EXACT BOUNDARY CONTROLLABILITY OF A SYSTEM OF
MIXED ORDER WITH ESSENTIAL SPECTRUM
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Abstract. We address in this work the exact boundary controllability of a linear hyperbolic
system of the form u” + Au = 0 with u = (u1,u2)” posed in (0,T) x (0,1)2. A denotes a self-
adjoint operator of mixed order, that usually appears in the modelization of linear elastic membrane
shell. The operator A possesses an essential spectrum which prevents the exact controllability to
hold uniformly with respect to the initial data (uo, ul). ‘We show that the exact controllability holds
by a one Dirichlet control acting on the first variable u; for any initial data (uo,ul) generated by
the eigenfunctions corresponding to the discrete part of the spectrum o(A). The proof relies on a
suitable observability inequality obtained by the way of a full spectral analysis and the adaptation of
an Ingham type inequality for the Laplacian in two space dimension. This work provides a non trivial
example of system controlled by a number of controls strictly lower than the number of components.
Some numerical experiments illustrate our study.
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1. Introduction - Problem statement. Let Q = (0,1)? and T be the part of
0N defined by I' = {(z,y) € 9Q,zy = 0}. Let T be a positive real number and a, a
be two real numbers such that a > a? > 0 and Va — a2/7 ¢ N*. We analyze in this
work the exact boundary controllability of the following system in u = (u1,u2)”

uf = Auy + adpus in Qr =Q x (0,7)
uy = —adyu; — aus in Qr (11)
u; =vlp on Xy =902 x (0,7) '

(u(-,0), /(- 0)) = (u®,ul) in Q.

We set H = L? () x L* (Q) and H; /o = H () x L* (). Let H_; /5 denotes the dual
of H /o with respect to the pivot space H. System (1.1) is said exactly controllable
at time T > 0 if for any initial data (u’,u') € H x H_; 5 and any target (ul, ul.) €
Hx H_ 1 there exists a control function v in a suitable space, such that the unique

solution u = (ul,uQ)T of system (1.1) satisfies
(u('vT)au/('vT)) = (U%,u%«) in Q.

We point out that the variable uy in system (1.1) is free of any condition on the
boundary 9. In particular, system (1.1) provides a non trivial example for which
the number of controls is strictly lower than the number of components.
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As it is usual, the controllability issue is equivalent to an observability inequality
that we will rigorously prove to be:

T 2
@0 <€ [ [ (56 + ) doat, (12

(v = (v1,12) denotes the unit outward normal to I') for any initial data (®°,®)
belonging to H; /o x H, for the homogeneous adjoint system in ® = (¢, )T

O = Ap + ady in Qr
"n_ o .
Y = —adyp — ap in Qr w3
=0 on X
(®(-,0),'(-,0)) = ((130, (131) in €.

The observation zone T is defined so that the triplet (Q,T',T') satisfies the geometric
optic condition. The natural operator we want to consider to transform (1.3) into a

a
L? (Q) with domain D (4g) = (H? () N H{ () x D (9,). Here 8, is considered as
an unbounded operator in L? (€2). We can prove that this operator Ay is not closed
in L? () x L? (Q). Therefore we have to consider its closure A which is defined by :
A:D(A) CL?*(Q) x L?(Q) — L?(Q) x L?(Q),

A(i) _ (-A(<p+aA—;aw))

second order differential equation is the operator Ag = ( C_@A —ad, > in L2 (Q) x

adzp + a

and D (4) = { (¢, 0)" € Y (Q) x L2(9) /¢ + aA™ 0,0 € H (@) } (see [1]).

The originality and difficulty of the - apparently simple - system (1.3) are related
to the fact that A is a mixed order operator, and therefore, possesses a non-empty
essential spectrum oss(A), as shown in [6] in a general situation. As a consequence,
the observability does not hold uniformly with respect to the data (CIDO, <I>1). Precisely,
in [10] the authors exhibit Weil sequences, associated with some elements of oegs(A)
for which the observability inequality (1.2) is not true. The observability is therefore
only expected, roughly speaking, in the orthogonal of some space related to the essen-
tial spectrum. To our knowledge, the only way used up to now to address this kind
of problem is based on spectral analysis and Ingham type approach which allows to
prove the observability for the discrete part of the spectrum, provided some spectral
gap conditions (see [11]). In that framework, the existing literature mainly concerns
the controllability of dynamical systems modeling the vibrations of elastic membrane
shell, where precisely mixed order and self-adjoint operators appear (we refer to [19]
for a detailed spectral analysis). We also mention [8, 9] where the controllability of
an hemi-spherical cap is studied using a nonharmonic spectral analysis. The analysis,
reduced to the one space dimension by axial symmetry, exhibits the loss of uniform
observability due to the essential spectrum composed of a single positive element.
A similar study is performed in [2] for a nonuniform elliptic operator A for which
0 € 0ess(A). We also refer to the chapter 5 of [12] for results based on some recent
extensions of Ingham type inequalities. For systems of this kind, the uniform partial
controllability, which consists to drive to rest only a restricted number of components
is proved in [13]. The observability is obtained by a so-called spectral compensation
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argument, remarking that the bad behavior of the part of the spectrum which accu-
mulates to o.s5(A) is somehow compensated by the suitable gap of the discrete part.
In a different context, we also mention [3, 16, 18] for the controllability of systems
with spectral accumulation point.

The significant novelty of this present work with respect to the literature men-
tioned above is that it concerns the two space dimension. The proof of a positive
observability result for the discrete part of the spectrum, much less straightforward
(than for the one-dimensional situation), is obtained by the adaptation of a recent
Ingham type theorem due to Mehrenberger [17] that allows to prove the observabil-
ity for the wave equation in any space dimension. An other difficulty in the study
of the controllability for system (1.1) is that the associated control operator is not
bounded from the space of controls L? (I x (0,7)) to the state space X _; (the dual
of X1 = Hy/p x H with respect to the pivot space X = H x H_;3).

The paper is organized as follows. In Section 2, we first state the spectral prop-
erties of the operator A. Explicit computations show that the set of the eigenvalues
of A is composed of three parts: {\, }p =1 U{N }pg>1U{a}, where {\) }p 1 is
a bounded sequence which accumulates on the full interval [a — a?, a] = 0.ss(A) and
{Af p.g=1 - the set of isolated eigenvalues of A of finite multiplicity - is an unbounded
sequence such that )\;q ~ (p? + ¢®)n? for p,q large. In Section 3, we establish the
well-posedness of the boundary value problem (1.1) for v and any initial data (uo, ul)
in suitable spaces. We divide Section 4 into two parts. The first part is devoted to the
analysis of the adjoint system and to the formulation of the observability inequality

s (1.2). In the second part, we prove the observability for any initial data (<I>O, <I>1)

belonging to Hfr/2 x H*, the space spanned by the eigenfunctions {e} }, >1 associ-

ated with the eigenvalues {\} 1}, 4>1. The keypoint is that the sequence {\},}, 4>1
enjoys gap properties similar to those of the eigenvalues of —A with Dirichlet bound-
ary values, used in [17]. On the contrary, Section 5 exhibits the lack of observability
in spaces related to the essential spectrum. In particular, by numerical approxima-
tion, we check that the corresponding observability constant C~(T') is not bounded
uniformly with respect to (<I>O, <I>1). We also discuss the uniform observability with
respect to the coupling parameter a (as a« — 0). Section 6 concludes this work with
some remarks and open problems.

2. The operator A. We consider the operator A defined by : A : D(A) C
L?(Q) x L?(Q)=H — H,

a(g)=(Blraaae). -

D(A) = {(p0)" € H} (@) x L2 (@) [0+ aA™ 0, € H2 ()]

It is well-known and easy to check that the eigenvalues and normalized eigenfunctions
of —A with domain H? ()N H{ (2) are respectively given by 1, = (p* 4 ¢?) 72 and
©pg(z,y) = 2sin(prz)sin(gry) for (p,q) in N* x N* and (z,y) € Q = (0,1)°. We
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introduce the following notations: for p,q > 1

Mg =3 (:“pq tax \/(Mpq —a)’ + 40421927T2> ;

Vpq (2,y) = 2 cos(pm) sin(qmy) ,

+ (’\iq_“) apm

T
e =
- <\/()\$qa)2+a2p2w2 Pra \/()\iq—a)2+a2p2ﬂ.2 wpq) ’

eql.y) = (0,v2sin (gry)) " .

LEmMmA 2.1.
1. For all (p,q) € N* x N*, we have: Aeiq = )\Iﬂiqe[ﬁf’q, Ae, = aey.
Ker (A —AI) = {0}, VA ¢ {a}U {A;q}p,qzl U{AL gtpazt
In other words, the sets of eigenvalues and associated eigenfunctions of A

are respectively {a} U {N} }pq=1 U {N,  Jpg=1 and {eq}y>1 U {ef .} U

p,q>1
{ep,q }p,q21 :

2. We have A}

P,

~ Hpq-
L (p,g) | =400

Proof. Let )\ be an eigenvalue of A and u = (u1,uz2)” be an associated eigenvector.
Then u is a non-zero solution of the system

(A —a)uz = adyuq
A (u1 + ozA_laqu) +Au; =0 (2.2)

U190 = 0.

Assuming first that A\ = a, system (2.2) implies that d,u; = 0, A (u1 + aA_lamug) =
0 in €2 together with the boundary condition ujpq = 0. This implies that u; = 0
and 9,uz = 0 in Q. Consequently, we can write uz(z,y) = f(y) with f € L?(0,1). It
follows that A = a is an eigenvalue of A and the associated eigenspace is {(z,y) —
0, f(y))" : f € L2(0,1)}. Now, if A # a, then system (2.2) may be written as

Uz = /\faaxul
(14 52) Bawtir + Oyyur + Xz = 0 (2.3)
u1j90 = 0.
We can look for w; in the form uy = )" wupq0pq With Y (up,q)2 < 400. up is a
p,qEN* p,qEN*
solution of (2.3) if and only if for all (p,q) € N* x N*,
2,2 a® 2,2
—p°m 1+/\—a —¢*m+ A up e =0. (2.4)

It follows from (2.4) that A satisfies the eigenvalue equation

A2 — (a + (p2 + q2) 7r2) A+ ((a — a2) p? + aq2) 72 =0. (2.5)

We conclude that A = 1 <a + (P + )+ \/(a, — (p2 4+ ¢?) 7r2)2+4oz2p27r2) =AF.

£k

It is easily seen that Ae;, 5

easy to check. 0

This completes the proof of item 1. Item 2 is
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We refer to [5] for the definition of the essential spectrum of A, oess (4). As a
consequence of the results in [6], we have: oegs (A) = [a — a2, a]. On the other hand,

we can check that the set of accumulation points of the sequence ()\;, q) (p.q) EN* X IN*
) ;

Oess(A) = [a — o, a].
REMARK 2.2.
1. The asymptotic behavior of )\;‘q in Lemma 2.1 is in agreement with [7] where
it is shown that the asymptotic behavior of o(A) is related to the spectrum of
the principal part of A, in our case —A.
2. We check that

is

ApgSa<Ay <A V(pg) e N*x N

Thus all the )\;‘, o are isolated eigenvalues (of finite multiplicity).

Similarly, simple computations lead to:
Vp > 1, (A;q €la—a’a < q> \/a—a2/ﬂ')
Therefore, if Va—a?/m < 1, then (Apq)

is bounded away from ()\;q)(p g EN e

Figures 2.1 and 2.2 illustrate these two points.

(p,q) EN* xN* = Oess (A) and Oegs (A)

Fia. 2.1. Graphs of ()\;,q)

and a = 2.

+ ; -
2 (Left) and of (Ap’q)(p,q)e[l,looP (Right) for a = 1

(p,q)€[1,100

— +
A Apvq
set of the accumulation A~ (PP +¢) 7

points of (/\;,q)

(p.a)

F1G. 2.2. Distribution of o (A) along R.
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3. Using the fact that the families {¢pq},>1 451 and {Wpq} 50 451 are two Hilbert
bases of L? (), we can easily check that the family B = {e;q}pZLqu U
{e;q}p>1 o1 Y {eq} >, forms a Hilbert basis of H = L?(Q) x L?(9).

The operator A defined in (2.1) is self-adjoint in H, and positive if, as we have
assumed it, a > «2. This last point comes from the formula:

(Au,u) y = / {(&Jul + aug)? + (a—a?)uj+ (Oyu1)2] dx dy,
Q

where u = (u1,u2)T € D (A).
For any ¢ € R, , we recall that the operator A° is defined by

o N _ _
A= Z (A;q) '7e;q>H6;q+ Z ()‘p,q) <'7ep,q>Hep,q+aéz<'7eQ>H€qv

p,q>1 p,q>1 q>1
D (Aé): ¢ € H’Z(A;q)26<¢’€;q>iI+Z()‘;q)26<¢’ 6’502*“252@7 eq>iI<oo ‘
p,q=>1 p,q>1 g>1

Since (A is bounded, D (A%) =€ H, S (Af ) (dei,)2 <oop.

pvq)(p7q)€N*><N* p,q

P,q=1
In the sequel, we will set

Hs =D (A%, 6 >0.

The operator A is a bounded operator from D(A), equipped with the graph
norm, to H. It is well-known that A can be extended to a bounded operator from
H to D(A)’, the dual space of D(A) with respect to the pivot space H. We continue
to denote this extension by A and, thus, A can be seen as an unbounded self-adjoint
operator on D(A)’ with domain H. A is also a unitary operator from D(A) to H and
from H to D(A)". We will set in the sequel:

H_, = D(A).

The other extension of A we will use later is the following. A can also be extended
as a unitary operator from D(A'/?) equipped with the graph norm to D(A'Y/2), the
dual space of D(A'/?) with respect to the pivot space H. We will set:

H1/2 == D(Al/Q), H71/2 == D<A1/2>/.

For details on these extensions, see for instance [20].
The last notations we will need in the next sections are the following:

H* = span ({eiq, p,q > 1}) , H* = span ({eq, ¢ > 1})
and for § € R,
Hf = H;nH*, Hf = H; N H".

3. Well-posedness of the controlled system. This section is devoted to the
study of existence and uniqueness of solution for system (1.1).
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3.1. A Dirichlet map. In this part, we introduce and analyze the Dirichlet
map D : D(D) C L*(I') — H corresponding to system (1.1) defined as follows:
D(D) = {ve L*(I'),Dv € H} and for v € L*(T), we denote by Dv the solution

0 = (64, 02)T of the abstract elliptic problem

AO = in Q _ _
0 in | Az ( A —ad, ) . 3.1)
01 =vlr on 99 a0y a
The map D satisfies the following continuity property:

PROPOSITION 3.1. For everye € (1/2,1], D € L(H* ('), H). Moreover for every
v € D (D) we have

/\:l: —a+ 2 /\:l: _
<DU>€1j7E7q>H = 7"'( = aQ 2 ) V2,4 + Qﬂ-( = 2a) vip (3.2)
)\;,—L,q\/()\iq—a) +a2p2n? )\,jjq\/()\,fq—a) +a2p3n?
o
(Dv,eq)y = a—ﬁvqu (3.3)

with vy, = 2 fol v(z,0) sin (prx) dz and vy 4 = 2 fo v(0,y) sin (qmy) dy.
Proof. Let € € (1/2 1] and v € H¢ (T"). Suppose that (3.1) has a solution § € H.
Using integrations by parts, we have

5,
0:<A0,epq>H (0, Ae >H+/< gzq—k w;tq )vdadt
r

where e (cpp’q,w )T. Since Aei = )\ffq ;tq, this yields
7 (A, —a+a? s )\i —a
(2 ezﬂ;q>H = ultrt 3 ) V2,4t (% > ) v1p. (3.4)
/\iq\/(/\iq — a) + a2p?m2 )\;,tq\/()\ffq a) + a2p?n2
By the same arguments, we obtain
@
0,e = ——=v 3.5
( q>H a2 2,9 (3.5)

This proves that if (3.1) has a solution 6, then this solution is unique and it writes
0= Z (0, e;—,q>H Cpqt Z <9’€;q>H €pq T Z (0 €q) 1 €q5
P.q X q

with (6, e > and (0, e,), given by (3.4) and (3.5). Now, we have to check that

' p.q
such a 6 is an element of H. Formula (3.4) gives

P (A —at+a®) oyl A ) |01,
/\;q\/()\;q—a)z—kazp%r? P /\;q\/(/\;:q—a) + a2p?n2 q

From the asymptotic property )\;r q ~ Hpg, We have
l(p:@) || =00

‘<0’6;7F7Q>H‘ =

™ (g —at o) ™ (A —9) m

~ ~ _

Mg ()\;,q—a) + a2p272 I (p,q)||—+o0 )\;q\/()\;;q—a) + ap2n? ll(p,q)ll—+00 Hpg
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Consequently, there exists a positive constant ¢;, independant of v, such that for every
(p,q) € N* x N7,

+ 2 +
Q (/\p,q — a:—a ) < L and Q ()‘p,q _2a) < o
Mg ()\;{q _ a) + a2p272 Hpq )\;{,q\/(}\;{,q _ a) + a2p2m2 Hpq
Hence
etlr (At _g+a? e+1 2 e+l (A ¢
d ( P4 5 ) SClp gcl— SCl and a ( p,(; ) §cl.
)\;-’q ()\;',q—a) +a2p2n2 Hpq Hpq /\;q (/\;:q—a) +a2p2n?
Finally
+ |v2,q V1|
’<9’6P7Q>H‘ sa ( e + « )
This gives
S (Orciad) <20 | 3 a3 0 | = 40?3 ol
Cpalg) =401 2e V2,9 Uip) | =24 2e 192 (r) -
p,q>1 r>1 qeN* peN* r>1
(3.6)
From (3.4), we also have
(HME P (A mata®) g ol ¢ (Ng—a) ooyl
P9/ H| — _ — 2 € _ — D) €
qNp.q ()‘p,q*a) +a?pir? P PApq ()‘p,q*a) +a?p?r? 1
Using the definition of AJ ., we can prove that as ||(p, ¢)|| — +oo
T(Apg—ate®) ol & ™ (A=) el p

— 2 2\’ — 2 2"
Ny Oa—a) +azprnz AoaPEHCN D Jon o) razprnz Ava Vi

Since (A;’q)(p,q)EN* N

that for every (p,q) € N* x N*:

is bounded away from 0, there exists a constant cs > 0 such

T (Apg—ata’) ¢’ ™ (A —9)

2 = P 2 §c2p2—qu?
)\;q\/()\;,q—a) +a2p?m? )\;q\/()\;q—a) +a2p37?
This implies that:
P (A —ate?) Pg ¢ (A —a) p gt
<S5
P +q

=2 2 20
0Ny 0ra = +azprnz | T g g, - razpta?

2—e€ 1—e e+1
pq < p ‘g
We have e < 1 and e

- g lva gl | p°lviyl
‘<976P7Q>H’ S < e + qe :

<1 since 0 < e < 1. We conclude that
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Since v € H¢ (T"), we can write from this inequality

2 1 1
Z (<9, e;q>H) < QCQZZE Z (qev27q)2+z (pevl,p)2 < 462227"? ||v||§1g(r).

p,q>1 r>1 ISh peEN* r>1
(3.7)

Besides, formula (3.5) clearly gives ({6, eq)H)qu* € 12 (N*¥), with

2 0(2 2 (12 2
Z(<9;€q>H) = 942 Z (v2,4)” < 2 HU||L2(F)~ (3.8)

qeEN* qeEN*

Combining (3.6), (3.7) and (3.8), we obtain ¢ € H, with (|05 < cc||v|[gr, and

c-max( ZT%, \/Zrée,lz>.ﬂ

r>1 r>1
Proposition 3.1 gives that H¢ (I') C D (D) for every € € (1/2,1]. This implies
that D : D (D) C L? (T') — H is an unbounded operator with dense domain in L? (T).
Consequently, the adjoint operator D* of D is well-defined as an unbounded operator
D*:D(D*)C H— L*(I).
PROPOSITION 3.2. D* is given by

2
D)~ {oefy (L valuto)n) ar< o
* 8(A g)1 - = Ail *
’Dg—(-l-Oé(A 1 )2 1>|F where A 19—( EA 1 g ) Vg € D (D*).

Proof. For v € D (D) and g € H, we have

(Do,g) g = Z (<DU761—;Q>H<9’6;11>H+<Dv’e;; )ur ) + Z (Dvseq) pr (9:¢q) y -

p,q>1 q>1

By (3.2) and (3.3), we have

oty = Sy (T 05| 05,70 065
p>1  g>1 )\;q\/()\;q—a) +a2p?12 Mg/ (g —a) +ap?r?

+Zv2q Z pr (A —ata?) (ge pq>H_i_pTr (\pg—ate?®) (g:€p0)

a1 p>1 /\;{q\/()\;ﬁq—a) +a2p2n2 Aog ()\;q—a) +a2p2r?

+ m (9, eq>H> : (3.9)

By definition of the adjoint of an unbounded operator, D (D*) is the set of the elements
g € H such that v — (Dv, g) is a continuous linear form on L? (). Using (3.9), we
see that D (D*) is the set of the elements g € H such that the two following sequences

are in l2 (N*) (Z < qW(A;’r’q_a)<g’e;q>H + qﬂ'()‘pq )<g’e;~Q>H )) ,
p=1

>1 )\;q \/()\;qfa)2+a2p2ﬂ'2 Ap.q \/()\pﬁqfa)2+a2p27r2
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p7r( A+ —a+a2)<g,e+ >H p7 ( —ata )<g,e_ > 1 i
o palpy 4 p.a palp|y o e . It is easil
<Z < \/( + q—a +a2p2ﬂ'2 A ()\ ) +a2p2m? av2 <g q>H - Yy

seen that
9 (A ?
| ( 3ug)1 +a<A_1g)2V1
L2(T)
2
_Z + —a+a2) <g,e;q>H+p7r ()\;q—a+a2) <9’e;q>H n o (9,eq)
a\@ qIH

a>1\p>1 >\+ \/(qu )2+oz2p27r2 Ap.g (/\;,qfa)%roﬂp%r?

+Z Z T (A=) (96 0) 41" (Mg =) (9:50)

2 _ _ 2
p>1\g>1 )\pq\/()\;:q—a) +a?p?n? Mg ()\p,q—a) +a2p?mr?

This allows to conclude that D (D*) = {g €H, ’ 7)1—1—04 (A™'g),m

<00, .
L2(T)

Now we suppose that g € D(D*). Then we can easily check that (3.9) leads to
— -1

(Du.g) = Jpv ( 9), +a (A1), 1/1> do and then D*g = (W-Fa (Alg)Qz/l) .

Ir

O
PROPOSITION 3.3. D: D (D) C L?(T) — H is a closed operator on L* (T).
Proof. Let (vy),cy be a sequence in D (D) which converges to a certain v in
L? (') and such that Dv, converges in H to an element 6. Let v}, and vy, denote

1 1
vy, = 2/0 vp(z,0) sin (prrz) dz, vy, = 2/0 v (0, y) sin (gmy) dy.

Similarly, let vi , = 2 fol (x,0)sin (prz) dz and vy q =2 fo v(0,y) sin (gmy) dy. Since
2 1 2 2
||UH_U||L2(F) = 5 Z|U?,p_v17p| +Z‘U5L,q _’U2;Q‘
p>1 g>1

we clearly have: v} — vy forany p € N* and vy, — vy, for any ¢ € N*.
P potoo 7 4 p—too
From (3.2) and (3.3) we deduce that for every (p,q) € N* x N*:

(Dons €5q)

<Dvn7 6q>H

pr(0f,—ata?) ar(35, )
H n—>+oo £ + V2,4 + + + 2
Ap \/ )\pq—a) +a2p2n2 Ap.q ()\p,q—a) +a2p2n2

Ui,p

—
n—-+oo a\/§

Besides, the convergence of Dv, to 6 in H implies the convergence of <Dvn, e§q> H
(resp. (Dvy,eq) ) to (0, ex > (resp. (0,eq) ;) for every (p,q) € N* xN*. We deduce

»“pyg
that, for all (p,q) € N* x N*

= _ 2 AL —a)
0. ex pﬂ'(>‘ ato ) Vo o 4 qﬂ'( p.q v
< Cpa/a T /\:(: \/ EN 2202 2,q /\z:ﬁ:,q ()\iq*a)2+o¢2p27r2 1,p

(0.eq) 5 = a\/gvz,q

From (3.2) and (3.3), it means that = Dv. Since 0§ € H, this implies that v € D (D).
We have thus proved that D is closed.
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3.2. Toward an internal control problem. We introduce the following nota-
tions:

X=HXxH_ 1,3, X 1=H_ 1/ xH 1, Xy =H/p xH,

and
. _ 0o I .
L.D(L)CX1—>X1,L—(_A 0>,D(L)—X.

Note that the operator occuring in the definition of L is the extension of A from H
to Hfl.

In this part we transform the boundary control problem (1.1) into the familiar
form of an internal control problem:

Z'=LZ+B i
{ +Bu - inGQr (3.10)

Z(0) = («®,u!)"  in Q.

The originality of this problem is that B is an unbounded control operator from L? (T')
to Xfl.

Assume that v is an element of H' ([0, 7], D (D)). For the moment we denote by
Z the vector Z = (u,u/)" — (Dv,0)" where w is solution of (1.1). Then Z is solution

of
! 0 I 'D’U/
7=(4a) (%)
(D)), we have that Dv’ € L2 ([0,T], H) so that (Dv/,0)" is an
(L)). Therefore Z is solution of

!
Z’:LZ—<DOU ) in X_,

Since v € H' ([0,T], D
[ D

element of L2 ([0, 7],

and the semigroup theory gives

Z(t) = / S(t— s) (D”( )) ds (3.11)

where (S(t)),s, is the C°-semigroup associated with the maximal and dissipative

operator L. Integrating by parts in (3.11) and using (Dv0(3)> € D (L), we obtain

Z(t) = S(£)Z(0) - (D%(f)> +5(1) ( ) / S(t ( U) ds.

Replacing Z(t) by its definition, we obtain the following expression for (u(t),u'(t))" :

(5%) = 5(1) (ZT) + /Ot S(t — 5)Bu(s)ds (3.12)

B = (AOD> :D(B) c L*(T) — X, (3.13)

where
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is an unbounded operator with dense domain D(B) = D (D). Formula (3.12) means
that (u,u')” is the mild solution Z of the internal control system (3.10).

THEOREM 3.4. For every (u®,u') € X and every v € H* ([0,T],D (D)), system
(1.1) has a unique solutionu in X _1. Moreover, u € C ([0, T), H)NC* ([O,T], H,l/g)ﬁ
C?([0,T), H_1).

Proof. Let (u®,u') € X and v € H* ([0,T],D (D)). Set Z° = (uo,ul)T. We have
to solve system (3.10) in X_;. Let us prove that Bv € H' ([0,T], X_1):

1BllZs o,my,x ) = 1Bl Zago,my x oy + 1BV 2o,y x )
= HAD’UHQB([O,T],H,I) + HADU'HZH([O,T],H,I)
= HDUHiz([o,T],H) + ”D'U/Hi?([O,T],H)
= HDUH?{l([o,T],H)
< H’UH?P([O,T},D(D)) < Fo0.

Since Bv € H' ([0,T],X_1) and Z° € X, the semigroup theory (see [20, Theorem
4.1.6 page 113] ) ensures that system (3.10) has a unique solution Z in X_; and that
Z e C([0,T],X)NC* ([0,T],X_1). The existence and uniqueness of the solution u of
(1.1) with the regularity v € C ([0, T], H)NC* ([0,T], H_1/2) NC? ([0, T], H-1) follow.
0

4. Controllability and observability.

4.1. Formulation of the observability inequality. We introduce the control
operator Lt : D (L) C L?(I' x (0,T)) — X defined by

Lw;/TﬂTUBMﬂﬁ, (4.1)
0

with domain D (L7) = {v € L* (T x (0,T)), Lyv € X }. The exact boundary control-
lability problem for system (1.1) is the following: given T' > 0 large enough, initial
data (uO, ul) € X and final data (u%, ulT) € X, to find a control function v in D (L),
such that the solution u of system (1.1) satisfies u(.,T) = u%, «/(.,T) = uk in Q.
Therefore, system (1.1) is exactly controllable at time 7T if and only if the operator
L is onto.

The following proposition may be proved using similar arguments as in Proposi-
tion 3.3.

PROPOSITION 4.1. Ly : D (Ly) C L?> (T x (0,T)) — X is a closed operator.

By Theorem 3.4, D(Lt) contains H*([0,7],D(D)), which is dense in L*(I'x (0, 7))
since D(D) is dense in L? (T'). Hence D(Lr) is dense in L? (I" x (0,7T)). This allows to
compute the adjoint L7}, of L. Since Lt is closed, the surjectivity of Ly is equivalent
(see for instance [4, Theorem II.19 page 29]) to the existence of a positive constant ¢

such that
0\ % 0
e (8)],..p, 2 (57)
L2(27)

This last inequality is also equivalent to:

20 \|?
e
L2(5r)

2 0
,v<$1)eD(L;).
X
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Consequently, the exact controllability problem for system (1.1) relies on the
“observability inequality” (4.2). In what follows, we compute L} L to translate (4.2)
in terms of the adjoint system (1.3) of system (1.1).

By the definition of Ly in (4.1) we have L% = B*S(T'—-)*. So we have to compute
the adjoint of B.

LEMMA 4.2. The adjoint B* : D (B*) C X1 — L*(T") of the operator B defined
in (3.13) is given by:

D(B*) = {(cbo,q)l)T cX,/de D(D*)}

0 0 (4.3)
B* (% ) — Do, v(% ) e D (BY).
ol
Moreover for every | g1 | € D (B*L) we have
0 0P
B*L ( gl ) = - (81/1 +aq>gl/1> , where ®° = ((b?,(bg)T. (4.4)
r

0
Proof. Let v € D(B) = D (D) and (%1 ) € X;. We recall that since A is
self-adjoint in H, L is skew-adjoint in X_; (i.e. L* = —L). This allows to write

0 0 0
(8) ), (), (o))
X1,X 1 X1,X_ 1 X
0 1
:_<L($1),L—1Bv> :—<(2@0),L_1Bv> .
X X

-1
It is easily seen that L= = (? _‘% > so that L~ 'Bv = ( _%)U > It follows

that
<($(1))7Bv> = (01, D), .
X1,X_1

0
This gives (4.3). Now suppose that ( %1 > € D(B*L). Then

B'L ( x ) =B ( O ) — D" (49").

Proposition 3.2 easily gives (4.4). O
PROPOSITION 4.3. The operator Li.L : D (L%L) C X1 — L? (T x (0,7)) is given
by:

D (L:L) { %2) €X,/ g—erom/wl e L2(T x (O,T))}

(4.5)
LiL ( 4 ) - (gf +az/w1>|r
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where ® = (i, ¢)T is the solution of the backward adjoint system of (1.1):

O+ AD = i
{ + 0 in Qp (4.6)

(., T) =3, &(,T) =& in Q.

0 0

Proof. Let ((I)

ol ) € X; such that < ®

CDl

(g )=msa-ro( g ) =sesae-r (o) =me(3)

i)
where ( % ) is the solution of

(%)/:—L*(g)zL@) in [0, 7]
Bo-(2)

)
By (4.4) we have B*L ( % > = - (% + ozwz/l)l , Where & = (@,¢)T. This proves
r
the proposition. O
Thanks to Proposition 4.3, the observability inequality (4.2) consists in the fol-
lowing inequality:
()],

v<$?>eD (LiL) //(—i—awul) dodt > ¢

where ® = (¢, )" is the solution of the backward adjoint system (4.6). Remark that
this is also equivalent to the same inequality when ® = (¢, 1/))T denotes the solution of
the forward adjoint system (1.3). Consequently we have the following characterization
of the controllability:

COROLLARY 4.4. System (1.1) is exactly controllable at time T if and only if
there exists a constant C(T) > 0 such that for all initial data (®°, <I>1)T € D(L%L),
the solution ® = (¢, 1/J)T of the adjoint system (1.3) with initial data (<I>07 <I>1) satisfies
the following observability inequality

(2, @Y)|%, < //(-i-awul) dodt. (4.7)

4.2. Observability inequality in H.' 172 X HT. From now on, we assume that

> € D(L*L). Then

X1

a < 272. The main result of this paper is the following uniform observability of
(1.3) for initial data in D (L4L) N (HIJ“/2 X H*). Our proof adapts an Ingham type
theorem due to Mehrenberger (see [17]) which allows to prove, by a spectral method,

the observability inequality for the wave equation. The crucial point here is that the
discrete part {\} }p¢>1 of 0(A) has the same asymptotic behavior as o(—=A).
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THEOREM 4.5. Let v = 4\/% and Ty = 1+ 2% If a < 272,
us « 1 —

then for any T > Ty there exists a positive constant CT(T) such that for all initial
data (Y, CIJl)T in D (L5%L)N (H1+/2 X H+> the solution of (1.8) satisfies the following
observability inequality:

T o 2
W@@W&SCWDAA(J+W%)WM (4.8)

4.2.1. The observability inequality in terms of Fourier series.

Fix (#°,01)" € D (L3.L) N (Hyj, x H*). By definition of Hfy, and H*, & and &!

may be written as

Z(I)pq I)Q’ Z(I)Pq PCI

p,g>1 pg=1
with 2;1)\;;& (@9, ) < 400 and Z (@} )2 < 400. The solution ® = (p, )" of
P P.d

system (1.3) with initial data (@0 @1) is given by

1 0 . (I)zlv,q t 0 . (I)zln,q —i/ At |+
P(t) = 9 Z Py — 27_% eV Al 4 Dpq t+ 27*_ € " e
p,q>1 \V )\p,q /\WI

Using the definition of e; q and the Parseval equality, we can easily prove that

T 2
/ /(a(p+0[1/)1/1> dodt
0 T al/
2

T 1 1 + 2
:,Z/ ZPW (D?)’q_iq)p,q iVt 4 <I>O _H‘I’p,q —in/Af gt Apg —ata dt

25500 = ors ors \/()\;{q—a)%kazp?ﬁ

2
1 T (I)l ¢)1 ‘| )\+ B
+§Z/ Zqﬂ' (I)g,q_lﬂ pqt+ @O +Z pq| )‘::-,qt p,q dt.
p>170 [g>1 )\;q \/)E J\/()\;q—a)+a2p27r2
(4.9)

NOTATION 4.6. L
1. For every (p,q) € N* x N* we set a, , =90 —i Zpg

P.q g
2. Forp € Z* and q € N* we define
At —ata? .
Ta == if p>1
Tp,q = pq\/)‘;q*a) +a?p?n?

—T_ 54 if p<—1.

3. For p € N* and q € Z* we define
-
Ap if ¢g>1

Ta
pq\/)\;{qfa) +a?p2n2

—Up.—q if ¢ <-1.

Yp,q =
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The left-hand side of (4.8) is given by

1@ @)%, = 3 (e (@007 + (#5,0)°) = 30 Mg lanl’

p,q>1 p,q=>1

Furthermore, using Notation 4.6, we can write (4.9) in the form

2

//( +aw1/1> dodt = Z/ Zp ap gV Pl 4 e XW) dt
qEN* peEN*
2
—I—Z/ Zq Yp.q€" Mt—i—y i ’\:’r’qt) dt. (4.10)
peN* qeN*

Consequently, the observability inequality (4.8) is equivalent to the following inequal-
ity
2

T)Z)\ lap.ql? <Z/ Zp Tpq em—kz mt) dt

p,g>1 gEN* pEN*
2
3 [ SV e [
peEN* qEN*

where C(T') is a positive constant which does not depend on (ap’q)(%q)eN*XN*. We
recall below the main theorem of [17] for the observability of the wave equation in
two space dimension:

THEOREM 4.7 (Mehrenberger [17]). We assume the existence of 1 > 0 and
vo > 0 such that for every p, p’, q and ¢’ in N*

p < max (Q7q/) = |v/Hpgq + v/ Mpq’
q < max (pvp/) = |/ Hpq + vV Hp'q

Then for any T > 27,/ 2 + 2 , there exists a constant C(T) > 0 such that

>7lgxd|

4.12
>y lpEp]. (4.12)

2

C(T) Z (p +q |:17p q| Z/ xp7qei\/mt+me*i\/mt) dt

p,q>1 pEN* qEN*

+Z/ > p(wp gV 4T, e Z\/mt) dt (4.13)
qeN* peEN*

for every complex sequence (xpvq)(p,q)EN*xN* such that the sums involved are finite.
The use of Ingham type methods (see [11, 12]) is based on some gap properties
(here given by (4.12)). Our observability inequality (4.11) is similar to (4.13) since
Ay ™~ tpg as [|[(p,q)|| — 4o0o. The difference is the presence of an other sequence
yp’Q)(p,q)eN* o~ Which is different from the sequence ('Tpvq)(p,q)EN* <+ Consequently,
we cannot apply directly Theorem 4.7 to obtain the observability inequality (4.11).
However, from the definition of z, , and y,, we can prove that both z,, and vy, ,
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are equivalent to the same term ap, , = ®9 , — i®} /1/Af4. This allows us to adapt

the proof of Theorem 4.7. The keypoint is to prove that we have some good gap

properties. To do this, we consider the sequence (Ap1q)(p,q)€Z*><Z* defined below.
NOTATION 4.8. Forp € Z* and q € Z* let A, 4 denote

\/E if p>1 andg>1
Apq = —\/E ifp>1 and ¢ < -1
*\/ﬁ if p<—1 and g > 1.

With Notation 4.6 we deduce from (4.10) that

Tr /o 2 T N ’ T L 2
2/0 /F<8V + 0[le> dodt = ZA Zpitp’qel p,q dt—l—Z/O qup,qel pat| dgf.

q>1 pEL* p>1 qEZ*

Thus the observability inequality (4.8) that we have to prove is the following inequality

2 2
T T
o) SN Japal <3 /0 S prp gt e Y /0 S qupgeeot| dt (4.1)

p,q>1 q>1 PEL* p>1 qEZ*

where C(T') is a positive constant which does not depend on the sequence (ap,q), .-

4.2.2. Some gap properties. To adapt the proof of Mehrenberger (see [17])
we prove the following gap properties for the sequence (A, 4) (p2q) EN* xN*
PROPOSITION 4.9. Let v be as in Theorem 4.5.
1. For allp € N* and all (q,q') € Z* x Z* such that p < max(q,q’),
[Apg = Apgrl = v]a—d'|.
2. For all ¢ € N* and all (p,p’) € Z* X Z* such that ¢ < max (p,p’),
|Apg = Aprgl = vp— Pl

Proof. 1. According to the definition of A, 4, it is sufficient to show that
e for all p € N* and all (q,¢') € N* x N* such that p < max(q,¢’), we have

’\/Aiq - \/A;,",q/’ >ylg—dq.

e for all p, g and ¢’ in N*, we have /A, + )\;q, >v(qg+¢).
Let us first consider p € N* and (g, ¢’) € N* x N* such that p < max(q,q’). We
can easily check that

+ vt
)‘p,q >‘p7q’

2 vV 5p,q + 5p,q’

_ Ly <1+ (P2+q2>7f2—a+(p2+q’2)7r2—a>

with

Spqg = ((P*+¢*) 7 — a)2 + 4a?p*r?, (4.15)
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From a < 272, we have (p? + ¢?) 72 — a > 212 — a > 0. Therefore,

1
+ + 2 2 2
Ava = Apa §|q —q |7r.
Writing ‘\/ ma =\ M| = )\;ﬁ | , we obtain

qg+q

ST /o P bt SR PR (4.16)
P 2 /5 +o o Ar
D,q’
Consequently, we are reduced to bound from below the quantity qj‘_q ~
P q

can remark that

1
A, z\/ 2+¢®)m24a+ 24 @) n2 — a)® + 4a2p27?
VAva =5 (p? +¢?) \/((p %) ) P
1
Sﬁ\/(p2+q2)ﬂ2+a+(p2+q2)ﬂ2—a+2|a\pﬂ
= VTV + @) 7+ |alp.
Thus
/ 1 !
4+4q - q+4q (4.17)

et r, VIV@ @) mlalp+ VP + %) 7+ lalp

By assumption, p < max(q, ¢'). Without loss of generality we can assume that ¢ < ¢'.
From (4.17) it follows that

qtd 1+ 1 1

PO —
)\;_q‘F\/)\;_q f\/,2+ 7r+|a\ /2+\/(5'22’+1)7T+|a|;; VT 2,27+ ]al

Combining this inequality with (4.16) we conclude that

Now, consider any p, ¢ and ¢’ in N*. Writing

1 T
Vg = \ﬁ\/(pQ +@*) 1+ a+\/Opq > ﬁq

with 4, , defined by (4.15), we obviously obtain

VA Ay > q+q) Y(g+4).

This completes the proof of item 1.
2. The second assertion of Proposition 4.9 can be proved in the same way by
interchanging (p,p’) and (q,¢’). O

Iq—ql—vlq—Q\

2+\|
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4.2.3. Proof of the observability inequality.

NoTATION 4.10. Given T > Ty, we denote by k the function

k(1) = sin () f0<¢t<T
0 else

and we define the following quantities:

2 2
L 1—2/ qu ehrat| qt, I —Z/ pxp,qem“t dt
p>1 0 a=p q>1 p>q
T . .
I3 := Z/ k(t) qunqemp’qt Zq%eﬂl\mt dt
p>1 70 gez* gez*
a<p azp
T . .
Iy = Z/ k(t) prp,qemp’qt prp’qe_mp*qt dt|.
q>1 0 pEL* pEL*
p<q P>q
It is easily seen that the Fourier transform of k is given by
N er cos (%T)
k) =e "2 TV2r——=%, VEER. (4.18)

F2‘*ZT2£2’

, k| is an even function and @(O) = % \/g is real. In the following lemma

we bound from below the right-hand side of the observability inequality (4.14), using
the quantities I; for j =1,...,4.

LEMMA 4.11.

Z/ ZP% ihp.at dt+2/ qup, Aoatldt > I + I — 2 (I3 + 1) .

q>1 pEL* p>1 qEZ*

2

Proof. If we prove that Z /

qup q€ Ap gt

dt > Iy — 213, then, replacing p

p>1 q€eL*
2
by ¢ and y, 4 by x4, we deduce that Z/ pzpyqemp’qt dt > Iy — 21y.
q>1 peL*
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Since 0 < k(t) < 1 for all ¢ € [0,T], it follows that

2
Z/ > aypgeeet dt>Z/ ) qyp.getteat

p>1 qEL* p>1 qEeL*
2
T
SN L) DINEED ye
p>1 0 qeL* qeL*
a>p a<p
2
>Z/ qup ezAp q! dt+2/ qup,qeiAp’qt dt
p>1 qeL* p>1 qeL*
q=p a<p
T . .
-2 Z/ k(t) Zq%e—zAp,qt qup,quAp’qt dt
p>1 0 qeZ* q€L*
q=>p q<p
2
T .
=1 + Z/ k(t) qup’qelAp‘qt dt — 213 > I; — 215.
p>1 0 q€<Z*
a<p

0

As a consequence of Lemma 4.11, the observability inequality will be established
if we bound from below I; and Is and bound from above I3 and I4.
LEMMA 4.12. [Lower bound of I]

I@f( ( ))ZZQ Yp.al” -

p>1qg>p

Proof. First, we remark that:

2
11—2/ ) |2 aupqe’ | dt
p>1 q=>p
_Z/ <qup7qem,,,qt> (Zq/yp?q/empyq,t) dt
p>1 a>p ' >p

ZMZZZ(]%&(]/WE (Apg — Apg)

p>1q>pq’>p

Zmz /k\(O)ZQQ |yp7q|2 - Z

p>1 azp a2pq'>p
a’'#q

T 2 2 q2|yp,q|2+q/2‘yp’¢|2 A
2\/27rz k(O)Zq |Yp.ql —ZZ 5 ‘k(Ap,q/ —Apq)

p>1 azp aZpq’>p
a’'#aq

k (Ap,q’ _qu,q)

(4.19)
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Fix p € N*. From parity of |E| it follows

2 2 72 2
¢Yp,al” + 4" Ypa'| |2 -
SOy el 7l ’k(AP,q/—Apvq)‘:Zq2|yp7q|2 Z‘k(/\pvq,q\m) . (4.20)

a2pq’>p azp a'>p
pr g’ #q

Now, consider q € Z* and ¢’ € Z* such that ¢ > p, ¢ > p and ¢ # ¢’. Proposition 4.9
yields

[Apg — Apgl =7l —d'1 > 7. (4.21)
t _ata?)’
Since T' > Ty = 27” 1+ 2% > 27”, we obtain
1,1
27
[Apg = Apgl > > T (4.22)

Using (4.18), (4.22) and then (4.21), we get

~ TV?x ~ 21\ 2 1
k (Ap,q’ - Ap,q) < T2 (A _A )2 — 2 = k(O) (ﬂ“) A, —A 2 2 2
4 (Reten)” — (35)
~ 21\ ? 1
< 7(0) (”) .
) 4(q—q) -1
Suming over ¢’ > p, we obtain
~ ~ 27 2 1
Z k (Ap q’ Ap,q) < k‘(O) () Z 2
' >p ‘ ,YT ' >p (q a q/) -1
q' #q q' #q
~ 2 2 1 ~ 2
< e S il
< K0 (7T> ;47"2 =1 =0 <7T>

By (4.20), we can assert that

~ ~ 2r\ 2
qu Yp.al @ [Yp,a'| |k (Apgr — Ap,g)| < K(0) (’YT> ZqQ ‘yp,qlg . (4.23)

azrq’'>p azp
a’ #q

Combining this inequality with (4.19), we conclude that

1 et (1= (25) ) Sl = 2 (1= (3)) Sl

q=p q=p
p>1 p>1

which proves the lemma. O
Interchanging p and ¢ and replacing ¥, 4 by #p 4, We also get

2T 27\ )
I, > - (1 - <'YT> ) ZZP |Zp,q

q=1p=>q

2
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Since A}, > a, it is easily seen that |z, 4| > |y,,4] (see Notation 4.6). It follows that

I > % (1 - <> ) SN 0 lypal® (4.24)

q=1p=>q

Combining Lemma 4.12 with (4.24), we obtain

2T
L+ >— (1 <) ) (qu [Yp.ql” +Zzp |Yp.ql >
p>1qg>p qg>1p>q
Remarking that

ZZ (p2 + q2) |?Jp,q|2 <2 (ZZQQ |yp7q|2 + Zzp2 Yp.q 2)
p>1g>p q=21p>gq

p>1g2>1

we get

L+hL>L(1-(% i >0+ ) lypal’
1 22— ~T Yp,q

p,q>1

Replacing y, 4 by its definition gives

firbzriid <2W>2 > (0 + ) lapal’ 05 —o)° (4.25)
1 9 = T — e P q a , . .
T = - (Mg —a)2+a2p2772
Now, let us bound from above I3.
LEMMA 4.13. [Upper bound of I3]
e (2 ) S5 g =) (1.26)
3 ™ q , . .
o>1 g1 ra ()\;,"q — a) + a2p?n?

Proof. By definition of I3 (see Notation 4.10), we have

=3 [ h0 | S | | Sttt | a

p>1 qeZ* q'ez*
q<p quP

=2 Zzzqyp,qq/mE (Ap,gr — Apq)

p>1q€L*q' >p
a<p

= @ZZZ <q2 |yP7‘Z|2 +q"” |yp7q"2> )7{\ (Apg — Apg)|-

p>1q€Z%q' >p
q<p

Analysis similar to that in the proof of Lemma 4.12 shows that for all p € N* and all
q € Z* such that ¢ < p we have

> [F = Ap)| < F(O) <§;)2 24;,)21

a'>p q'>p (q

i () S5 ()

r>1
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Therefore

2|3 E(O) 21\ 2 5
sz |Yp,al ‘k(AP,q’_Ap,q) ST 77 Zqz‘yp,ﬂ :

q€L* ¢’ >p q€EZ*
q<p q<p

Similarly we can prove that

~

~ k(0) [ 27>
5 S o [F = )| < 52 (2) S

q'>p q€<Z* a'>p
a<p

~ 2
Adding these last two inequalities we obtain: Iz < ‘/TT"k‘(O) (%) 3 ¢ ‘yp’q|2.

p>1lqez*
Replacing ¥, ; by its definition gives the desired inequality. O
Similarly,
2 + 2
27 Mg —a+a
I, < 7T () ZPZ |ap7q|2 ( D,q . ) . (4.27)
fYT p,g>1 (A;_vq - CL) + a2p2ﬂ-2
Adding (4.26) and (4.27) gives
2
2\ 2 Ao —a+a?
Is+ I, <nT <T) > P+ ¢ lapdl? (+ P 2)2 - (4.28)
v p,q>1 ()‘p,q - a’) +atpm
From (4.25) and (4.28) it follows that
L4 L-2(I3+1L) > 7T Y (0°+ %) lapgl* b, (4.29)

p,g>1

where (bp,q) is defined by

p,q) EN* xN*

o (1 (277) Mo (%) (A —at o)
i T (Mg — a)2 + a?p?n? 1) (Mg — a)2 + a2p2r?

To bound from below I + Io —2 (I3 + Is) by > Af, |ap.q|?, it suffices to prove that

p,q>1

p2+q2)bp.q

the sequence <( is bounded from below. Actually

)(zuq)EN*XN*

2 2
b _1 ()‘;r,q_a) T2(27T>2 1+2()‘;q_a+0‘2)
T (A, —a)” + a2p?n? v (Mo —a)”

and it is easy to check that

sup Mg —a+t 0‘2)2 _Whi—a+t 0‘2)2

(p,q)EN* X N* (/\;q _ a)2 ()\il — a)2
. 2 (Af1*a+a2)2 te 3 i i
Since T > Ty = 27y [1+ QW, this implies that by, > 0 for any (p,q) in

N* x N*. Besides, from the asymptotic property )\;‘,q " q)r . Ppg = (pZ + q2) w2
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we deduce that
(P? +0*) bpg N 1
A I(p.a)| =400 2 T

2
It is easily seen that lim by =1-3 (2—’72) . Since T > Ty > 32T, it
ll(p.a) | —+o0 7 K

(P2+q2)bp,q

follows that lim b, 4 > 0. Consequently, the sequence ( T
P,q

l(p,@) || —=+oc )(p,q)EN*XN*
which is positive with a positive limit is uniformly bounded from below by a positive

constant, denoted by c. It follows from (4.29) that
L +1,—2 (13 + I4) >l Z )\;;q |ap7q|2 s
P,q=1
which gives inequality (4.14) (according to Lemma 4.11) and then the observability
inequality (4.8).
4.2.4. Uniform controllability in HT x Hj1/2' Theorem 4.5 implies, by usual

duality arguments (see [14, 20] and the references therein) the following controllability
result.

3
THEOREM 4.14. Let v = 4\/% and Ty = ?\/1—#2%. Assume
that a < 2r2. For any T > Ty, any initial data (uo, ul) € H* x Hi‘l/Q and any target
(uOT, ulT) € Ht x Hirl/Q, there exist control functions v € D (L) such that the unique
solution u of system (1.1) satisfies u(-,T) = u% and v'(-,T) = uk in Q.
5. Lack of controllability and dependance with respect to a.

5.1. Controllability in H¢ x H?, /20 We also obtain the observability of the
adjoint system in D (L7 L)N(HY,,x H?), the eigenspace associated with the eigenvalue
a of infinite multiplicity. In that case, the observability inequality is simply

T r1
(.. 0.6 5, <o) [ [ ot (5.1)

with ¢(y,t) = > 5, (@2 cos(y/at) + @é%) eq(y). Simple computations permit
to show that (5.1) is true for any T > ﬁ Remark that, in that specific case, the

observation is simply from I's = {0} x [0, 1]. The corresponding controllability result
is the following:

ProrosiTiON 5.1. If T > ﬁ, then for every (uo,ul) € H* x Hﬁl/Q and any
(uf,uk) € H* x H?, 5, there exists v € D (Lt) such that the solution w of (1.1)
satisfies u(-, T) = u%, u/'(-,T) = uk in Q.

Proof. Let (2°,@')" € D(L;.L) N (Hf), x H). We write 8 = (0,1°) and
®! = (0,7') in the form ®° = Y ®e, and ' = Y Ple,, with ||(2°, ¢)

g>1

q>1

I
X1
> (a (@2)2 + (<I>é)2). The solution ® = (p,1)" of system (1.3) with initial data
q>1

(:I)O, @) is clearly given by

1 1
D(t) = 15 @071& evat 4 <I>0+i& eVt | e,
2=\ 'Va T d
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1
Set ¢, = Y — zf} This gives for every ((z,y),t) € Q x [0,T], ¢ ((z,y),t) = 0 and
U ((z,y),t) =35> (c etvat +Qe_i\/at) v/2sin (¢my). Consequently,
q>1
/ /( —l—ozwul) dodt = —/ Z Cq e’ft +Fe_’ft) dt.
q>1

Since 0 < k() <1 for all ¢ € [0,T], we obtain

g dp ? a® [t i/at at)
A ‘/F(ﬁy—'_ OHZJV1> dUdtZ ZA k(t)z (quz a _i_qe—z a) dt

q>1

—Z/ c ei\/at —l—Qe*i\/at)th. (5.2)

q>1

. ) 2 ~
Let us study the integral fOT k(t) (quz\/at +qu_zﬁt) dt. Using the parity of |/<;| we can

. . 2 ~ ~
easily prove that fOT k(t) <cqe1\/5t —i—@e"ﬁt) dt = 2 e, k(0)+ ((cq)2+(g)2) k(2v/a).
Thus

T _ _ 2 ~ ~
/O () (cqe™ ™ + e V) dt = 2 ey R(0) + 2R ((c0)?) F (2V/a)

> 2|, (R(0) - [ (2va)]) - (5.3)
If > 57, then, using (4.18), we obtain ‘E(Q\/E)} < lwz‘/_ﬁgz‘ < \/fng = %(0).
From (5.2), (5.3) and > |cq|2 = H(@Oﬁbl)Hi{ , we finally obtain
q>1 !

//< +a1/w1> dodt > 7( ’k (2v/a) D 1(@°,0")[1%,

with %(0) — ‘E(z\/a)‘ > 0. This gives (5.1). O

5.2. Lack of controllability in H~ x H_| /20 In agreement with the general

result [10] we pointed out in the introduction, the lack of observability is related to
essential spectrum.

ProposiTiON 5.2. For any T > 0 and any € > 0, there exist initial data
(@°, @) € Hy )y x H™ for which the solution ® = (¢, )T of (1.3) satisfies

1/2
T 2
0 (I>1)||X2//<&p+a¢y1> dodt < e. (5.4)
1 oJr al/

Proof. We consider the two sequences (pn),cy and (gn),cy of positive integers

given by p, = n(n+1)/2 and ¢, = n. Let ®, = (<pn,1/1n)T be the solution of the
adjoint system (1.3) with initial data (®7,®;) = (e}, 4,,0) € Hy,, x H™. The

Pnyqn’

norm of the initial data is given by H (<I>9L, <I>}L) i We can

HX1 = HepmanH1/2 = pnsgn”
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write (pn,¢n) in the polar coordinates (pn, ¢n) = rn(cos(6,),sin(6,)). It is easily seen

that lim r, = 400 and hm 0, = 0. This readily implies hm A =a— o’
n—-+400 n—-+4oo Pnydn

Since a > a?, we obtain nEr—iI-loo (29, ®2)

cos <\ / /\;mqnt> €y, q, implies that

) 2
[ (nonfin
sin (2mT> cos? 6, (A,

pﬂqn—a—i—a) +5sin% 6, (

- (/\TTnyq'n_ )2 2 2 2
20/ Apan e s—— + afcos? O,
n

Letting n — +oo, we obtain liT fOTfF(aw" + awnyl) dodt = 0. This contradicts
n—-1+0oo

Hxl > 0. On the other hand, ®,(t) =

2
:71’2 T+ Pn,qn a) .

the uniform observability since lir_{l H (@27 @}L) >0.0

I,

Remark that the counterexample is obtained for (®°, ®') composed of only one
eigenfunction for which the limit of the associated eigenvalue is A = a —«a?. This value
is very particular because any other datum (®°, ®!) composed of one eigenfunction
associated with X € (a — a?,a] does not contradict the uniform observability (for
instance, we refer to previous section for A = a). The loss of observability may be
exhibited by considering a (non trivial) combination of such modes (as done in [10]
using Weil sequence), in order to enhance the lack of spectral gap.

Simpler, this phenomenon may be observed numerically as follows. Let H% be
the space of the initial data (®°, ®') in Hli/2 x H* spanned by {eiq}lgp,qSN If we

T, :
denote by ®* € R?N” the components of (°,®')" in the basis {e, }1<pq<n, then
we can write

2
[(@°.0) % = (A%a* @%),.e, //( 2o ) dodt = (B8 2%)

for all (<I>0, <I>1) in Hﬁ, where AT, BT ¢ R2NV**2N” denote real symmetric matrices

and (-,-)g2n2 denotes the scalar product in R2V? A% s diagonal. On Hﬁ, the
observability inequality formally writes

(AT®E, &%), < OE(T)(BT®E, 0%, 00

The observability constant C’ﬁ (T') whose behavior allows to detect the lack of observ-
ability, is then solution of the generalized eigenvalue problem

CE(T) = max{\ > 0, A¥® = ABT®, & c R>V"\ {0}}. (5.5)

In practice, since AT is diagonal, it is easier to evaluate (Cﬁ)_l equal to the lowest
eigenvalue of BE(A*)~1. Table 5.1 gives the value of C'y(T) for various values of N
and clearly exhibits the non-uniform boundedness with respect to N, in constrast to
C%(T). This is in agreement with Theorem 4.14.
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| N=5 | N=10 | N=20 | N=40 | N=280
CH(T) [ 501 x 107 [ 543 x 1071 [ 5.71 x 1071 [ 5.95 x 101 [ 6.02 x 107!
Cy(T) | 242 x 10" | 4.41 x10% | 3.24 x 103 8.6 x 10* 1.01 x 108

TABLE 5.1
Evolution of the observability constant C]% (T) vs. N for (a,a,T) = (4,1, 3).

5.3. Controllability with respect to o and 7. If o = 0, then system (1.1)
degenerates into an uncoupled system and the control only acts on the variable wu;.
However, we observe from the proof of Theorem 4.5, that the minimal time T} as
well as the observability constant CT(T') are uniformly bounded with respect to a.
Therefore, the controllability holds uniformly w.r.t. ain H+ x H j1 /2 and by classical
arguments, the corresponding controls converge toward controls for u;, the solution of
the wave equation with initial condition (u,u}). This property is related to the fact
that the second component of {e; q}p,qzl degenerates as « goes to zero. Numerically,
we observe that the variation of C’;\? (T') with respect to « is very low. For T' = 3,
N = 50 and a = 4, we obtain CJ,(T) = 6.02217 x 107! for a = 2 and CJ(T) =
6.02224 x 107! for o = 2/100. Remark that the uniform controllability with respect
to a does not hold in H~ x H~, ,, nor in H* x H?, , (the right term of (5.1) going
to zero with «). The eigenvalue problem (5.5) allows also to estimate numerically
the minimal controllability time for a,a, N fixed. Figure 5.1 depicts the evolution
of C(T) with respect to T for (a,a, N) = (4,1,50) and suggests that the minimal
controllability time is about 2.5. The lower bound time Ty in Theorem 4.14 leading
for (a,, N) = (4,1,50) to Ty ~ 21.96 is thus not sharp.

10

s

s

*

I 3

*
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. 3
*

L
25 3 35 4

T

FiG. 5.1. Evolution of C]J{,(T) with respect to T for (a,a, N) = (4,1, 50).

6. Concluding remarks and comments.
1) Characterization of the controllable data - We can sum up the different
controllability results we have obtained in the following theorem:

THEOREM 6.1. For every N € N*, let us denote by H™ (resp. Hivl72) the

Hilbert subspace of H (resp. H_1/5) spanned by the e, , for1 <p,q < N. Ifa < 272,

then for any T > max (TO, QL\/E)’ any N € N*, any initial data (uo,ul) and final

data (ul,u}) in (Ha OH"® HNf) x (Hfl oH o Hivl72) there exists a control
2 2
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function v in D (L7) such that the solution u of (1.1) satisfies

u(-T)=ud, u'(-,\T) =uk in Q.

2) Partial controllability -  Following [13], one may analyze the uniform partial
controllability which consists in controlling to rest only the first component u;. In
that weaker situation, the controllability is uniform with respect to the data (uo, ul).
From the second equation of (1.1), we express the component us in terms of u; as
follows ua(-,t) = —« fot Orui (s, s)sin(y/a(t — s))ds in Qr, assuming for simplicity that
(ud,u3) = (0,0). The variable u; to be controlled is then solution of

uy = Auy — o® f; Opzu1 (-, 8) sin(v/a(t — s))ds in  Qr,
uy =v 1F on ETa
(u1(70)au/1(70)) = (U%U%) in Q.

The corresponding spectrum is { A, }p.g>1U{A} , }p¢>1 with corresponding eigenfunc-
tions {e;f ,}p.4>1 and {e, ,}p.q>1. The difference with respect to the full controllability
problem, is that the Fourier coefficients in 1, the adjoint solution of u;, are all con-
nected to each other. This allows a compensation of the modes {e, ,}, 4 by the modes
{es  }p.q (we refer to [13] for the analysis on a similar system). The analysis remains
to be fully written.

3) Null boundary controllability of a cylindrical membrane shell - The
operator which describes a membrane cylindrical elastic shell is as follows (see [19])

—ad2, — o2, —(b+¢)02, —ar”'0,
A= —(b+¢)d2, —cd2,—ad,, —br ',
r~Llad, rilbay r—2a

with a = 8u(A + p)/(A 4+ 2u), b = 4 \u/(A + 2u) and ¢ = 2u. A, p > 0 denote the
Lamé coefficients. =% > 0 denotes the curvature of the cylinder and is the coupling
parameter between the tangential displacement (u1, us) and the normal displacement
ug of the shell. € is still equal to (0,1)2. This mixed order and self-adjoint operator
enters in the framework of [6] so that we can compute o.55(A) using [7]. We obtain
Oess(A) = [0,2r72(3X + 2u)/ (A + p)] . The spectrum of A is therefore composed of
two distinct parts, the essential spectrum plus a discrete spectrum with asymptotic
behavior equal, up to some constant, to o(—A). The difficulty here is that the discrete
spectrum is not known explicitly.
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