectors

aα = φ,α =

(
∂φ

∂ξα

)

, α = 1, 2, (2.1)

form a basis – called the covariant basis – of the tangential plane to the surface. In

addition, the unit normal vector

a3 =
a1 ∧ a2

‖a1 ∧ a2‖
(2.2)

is defined so that the triple (a1, a2, a3) forms a direct basis of E . We also introduce

the contravariant basis of the tangential plane (a1, a2) defined such that aα·aβ = δα
β

(Kronecker symbol). Then the surface S is completely characterized (up to a rigid
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body motion) by two symmetric tensors called the first and second fundamental

forms – or alternatively the metric tensor and the curvature tensor, respectively

– whose covariant components aαβ and bαβ are defined by

aαβ = aα · aβ , bαβ = a3 · aα,β . (2.3)

We will also use the contravariant components of the metric tensor, given by

aαβ = aα · aβ , (2.4)

and the surface infinitesimal

dS =
√

a dω =
√

a dξ1dξ2, (2.5)

with

a = ‖a1 ∧ a2‖2 = a11a22 − (a12)
2. (2.6)

The eigenvalues of the curvature tensor are the principal curvatures of S at any

point. The half-sum of the principal curvatures – denoted by H – is called the

mean curvature while their product K is called the Gaussian curvature. Hence, we

have

H =
1

2
bα
α, K = b1

1b
2
2 − b2

1b
1
2, (2.7)

where the mixed components of the curvature tensor are given by bβ
α = bαλaλβ .

The 3D geometry of the shell is then defined by the mapping

Φ(ξ1, ξ2, ξ3) = φ(ξ1, ξ2) + ξ3a3(ξ
1, ξ2), (2.8)

for all ξ = (ξ1, ξ2, ξ3) ∈ Ωt, where Ωt denotes the 3D reference domain given by

Ωt = ω ×
]

− t

2
,
t

2

[

. (2.9)

In this definition, the quantity t represents the thickness of the shell structure,

assumed to be constant. Introducing a characteristic length L of S (for instance its

diameter), we also define the dimensionless quantity

ε =
t

L
. (2.10)

We denote by Bt the volume occupied by the shell body, hence,

Bt = Φ(Ωt). (2.11)

The 3D covariant basis corresponding to the mapping Φ is denoted by (g1, g2, g3)

and given by

gi =
∂Φ

∂ξi
, i = 1, 2, 3, (2.12)
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leading to

gα = aα + ξ3a3,α = (δγ
α − ξ3bγ

α)aγ , g3 = a3. (2.13)

In this basis, the components of the 3D metric tensor are







gαβ = aαβ − 2bαβξ3 + cαβ(ξ3)2,
gα3 = 0,
g33 = 1,

(2.14)

where cαβ = bαλbλ
β denote the covariant components of the so-called third funda-

mental form of the surface. The volume measure is expressed as

dV =
√

g dΩ =
√

g dξ1dξ2dξ3, (2.15)

with

g =
[
(g1 ∧ g2) · g3

]2
= a

(
1 − 2Hξ3 + K(ξ3)2

)2
. (2.16)

Remark 2.1 The mapping φ being bijective from ω to S, a necessary condition for

the sets Ωt and Bt to be in bijection via Φ is

1 − 2H(ξ1, ξ2)ξ3 + K(ξ1, ξ2)(ξ3)2 > 0 ∀ξ ∈ Ωt, (2.17)

condition that we henceforth assume to be satisfied. �

We will use the 3D Christoffel symbols given by

Γ̄p
ij = gp · gi,j , (2.18)

in the covariant differentiation of vector fields, which is denoted and defined by

Vi||j = Vi,j − Γ̄p
ijVp, (2.19)

see e.g. Ref.13. Similarly, the surface Christoffel symbols are given by

Γσ
αβ = aσ · aα,β =

(
Γ̄σ

αβ

)

ξ3=0
, (2.20)

and used in the covariant differentiation of vectors defined on ω and tangential to

the midsurface, such as in

vα|β = vα,β − Γσ
αβvσ. (2.21)

Finally, we will employ the short notation ‖ · ‖k (k ∈ N) to denote the Hk(ω)

norm for scalar or tensor fields, and the symbol C to denote a generic constant that

may take different values at successive occurrences.

2.2. Three-dimensional elasticity model and incompressibility

Let us assume that the body Bt is fixed on a part of its boundary, corresponding

to Γ0 = γ0×] − t
2 , t

2 [⊂ ∂ω×] − t
2 , t

2 [ in the reference domain, and is submitted to
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the distributed loading fε ∈ (L2(Ωt))
3. The variational formulation of isotropic

linearized elasticity is posed in the space

V(Ωt) = {V ∈ (H1(Ωt))
3; V = 0 on Γ0},

and reads in curvilinear coordinates, see Ref.11,

(P(ε, ν))







U(ε, ν) ∈ V(Ωt),
∫

Ωt

Aijkleij(U(ε, ν))ekl(V )
√

g dΩ =

∫

Ωt

f ε · V √
g dΩ, ∀V ∈ V(Ωt),

where the unknown U(ε, ν)(ξ) = Ui(ε, ν)(ξ)gi(ξ) represents the displacement field

and is purposedly indexed by ε and ν to signify that we will specifically analyse

the dependence (and asymptotic behavior) of the displacement field with respect to

these parameters. In this formulation, the contravariant components of the elasticity

tensor are given by

Aijkl = λgijgkl + µ(gikgjl + gilgjk), (2.22)

where λ and µ denote the Lamé constants that relate to Young’s modulus – denoted

by E – and Poisson’s ratio through

λ =
Eν

(1 + ν)(1 − 2ν)
, µ =

E

2(1 + ν)
, (−1 < ν < 1/2). (2.23)

In addition, the components of the (linearized) strain tensor are defined by

eij(V ) =
1

2
(Vi||j + Vj||i). (2.24)

We recall that the problem (P(ε, ν)) admits a unique solution (Ref.11). In the

sequel, we will use this formulation in the following rearranged form

(P(ε, ν))







U(ε, ν) ∈ V(Ωt),

µ

∫

Ωt

gijkleij(U(ε, ν))ekl(V )
√

g dΩ + λ

∫

Ωt

gijeij(U(ε, ν))gklekl(V )
√

g dΩ

=

∫

Ωt

fε · V √
g dΩ, ∀V ∈ V(Ωt),

with gijkl = gikgjl + gilgjk. Of course, this formulation is not well-defined for

ν = 1/2, which corresponds to the incompressible limit for which λ tends to in-

finity. When ν is near 1/2, it appears that the quantity λ plays the role of a

penalization parameter and we have the following classical result (see e.g. Ref.6).

Theorem 2.1 (Limit of (P(ε, ν)) as ν → 1/2) The solution U(ε, ν) of (P(ε, ν))

converges, as ν tends to 1/2, to U(ε) solution of the variational problem

(P(ε))







U(ε) ∈ VI(Ωt) = {V ∈ V(Ωt); g
ijeij(V ) = 0 },

E

3

∫

Ωt

gijkleij(U(ε))ekl(V )
√

g dΩ =

∫

Ωt

f
ε · V √

g dΩ, ∀V ∈ VI(Ωt),
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and there exists a constant C (dependent on ε but independent of ν) such that

‖U(ε, ν) − U(ε)‖H1(Ωt) ≤ C(1 − 2ν)‖U(ε)‖H1(Ωt). (2.25)

�

Remark 2.2 We have gijeij(V ) = gαβeαβ(V ) + e33(V ) = div V . �

Remark 2.3 Clearly, (P(ε)) admits a unique solution, VI(Ωt) being a closed sub-

space of V(Ωt). �

3. Analysis of the asymptotic limits and their interplay in the three-

dimensional model

3.1. Analysis of lim
ν→1/2

lim
ε→0

(P(ε, ν))

In this section, we study the limit of the formulation (P(ε, ν)) when making

first ε go to zero, and then ν to 1/2. As regards the limit in ε, we summarize some

of the results established in Ref.11 where the limit in the parameter ε is sought

after performing a scaling in the thickness of the body, which allows to consider a

sequence of problems posed over the fixed domain

Ω = ω ×
]

−L

2
,
L

2

[

. (3.1)

To that purpose, we define the operator

πt : ξΩ = (ξ1, ξ2, ξ) ∈ Ω 7→ ξ = (ξ1, ξ2, ξ3) = (ξ1, ξ2, εξ) ∈ Ωt, (3.2)

where we recall that ε denotes the dimensionless thickness parameter t/L. In Ω,

the field U(ε, ν)(ξ) then corresponds to UΩ(ε, ν)(ξΩ). Assuming that the load

distribution fε can be written in the form

fε(ξ) = εpfp(ξΩ), fp ∈ (L2(Ω))3, p ∈ N (without summation), (3.3)

the problem (P(ε, ν)) becomes

(PΩ(ε, ν))







UΩ(ε, ν) ∈ V(Ω) = {V ∈ (H1(Ω))3; V = 0 on γ0×] − L/2, L/2[},
∫

Ω

Aijkl(ε)eij(ε, UΩ(ε, ν))ekl(ε, V )
√

g(ε) dΩ

= εp

∫

Ω

fp · V
√

g(ε) dΩ ∀V ∈ V(Ω),

with 





eαβ(ε, V ) =
1

2
(Vα,β + Vβ,α) − Γ̄p

αβ(ε)Vp,

eα3(ε, V ) =
1

2

(
1

ε
Vα,3 + V3,α

)

− Γ̄σ
α3(ε)Vσ ,

e33(ε, V ) =
1

ε
V3,3,

(3.4)
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and where, for all ξ = πtξΩ ∈ Ωt,







Γ̄p
ij(ε)(ξΩ) = Γ̄p

ij(ξ),

g(ε)(ξΩ) = g(ξ),

Aijkl(ε)(ξΩ) = Aijkl(ξ).

(3.5)

We then introduce the space

V(ω) = {v ∈ (H1(ω))3; v = 0 on γ0}, (3.6)

and the two subspaces

V0(ω) = {v ∈ V(ω); γαβ(v) = 0, α, β = 1, 2}, (3.7)

and, ∂ν denoting the normal derivative along the boundary,

VF(ω) = {v ∈ V0(ω); v3 ∈ H2(ω); ∂νv3 = 0 on γ0 }, (3.8)

where

γαβ(v) =
1

2
(vα|β + vβ|α) − bαβv3, (3.9)

represent the components of the linearized change of metric tensor – also called the

membrane strain tensor – associated with the displacement field v = vαaα + v3a3

defined on the midsurface. We also introduce the quantity

u(ε, ν) =
1

L

∫ L
2

−L
2

UΩ(ε, ν)dξ, (3.10)

for which convergence results will be obtained. A crucial distinction arises depend-

ing on the contents of the spaces V0(ω) and VF (ω). When V0(ω) = {0}, we define

the norm

‖v‖M =
∑

α,β

(
‖γαβ(v)‖2

0

) 1

2 , (3.11)

the space VM (ω) as the completion of V(ω) with respect to ‖.‖M , and
(
VM (ω)

)′
the

corresponding dual space. We then have the following result for p = 0 in (3.3).

Theorem 3.1 Assume that

∫ L
2

−L
2

f0 dξ ∈
(
VM (ω)

)′
. (3.12)

When ε tends to zero, u(ε, ν) converges in VM (ω) to um(ν) solution of

(PM(ν))







um(ν) ∈ VM (ω),

L

∫

ω

aαβστγαβ(um(ν))γστ (v)
√

a dω

=

∫

ω

(∫ L
2

−L
2

f0 dξ

)

· v
√

a dω, ∀v ∈ VM (ω),
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where

aαβστ =
2λµ

λ + 2µ
aαβaστ + µ(aασaβτ + aατaβσ). (3.13)

�

Proof. See Ref.11, Chapter 5.

Remark 3.1 In the detailed analysis the following relations appear

e0
α3 = 0, e0

33 = − λ

λ + 2µ
aαβe0

αβ, a.e. in Ω, (3.14)

where e0
αβ, e0

33 and e0
α3 are defined in (3.22) below. An interpretation of these rela-

tions is that the stresses σi3(ε) vanish at the first order in ε. In addition, it is by

using the second relation that the tensor of components aαβστ arises “in place of”

Aijkl(ε), which cancels the singularity for ν = 1/2. Note that, indeed,

aαβστ =
Eν

1 − ν2
aαβaστ +

E

2(1 + ν)
(aασaβτ + aατaβσ). (3.15)

�

By contrast, when VF(ω) is not reduced to zero, denoting for any v = vαaα + v3a3

with (vi) ∈ H1(ω) × H1(ω) × H2(ω),

ραβ(v) = v3|αβ − bσ
αbσβv3 + bσ

αvσ|β + bτ
βvτ |α + bτ

β|αvτ , (3.16)

as the components of the linearized change of curvature tensor associated with the

displacement field v defined on the midsurface, the asymptotic analysis of Problem

(PΩ(ε, ν)) performed with p = 2 leads to the following result.

Theorem 3.2 When ε tends to zero, u(ε, ν) converges in V(ω) to uf(ν) solution

of

(PF (ν))







uf(ν) ∈ VF(ω),

L3

12

∫

ω

aαβστραβ(uf(ν))ρστ (v)
√

a dω

=

∫

ω

(∫ L
2

−L
2

f2 dξ

)

· v
√

a dω, ∀v ∈ VF(ω).

�

Proof. See Ref.11, Chapter 6.

Remark 3.2 In this case the following relations arise in the analysis

e0
ij = 0 ; e1

α3 = 0 ; e1
33 = − λ

λ + 2µ
aαβe1

αβ a.e. in Ω, (3.17)

with the interpretation that the stresses σi3(ε) vanish at the first two orders. In

addition, these relations again induce the appearance of the tensor of components

aαβστ . �
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Remark 3.3 The reader should note that the above results do not cover the case

when VF(ω) is reduced to zero while V0(ω) contains non-zero elements. This is what

is referred to as a “generalized membrane shell of the second kind” in Ref.11, which

also remarks that “it seems that there are no known examples” of this situation.

Nevertheless, see Ref.11 for the asymptotic analysis in this case, a variant of that

performed in the case when V0(ω) = {0} which itself characterizes a “membrane

shell” (for a clamped structure of uniformly elliptic midsurface) or a “generalized

membrane shell of the first kind” (for other boundary conditions and/or geometries)

in the terminology of this reference. As for the case when VF (ω) contains non-zero

elements, it corresponds to “flexural shells” in this same terminology. We also

point out that – in the framework of the asymptotic behavior of shell models – a

quite similar terminology is frequently used: “membrane-dominated shells” when

VF(ω) = {0}; “bending-dominated shells” otherwise, see in particular Refs.10,15.

�

In the absence of a singularity for ν = 1/2, obtaining the limit of the above

asymptotic shell models when ν tends to 1/2 is very straightforward. Hence we

state the results and omit the proofs. We first consider the case when V0(ω) = {0},
namely, that corresponding to (PM(ν)).

Theorem 3.3 (Incompressible membrane shell model) Assume that (3.12) holds.

Then, when ν tends to 1/2, u(ν) converges in VM (ω) to um solution of

(PM)







um ∈ VM (ω),

L

∫

ω

aαβστ
I γαβ(um)γστ (v)

√
a dω =

∫

ω

(∫ L
2

−L
2

f0 dξ

)

· v
√

a dω ∀v ∈ VM (ω),

with

aαβστ
I =

E

3
(2aαβaστ + aασaβτ + aατaβσ). (3.18)

�

Remark 3.4 The second equation of (3.14) then implies the relation

e0
33 + aαβe0

αβ = 0, (3.19)

which can be interpreted as expressing the incompressibility of the shell body at the

first order in ε. �

Considering the case when VF (ω) contains non-zero elements – namely that corre-

sponding to (PF(ν)) – we then have the following result.

Theorem 3.4 (Incompressible flexural shell model) When ν tends to 1/2, u(ν)

converges in V(ω) to uf solution of

(PF)







uf ∈ VF(ω),

L3

12

∫

ω

aαβστ
I ραβ(uf)ρστ (v)

√
a dω =

∫

ω

(∫ L
2

−L
2

f2 dξ

)

· v
√

a dω, ∀v ∈ VF(ω).

�
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Remark 3.5 The third equation of (3.17) then gives e1
33 + aαβe1

αβ = 0 which –

together with e0
ij = 0 – can be interpreted as expressing the incompressibility of the

shell body at the first two orders in ε. �

Therefore, the asymptotic behavior of a thin body when the thickness tends first

to zero, and then Poisson’s ratio to 1/2, is well-identified. In the next section we

examine the asymptotic behavior when the incompressible limit is considered first.

3.2. Analysis of lim
ε→0

lim
ν→1/2

(P(ε, ν))

In this section, the starting point is the incompressible limit problem (P(ε)) –

see Theorem 2.1 – and we proceed to analyse the asymptotic behavior of this model

when ε tends to zero by a formal asymptotic analysis inspired from that presented in

Ref.11, see also Ref.15. Compared to the asymptotic analysis of “usual” thin bodies,

however, a direct analysis of Problem (P(ε)) would require the construction of test

functions of VI(Ωt) whose restriction on ω belongs to VF(ω). In order to circumvent

this difficulty, we first transform the problem into the following equivalent mixed

formulation – directly written in the fixed domain Ω – see Ref.6.

(PΩ(ε))







(UΩ(ε), pΩ(ε)) ∈ V(Ω) × L2(Ω),

E

3

∫

Ω

gijkl(ε)eij(ε, UΩ(ε))ekl(ε, V )
√

g(ε)dΩ

+

∫

Ω

pΩ(ε)gij(ε)eij(ε, V )
√

g(ε) dΩ = εp

∫

Ω

fp · V
√

g(ε) dΩ, ∀V ∈ V(Ω),

∫

Ω

q gij(ε)eij(ε, UΩ(ε))
√

g(ε) dΩ = 0, ∀q ∈ L2(Ω).

Then, we assume that there exists an asymptotic expansion of the solution in the

form

(UΩ(ε), pΩ(ε)) = (U0, p0) + ε(U1, p1) + ε2(U2, p2) + . . . (3.20)

This induces an asymptotic expansion of the scaled strains in the form
{

eij(ε, UΩ(ε)) = ε−1e−1
ij + e0

ij + εe1
ij + . . . ,

eij(ε, V )) = ε−1e−1
ij (V ) + e0

ij(V ) + εe1
ij(V ) + . . . ,

(3.21)

where






e−1
αβ = 0, e−1

α3 =
1

2
U0

α,3, e−1
33 = U0

3,3,

e0
αβ =

1

2
(U0

α,β + U0
β,α) − Γσ

αβU0
σ − bαβU0

3 ,

e0
α3 =

1

2
(U0

3,α + U1
α,3) + bσ

αU0
σ , e0

33 = U1
3,3,

e1
αβ =

1

2
(U1

β,α + U1
α,β) − Γσ

αβU1
σ − bαβU1

3 + ξ(bσ
β|αU0

σ + bσ
αbσβU0

3 ),

e1
α3 =

1

2
(U1

3,α + U2
α,3) + bσ

αU1
σ + ξbτ

αbσ
τ U0

σ , e1
33 = U2

3,3,

(3.22)
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and







e−1
αβ(V ) = 0 ; e−1

α3 (V ) =
1

2
Vα,3, e−1

33 (V ) = V3,3,

e0
αβ(V ) =

1

2
(Vα,β + Vβ,α) − Γσ

αβVσ − bαβV3,

e0
α3(V ) =

1

2
V3,α + bσ

αVσ, e0
33(V ) = 0,

e1
αβ(V ) = ξ(bσ

β|αVσ + bσ
αbσβV3), e1

α3(V ) = ξbτ
αbσ

τ Vσ, e1
33(V ) = 0.

(3.23)

We also have (Ref.11)

{

gij(ε)
√

g(ε) = aij
√

a + εBij,1 + ε2Bij,2 + O(ε3),

gijkl(ε)
√

g(ε) = gijkl(0)
√

a + εBijkl,1 + ε2Bijkl,2 + O(ε3),
(3.24)

with







gαβστ (0) = aασaβτ + aατaβσ, gα3β3(0) = aαβ, g3333(0) = 2,

Bαβ,1 = 2ξ(bαβ − Haαβ)
√

a, Bα3,1 = 0, B33,1 = −2Hξ
√

a,

Bαβστ,1 = 2ξ

[

−Hgαβστ (0) +

(

aασbβτ + aβτbασ + aατbβσ + aβσbατ

)]√
a,

Bαβσ3,1 = Bαβ33,1 = Bα333,1 = 0, B3333,1 = 2B33,1.
(3.25)

We are now in a position to start the identification of the factors of the successive

powers of ε in the asymptotic expansion (3.20). In this procedure, a key distinction

arises depending on the contents of the space V0(ω).

3.2.1. Case V0(ω) = {0} (p = 0)

In the case when V0(ω) = {0}, by inspection the appropriate scaling factor is

found to be p = 0. The identification of the coefficient of ε−2 leads to the equation

(P−2)
E

3

∫

Ω

gijkl(0)e−1
ij e−1

kl (V )
√

a dΩ = 0, ∀V ∈ V(Ω),

which implies, using (3.23),

e−1
i3 = 0 a.e. in Ω, (3.26)

hence there exists u0 ∈ V(ω) such that U0(ξ1, ξ2, ξ) = u0(ξ1, ξ2), see Ref.11. The

identification of the coefficient of ε−1 then provides

(P−1)







E

3

∫

Ω

gijkl(0)e0
ije

−1
kl (V )

√
a dΩ +

∫

Ω

p0aije−1
ij (V )

√
a dΩ = 0, ∀V ∈ V(Ω),

∫

Ω

q aije−1
ij

√
a dΩ = 0, ∀q ∈ L2(Ω).
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Combined with the identities e−1
αβ(V ) = 0 and aα3 = 0, the first relation leads to

e0
α3 = 0,

2E

3
e0
33 + p0 = 0 a.e. in Ω, (3.27)

whereas the second relation gives e−1
33 = 0, as in (3.26). The identification of the

coefficient of ε0 then implies

(P0)







E

3

∫

Ω

[

Bijkl,1e0
ije

−1
kl (V ) + gijkl(0)

(

e1
ije

−1
kl (V ) + e0

ije
0
kl(V )

)√
a

]

dΩ

+

∫

Ω

[

p1aije−1
ij (V )

√
a + p0

(

Bij,1e−1
ij (V ) + aije0

ij(V )
√

a)

)]

dΩ

=

∫

Ω

f0 · V
√

a dΩ, ∀V ∈ V(Ω),

∫

Ω

q aije0
ij

√
a dΩ = 0, ∀q ∈ L2(Ω).

The second equation of this system gives

aαβe0
αβ + e0

33 = 0 a.e. in Ω. (3.28)

Furthermore, using (3.27) and the identity B3333,1 = 2B33,1, the first equation of

(P0) becomes

E

3

∫

Ω

[

2e1
33e

−1
33 (V ) + 4aασe1

α3e
−1
σ3 (V ) + gαβστ (0)e0

αβe0
στ (V )

]√
a dΩ

+

∫

Ω

[

p1e−1
33 (V )

√
a + p0Bαβ,1e−1

αβ(V ) + p0aαβe0
αβ(V )

√
a

]

dΩ

=

∫

Ω

f0 · V
√

a dΩ, ∀V ∈ V(Ω).

(3.29)

We consider a test function V = v ∈ V(ω) independent of ξ. Taking into account

e−1
ij (v) = 0, the previous relation reduces to

E

3

∫

Ω

gαβστ (0)e0
αβe0

στ (v)
√

a dΩ+

∫

Ω

p0aαβe0
αβ(v)

√
a dΩ =

∫

Ω

f0·v
√

a dΩ, ∀v ∈ V(ω).

(3.30)

In this equation, we have

e0
αβ = γαβ(u0), e0

αβ(v) = γαβ(v), (3.31)

and, using the relations (3.27) and (3.28),

p0 =
2E

3
aαβe0

αβ, (3.32)

hence p0 is independent of ξ. Substituting these expressions in (3.30), we obtain

EL

3

∫

ω

(gαβστ (0) + 2aαβaστ )γαβ(u0)γστ (v)
√

a dω

=

∫

ω

(∫ L
2

−L
2

f0 dξ

)

· v
√

a dω, ∀v ∈ V(ω).
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Finally, the identity E
3 (gαβστ (0) + 2aαβaστ ) = aαβστ

I allows to conclude that u0 is

the solution of the formulation (PM) considered in Theorem 3.3.

Remark 3.6 In addition to the characterization of the solution u0 expressed in

(PM), we have obtained the identity (3.28) already given and discussed in Section

3.1, Remark 3.4. �

3.2.2. Case V0(ω) 6= {0} (p = 2)

When V0(ω) contains non-zero elements, by inspection the appropriate scaling

factor is found to be p = 2. This implies, since u0 satisfies (PM) with f0 = 0, that

e0
αβ = γαβ(u0) = 0, hence u0 ∈ V0(ω). Then, recalling (3.32), (3.31) and (3.27), we

infer p0 = 0 and e0
33 = 0, so that we can summarize

e0
ij = 0, p0 = 0. (3.33)

The formulation (3.29) then becomes

E

3

∫

Ω

[

2e1
33e

−1
33 (V )+4aασe1

α3e
−1
σ3 (V )

]√
a dΩ+

∫

Ω

p1e−1
33 (V )

√
a dΩ = 0, ∀V ∈ V(Ω),

(3.34)

leading to

e1
α3 = 0, p1 +

2E

3
e1
33 = 0 a.e. in Ω. (3.35)

From e0
α3 = 0, we deduce that the function U1

α,3 = −(u0
3,α+2bσ

αu0
σ) is independent of

ξ. Assuming U1 ∈ V(Ω), there exists u1 ∈ V(ω) such that U1
α = u1

α−ξ(u0
3,α+2bσ

αu0
σ)

and U1
3 = u1

3 (we recall that U1
3,3 = e0

33 = 0). In addition this implies that u0 is in

fact in VF (ω). Then, the cancellation of the coefficient of ε in (PΩ(ε)) leads to

(P1)







E

3

∫

Ω

[

Bijkl,1e1
ije

−1
kl (V ) + gijkl(0)

(

e2
ije

−1
kl (V ) + e1

ije
0
kl(V )

)√
a

]

dΩ

+

∫

Ω

[

p2aije−1
ij (V )

√
a + p1

(

Bij,1e−1
ij (V ) + aije0

ij(V )
√

a

)]

dΩ = 0, ∀V ∈ V(Ω),

∫

Ω

q (aαβe1
αβ + e1

33)
√

a dΩ = 0, ∀q ∈ L2(Ω).

The second equation of this system gives

aαβe1
αβ + e1

33 = 0 a.e. in Ω. (3.36)

On the other hand, e1
αβ has the following remarkable expression

e1
αβ = γαβ(u1) − ξραβ(u0). (3.37)

Then, using the equality p1 = 2E
3 aαβe1

αβ obtained from (3.35) and (3.36) in the first

equation of (P1) and letting V = u1 ∈ V(ω), we obtain
∫

ω

aαβστ
I γαβ(u1)γστ (u1)

√
a dω = 0, (3.38)
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which shows that u1 ∈ V0(ω). Moreover – using (3.22), (3.23), (3.25) and (3.35)

– for general test functions this same first equation reduces to

E

3

∫

Ω

[

gijkl(0)e1
ije

0
kl(V ) + 2e2

33e
−1
33 (V ) + 4aασe2

α3e
−1
σ3 (V )

]√
a dΩ

+

∫

Ω

[

p2e−1
33 (V ) + p1aije0

ij(V )

]√
a dΩ = 0, ∀V ∈ V(Ω).

(3.39)

Given an arbitrary element η in the space VF (ω), let V (η) be defined by

Vα(η) = ξ(η3,α + 2bλ
αηλ), V3(η) = 0. (3.40)

With this test function the above equation gives

E

3

∫

Ω

[

gijkl(0)e1
ije

0
kl(V (η)) + 4aασe2

α3(b
λ
σηλ +

1

2
η3,σ)

]√
a dΩ

+

∫

Ω

p1aije0
ij(V (η))

√
adΩ = 0, ∀η ∈ VF(ω),

(3.41)

which will be used below. We conclude the argument by the identification of the

coefficient of ε2 in (PΩ(ε)). From the first variational equation we obtain

E

3

∫

Ω

[

Bijkl,2e1
ije

−1
kl (V ) + Bijkl,1

(

e2
ije

−1
kl (V ) + e1

ije
0
kl(V )

)]

dΩ

+
E

3

∫

Ω

gijkl(0)

[

e3
ije

−1
kl (V ) + e2

ije
0
kl(V ) + e1

ije
1
kl(V )

]√
a dΩ

+

∫

Ω

[

p3aije−1
ij (V )

√
a + p2

(

Bij,1e−1
ij (V ) + aije0

ij(V )
√

a

)]

dΩ

+

∫

Ω

p1

[

Bij,2e−1
ij (V ) + Bij,1e0

ij(V ) + aije1
ij(V )

√
a

]

dΩ

=

∫

Ω

f2 · V
√

a dΩ, ∀V ∈ V(Ω).

For V = η ∈ VF (ω), this equation reduces to

E

3

∫

Ω

[

4aασe2
α3(b

λ
σηλ +

1

2
η3,σ) + gijkl(0)e1

ije
1
kl(η)

]√
a dΩ

+

∫

Ω

p1aije1
ij(η)

√
a dΩ =

∫

Ω

f2 · η
√

a dΩ, ∀η ∈ VF (ω).

Then, subtracting (3.41) we obtain

E

3

∫

Ω

gijkl(0)e1
kl

(

e1
ij(η) − e0

ij(V (η))

)√
a dΩ

+

∫

Ω

p1aij

(

e1
ij(η) − e0

ij(V (η))

)√
a dΩ =

∫

Ω

f2 · η
√

a dΩ, ∀η ∈ VF(ω),

(3.42)
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or equivalently, recalling (3.35),

E

3

∫

Ω

gαβστ (0)e1
στ

(

e1
αβ(η) − e0

αβ(V (η))

)√
a dΩ

+

∫

Ω

p1aαβ

(

e1
αβ(η) − e0

αβ(V (η))

)√
a dΩ =

∫

Ω

f2 · η
√

a dΩ, ∀η ∈ VF(ω).

(3.43)

Using the relations e1
στ = −ξρστ (u0) and e1

αβ(η) − e0
αβ(V (η)) = −ξραβ(η) for all

η ∈ VF (ω), this equation becomes

EL3

36

∫

ω

gαβστ (0)ρστ (u0)ραβ(η)
√

a dω −
∫

Ω

ξp1aαβραβ(η)
√

adΩ

=

∫

ω

(∫ L
2

−L
2

f2 dξ

)

· η
√

a dω, ∀η ∈ VF (ω).

(3.44)

Finally, using the relation p1 = 2E
3 aαβe1

αβ = − 2E
3 ξaαβραβ(u0), the equation (3.44)

implies

L3

12

∫

ω

aαβστ
I ρστ (u0)ραβ(v)

√
a dω =

∫

ω

(∫ L
2

−L
2

f2 dξ

)

· v
√

a dω, ∀v ∈ VF(ω),

and since u0 is in VF(ω), we infer that it is the solution of Problem (PF), see

Theorem 3.4.

Remark 3.7 We assumed in this analysis V0(ω) 6= {0} whereas the assumption

used in Theorem 3.4 was VF(ω) 6= {0}. In fact, if in the above limit model we

have VF (ω) = {0} the solution u0 is zero, which contradicts the premises of the

formal asymptotic analysis. This is similar to what happens with compressible shells,

see Ref.11, and means that the formal analysis cannot account for the behavior of

generalized membrane shells of the second kind. �

Remark 3.8 In addition to the characterization of the solution u0 expressed in

(PF), we have obtained the identity (3.36) already given and discussed in Section

3.1, Remark 3.5. �

ν → 1/2

(P(ε, ν))

(P(ε))

ε → 0

ε → 0

{
(PF (ν)) flexural model
(PM(ν)) membrane model

{
(PF ) incompressible flexural model
(PM) incompressible membrane model(formal)

ν → 1/2

Figure 2: Convergence behaviors for 3D formulation
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To conclude this section, we emphasize that the above asymptotic analyses consti-

tute a preliminary justification of the concept of an “incompressible shell”. Indeed,

in the 3D variational formulation we can consider the incompressible limit and

the shell limit (namely, in the thickness parameter) and obtain a well-posed limit

problem which does not depend on the order in which the limits are sought. We

summarize these convergence behaviors in the commuting diagram shown in Figure

2. Like for compressible shells, the limit problem obtained is highly dependent on

the contents of the spaces V0(ω) and VF(ω), and in fact we can say that the candi-

date “incompressible shell” models are simply obtained by making “ν = 1/2” in the

(compressible) limit shell models. As a consequence, our results also provide a pre-

liminary justification of the incompressible limit in classical shell models (valid for

finite thicknesses) – see e.g. Refs.4,9,11,15 and their references for examples thereof

– for which ν = 1/2 does not correspond to a singularity, since the thickness limit

and the incompressible limit clearly commute for these models and give final limit

problems “consistent” with the above “incompressible shell” models, see Refs.9,15.

Of course, in order to have a more complete justification of these concepts, actual

convergence results (i.e., not only a formal analysis) would be needed for the shell

limit behavior of an incompressible material.

4. Asymptotic analysis of the “3D-shell model”

Classical shell models are based on the Reissner-Mindlin (or Kirchhoff-Love)

kinematical assumption, and on a plane stress assumption, see Refs.4,10,11 and

references therein. In fact, as already discussed it is the plane stress assumption

that cancels the ν = 1/2 singularity in these models.

For various reasons, shell models based on higher-order kinematical assumptions

may sometimes be preferred, see e.g. Refs.5,7. When a quadratic kinematical

assumption is used – namely, the displacement profile across the thickness of the

structure is assumed to be quadratic – the plane stress assumption is no longer

required (in fact, it is then altogether inadequate), see Ref.7. Dispensing with this

assumption is a significant advantage, in particular in large strain analysis. However,

a consequence is that the incompressible singularity is present in these models, which

raises the question of how adequately they can represent incompressible conditions.

In the light of the previous section, a relevant criterion to that purpose is whether or

not we can exchange the incompressible and shell limits in the asymptotic behavior.

In this section we give the corresponding analysis for the 3D-shell model, a shell

model based on a quadratic kinematical assumption presented and analysed in Ref.7

as regards the asymptotic behavior with respect to the thickness parameter.

4.1. Overview of the 3D-shell model

Let us summarize the formulation of the 3D-shell model as presented and ana-

lyzed in Ref.7. This shell model is obtained by restricting the space V(Ωt) to the
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following subspace

Ṽ(Ωt) =

{

V (ξ1, ξ2, ξ3) = v(ξ1, ξ2)+ξ3η(ξ1, ξ2)+(ξ3)2ρ(ξ1, ξ2); (v, η, ρ) ∈ (V(ω))3
}

.

Note that we now use the unscaled coordinate ξ3 that varies in
]
−t/2, t/2

[
. In

the sequel we identify any element V of Ṽ(Ωt) with the corresponding element of

(V(ω))3, (v, η, ρ). Hence the variational formulation considered is now

(P̃(ε, ν))







Ũ(ε, ν) = (ũ(ε, ν), θ̃(ε, ν), τ̃ (ε, ν)) ∈ (V(ω))3,
∫

Ωt

Aijkleij(Ũ(ε, ν))ekl(V )
√

g dΩ =

∫

Ωt

fε · V √
g dΩ, ∀V ∈ (V(ω))3,

and the components of the strain tensor have the following expressions (see Ref.7)






eαβ(V ) = γαβ(v) + ξ3χαβ(v, η) + (ξ3)2kαβ(η, ρ) + (ξ3)3lαβ(ρ),

eα3(V ) = ζα(v, η) + ξ3mα(η, ρ) + (ξ3)2nα(ρ),

e33(V ) = δ(η) + ξ3p(ρ),

(4.1)

where






γαβ(v) =
1

2
(vα|β + vβ|α) − bαβv3,

χαβ(v, η) =
1

2
(ηα|β + ηβ|α − bλ

αvλ|β − bλ
βvλ|α) − bαβη3 + cαβv3,

kαβ(η, ρ) =
1

2
(ρα|β + ρβ|α − bλ

αηλ|β − bλ
βηλ|α) − bαβρ3 + cαβη3,

lαβ(ρ) = −1

2
(bλ

αρλ|β + bλ
βρλ|α) + cαβρ3,

(4.2)







ζα(v, η) =
1

2
(ηα + bλ

αvλ + v3,α),

mα(η, ρ) =
1

2
(2ρα + η3,α),

nα(ρ) =
1

2
(−bλ

αρλ + ρ3,α),

(4.3)

and

δ(η) = η3, p(ρ) = 2ρ3. (4.4)

Remark 4.1 The tensor components γαβ correspond to the membrane tensor de-

fined in (3.9), while the tensor associated with χαβ is a generalization of the bending

strain tensor used in classical shell models when shear deformations are present, see

Refs.7,10. �

In this case, the space that crucially determines the asymptotic behavior of the shell

model (with respect to the thickness parameter) is the subspace of pure bending

displacements defined as (see Ref.7)

V00(ω) =

{

(v, η) ∈ (V(ω))2; γαβ(v) = 0, ζα(v, η) = 0, δ(η) = 0

}

, (4.5)
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imposing 6 linear relations to the 6 components (vi, ηi)i=1,3. We will say that “pure

bending is inhibited” when V00(ω) = {0,0}. Whether or not pure bending is inhib-

ited depends on the geometry of the midsurface and on the boundary conditions,

see Ref.10 and references therein. Before considering the asymptotic behavior of

Problem (P̃(ε, ν)), we introduce the following symmetric bilinear forms

Am(u, θ; v, η) = µAd
m(u, θ; v, η) + λAv

m(u, θ; v, η), (4.6)

with

Ad
m(u, θ;v, η) =

∫

ω

(

gαβστ (0)γαβ(u)γστ (v) + 4aαβζα(u, θ)ζβ(v, η) + 2δ(θ)δ(η)

)√
a dω,

(4.7)

and

Av
m(u, θ; v, η) =

∫

ω

(

aαβaστγαβ(u)γστ (v)

+ aαβ
[
γαβ(u)δ(η) + γαβ(v)δ(θ)

]
+ δ(θ)δ(η)

)√
a dω.

(4.8)

Similarly, we introduce

Af(u, θ, τ ; v, η, ρ) = µAd
f (u, θ, τ ; v, η, ρ) + λAv

f (u, θ, τ ; v, η, ρ), (4.9)

with

Ad
f (u, θ, τ ; v, η, ρ) =

L2

12

∫

ω

(

gαβστ (0)χαβ(u, θ)χστ (v, η)

+ 4aαβmα(θ, τ )mβ(η, ρ) + 2p(τ )p(ρ)

)√
a dω,

(4.10)

and

Av
f (u, θ, τ ; v, η, ρ) =

L2

12

∫

ω

(

aαβaστχαβ(u, θ)χστ (v, η)

+ aαβ
[
χαβ(u, θ)p(ρ) + χαβ(v, η)p(τ )

]
+ p(τ )p(ρ)

)√
a dω.

(4.11)

Finally, we assume that the load distribution can be written in the form

f
ε(ξ) = εp

(

fp(ξ
1, ξ2) + ξ3lp(ξ

1, ξ2, ξ3)

)

, (4.12)

for some p ∈ N (without summation on p), and where fp is in (L2(ω))3 while lp is

in (L∞(Ωt))
3 and uniformly bounded with respect to t.

4.2. Analysis of lim
ν→1/2

lim
ε→0

(P̃(ε, ν))
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We then start by considering the limit in the parameter ε. Similarly to the 3D

case, two very different situations occur depending on the contents of the space

V00(ω), namely depending on whether or not pure bending is inhibited. When pure

bending is inhibited, we introduce the norm (defined on (V(ω))2)

‖v, η‖m = Am(v, η; v, η)
1

2 , (4.13)

which is equivalent to

(∑

α,β

‖γαβ(v)‖2
0 +

∑

α

‖ζα(v, η)‖2
0 + ‖δ(η)‖2

0

) 1

2

. (4.14)

We also introduce the space Vm(ω) defined as the completion of (V(ω))2 with respect

to the norm ‖.‖m. The convergence behavior of Problem (P̃(ε, ν)) is then obtained

in this space with p = 0 and assuming that f0 ∈ (Vm(ω))
′

, namely,

|
∫

ω

f0 · vdS| ≤ C‖v, η‖m, ∀(v, η) ∈ Vm(ω). (4.15)

Theorem 4.1 Assuming that (4.15) holds, when ε tends to 0 the couple
(
ũ(ε, ν)+

t2

12 τ̃ (ε, ν), θ̃(ε, ν)) – obtained from Ũ(ε, ν) solution of (P̃(ε, ν)) – converges weakly

in Vm(ω) to (ũm(ν), θ̃
m

(ν)) solution of

(P̃M(ν))







(ũm(ν), θ̃
m

(ν)) ∈ Vm(ω),

Am(ũm(ν), θ̃
m

(ν); v, η) =

∫

ω

f0 · v
√

a dω, ∀(v, η) ∈ Vm(ω).

�

See Ref.7 for the proof.

Remark 4.2 Considering arbitrary test functions η in (P̃M(ν)), we obtain the

relations

λaαβγαβ(ũm(ν)) + (λ + 2µ)δ(θ̃
m

(ν)) = 0, ζα(ũm(ν), θ̃
m

(ν)) = 0 a.e. in ω,

(4.16)

which can be compared with (3.14). �

By contrast, when pure bending is not inhibited we introduce the norm

‖v, η, ρ‖f =

(

‖v‖2
1 + ‖η‖2

1 + ‖η3‖2
0 + ‖ρ3‖2

0 + ‖ρ +
1

2
∇η3‖2

0

) 1

2

, (4.17)

where η and ρ represent the tangential parts (with respect to the midsurface) of

the vectors η and ρ, and ∇ accordingly denotes the surface gradient. This norm is

clearly weaker than the H1-norm ‖v, η, ρ‖1. Hence, we introduce the space Vf(ω)
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defined as the completion of (V(ω))3 for this norm, and also the space V0f(ω) defined

as the completion of the space

V]
00(ω) = {(v, η, ρ) ∈ (V(ω))3; (v, η) ∈ V00(ω)}, (4.18)

for the same norm. Taking p = 2 for Problem (P̃(ε, ν)), we then have the following

convergence result (Ref.7).

Theorem 4.2 When ε tends to 0, the solution Ũ(ε, ν) of Problem (P̃(ε, ν)) con-

verges weakly in Vf(ω) to Ũ
f
(ν) solution of

(P̃F(ν))







Ũ
f
(ν) = (ũf(ν), θ̃

f
(ν), τ̃ f(ν)) ∈ V0f(ω),

Af(ũ
f(ν), θ̃

f
(ν), τ̃ f(ν); v, η, ρ) =

∫

ω

f2 · v
√

a dω, ∀(v, η, ρ) ∈ V0f(ω).

�

Remark 4.3 Considering arbitrary test functions ρ in (P̃F(ν)), we obtain the re-

lations

λaαβχαβ(ũf(ν), θ̃
f
(ν)) + (λ + 2µ)p(τ̃ f(ν)) = 0, mα(θ̃

f
(ν), τ̃ f(ν)) = 0 a.e. in ω,

(4.19)

which can be compared with (3.17). �

As discussed in Ref.7, we can use (4.16) to eliminate θ̃
m

(ν) in the formulation

(P̃M(ν)). We then obtain

∫

ω

aαβστγαβ(ũm(ν))γστ (v)
√

a dω =

∫

ω

f0 · v
√

a dω, (4.20)

to be compared with (PM(ν)). Likewise, for non-inhibited pure bending we can use

(4.19) to eliminate θ̃
f
(ν) and τ̃ f(ν) in the formulation (P̃F (ν)), which leads to

L2

12

∫

ω

aαβστραβ(ũf(ν))ρστ (v)
√

a dω =

∫

ω

f2 · v
√

a dω, (4.21)

to be compared with (PF(ν)). In addition, the space of pure bending displacements

V00(ω) is very closely related to the space VF(ω), see Refs.7,10. Hence we may say

that the formulations (P(ε, ν)) and (P̃(ε, ν)) are asymptotically equivalent (with

respect to the parameter ε). As a consequence, at this stage the analysis of the

convergence behavior with respect to the parameter ν is similar to that performed

in Section 3.1 and very straightforward. Hence we state the results and omit the

proofs.

We first consider the case of inhibited pure bending.

Theorem 4.3 When ν tends to 1/2, the solution (ũm(ν), θ̃
m

(ν)) of (P̃M(ν)) con-



22 D. Chapelle, C. Mardaré and A. Münch

verges (strongly) in Vm(ω) to (ũm, θ̃
m

), solution of

(P̃M)







(ũm, θ̃
m

) ∈ Vm(ω),
∫

ω

(

aαβστ
I γαβ(ũm)γστ (v) +

4E

3
ζα(ũm, θ̃

m
)ζβ(v, η)

)√
a dω

=

∫

ω

f0 · v
√

a dω, ∀(v, η) ∈ Vm(ω),

δ(θ̃
m

) = −aαβγαβ(ũm), a.e. in ω.

�

Remark 4.4 As already mentioned, we can eliminate the shear terms from the

above variational formulation by considering arbitrary test functions η, which gives

ζα(ũm, θ̃
m

) = 0, (4.22)

which holds in L2(ω) (or a.e. in ω). Hence we obtain the analogue of (4.20) for

ν = 1/2, viz.
∫

ω

aαβστ
I γαβ(ũm)γστ (v)

√
a dω =

∫

ω

f0 · v
√

a dω. (4.23)

In addition – when Vm(ω) is a distribution space – (4.22) provides an explicit ex-

pression for the tangential part of θ̃
m
, namely,

θ̃m
α = −(ũm

3,α + bλ
αũm

λ ). (4.24)

As for the transverse part, the last equation of (P̃M) always gives an explicit ex-

pression for this quantity (since δ is in L2(ω) for any element of Vm(ω)), viz.

θ̃m
3 = −aαβγαβ(ũm), (4.25)

which holds in L2(ω). �

When pure bending is not inhibited, the convergence result is as follows.

Theorem 4.4 When ν tends to 1/2, the solution Ũ
f
(ν) of (P̃F (ν)) converges

(strongly) in Vf(ω) to Ũ
f
, solution of

(P̃F)







Ũ
f
= (ũf , θ̃

f
, τ̃ f) ∈ V0f(ω),

L2

12

∫

ω

aαβστ
I χαβ(ũf , θ̃

f
)χστ (v, η)

√
a dω =

∫

ω

f2 · v
√

a dω, ∀(v, η, ρ) ∈ V0f(ω),

p(τ̃ f) + aαβχαβ(ũf , θ̃
f
) = 0, mα(θ̃

f
, τ̃ f) = 0, a.e. in ω.

�

Remark 4.5 Recalling that ζα(ũf , θ̃
f
) = 0 and δ(θ̃

f
) = 0 are constraints contained

in the definition of V0f(ω), we can use these equations to eliminate θ̃
f

from the

variational formulation, which gives

L2

12

∫

ω

aαβστ
I ραβ(ũf)ρστ (v)

√
a dω =

∫

ω

f2 · v
√

a dω, (4.26)



Asymptotic considerations shedding light on incompressible shell models 23

which is (4.21) written for ν = 1/2. In addition, the last line of (P̃F ) provides

explicit expressions for τ̃ f , viz.

τ̃ f
α = −1

2
θ̃f
3,α, τ̃ f

3 = −1

2
aαβχαβ(ũf , θ̃

f
), (4.27)

where the latter (τ̃ f
3) holds in L2(ω), while the former (τ̃ f

α) holds in the distribution

sense (note that Vf(ω) is always a distribution space). �

We can obtain some insight regarding the enforcement of the incompressibility con-

straint in the above limit models by developing the quantity gijeij(U). Using (4.1)

and the following identity (see e.g. Ref.1),

gαβ =
aαβ + ξ3Bαβ + (ξ3)2Cαβ

(1 − 2Hξ3 + K(ξ3)2)2
, (4.28)

with

Bαβ = 2bαβ − 4Haαβ , Cαβ = (4H2 − K)aαβ − 2Hbαβ, (4.29)

we obtain for any U = (u, θ, τ ) ∈ Ṽ(Ωt) the expression

gijeij(U) =

5∑

k=0

(ξ3)kIk(u, θ, τ )

(
1 − 2Hξ3 + K(ξ3)2

)2 , (4.30)

with






I0(u, θ, τ ) = aαβγαβ(u) + δ(θ),

I1(u, θ, τ ) = aαβχαβ(u, θ) + Bαβγαβ(u) + p(τ ) − 4Hδ(θ),

I2(u, θ, τ ) = aαβkαβ(θ, τ ) + Bαβχαβ(u, θ) + Cαβγαβ(u) + (4H2 + 2K)δ(θ) − 4Hp(τ ),

I3(u, θ, τ ) = aαβlαβ(τ ) + Bαβkαβ(θ, τ ) + Cαβχαβ(u, θ) + (4H2 + 2K)p(τ ) − 4HKδ(θ),

I4(u, θ, τ ) = Bαβlαβ(τ ) + Cαβkαβ(θ, τ ) + K2δ(θ) − 4HKp(τ ),

I5(u, θ, τ ) = Cαβlαβ(τ ) + K2p(τ ).

In the non-inhibited case, since

p(τ̃ f) + aαβχαβ(ũf , θ̃
f
) = 0, (4.31)

for the solution of (P̃F ), using the constraints contained in the definition of V0f(ω)

we infer that the first two terms of the expansion of gijeij(Ũ
f
) vanish, hence we can

symbolically write “gijeij(Ũ
f
) = O((ξ3)2)”. By contrast, in the inhibited case only

the first term vanish for the limit solution, hence we write “gijeij(Ũ
m

) = O(ξ3)”.

In the next section we investigate whether we can exchange the limits henceforth

considered.

4.3. Analysis of lim
ε→0

lim
ν→1/2

(P̃(ε, ν))
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Considering (P̃(ε, ν)), when ν tends to 1/2 we have a standard penalized formu-

lation, and the solution Ũ(ε, ν) converges to the solution of the following constrained

problem.

(P̃(ε))







Ũ(ε) = (ũ(ε), θ̃(ε), τ̃ (ε)) ∈ VI(ω),

E

3

∫

Ωt

gijkleij(Ũ(ε))ekl(V )
√

g dΩ =

∫

Ωt

fε · V √
g dΩ, ∀V ∈ VI(ω),

where

VI(ω) =
{
(v, η, ρ) ∈ (V(ω))3; Ik(v, η, ρ) = 0, k = 0, . . . , 5

}
(4.32)

represents, according to (4.30), the subspace of all elements of (V(ω))3 that satisfy

the incompressibility constraint exactly. In this definition, we thus have six con-

straints acting on the nine components (vi, ηi, ρi)i=1,3. In fact, these constraints

are not independent, as we now show.

Lemma 4.1 We have

VI(ω) =
{
(v, η, ρ) ∈ (V(ω))3; Ik(v, η, ρ) = 0, k = 0, . . . , 3

}
. (4.33)

�

Proof. For brevity we omit the recurring operand (v, η, ρ) in all expressions of the

form Ik(v, η, ρ) in this proof. We will also use the notation

gv = aαβvα|β, bv = bαβvα|β . (4.34)

Then, using the identity

Kaαβ − 2Hbαβ + cαβ = 0, (4.35)

we have

aαβcαβ = 4H2 − 2K, bαβcαβ = 2H(4H2 − 3K), (4.36)

and we obtain







aαβγαβ(v) = gv − 2Hv3,

aαβχαβ(v, η) = gη − bv − 2Hη3 + (4H2 − 2K)v3,

aαβkαβ(η, ρ) = gρ − bη − 2Hρ3 + (4H2 − 2K)η3,

aαβlαβ(ρ) = −bρ + (4H2 − 2K)ρ3,

bαβγαβ(v) = bv − (4H2 − 2K)v3,

bαβχαβ(v, η) = bη + Kgv − 2Hbv − (4H2 − 2K)η3 + 2H(4H2 − 3K)v3,

bαβkαβ(η, ρ) = bρ + Kgη − 2Hbη − (4H2 − 2K)ρ3 + 2H(4H2 − 3K)η3,

bαβlαβ(ρ) = Kgρ − 2Hbρ + 2H(4H2 − 3K)ρ3.

(4.37)
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With these expressions we can rewrite the constraints so that the independent

variables (namely, (v, η, ρ)) appear more explicitly, viz.







I0 = gv − 2Hv3 + η3,

I1 = bv − (4H2 − 2K)v3 + gη − 2Hη3 + 2ρ3,

I2 = (4H2 + K)gv − 2Hbv − 6HKv3 − 4Hgη + bη

+ 4(2H2 + K)η3 + gρ − 10Hρ3,

I3 = −2HKgv + Kbv + 2K2v3 + (4H2 + K)gη − 2Hbη

− 10HKη3 − 4Hgρ + bρ + 6(2H2 + K)ρ3,

I4 = −2HKgη + Kbη + 3K2η3 + (4H2 + K)gρ − 2Hbρ − 14HKρ3,

I5 = K(−2Hgρ + bρ + 4Kρ3),
(4.38)

and we can now verify that
{

I4 = (16H4 − K2 − 4H2K)I0 + 4H(K − 2H2)I1 + (K − 4H2)I2 − 2HI3,

I5 = K(−8H3I0 + (4H2 − K)I1 + 2HI2 + I3).

(4.39)

Remark 4.6 When HK 6= 0, {I0 = I1 = I4 = I5 = 0} is a constraint system

equivalent to {I0 = I1 = I2 = I3 = 0}. When K = 0 and H 6= 0, we can instead use

{I0 = I1 = I2 = I4 = 0}. In the planar case (H = K = 0), I3 = 0 is automatically

satisfied and VI(ω) reduces to

VI(ω) = {(v, η, ρ) ∈ (V(ω))3; I0 = gv + η3 = 0, I1 = gη + 2ρ3 = 0, I2 = gρ = 0}.
(4.40)

�

Remark 4.7 VI(ω) is a closed subspace of (V(ω))3, hence (P̃(ε)) is always well-

posed. �

Since the variational problem (P̃(ε)) is posed in the constrained subspace VI(ω), in

the asymptotic analysis with respect to ε that we aim at performing, the analogue

of the subspace V]
00(ω) considered in Section 4.2 (see definition in (4.18)) is now

VI0(ω) =
{
(v, η, ρ) ∈ VI(ω); γαβ(v) = 0, ζα(v, η) = 0, δ(η) = 0

}
. (4.41)

Here, due to the constraints γαβ(v) = 0 and δ(η) = 0, the first incompressibility

constraint “I0 = 0” is automatically satisfied, hence there are “only” nine scalar

constraints applying on the nine independent components (vi, ηi, ρi)i=1,3. In the

following lemma we give a characterization of this subspace using the following set

of simplified constraint operators:






I ′1(η, ρ) = gη + 2ρ3,

I ′2(η, ρ) = Hgη + bη + gρ,

I ′3(η, ρ) = −2Kgη − 2Hgρ + bρ,

(4.42)
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these expressions being derived by straightforward computations from (4.38) when

taking into account the constraints characterizing pure bending displacements.

Lemma 4.2 We have

VI0(ω) =
{
(v, η, ρ) ∈ (V(ω))3; (v, η) ∈ V00(ω), I ′k(η, ρ) = 0, k = 1, 2, 3

}
. (4.43)

�

Similarly to the above compressible case, we will say that “incompressible pure

bending is inhibited” when

(v, η, ρ) ∈ VI0(ω) ⇒ (v, η) = (0,0), (4.44)

hence that “incompressible pure bending is not inhibited” when there exist some

elements (v, η, ρ) ∈ VI0(ω) with (v, η) non-zero. Here also, two very different types

of asymptotic behavior will arise according to whether or not incompressible pure

bending is inhibited, hence we now examine the two cases separately.

4.3.1. Non-inhibited incompressible pure bending

In this case, we define VIf(ω) and VI0f(ω) as the completions of VI(ω) and VI0(ω),

respectively, for the norm ‖.‖f . In order to establish the asymptotic behavior, we

then need to assume that we have

VI0f(ω) = VIf(ω) ∩ V0f(ω). (4.45)

Note that this amounts to exchanging the orders of completion and intersection,

hence we always have

VI0f(ω) ⊂ VIf(ω) ∩ V0f(ω), (4.46)

whereas the reverse inclusion is – of course – not true for all subspaces. For the par-

ticular subspaces considered, we cannot prove this reverse inclusion without making

additional assumptions on the surface geometry and on the boundary conditions –

although finding counterexamples appears to be extremely difficult also – hence we

give some sufficient conditions in the Appendix.

The appropriate scaling for (P̃(ε)) is then p = 2, and the asymptotic behavior

is as follows.

Theorem 4.5 Assuming that (4.45) holds, when ε tends to 0 (ũ(ε), θ̃(ε), τ̃ (ε))

solution of (P̃(ε)) converges weakly in Vf(ω) to (ũf∗, θ̃
f∗

, τ̃ f∗) solution of

(P̃?
F )







(ũf∗, θ̃
f∗

, τ̃ f∗) ∈ VI0f(ω),

E

3
Ad

f (ũ
f∗, θ̃

f∗
, τ̃ f∗; v, η, ρ) =

∫

ω

f2 · v
√

a dω, ∀(v, η, ρ) ∈ VI0f(ω).

�
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Proof. The proof is analogous to that of Theorem 4.2 above (see Ref.7). In fact,

nothing is changed in the required coercivity and boundedness properties when

using only the “µ-part” of the bilinear form, and the rest of the argument carries

over directly when considering the subspace VI(ω) instead of the whole space, when

taking into account the assumption (4.45).

In order to compare (P̃?
F ) and (P̃F ), we now derive a slightly modified form of

the former.

Theorem 4.6 For any (u, θ, τ ) and (v, η, ρ) in VI0f(ω), we have

E

3
Ad

f (u, θ, τ ; v, η, ρ) =

L2

12

∫

ω

(

aαβστ
I χαβ(u, θ)χστ (v, η) +

4E

3
mα(θ, τ )mβ(η, ρ)

)√
a dω.

(4.47)

�

Proof. Take any (v, η, ρ) in VI0f(ω). The constraint γαβ(v) = 0 implies

bv = (4H2 − 2K)v3. (4.48)

Recalling that η3 = 0 (by definition of V00(ω)), the second equation of (4.37) gives

aαβχαβ(v, η) = gη, (4.49)

which, combined with I ′1(η, ρ) = 0 (recall Lemma 4.2) implies

p(ρ) = −aαβχαβ(v, η). (4.50)

Since an analogous identity holds for (u, θ, τ ), the conclusion directly follows from

the definitions of Ad
f and aαβστ

I .

Therefore, since we can also clearly use the bilinear form appearing in the right-

hand side of (4.47) to obtain an alternative form of (P̃F ), we infer that the solutions

of (P̃F) and (P̃?
F ) satisfy the same variational formulation, albeit posed in the spaces

V0f and VI0f , respectively. Therefore, since the latter is a subspace of the former,

the two solutions coincide if and only if the solution of (P̃F ) happens to be in VI0f ,

namely, if and only if it satisfies the additional constraints (recall Lemma 4.2)

I ′k(θ̃
f
, τ̃ f) = 0, k = 1, 2, 3. (4.51)

Since aαβχαβ(ũf , θ̃
f
) = gθ̃f (see the above proof), and recalling that the formulation

of (P̃F ) contains p(τ̃ f)+aαβχαβ(ũf , θ̃
f
) = 0, the first constraint in (4.51) is – indeed

– satisfied. Noting that mα(θ̃
f
, τ̃ f) = 0 and θ̃f

3 = 0 imply τ̃ f
α = 0, the last two

constraints of (4.51) reduce to

Hgθ̃f + bθ̃f = 0, Kgθ̃f = 0. (4.52)
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Clearly – unless of course we have a planar geometry – these constraints are not

“likely to be satisfied” for general solutions of (P̃F), although they may be fulfilled

for specific instances of geometry, boundary conditions and loading, as shown in the

following example.

Example We consider the surface described by the chart

φ(ξ1, ξ2) =
(

ξ1, R sin
ξ2

R
, R cos

ξ2

R

)

, ξ1 ∈]0, L[, ξ2 ∈]0, Rπ/2[, (4.53)

namely, a part of a circular cylinder. The structure is clamped on the boundary ξ2 =

0 and submitted to the distributed surface load given by f2 = F (ξ2)a3 (independent

of ξ1). Clearly, in this case pure bending is not inhibited. For symmetry reasons,

for the solution of (P̃F) we have that ũf
1 = 0 on the line ξ1 = L/2. This implies,

using the constraints prevailing in V0f ,

ũf
1 = θ̃f

1 = θ̃f
3 = 0, ũf

2,1 = ũf
3,1 = θ̃f

2,1 = 0, (4.54)

and we only use test functions that satisfy the corresponding similar identities. In

addition, we have

ũf
2,2 = −R−1ũf

3, θ̃f
2,2 = −(R−2ũf

3 + ũf
3,22), (4.55)

and this – with similar relations for the test functions – allows to obtain the following

ODE with ũf
3 as the only unknown

5R−4ũf
3 + 8R−2ũf

3,22 + 4ũf
3,2222 =

3F

E
a.e. in ω. (4.56)

On the other hand, in this case (4.52) reduces to θ̃f
2,2 = 0, which imply when

combined with (4.55)

ũf
3,22 = −R−2ũf

3, (4.57)

hence, by (4.56),

ũf
3 =

3F

R4E
. (4.58)

Due to (4.57) this is only possible when

F + R−2F,22 = 0, (4.59)

which means that we need to enforce a condition on the loading for the solutions of

(P̃F) and (P̃?
F) to coincide.

Remark 4.8 We point out that the two formulations (P̃F ) and (P̃?
F ) are obtained

under two different assumptions, namely that V00(ω) 6= {(0,0)} for (P̃F ), and

for (P̃?
F) that there exist some elements (v, η, ρ) ∈ VI0(ω) with (v, η) non-zero. In

essence, the equivalence of these two assumptions is conditionned by the integrability

of the constraint system I ′k(η, ρ) = 0, k = 1, 2, 3 with respect to ρ (i.e. with η given).

This integrability holds in particular under the assumptions (H1’) or (H2) of the

Appendix, see Lemma A.3. �
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4.3.2. Inhibited incompressible pure bending

In this case some particular care is required in the definition of the limit space

since the norm in which the convergence occurs does not provide any control on

the field ρ of a triple (v, η, ρ), whereas the constraint system defining VI(ω) does

involve ρ. We thus define

V\
I(ω) = {(v, η) ∈ (V(ω))2; ∃ρ such that (v, η, ρ) ∈ VI(ω)}. (4.60)

By definition of inhibited incompressible pure bending, ‖ · ‖m (as defined in (4.13))

gives a norm in V\
I(ω), and we can define VIm(ω) as the completion of V\

I(ω) for this

norm. Setting p = 0 for Problem (P̃(ε)), we then have the following convergence

result.

Theorem 4.7 Assuming that (4.15) holds, when ε tends to zero, the couple
(
ũ(ε)+

t2

12 τ̃ (ε), θ̃(ε)
)

– obtained from Ũ(ε) = (ũ(ε), θ̃(ε), τ̃ (ε)) solution of (P̃(ε)) – con-

verges weakly in Vm(ω) to (ũm∗, θ̃
m∗

) solution of

(P̃?
M)







(ũm∗, θ̃
m∗

) ∈ VIm(ω),

E

3
Ad

m(ũm∗, θ̃
m∗

; v, η) =

∫

ω

f0 · v
√

a dω, ∀(v, η) ∈ VIm(ω).

�

Proof. Here again, the proof is directly adapted from that of Theorem 4.1, see Ref.7.

Like in the non-inhibited case, we can derive an alternative form of the bilinear

form used in (P̃?
M) in order to be able to compare this problem with (P̃M).

Theorem 4.8 For any (u, θ) and (v, η) in VIm(ω), we have

E

3
Ad

m(u, θ; v, η) =

∫

ω

(

aαβστ
I γαβ(u)γστ (v) +

4E

3
ζα(u, θ)ζβ(v, η)

)√
a dω. (4.61)

�

Proof. Straightforward by using aαβγαβ(u) + δ(θ) = 0 (and the similar relation for

(v, η)), namely the first constraint equation in the definition of VI(ω).

Therefore, the solutions of the two problems (P̃M) and (P̃?
M) satisfy the same

variational formulation, posed in the spaces Vm(ω) and VIm(ω), respectively. Since

VIm(ω) is a subspace of Vm(ω) the two solutions coincide if and only if the solution of

(P̃M) happens to lie in VIm(ω). By definition, this solution (ũm, θ̃
m

) is in VIm(ω) if

there exists a sequence (un, θn, τn) in VI(ω) such that (un, θn) tends to (ũm, θ̃
m

)

for the norm ‖ · ‖m. We now write the constraints acting on (un, θn, τn) in the
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following rearranged form






aαβγαβ(un) + δ(θn) = 0,

τn
3 = −1

2

(

2Haαβγαβ(un) + bαβγαβ(un) + gθn

)

,

gτn = −
(

3(2H2 − K)aαβγαβ(un) + 3Hbαβγαβ(un) + Hgθn + bθn

)

,

bτn = −2
(

H(6H2 − 5K)aαβγαβ(un) + (3H2 − K)bαβγαβ(un)

+ (H2 − K)gθn + Hbθn

)

.

(4.62)

There is no difficulty with the first constraint equation since it does not contain τn

and continuously gives, when taking the limit in n (assuming that we can find the

desired sequence),

aαβγαβ(ũm) + δ(θ̃
m

) = 0, (4.63)

which is – indeed – satisfied by the solution of (P̃M). Moreover, it is clear that

if for any given choice of (smooth, say) couple (un, θn) in
(
V(ω)

)2
the last three

equations of (4.62) admit (at least) one solution τn in V(ω), then they do not give

constraints on (u, θ) and in such a case we have

VIm(ω) = {(v, η) ∈ Vm(ω); aαβγαβ(v) + δ(η) = 0}, (4.64)

hence the solution of (P̃M) is in VIm(ω) and coincides with the solution of (P̃?
M).

Example We consider again the cylindrical surface defined by (4.53). In this coor-

dinate system we have

gτn = τn
1,1 + τn

2,2, bτn = −R−1τn
2,2. (4.65)

Hence, using these equations we obtain that the last three equations of (4.62) are

equivalent to






τn
3 =

R−1

2

(
γ11(u

n) + 2γ22(u
n)

)
− 1

2

(
θn
1,1 + θn

2,2

)
,

τn
1,1 = 0,

τn
2,2 = −3

2
R−2

(
γ11(u

n) + 2γ22(u
n)

)
+

R−1

2

(
θn
1,1 + 3θn

2,2

)
.

(4.66)

Therefore, if the boundary conditions are that, e.g., the structure is clamped on

the edges ξ1 = 0 and ξ1 = L (which implies that pure bending is inhibited, see e.g.

Ref.10) this system can easily be solved for τn and the solutions of (P̃M) and (P̃?
M)

coincide.

Remark 4.9 In the case of a plate the equations in (4.62) reduce to

gτn = 0, τn
3 = −1

2
gθn , (4.67)

which admit obvious solutions, hence the solutions of (P̃M) and (P̃?
M) always coin-

cide. �
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ν → 1/2

(P̃(ε, ν))

{
(P̃F (ν)) ⇔ (PF(ν))

(P̃M(ν)) ⇔ (PM(ν))

ε → 0

(weak)

(P̃(ε))
ε → 0

(weak) (†)

{
(P̃F ) ⇔ (PF )

(P̃M) ⇔ (PM)

ν → 1/2

⇐⇒
{

(P̃?
F)

(P̃?
M)

Figure 3: Convergence behaviors of the 3D-shell model

To conclude this section we summarize the convergence behaviors of the 3D-

shell model in the (non-commuting) diagram featured in Figure 3, where the “(†)”
symbol refers to Remark 4.8 above.

4.4. Modified 3D-shell model

The objective of this section is to propose a modified 3D-shell formulation that

circumvents the above difficulties pertaining to the fullfilment of incompressibility

constraints. We introduce the variational formulation

(P̂(ε, ν))







Û(ε, ν) ∈ (V(ω))3,

µ

∫

Ωt

gijkleij(Û(ε, ν))ekl(V )
√

g dΩ

+ λ

∫

Ωt

P1,ξ3

(
gijeij(Û(ε, ν))

)
P1,ξ3

(
gklekl(V )

)√
g dΩ

=

∫

Ωt

f ε · V √
g dΩ, ∀V ∈ (V(ω))3,

where P1,ξ3 denotes the operator that truncates a function analytic in the ξ3 variable

to its first degree polynomial expansion in ξ3. Here, recalling (4.30) we have

P1,ξ3

(
gijeij(V )

)
= aαβγαβ(v) + δ(η)

︸ ︷︷ ︸

=I0(v,η,ρ)

+ξ3
(
aαβχαβ(v, η) + 2bαβγαβ(v) + p(ρ)

)

︸ ︷︷ ︸

=(I1+4HI0)(v,η,ρ)

.

(4.68)

Note that this modified variational formulation is well-posed since it features the

same coercivity and boundedness properties as (P̃(ε, ν)).

In the incompressible limit (ν → 1/2), by construction the constraint enforced

in the variational formulation (P̂(ε, ν)) is that the displacements belong to the

subspace

V̂I(ω) = {(v, η, ρ) ∈ (V(ω))3; Ik(v, η, ρ) = 0, k = 0, 1}. (4.69)

Note that the constraints acting in this subspace correspond to the first two in-

compressibility constraints featured in the definition of VI(ω). This modification

of the 3D-shell formulation is – indeed – motivated by the fact that the additional
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constraints “I2 = I3 = 0” were identified in the above analysis as an obstacle to

having the incompressible and thickness limits commute.

With this modified formulation, when considering first the limit in ε the asymp-

totic behavior is clearly unchanged since the strain terms of degree higher than one

(in ξ3) vanish in the limit, see Ref.7.

When considering first the incompressible limit we obtain in a straightforward

manner the following limit constrained problem (and solution)

(P̂(ε))







Û(ε) = (û(ε), θ̂(ε), τ̂ (ε)) ∈ V̂I(ω),

E

3

∫

Ωt

gijkleij(Û(ε))ekl(V )
√

g dΩ =

∫

Ωt

fε · V √
g dΩ, ∀V ∈ V̂I(ω).

Then, when considering the asymptotic behavior of this solution with respect to ε

we are led to introducing the subspace

V̂I0(ω) =
{
(v, η, ρ) ∈ (V(ω))3; (v, η) ∈ V00(ω), I ′1(η, ρ) = 0}, (4.70)

and a relaxed form of Condition (4.44), viz.

(v, η, ρ) ∈ V̂I0(ω) ⇒ (v, η) = (0,0). (4.71)

Remark 4.10 The constraint I ′1(η, ρ) = 0 gives an explicit expression of ρ3 with

respect to η, hence the subspaces V̂I0(ω) and V00(ω) are very closely related (in

particular all smooth elements of V00(ω) allow to construct elements of V̂I0(ω)) and

so are the conditions of inhibited pure bending and (4.71), see also the Appendix

regarding the density of regular functions in V00(ω). �

When Condition (4.71) does not hold – namely, in a “non-inhibited case” – we

define the subspaces V̂If(ω) and V̂I0f(ω) as the completions of V̂I(ω) and V̂I0(ω),

respectively, for the norm ‖.‖f , and we will assume the ad hoc commuting property

of intersection and completion, namely,

V̂I0f(ω) = V̂If(ω) ∩ V0f(ω). (4.72)

We also discuss this assumption and provide sufficient conditions in the Appendix.

In this case, the appropriate scaling for the asymptotic behavior with respect to ε

is then p = 2 and we have the following convergence result.

Theorem 4.9 Assuming that (4.72) holds, when ε tends to 0 (û(ε), θ̂(ε), τ̂ (ε))

solution of (P̂(ε)) converges weakly in Vf(ω) to (ũf , θ̃
f
, τ̃ f) solution of (P̃F). �

Sketch of the proof. First, like in Theorem 4.5 we prove that the sequence converges

(weakly in Vf(ω)) to the solution of a variational problem similar to (P̃?
F ) albeit

posed in V̂I0f(ω) instead of VI0f(ω). Then, like in Theorem 4.6 we show that (4.47)

holds in V̂I0f(ω), hence the limit solution of (P̂(ε)) coincides with (ũf , θ̃
f
, τ̃ f) if and

only if the latter lies in V̂I0f(ω). Finally, this property holds because we clearly have

V̂If(ω) =
{
(v, η, ρ) ∈ Vf(ω); Ik(v, η, ρ) = 0, k = 0, 1}, (4.73)
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which implies due to (4.72)

V̂I0f(ω) =
{
(v, η, ρ) ∈ V0f(ω); I ′1(η, ρ) = 0}, (4.74)

and we already showed that I ′1(θ̃
f
, τ̃ f) = 0 in Section 4.3.1.

We now consider the inhibited case, i.e. we suppose that (4.71) holds. For the

scaling p = 0 there is then no difficulty in obtaining the following asymptotic result,

which we can prove like in Ref.7, using also an equivalence of bilinear forms similar

to (4.61).

Theorem 4.10 Assuming that (4.15) holds, when ε tends to 0, the couple (û(ε) +
t2

12 τ̂ (ε), θ̂(ε)) – obtained from Û(ε) = (û(ε), θ̂(ε), τ̂ (ε)) solution of (P̂(ε)) – con-

verges weakly in Vm(ω) to (ũm, θ̃
m

) solution of (P̃M). �

ν → 1/2

(P̂(ε, ν))

(P̂(ε))

ε → 0

ε → 0

{
(P̃F(ν)) ⇔ (PF(ν))

(P̃M(ν)) ⇔ (PM(ν))

{
(P̃F) ⇔ (PF)

(P̃M) ⇔ (PM)(weak) (‡)

ν → 1/2

(weak)

Figure 4: Convergence behaviors of the modified 3D-shell model

We conclude from this section that the formulation (P̂(ε, ν)) gives a shell model

which enjoys a commuting property for the limits with respect to the parameters

ε and ν, with limits when ε tends to 0 and ν to 1/2 that correspond to the limits

obtained for the 3D elasticity problem (under the assumption (4.72), see also the

Appendix). This is summarized in the diagram given in Figure 4, where the “(‡)”
symbol refers to Remark 4.10 above.

5. Numerical illustration

The purpose of this section is to illustrate our above discussions by providing

some numerical results, in particular using 3D-shell elements. From a numerical

point of view we cannot expect to reach the asymptotic limits with respect to the

parameters ε and ν, because

• although we use shell elements for which numerical locking is limited for “prac-

tical values of the thickness”, see in particular Ref.10, uniform convergence of

the numerical solution with respect to ε is not to be expected;

• for 3D-shell elements the condition number appears to behave like

O
(
h−2 ε−2 (1 − 2ν)−1

)
,
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hence we rapidly hit the numerical precision threshold when considering to-

gether small values of the thickness and a material near the incompressible

limit.

Therefore, we will restrict our computations to a shell of “reasonably small thick-

ness” (ε = 10−2) and investigate the effect of using the modified 3D-shell model on

the solutions obtained for various values of ν.

2R

R

p = p0 cos(2ξ2)

computational

free/clamped
edges

domain

Figure 5: Cylinder loaded by periodic pressure

We then consider the shell structure depicted in Figure 5, namely a cylindrical

shell loaded by a periodic pressure. This example was already proposed in Ref.14,

which also presented a procedure to obtain numerical solutions of arbitrary precision

for classical shell models. Depending on the boundary conditions prescribed on the

two ends we can obtain various asymptotic behaviors with respect to ε.

ν = 0.4 ν = 0.499 ν = 0.49999
0.594044 0.535284 0.534628

Table 1: Non-inhibited case - MITC elements - Energy scaled by
12p2

0
R3

Eε3

We first leave the two ends free in order to obtain a shell with non-inhibited

pure bending, see Refs.10,14. Table 1 lists the values of the strain energy obtained

with a mesh of 34 by 34 MITC9 elements in the computational domain shown in

Figure 5, for various values of ν. These energy values are to be used for comparison

purposes in the sequel, although we emphasize that MITC elements correspond to

discretizations of the so-called “basic shell model” (see Ref.10) which differs from
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N ν = 0.4 ν = 0.499 ν = 0.49999
4 0.615088 0.551713 0.499036
8 0.617861 0.555567 0.502491
12 0.618107 0.555925 0.502543
16 0.618160 0.555989 0.502013

Table 2: Non-inhibited case - 3D-shell elements - Energy scaled by
12p2

0
R3

Eε3

N ν = 0.4 ν = 0.499 ν = 0.49999
4 0.615101 0.552697 0.551724
8 0.617867 0.556560 0.555792
12 0.618127 0.556921 0.556207
16 0.618173 0.556989 0.555899

Table 3: Non-inhibited case - Modified 3D-shell elements - Energy scaled by
12p2

0
R3

Eε3

the 3D-shell model for finite values of the thickness, see Ref.7. We note, of course,

the expected very regular behavior when ν tends to 0.5. In turn, with the corre-

sponding 3D-shell element (also formulated using mixed interpolation procedures,

see Ref.9) we obtain the strain energy values given in Table 2, for various meshes

of N × N elements. We note that the energy convergence behavior (with respect

to the discretization parameter) does not obviously deteriorate when ν approaches

0.5, which suggests that this asymptotic behavior does not produce a numerical

locking phenomenon, although the matter would deserve a much more detailed in-

vestigation, of course. However, since the 3D-shell model corresponds to a “more

refined” approximation of 3D elasticity than the basic shell model we would ex-

pect the converged energy values of the 3D-shell elements to be above those of the

MITC elements. This is – indeed – what we observe for ν = 0.4 and 0.499, but

not for 0.49999. If we then use the modified 3D-shell model presented in Section

4.4 we obtain the values of Table 3, where we observe little change for ν = 0.4 and

0.499, but now the energy behaves as expected also for ν = 0.49999. We mention

in passing that very similar numerical solutions are obtained when using, instead of

the modified 3D-shell model, the energy expression of the standard 3D-shell model

with a 2-point reduced integration strategy across the thickness for the volumetric

term, which makes the practical implementation very straightforward.

ν = 0.499 ν = 0.49999
2.52233 2.52304

Table 4: Inhibited case - MITC elements - Energy scaled by
12p2

0
R3

Eε

We perform similar comparisons in a case of inhibited pure bending obtained

by clamping the two boundaries. Table 4 gives the “reference solutions” obtained
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N ν = 0.499 ν = 0.49999
4 2.16341 1.82587
8 2.37928 2.32236
12 2.47933 2.46345
16 2.52856 2.52200

Table 5: Inhibited case - 3D-shell elements - Energy scaled by
12p2

0
R3

Eε

N ν = 0.499 ν = 0.49999
4 2.45439 2.05505
8 2.52031 2.42700
12 2.55803 2.51531
16 2.57804 2.55027

Table 6: Inhibited case - Modified 3D-shell elements - Energy scaled by
12p2

0
R3

Eε

with MITC9 elements (N = 34). The energy values obtained with the original and

modified 3D-shell models are shown in Tables 5 and 6, respectively. We observe

that the modification has a much smaller impact on the converged energy values

than in the non-inhibited case, as was expected from the above discussion (note

that the models are definitely different for finite thicknesses and ν away from 0.5,

so that small differences in the energy values are not significant).

6. Concluding remarks

Although this study of “incompressible shells” should be considered as prelim-

inary in many respects, the results obtained have some valuable implications and

lead to interesting observations (and conjectures).

First, we have obtained a preliminary justification of the concept of “incom-

pressible shell” by showing that, in some sense, the limits of ε → 0 and ν → 0.5

do commute in the asymptotic behavior of thin elastic structures. In essence, the

combined limit is then obtained by setting ν = 0.5 in the membrane and pure-

bending models, namely the limits of 3D models and classical shell models when

the thickness tends to zero. Hence this also gives a preliminary justification that

classical shell models are valid in the incompressible limit.

Then we have shown that the 3D-shell model does not enjoy the same property

of commuting limits, which suggests that it is not valid for incompressible materials.

In particular, the commuting property is in general not satisfied when pure bending

is not inhibited, namely for bending-dominated shell structures. This phenomenon

can be compared to numerical locking, since it occurs due to the semi-discretization

of the displacements in the transverse direction (quadratic kinematical assumption),

as was already recognized in Ref.2. However we can recover the desired commuting

property (i.e. “unlock”) by slightly modifying the volumetric part of the formula-
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tion. These theoretical results have been illustrated (and to some extent confirmed)

by numerical solutions, although much more thorough investigations would be re-

quired, in particular to analyse the various locking phenomena involved, with their

possible mutual interactions.

References
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Appendix

The result of Theorem A.1 below is needed in the study of the asymptotic

behaviour of the “incompressible 3D-shell model” (P̃(ε)) and of the “modified in-

compressible 3D-shell model” (P̂(ε)) in the bending-dominated cases (see Theorems

4.5 and 4.9).

We assume that the midsurface S of the shell is regular enough in all parametriza-

tions henceforth considered (i.e., S = φ(ω) with φ ∈ C6(ω; R3), where ω is a

connected, open subset of R
2 with a Lipschitz-continuous boundary) and that the
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subset (∂S)0 = φ(γ0) of the boundary of S is connected and relatively open. We

assume in addition that S satisfies one of the following assumptions:

(H1) The surface S is hyperbolic and convex in its asymptotic directions.

(H1’) The surface S is hyperbolic and convex in its asymptotic and principal

directions and the intersection between (∂S)0 and any principal curve of S ∪ ∂S is

a connected set.

(H2) The surface S is parabolic and convex in its asymptotic direction.

We introduce H1
γ0

(ω) = {f ∈ H1(ω); f = 0 on γ0}, H2
γ0

(ω) = {f ∈ H1(ω); f =

∂νf = 0 on γ0} and we note that V(ω) = (H1
γ0

(ω))3.

In what follows, whenever an equation involves generic indices it is understood

that this equation holds for all such indices (in conjunction with the convention

for Latin and Green indices stated in Section 2). For instance, the equation “vi ∈
H1

γ0
(ω)” means that “vi ∈ H1

γ0
(ω) for all i ∈ {1, 2, 3}”, the equation “γαβ(v) = 0”

means that “γαβ(v) = 0 for all α, β ∈ {1, 2}”, and so on.

Let the differential operators R and I be defined by

R(v, η, ρ) = (γαβ(v), ζα(v, η), δ(η)),

I(v, η, ρ) = gijeij(v + ξ3η + (ξ3)2ρ),

for all (v, η, ρ) ∈ (V(ω))3, so that

V]
00(ω) = {(v, η, ρ) ∈ (V(ω))3; R(v, η, ρ) = 0},

VI(ω) = {(v, η, ρ) ∈ (V(ω))3; I(v, η, ρ) = 0},
V̂I(ω) = {(v, η, ρ) ∈ (V(ω))3; Iaff(v, η, ρ) = 0},

where Iaff denotes the affine part of I with respect to ξ3, namely

Iaff(v, η, ρ) = I0(v, η, ρ) + ξ3(I1 + 4HI0)(v, η, ρ),

see (4.68). We recall that Vf(ω), V0f(ω), VIf(ω), V̂If(ω), VI0f(ω) and V̂I0f(ω) re-

spectively denote the completions of the spaces (V(ω))3, V]
00(ω), VI(ω), V̂I(ω),

V]
00(ω) ∩ VI(ω) and V]

00(ω) ∩ V̂I(ω) with respect to the norm

‖(v, η, ρ)‖f = (
∑

i ‖vi‖2
1 +

∑

α ‖ηα‖2
1 + ‖η3‖2

0 + ‖ρ3‖2
0 +

∑

α ‖ρα + 1
2∂αη3‖2

0)
1/2.

Then one can see that

Vf(ω) = {(v, η, ρ); vi, ηα ∈ H1
γ0

(ω); η3, ρ3 ∈ L2(ω); ρα ∈ H−1(ω),

2ρα + ∂αη3 ∈ L2(ω)}.

The distance from a point x to a subset A of the Euclidean space R
k, k ≥ 1, is

defined by dist(x, A) = inf{‖x − a‖; a ∈ A}.
The object of this appendix is to prove the following result.
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Theorem A.1 a) Assume that either assumption (H1) or assumption (H2) holds.

Then

V̂I0f(ω) = V̂If(ω) ∩ V0f(ω).

b) Assume that either assumption (H1’) or assumption (H2) holds. Then

VI0f(ω) = VIf(ω) ∩ V0f(ω).

�

The proof of this theorem relies in particular on the following density result:

Lemma A.2 Assume that either assumption (H1) or assumption (H2) holds. Let

v ∈ H1
γ0

(ω)×H1
γ0

(ω)×H2
γ0

(ω) be such that γαβ(v) = 0. Then there exists a sequence

vn ∈ H4(ω) × H4(ω) × H3(ω) such that γαβ(vn) = 0, vn = 0 in a neighborhood of

γ0, and vn → v in H3(ω) × H3(ω) × H2(ω) as n → ∞. �

Proof. We assume that the midsurface of the shell is hyperbolic and convex in its

asymptotic directions (the proof is simpler if the midsurface is parabolic and convex

in its asymptotic direction). Then there is no loss of generality in assuming that the

parameter curves are the asymptotic lines of the surface. In this case, the system

γαβ(v) = 0 splits into the equation

v3 =
1

2b12
(∂2v1 + ∂1v2 − 2Γσ

12vσ), (A.1)

and the system {

∂1v1 − Γσ
11v

σ = 0,

∂2v2 − Γσ
22v

σ = 0.
(A.2)

We can assume, again without loss of generality, that ω is a subset of the set

D =]0, 1[×]0, 1[. If m, n ∈ N and X is a subset of an open set Y ⊂ R
n, the notation

Hm
X (Y ) designates the space of all (classes of) functions of class Hm over Y that,

together with all their derivatives of order ≤ m − 1, vanish on X .

Since v belongs to the space H1
γ0

(ω) × H1
γ0

(ω) × H2
γ0

(ω), the above equations

imply that vα ∈ H3
γ0

(ω) and ∂1v1, ∂2v2 ∈ H3
γ0

(ω) (we use local coordinates around

γ0 to show that the normal derivatives of vα vanish on γ0). Let ω0 designate the

smallest rectangle that contains the set γ0 and whose edges are parallel to the

coordinate axes (Oξ1 and Oξ2). Then the functions vα are extended by zero in

the set ω0 to the functions (still denoted) vα ∈ H3(ω ∪ ω0) that satisfy in addition

∂1v1, ∂2v2 ∈ H3(ω∪ω0). This can be done because vα = 0 in ω∩ω0 (the coordinate

axes are the characteristic lines of the system (A.2)). Since the set ω∪ω0 is Lipschitz,

the functions vα ∈ H3(ω ∪ ω0) can further be extended to functions (still denoted)

vα that belong to the space H3(D) and satisfy ∂1v1, ∂2v2 ∈ H3(D).

Since the set ω is Lipschitz, the functions Γσ
αβ ∈ C4(ω) can be extended in D to

functions (still denoted) Γσ
αβ ∈ C4(D). Let

f1(ξ
1, ξ2) = e

R

ξ1

0
Γ1

11
(s,ξ2)ds and f2(ξ

1, ξ2) = e
R

ξ2

0
Γ2

22
(ξ1,s)ds,
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and define

u1 = v1/f1, u2 = v2/f2, k1 = (f2/f1)Γ
2
11, k2 = (f1/f2)Γ

1
22,

h1 =
∂1v1 − Γσ

11v
σ

f1
, h2 =

∂2v2 − Γσ
22v

σ

f2
.

Then kα ∈ C4(D), hα ∈ H3
ω∪ω0

(D), uα ∈ H3
ω0

(D) and
{

∂1u1 = k1u2 + h1,

∂2u2 = k2u1 + h2.

Let a point (ξ1
0 , ξ2

0) ∈ ω0 be fixed and let D1 = {(ξ1
0 , ξ2); 0 < ξ2 < 1} and

D2 = {(ξ1, ξ2
0); 0 < ξ1 < 1}. Since u1 and ∂1u1 belong to the space H3(D), one can

see that the trace of u1 on D1, denoted u0
1(ξ

2) = u1(ξ
1
0 , ξ2), belongs to the space

H3(]0, 1[) and that there exists a constant C > 0 such that

‖u0
1‖H3(]0,1[) ≤ C(‖u1‖H3(D) + ‖∂1u1‖H3(D)).

In the same way, the trace of u2 on D2, denoted u0
2(ξ

1) = u2(ξ
1, ξ2

0), belongs to the

space H3(]0, 1[) and there exists a constant C > 0 such that

‖u0
2‖H3(]0,1[) ≤ C(‖u2‖H3(D) + ‖∂2u2‖H3(D)).

Let V1 = {ξ2; (ξ1
0 , ξ2) ∈ D1 ∩ ω0} and V2 = {ξ1; (ξ1, ξ2

0) ∈ D2 ∩ ω0}. Since

u0
1 ∈ H3

V1
(]0, 1[) and u0

2 ∈ H3
V2

(]0, 1[), there exist sequences of functions (u0,n
1 ) and

(u0,n
2 ) in the space C∞([0, 1]) such that u0,n

α → u0
α in H3(D) and u0,n

α = 0 on V n
α ,

where

V n
1 = {ξ2 ∈]0, 1[; dist(ξ2, V1) < 1/n},

V n
2 = {ξ1 ∈]0, 1[; dist(ξ1, V2) < 1/n}.

Since the functions hα belong to the space H3
ω∪ω0

(D), there exist sequences of

functions (hn
α) such that hn

α → hα in H3(ω) as n → ∞ and hn
α = 0 on ω∪ωn

0 , where

ωn
0 = {(ξ1, ξ2) ∈ D; dist((ξ1, ξ2), ω0) < 1/n}.

Then one can show that the system






∂1u
n
1 = k1u

n
2 + hn

1 in D,

∂2u
n
2 = k2u

n
1 + hn

2 in D,

un
1 |D1

= u0,n
1 , un

2 |D2
= u0,n

2 ,

(A.3)

possesses a unique solution (un
1 , un

2 ) ∈ H4
ωn

0

(ω) × H4
ωn

0

(ω) and that this solution

satisfies

un
α → uα in H3(D) as n → ∞.

To prove this, let m ∈ {0, 1, 2, 3, 4} be fixed and consider the system






∂1w1 = k1w2 + d1 in D,

∂2w2 = k2w1 + d2 in D,

w1|D1
= w0

1, w2|D2
= w0

2,

(A.4)
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where kα ∈ C4(D), w0
α ∈ Hm(]0, 1[) and dα ∈ Hm(D). Let w0

α = 0 in D and, for

all j ≥ 0, define recursively






wj+1
1 (ξ1, ξ2) = w0

1(ξ
2) +

∫ ξ1

ξ1

0

(k1w
j
2 + d1)(s, ξ

2)ds,

wj+1
2 (ξ1, ξ2) = w0

2(ξ
1) +

∫ ξ2

ξ2

0

(k2w
j
1 + d1)(ξ

1, s)ds.

Then one can prove that sequences (wj
α)j are Cauchy sequences in the space

Hm(D) and that there exists a constant C > 0 (depending on the C4(D)-norms of

kα but independent on j) such that

∑

α ‖wj
α‖Hm(D) ≤ C

∑

α ‖w1
α‖Hm(D).

Let wα be the limit of sequence (wj
α)j in Hm(D) as j → ∞. Then (wα) is solution

to system (A.4) and satisfies the inequality

∑

α ‖wα‖Hm(D) ≤ C
∑

α(‖w0
α‖Hm(]0,1[) + ‖dα‖Hm(D)).

This shows that system (A.3) possesses a unique solution (un
1 , un

2 ) ∈ H4(ω) ×
H4(ω) (by taking w0

α = u0,n
α , dα = hn

α and m = 4 in (A.4)) and that un
α →

uα in H3(D) as n → ∞ (by taking w0
α = u0,n

α − u0
α, dα = hn

α − hα and m = 3 in

(A.4)). Moreover, system (A.3) shows that un
α vanish in ωn

0 .

Let now vn
1 = f1u

n
1 , vn

2 = f2u
n
2 . Then vn

α vanish in ωn
0 and satisfy the system

(easily obtained from (A.3)):

{

∂1v
n
1 − Γ1

11v
n
1 − Γ2

11v
n
2 = f1h

n
1 in D,

∂2v
n
2 − Γ2

22v
n
2 − Γ1

22v
n
1 = f2h

n
2 in D.

Since hn
α vanishes in ω∪ωn

0 , the restrictions of vn
α to ω (still denoted vn

α) satisfy the

system
{

∂1v
n
1 − Γ1

11v
n
1 − Γ2

11v
n
2 = 0 in ω,

∂2v
n
2 − Γ2

22v
n
2 − Γ1

22v
n
1 = 0 in ω.

Moreover, vn
α = 0 in ω ∩ ωn

0 and vn
α converges to vα in H3(ω) as n → ∞. Finally,

let

vn
3 =

1

2b12
(∂2v

n
1 + ∂1v

n
2 − 2Γσ

12v
n
σ ).

Then vn
3 ∈ H3(ω), vanishes in ω ∩ ωn

0 , and converges to v3 in H2(ω) as n → ∞.

The proof is complete. 2

Remark A.1 Any vector field v ∈ H1
γ0

(ω)×H1
γ0

(ω)×H2
γ0

(ω) that satisfies γαβ(v) =

0 belongs in fact to the space H3
γ0

(ω) × H3
γ0

(ω) × H2
γ0

(ω). �

Remark A.2 If the set ω0 reduces to a segment, one of the sets V1 or V2 reduces

to a point. The above proof remains valid in this case. �
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Proof of Theorem A.1. a) It suffices to prove that V̂If(ω) ∩ V0f(ω) ⊂ V̂I0f(ω), the

reverse inclusion being clearly satisfied. Let (v, η, ρ) ∈ V̂If(ω)∩V0f(ω). This implies

that (v, η, ρ) ∈ Vf(ω), R(v, η, ρ) = 0 and aαβηα|β + 2ρ3 = 0.

First, these relations show that v ∈ H1
γ0

(ω)×H1
γ0

(ω)×H2
γ0

(ω) and γαβ(v) = 0.

This allows to apply Lemma A.2, hence to show that there exists a sequence (vn) ∈
H4(ω)×H4(ω)×H3(ω) vanishing in a neighborhood of γ0, satisfying γαβ(vn) = 0,

and converging to v in H3(ω) × H3(ω) × H2(ω) as n → ∞.

Then, the relation R(v, η, ρ) = 0 shows that ηα = −∂αv3 − bσ
αvσ and η3 = 0.

Let ηn = (ηn
i ) be defined by

ηn
α = −∂αvn

3 − bσ
αvn

σ and ηn
3 = 0.

Clearly, ηn is in (H2(ω))3 and vanishes in a neighborhood of γ0, and ηn → η in

(H1(ω))3 as n → ∞.

Next, recall that aαβηα|β +2ρ3 = 0. Then one can see that the functions defined

by ρn
3 = − 1

2aαβηn
α|β belong to the space H1(ω), vanish in a neighborhood of γ0,

and ρn
3 → ρ3 in L2(ω) as n → ∞.

Finally, the relation 2ρα + ∂αη3 ∈ L2(ω) implies that ρα ∈ L2(ω). Therefore

there exist sequences (ρn
α) in D(ω), hence in H1

γ0
(ω), converging to ρα in L2(ω) as

n → ∞.

The relations above show that the sequence (vn, ηn, ρn) belongs to the space

V̂I(ω) ∩ V]
00(ω) and converges to (v, η, ρ) in the ‖ · ‖f -norm.

b) It suffices to prove that VIf(ω) ∩ V0f(ω) ⊂ VI0f(ω). Let (v, η, ρ) ∈ VIf(ω) ∩
V0f(ω) be fixed. Since VI(ω) ⊂ V̂I(ω), it follows that (v, η, ρ) ∈ V̂If(ω) ∩ V0f(ω).

Therefore, the proof of the first part of Theorem A.1 shows that there exist sequences

(vn) ∈ V(ω) converging to v in (H1(ω))3, (ηn) = ((ηn
1 , ηn

2 , 0)) ∈ (H2(ω)3, with

ηn
α = 0 in a neighborhood of γ0, converging to η in (H1(ω))3 , and (ρn

3 ) ∈ H1
γ0

(ω)

converging to ρ3 in L2(ω), such that R(vn, ηn, ρn) = 0 and aαβηn
α|β + 2ρn

3 = 0.

In view of Lemma 4.2, it suffices to prove that there exist sequences (ρn
α)n∈N ∈

H1
γ0

(ω), converging to ρα in L2(ω), such that gρn = −Hgηn − bηn and bρn =

2(K − H2)gηn − 2Hbηn , where we denoted

gη = aαβηα|β and bη = bαβηα|β for any ηα ∈ H1(ω).

This is the object of the Lemma A.3 below, which thus concludes the proof of The-

orem A.1. 2

Lemma A.3 Assume that either assumption (H1’) or assumption (H2) holds. Let

(v, η, ρ) ∈ VIf(ω) ∩ V0f(ω) and let there be given sequences ηn
α ∈ H2(ω) such that

ηn
α = 0 in the set {(ξ1, ξ2) ∈ ω; dist((ξ1, ξ2), γ0) < 1/n} and ηn

α → ηα in H1(ω) as

n → ∞. Then there exist sequences (ρn
α) ∈ H1

γ0
(ω) such that gρn = −Hgηn − bηn,

bρn = 2(K − H2)gηn − 2Hbηn, and ρn
α → ρα in L2(ω) as n → ∞. �
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Proof. We assume that assumption (H1’) holds (the proof is simpler under assump-

tion (H2)). Then there is no loss of generality in assuming that the parameter curves

are the principal lines of the surface. Since the set ω is convex in the Oξ1-direction,

there exist an interval [c2
L, c2

R] ⊂ R and two functions L1, R1 : [c2
L, c2

R] → R such

that

ω = {(ξ1, ξ2); L1(ξ2) ≤ ξ1 ≤ R1(ξ2), c2
L ≤ ξ2 ≤ c2

R}.

To simplify the notations, we assume that [c2
L, c2

R] = [0, 1]. Since γ0 is connected

and its intersection with the lines parallel to Oξ1 is a connected set, there exists

an interval [a2, b2] ⊂ [0, 1] such that either γ0 = {(L1(ξ2), ξ2); ξ2 ∈ [a2, b2]} or

γ0 = {(R1(ξ2), ξ2); ξ2 ∈ [a2, b2]}. We will assume the former. In the same way,

there exist two functions L2, R2 : [0, 1] → R and an interval [a1, b1] ⊂ [0, 1] such

that

ω = {(ξ1, ξ2); 0 ≤ ξ1 ≤ 1, L2(ξ1) ≤ ξ2 ≤ R2(ξ1)}

and γ0 = {(ξ1, L2(ξ1)); ξ1 ∈ [a1, b1]}.
Let (v, η, ρ) ∈ VIf(ω) ∩ V0f(ω). By arguing as in the proof of Lemma 4.2, one

can see that the equations gρ = −Hgη − bη and bρ = 2(K − H2)gη − 2Hbη are

satisfied. Since the parameter curves are the principal lines of the surface, these

equations can be written as

{

a11ρ1|1 + a22ρ2|2 = −Hgη − bη,

b11ρ1|1 + b22ρ2|2 = 2(K − H2)gη − 2Hbη.

It should be noted that the set ω, the Christoffel symbols and the coefficients of the

first two fundamental forms of the surface are not those appearing in the proof of

the previous lemma, albeit we use the same notations.

Since a11b22 − a22b11 6= 0 in ω (due to the assumption that the surface is hyper-

bolic in (H1’)), the previous system can be written as

{

∂1ρ1 − Γσ
11ρσ = F1(η),

∂2ρ2 − Γσ
22ρσ = F2(η),

(A.5)

with 





F1(η) =
(2(H2 − K)a22 − Hb22)gη + (2Ha22 − b22)bη

a11b22 − a22b11

F2(η) =
(Hb11 − 2(H2 − K)a11)gη + (b11 − 2Ha11)bη

a11b22 − a22b11
.

(A.6)

It is clear that functions ρ1 and ρ2 belong to the space L2(ω). Equations (A.5)

next imply that ∂1ρ1 and ∂2ρ2 also belong to the space L2(ω). Now, we extend

functions ρ1 and ρ2 to functions ρ̃1 and ρ̃2 defined over the set D =]0, 1[×]0, 1[. To

this end, define the extension operator

T1 : u1 ∈ {v1 ∈ C0(ω); ∂1v1 ∈ L2(ω)} 7→ ũ1 ∈ {ṽ1 ∈ L2(D); ∂1ṽ1 ∈ L2(D)}
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by letting

ũ1(ξ
1, ξ2) =







u1(ξ
1, ξ2) if (ξ1, ξ2) ∈ ω,

u1(L
1(ξ2), ξ2) if 0 < ξ2 < 1 and 0 < ξ1 < L1(ξ2),

u1(R
1(ξ2), ξ2) if 0 < ξ2 < 1 and R1(ξ2) < ξ1 < 1.

Then one can see that this operator is linear and that there exists a constant C > 0

such that

‖ũ1‖L2(D) + ‖∂1ũ1‖L2(D) ≤ C(‖u1‖L2(ω) + ‖∂1u1‖L2(ω)).

Consequently, there exists a continuous linear operator

T 1 : u1 ∈ {v1 ∈ L2(ω); ∂1u1 ∈ L2(ω)} 7→ ũ1 ∈ {ṽ1 ∈ L2(D); ∂1ṽ1 ∈ L2(D)}

such that T 1(u1) = T1(u1) for all u1 ∈ {v1 ∈ C0(ω); ∂1v1 ∈ L2(ω)}.
In the same way, one can define the continuous linear operator

T 2 : u2 ∈ {v2 ∈ L2(ω); ∂2u2 ∈ L2(ω)} 7→ ũ2 ∈ {ṽ2 ∈ L2(D); ∂2ṽ2 ∈ L2(D)}.

Let ρ̃1 = T 1(ρ1) and ρ̃2 = T 2(ρ2) and define their traces ρ1 = γ1(ρ̃1) ∈ L2(D1)

and ρ2 = γ2(ρ̃2) ∈ L2(D2), where

D1 = {(a1, ξ2); ξ2 ∈]0, 1[} and D2 = {(ξ1, a2); ξ1 ∈]0, 1[},

by using the continuous linear operators (of trace)

γ1 : ũ1 ∈ {ṽ1 ∈ L2(D); ∂1ṽ1 ∈ L2(D)} 7→ u1 ∈ L2(D1)

and

γ2 : ũ1 ∈ {ṽ1 ∈ L2(D); ∂1ṽ1 ∈ L2(D)} 7→ u2 ∈ L2(D2)

that extend the usual operators of trace defined over continuous functions. Using

the fact that (v, η, ρ) ∈ VIf(ω), a lengthy calculation shows that ρ1 = 0 a.e. in

V1 = {(a1, ξ2); ξ2 ∈]a2, b2[} and ρ2 = 0 a.e. in V2 = {(ξ1, a2); ξ1 ∈]a1, b1[}.
Let functions Γσ

αβ be extended to functions Γ̃σ
αβ ∈ C1(D). Define F̃1 = ∂1ρ̃1 −

Γ̃σ
11ρ̃σ and F̃2 = ∂2ρ̃2 − Γ̃σ

22ρ̃σ and note that these functions belong to the space

L2(D) and satisfy

F̃1 = F̃2 = 0 a.e. in ω0 = {(ξ1, ξ2) ∈ D; a1 ≤ ξ1 ≤ L1(ξ2), a2 ≤ ξ2 ≤ L2(ξ1)}.

Consequently, there exists sequences (F̃α(n)) in H1(D) such that F̃α(n) = 0 in

ωn
0 = {(ξ1, ξ2) ∈ D; dist((ξ1, ξ2), ω0) < 1/n} and F̃α(n) → F̃α in L2(D) as n → ∞.

Let F̃α(ηn) ∈ H1(D), α = 1, 2, be defined by first extending Fα(ηn) with zero

in ωn
0 (this can be done since the fields Fα(ηn) vanish in a neighborhood of γ0),

then by using a continuous linear operator E : H1(ω ∪ ωn
0 ) → H1(D).
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Let χn ∈ C1(D) be such that 0 ≤ χn ≤ 1, χn = 1 on ω, and χn = 0 on the

set {(x1, x2) ∈ D; dist((x1, x2), ω) > 1/n}. Define F̃n
α = χnF̃α(ηn) + (1−χn)F̃α(n)

Then it is clear that F̃n
α ∈ H1(D), F̃n

α |ω = Fα(ηn), F̃n
α = 0 in ωn

0 , and F̃n
α → F̃α in

L2(D) as n → ∞.

Now, we can define sequences (ρn
α)n satisfying the conditions of Lemma A.3.

First, there exist functions ρn
1 ∈ C∞(D1) with ρn

1 = 0 on V n
1 = {(a1, ξ2) ∈

D1; dist(ξ2, [a2, b2]) < 1/n} and ρn
2 ∈ C∞(D2) with ρn

2 = 0 on V n
2 = {(ξ1, a2) ∈

D2; dist(ξ1, [a1, b1]) < 1/n} such that ρn
1 → ρ1 in L2(D1) and ρn

2 → ρ2 in L2(D2)

as n → ∞. Consider next the system







∂1ρ̃
n
1 − Γ̃σ

11ρ̃
n
σ = F̃n

1 in L2(D),

∂2ρ̃
n
2 − Γ̃σ

22ρ̃
n
σ = F̃n

2 in L2(D),

γ1(ρ̃
n
1 ) = ρn

1 and γ2(ρ̃
n
2 ) = ρn

2 .

Since F̃n
1 , F̃n

2 ∈ H1(D), one can prove (as in the proof of Lemma A.2) that this

system possesses a unique solution ρ̃n
1 , ρ̃n

2 ∈ H1(D) and that there exists a constant

C > 0 such that

∑

α

‖ρ̃n
α − ρ̃α‖L2(D) ≤ C

∑

α

(‖ρn
α − ρα‖L2(Dα) + ‖F̃n

α − F̃α‖L2(D)).

Moreover, the fields ρ̃n
α vanish on ωn

0 since F̃n
α = 0 on ωn

0 and ρn
α = 0 on V n

α for

α = 1, 2.

Then the restrictions ρn
α = ρ̃n

α|ω belong to the space H1(ω), vanish on γ0, and

satisfy ρn
α → ρα in L2(ω) as n → ∞. Moreover they satisfy the system

{

∂1ρ
n
1 − Γσ

11ρ
n
σ = F1(η

n) in L2(ω),

∂2ρ
n
2 − Γσ

22ρ
n
σ = F2(η

n) in L2(ω),

which is equivalent to the system of equations gρn = −Hgηn − bηn and bρn =

2(K − H2)gηn − 2Hbηn . The proof is complete. 2

Remark A.3 The assumption that the intersection between (∂S)0 and any princi-

pal curve of S ∪ ∂S is a connected set can be omitted from assumptions (H1’) if the

sets enclosed within (∂S)0 and the principal lines of the surface starting from the

end-points of (∂S)0 are contained in a set enclosed within (∂S)0 and the asymptotic

lines of the surface starting from the end-points of (∂S)0. �

Remark A.4 The proof under assumption (H2) uses the same parametrisation of

the surface as that used in the proof of Lemma A.2. �


