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Abstract. We address in this work the exact boundary controllability of a linear hyperbolic
system of the form u′′ + Au = 0 with u = (u1, u2)T posed in (0, T ) × (0, 1)2. A denotes a self-
adjoint operator of mixed order, that usually appears in the modelization of linear elastic membrane
shell. The operator A possesses an essential spectrum which prevents the exact controllability to
hold uniformly with respect to the initial data

`
u0, u1

´
. We show that the exact controllability holds

by a one Dirichlet control acting on the first variable u1 for any initial data
`
u0, u1

´
generated by

the eigenfunctions corresponding to the discrete part of the spectrum σ(A). The proof relies on a
suitable observability inequality obtained by the way of a full spectral analysis and the adaptation of
an Ingham type inequality for the Laplacian in two space dimension. This work provides a non trivial
example of system controlled by a number of controls strictly lower than the number of components.
Some numerical experiments illustrate our study.
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1. Introduction - Problem statement. Let Ω = (0, 1)2 and Γ be the part of
∂Ω defined by Γ = {(x, y) ∈ ∂Ω, xy = 0}. Let T be a positive real number and a, α
be two real numbers such that a > α2 > 0 and

√
a− α2/π /∈ N∗. We analyze in this

work the exact boundary controllability of the following system in u = (u1, u2)T
u′′1 = ∆u1 + α∂xu2 in QT = Ω× (0, T )
u′′2 = −α∂xu1 − au2 in QT

u1 = v 1Γ on ΣT = ∂Ω× (0, T )
(u(·, 0), u′(·, 0)) =

(
u0, u1

)
in Ω.

(1.1)

We set H = L2 (Ω)×L2 (Ω) and H1/2 = H1
0 (Ω)×L2 (Ω). Let H−1/2 denotes the dual

of H1/2 with respect to the pivot space H. System (1.1) is said exactly controllable
at time T > 0 if for any initial data

(
u0, u1

)
∈ H ×H−1/2 and any target

(
u0
T , u

1
T

)
∈

H ×H− 1
2

there exists a control function v in a suitable space, such that the unique

solution u = (u1, u2)T of system (1.1) satisfies

(u(·, T ), u′(·, T )) =
(
u0
T , u

1
T

)
in Ω.

We point out that the variable u2 in system (1.1) is free of any condition on the
boundary ∂Ω. In particular, system (1.1) provides a non trivial example for which
the number of controls is strictly lower than the number of components.
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As it is usual, the controllability issue is equivalent to an observability inequality
that we will rigorously prove to be:

∥∥(Φ0,Φ1
)∥∥2

H1/2×H ≤ C
∫ T

0

∫
Γ

(
∂ϕ

∂ν
+ αψν1

)2

dσdt, (1.2)

(ν = (ν1, ν2) denotes the unit outward normal to Γ) for any initial data
(
Φ0,Φ1

)
belonging to H1/2 ×H, for the homogeneous adjoint system in Φ = (ϕ,ψ)T :

ϕ′′ = ∆ϕ+ α∂xψ in QT

ψ′′ = −α∂xϕ− aψ in QT

ϕ = 0 on ΣT
(Φ(·, 0),Φ′(·, 0)) =

(
Φ0,Φ1

)
in Ω.

(1.3)

The observation zone Γ is defined so that the triplet (Ω,Γ, T ) satisfies the geometric
optic condition. The natural operator we want to consider to transform (1.3) into a

second order differential equation is the operator A0 =
(
−∆ −α∂x
α∂x a

)
in L2 (Ω) ×

L2 (Ω) with domain D (A0) =
(
H2 (Ω) ∩H1

0 (Ω)
)
×D (∂x). Here ∂x is considered as

an unbounded operator in L2 (Ω). We can prove that this operator A0 is not closed
in L2 (Ω)× L2 (Ω). Therefore we have to consider its closure A which is defined by :
A : D (A) ⊂ L2 (Ω)× L2 (Ω)→ L2 (Ω)× L2 (Ω),

A

(
ϕ
ψ

)
=
(
−∆

(
ϕ+ α∆−1∂xψ

)
α∂xϕ+ aψ

)
and D (A) =

{
(ϕ,ψ)T ∈ H1

0 (Ω)× L2 (Ω) /ϕ+ α∆−1∂xψ ∈ H2 (Ω)
}

(see [1]).
The originality and difficulty of the - apparently simple - system (1.3) are related

to the fact that A is a mixed order operator, and therefore, possesses a non-empty
essential spectrum σess(A), as shown in [6] in a general situation. As a consequence,
the observability does not hold uniformly with respect to the data

(
Φ0,Φ1

)
. Precisely,

in [10] the authors exhibit Weil sequences, associated with some elements of σess(A)
for which the observability inequality (1.2) is not true. The observability is therefore
only expected, roughly speaking, in the orthogonal of some space related to the essen-
tial spectrum. To our knowledge, the only way used up to now to address this kind
of problem is based on spectral analysis and Ingham type approach which allows to
prove the observability for the discrete part of the spectrum, provided some spectral
gap conditions (see [11]). In that framework, the existing literature mainly concerns
the controllability of dynamical systems modeling the vibrations of elastic membrane
shell, where precisely mixed order and self-adjoint operators appear (we refer to [19]
for a detailed spectral analysis). We also mention [8, 9] where the controllability of
an hemi-spherical cap is studied using a nonharmonic spectral analysis. The analysis,
reduced to the one space dimension by axial symmetry, exhibits the loss of uniform
observability due to the essential spectrum composed of a single positive element.
A similar study is performed in [2] for a nonuniform elliptic operator A for which
0 ∈ σess(A). We also refer to the chapter 5 of [12] for results based on some recent
extensions of Ingham type inequalities. For systems of this kind, the uniform partial
controllability, which consists to drive to rest only a restricted number of components
is proved in [13]. The observability is obtained by a so-called spectral compensation
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argument, remarking that the bad behavior of the part of the spectrum which accu-
mulates to σess(A) is somehow compensated by the suitable gap of the discrete part.
In a different context, we also mention [3, 16, 18] for the controllability of systems
with spectral accumulation point.

The significant novelty of this present work with respect to the literature men-
tioned above is that it concerns the two space dimension. The proof of a positive
observability result for the discrete part of the spectrum, much less straightforward
(than for the one-dimensional situation), is obtained by the adaptation of a recent
Ingham type theorem due to Mehrenberger [17] that allows to prove the observabil-
ity for the wave equation in any space dimension. An other difficulty in the study
of the controllability for system (1.1) is that the associated control operator is not
bounded from the space of controls L2 (Γ× (0, T )) to the state space X−1 (the dual
of X1 = H1/2 ×H with respect to the pivot space X = H ×H−1/2).

The paper is organized as follows. In Section 2, we first state the spectral prop-
erties of the operator A. Explicit computations show that the set of the eigenvalues
of A is composed of three parts: {λ−p,q}p,q≥1 ∪ {λ+

p,q}p,q≥1 ∪ {a}, where {λ−p,q}p,q≥1 is
a bounded sequence which accumulates on the full interval [a− α2, a] = σess(A) and
{λ+

p,q}p,q≥1 - the set of isolated eigenvalues of A of finite multiplicity - is an unbounded
sequence such that λ+

p,q ∼ (p2 + q2)π2 for p, q large. In Section 3, we establish the
well-posedness of the boundary value problem (1.1) for v and any initial data

(
u0, u1

)
in suitable spaces. We divide Section 4 into two parts. The first part is devoted to the
analysis of the adjoint system and to the formulation of the observability inequality
as (1.2). In the second part, we prove the observability for any initial data

(
Φ0,Φ1

)
belonging to H+

1/2 ×H
+, the space spanned by the eigenfunctions {e+

p,q}p,q≥1 associ-
ated with the eigenvalues {λ+

p,q}p,q≥1. The keypoint is that the sequence {λ+
p,q}p,q≥1

enjoys gap properties similar to those of the eigenvalues of −∆ with Dirichlet bound-
ary values, used in [17]. On the contrary, Section 5 exhibits the lack of observability
in spaces related to the essential spectrum. In particular, by numerical approxima-
tion, we check that the corresponding observability constant C−(T ) is not bounded
uniformly with respect to

(
Φ0,Φ1

)
. We also discuss the uniform observability with

respect to the coupling parameter α (as α → 0). Section 6 concludes this work with
some remarks and open problems.

2. The operator A. We consider the operator A defined by : A : D (A) ⊂
L2 (Ω)× L2 (Ω) = H → H,

A

(
ϕ
ψ

)
=
(
−∆

(
ϕ+ α∆−1∂xψ

)
α∂xϕ+ aψ

)
,

D (A) =
{

(ϕ,ψ)T ∈ H1
0 (Ω)× L2 (Ω) /ϕ+ α∆−1∂xψ ∈ H2 (Ω)

}
.

(2.1)

It is well-known and easy to check that the eigenvalues and normalized eigenfunctions
of −∆ with domain H2 (Ω)∩H1

0 (Ω) are respectively given by µpq =
(
p2 + q2

)
π2 and

ϕpq(x, y) = 2 sin(pπx) sin(qπy) for (p, q) in N∗ × N∗ and (x, y) ∈ Ω = (0, 1)2
. We
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introduce the following notations: for p, q ≥ 1

λ±p,q = 1
2

(
µpq + a±

√
(µpq − a)2 + 4α2p2π2

)
,

ψpq (x, y) = 2 cos(pπx) sin(qπy) ,

e±p,q =

(
(λ±p,q−a)q

(λ±p,q−a)2
+α2p2π2

ϕpq,
αpπq

(λ±p,q−a)2
+α2p2π2

ψpq

)T
,

eq(x, y) =
(
0,
√

2 sin (qπy)
)T
.

Lemma 2.1.
1. For all (p, q) ∈ N∗ × N∗, we have: Ae±p,q = λ±p,qe

±
p,q, Aeq = aeq.

Ker (A− λI) = {0} , ∀λ /∈ {a} ∪ {λ+
p,q}p,q≥1 ∪ {λ−p,q}p,q≥1.

In other words, the sets of eigenvalues and associated eigenfunctions of A
are respectively {a} ∪ {λ+

p,q}p,q≥1 ∪ {λ−p,q}p,q≥1 and {eq}q≥1 ∪
{
e+
p,q

}
p,q≥1

∪{
e−p,q
}
p,q≥1

.

2. We have λ+
p,q ∼
‖(p,q)‖→+∞

µpq.

Proof. Let λ be an eigenvalue of A and u = (u1, u2)T be an associated eigenvector.
Then u is a non-zero solution of the system

(λ− a)u2 = α∂xu1

∆
(
u1 + α∆−1∂xu2

)
+ λu1 = 0

u1|∂Ω = 0.
(2.2)

Assuming first that λ = a, system (2.2) implies that ∂xu1 = 0, ∆
(
u1 + α∆−1∂xu2

)
=

0 in Ω together with the boundary condition u1|∂Ω = 0. This implies that u1 = 0
and ∂xu2 = 0 in Ω. Consequently, we can write u2(x, y) = f(y) with f ∈ L2 (0, 1). It
follows that λ = a is an eigenvalue of A and the associated eigenspace is {(x, y) 7→
(0, f(y))T : f ∈ L2 (0, 1)}. Now, if λ 6= a, then system (2.2) may be written as

u2 = α
λ−a∂xu1(

1 + α2

λ−a
)
∂xxu1 + ∂yyu1 + λu1 = 0

u1|∂Ω = 0.

(2.3)

We can look for u1 in the form u1 =
∑

p,q∈N∗
up,qϕpq with

∑
p,q∈N∗

(up,q)
2
< +∞. u1 is a

solution of (2.3) if and only if for all (p, q) ∈ N∗ × N∗,(
−p2π2

(
1 +

α2

λ− a

)
− q2π2 + λ

)
up,q = 0. (2.4)

It follows from (2.4) that λ satisfies the eigenvalue equation

λ2 −
(
a+

(
p2 + q2

)
π2
)
λ+

((
a− α2

)
p2 + aq2

)
π2 = 0. (2.5)

We conclude that λ = 1
2

(
a+

(
p2 + q2

)
π2 ±

√
(a− (p2 + q2)π2)2+4α2p2π2

)
= λ±p,q.

It is easily seen that Ae±p,q = λ±p,qe
±
p,q. This completes the proof of item 1. Item 2 is

easy to check.
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We refer to [5] for the definition of the essential spectrum of A, σess (A). As a
consequence of the results in [6], we have: σess (A) =

[
a− α2, a

]
. On the other hand,

we can check that the set of accumulation points of the sequence
(
λ−p,q

)
(p,q)∈N∗×N∗ is

σess(A) = [a− α2, a].
Remark 2.2.
1. The asymptotic behavior of λ+

pq in Lemma 2.1 is in agreement with [7] where
it is shown that the asymptotic behavior of σ(A) is related to the spectrum of
the principal part of A, in our case −∆.

2. We check that

λ−p,q ≤ a < λ+
1,1 ≤ λ+

p,q, ∀(p, q) ∈ N∗ × N∗.

Thus all the λ+
p,q are isolated eigenvalues (of finite multiplicity).

Similarly, simple computations lead to:

∀p ≥ 1,
(
λ−p,q ∈ [a− α2, a]⇔ q >

√
a− α2/π

)
Therefore, if

√
a− α2/π < 1, then

(
λ−p,q

)
(p,q)∈N∗×N∗ = σess (A) and σess (A)

is bounded away from
(
λ+
p,q

)
(p,q)∈N∗×N∗ .

Figures 2.1 and 2.2 illustrate these two points.
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3. Using the fact that the families {ϕpq}p≥1,q≥1 and {ψpq}p≥0,q≥1 are two Hilbert
bases of L2 (Ω), we can easily check that the family B =

{
e+
p,q

}
p≥1,q≥1

∪{
e−p,q
}
p≥1,q≥1

∪ {eq}q≥1 forms a Hilbert basis of H = L2 (Ω)× L2 (Ω).
The operator A defined in (2.1) is self-adjoint in H, and positive if, as we have

assumed it, a > α2. This last point comes from the formula:

〈Au, u〉H =
∫

Ω

[
(∂xu1 + αu2)2 +

(
a− α2

)
u2

2 + (∂yu1)2
]
dx dy,

where u = (u1, u2)T ∈ D (A).
For any δ ∈ R+, we recall that the operator Aδ is defined by

Aδ=
∑
p,q≥1

(
λ+
p,q

)δ 〈·, e+
p,q

〉
H
e+
p,q +

∑
p,q≥1

(
λ−p,q

)δ 〈·, e−p,q〉H e−p,q + aδ
∑
q≥1

〈·, eq〉H eq,

D
(
Aδ
)

=

φ ∈ H,∑
p,q≥1

(
λ+
p,q

)2δ〈
φ, e+

p,q

〉2
H

+
∑
p,q≥1

(
λ−p,q

)2δ〈
φ, e−p,q

〉2
H

+a2δ
∑
q≥1

〈φ, eq〉2H<∞

.

Since
(
λ−p,q

)
(p,q)∈N∗×N∗ is bounded, D

(
Aδ
)

=

φ ∈ H, ∑
p,q≥1

(
λ+
p,q

)2δ〈
φ, e+

p,q

〉2
H
<∞

.

In the sequel, we will set

Hδ = D
(
Aδ
)
, δ ≥ 0.

The operator A is a bounded operator from D(A), equipped with the graph
norm, to H. It is well-known that A can be extended to a bounded operator from
H to D(A)′, the dual space of D(A) with respect to the pivot space H. We continue
to denote this extension by A and, thus, A can be seen as an unbounded self-adjoint
operator on D(A)′ with domain H. A is also a unitary operator from D(A) to H and
from H to D(A)′. We will set in the sequel:

H−1 = D(A)′.

The other extension of A we will use later is the following. A can also be extended
as a unitary operator from D(A1/2) equipped with the graph norm to D(A1/2)′, the
dual space of D(A1/2) with respect to the pivot space H. We will set:

H1/2 = D
(
A1/2

)
, H−1/2 = D

(
A1/2

)′
.

For details on these extensions, see for instance [20].
The last notations we will need in the next sections are the following:

H± = span
({
e±p,q, p, q ≥ 1

})
, Ha = span ({eq, q ≥ 1})

and for δ ∈ R,

H±δ = Hδ ∩H±, Ha
δ = Hδ ∩Ha.

3. Well-posedness of the controlled system. This section is devoted to the
study of existence and uniqueness of solution for system (1.1).
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3.1. A Dirichlet map. In this part, we introduce and analyze the Dirichlet
map D : D (D) ⊂ L2 (Γ) → H corresponding to system (1.1) defined as follows:
D (D) =

{
v ∈ L2 (Γ) ,Dv ∈ H

}
and for v ∈ L2 (Γ), we denote by Dv the solution

θ = (θ1, θ2)T of the abstract elliptic problem{
Λθ = 0 in Ω
θ1 = v 1Γ on ∂Ω

, Λ =
(
−∆ −α∂x
α∂x a

)
. (3.1)

The map D satisfies the following continuity property:
Proposition 3.1. For every ε ∈ (1/2, 1], D ∈ L (Hε (Γ) , H). Moreover for every

v ∈ D (D) we have

〈
Dv, e±p,q

〉
H

=
pπ
(
λ±p,q−a+α2

)
λ±p,q

√(
λ±p,q−a

)2
+α2p2π2

v2,q +
qπ
(
λ±p,q−a

)
λ±p,q

√(
λ±p,q−a

)2
+α2p2π2

v1,p (3.2)

〈Dv, eq〉H =
α

a
√

2
v2,q (3.3)

with v1,p = 2
∫ 1

0
v(x, 0) sin (pπx) dx and v2,q = 2

∫ 1

0
v(0, y) sin (qπy) dy.

Proof. Let ε ∈ (1/2, 1] and v ∈ Hε (Γ). Suppose that (3.1) has a solution θ ∈ H.
Using integrations by parts, we have

0 =
〈
Λθ, e±p,q

〉
H

=
〈
θ,Ae±p,q

〉
H

+
∫

Γ

(
∂ϕ±p,q
∂ν

+ αψ±p,qν1

)
v dσdt

where e±p,q =
(
ϕ±p,q, ψ

±
p,q

)T . Since Ae±p,q = λ±p,qe
±
p,q, this yields

〈
θ, e±p,q

〉
H

=
pπ
(
λ±p,q − a+ α2

)
λ±p,q

√(
λ±p,q − a

)2
+ α2p2π2

v2,q+
qπ
(
λ±p,q − a

)
λ±p,q

√(
λ±p,q − a

)2
+ α2p2π2

v1,p. (3.4)

By the same arguments, we obtain

〈θ, eq〉H =
α

a
√

2
v2,q. (3.5)

This proves that if (3.1) has a solution θ, then this solution is unique and it writes

θ =
∑
p,q

〈
θ, e+

p,q

〉
H
e+
p,q +

∑
p,q

〈
θ, e−p,q

〉
H
e−p,q +

∑
q

〈θ, eq〉H eq,

with
〈
θ, e±p,q

〉
H

and 〈θ, eq〉H given by (3.4) and (3.5). Now, we have to check that
such a θ is an element of H. Formula (3.4) gives∣∣∣〈θ, e+

p,q

〉
H

∣∣∣ ≤ pε+1π
(
λ+
p,q − a+ α2

)
λ+
p,q

√(
λ+
p,q − a

)2
+ α2p2π2

|v2,q|
pε

+
qε+1π

(
λ+
p,q − a

)
λ+
p,q

√(
λ+
p,q − a

)2
+ α2p2π2

|v1,p|
qε

.

From the asymptotic property λ+
p,q ∼
‖(p,q)‖→+∞

µpq, we have

π
(
λ+
p,q − a+ α2

)
λ+
p,q

√(
λ+
p,q − a

)2
+ α2p2π2

∼
‖(p,q)‖→+∞

π
(
λ+
p,q − a

)
λ+
p,q

√(
λ+
p,q − a

)2
+ α2p2π2

∼
‖(p,q)‖→+∞

π

µpq
.
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Consequently, there exists a positive constant c1, independant of v, such that for every
(p, q) ∈ N∗ × N∗,

π
(
λ+
p,q − a+ α2

)
λ+
p,q

√(
λ+
p,q − a

)2
+ α2p2π2

≤ c1
µpq

and
π
(
λ+
p,q − a

)
λ+
p,q

√(
λ+
p,q − a

)2
+ α2p2π2

≤ c1
µpq

.

Hence

pε+1π
(
λ+
p,q−a+α2

)
λ+
p,q

√(
λ+
p,q−a

)2
+α2p2π2

≤c1
pε+1

µpq
≤c1

p2

µpq
≤c1 and

qε+1π
(
λ+
p,q−a

)
λ+
p,q

√(
λ+
p,q−a

)2
+α2p2π2

≤c1.

Finally ∣∣∣〈θ, e+
p,q

〉
H

∣∣∣ ≤ c1( |v2,q|
pε

+
|v1,p|
qε

)
.

This gives

∑
p,q≥1

(〈
θ, e+

p,q

〉
H

)2

≤ 2c12
∑
r≥1

1
r2ε

∑
q∈N∗

(v2,q)
2+
∑
p∈N∗

(v1,p)
2

 = 4c12
∑
r≥1

1
r2ε
‖v‖2L2(Γ) .

(3.6)
From (3.4), we also have

∣∣∣〈θ,e−p,q〉H∣∣∣≤
∣∣∣∣∣∣ pε+1π

(
λ−p,q−a+α2

)
qελ−p,q

√(
λ−p,q−a

)2
+α2p2π2

∣∣∣∣∣∣q
ε|v2,q|
pε

+

∣∣∣∣∣∣ qε+1π
(
λ−p,q−a

)
pελ−p,q

√(
λ−p,q−a

)2
+α2p2π2

∣∣∣∣∣∣p
ε|v1,p|
qε

.

Using the definition of λ−p,q, we can prove that as ‖(p, q)‖ → +∞

π
(
λ−p,q−a+α2

)
λ−p,q

√(
λ−p,q−a

)2
+α2p2π2

∼ |α|
λ−p,q

q2

p (p2+q2)
,

π
(
λ−p,q−a

)
λ−p,q

√(
λ−p,q−a

)2
+α2p2π2

∼− |α|
λ−p,q

p

p2+q2
.

Since
(
λ−p,q

)
(p,q)∈N∗×N∗ is bounded away from 0, there exists a constant c2 > 0 such

that for every (p, q) ∈ N∗ × N∗:∣∣∣∣∣∣ π
(
λ−p,q−a+α2

)
λ−p,q

√(
λ−p,q−a

)2
+α2p2π2

∣∣∣∣∣∣≤c2 q2

p (p2+q2)
,

∣∣∣∣∣∣ π
(
λ−p,q − a

)
λ−p,q

√(
λ−p,q−a

)2
+α2p2π2

∣∣∣∣∣∣≤c2 p

p2+q2
.

This implies that:∣∣∣∣∣∣ pε+1π
(
λ−p,q−a+α2

)
qελ−p,q

√(
λ−p,q−a

)2
+α2p2π2

∣∣∣∣∣∣≤c2 p
εq2−ε

p2+q2
,

∣∣∣∣∣∣ qε+1π
(
λ−p,q−a

)
pελ−p,q

√(
λ−p,q−a

)2
+α2p2π2

∣∣∣∣∣∣≤c2 p
1−εqε+1

p2+q2
.

We have pεq2−ε

p2+q2 ≤ 1 and p1−εqε+1

p2+q2 ≤ 1 since 0 ≤ ε ≤ 1. We conclude that∣∣∣〈θ, e−p,q〉H ∣∣∣ ≤ c2(qε |v2,q|
pε

+
pε |v1,p|
qε

)
.
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Since v ∈ Hε (Γ), we can write from this inequality

∑
p,q≥1

(〈
θ, e−p,q

〉
H

)2

≤ 2c22
∑
r≥1

1
r2ε

∑
q∈N∗

(qεv2,q)
2+
∑
p∈N∗

(pεv1,p)
2

≤ 4c22
∑
r≥1

1
r2ε
‖v‖2Hε(Γ).

(3.7)
Besides, formula (3.5) clearly gives

(
〈θ, eq〉H

)
q∈N∗ ∈ l

2 (N∗), with

∑
q∈N∗

(
〈θ, eq〉H

)2 =
α2

2a2

∑
q∈N∗

(v2,q)
2 ≤ α2

a2
‖v‖2L2(Γ) . (3.8)

Combining (3.6), (3.7) and (3.8), we obtain θ ∈ H, with ‖θ‖H ≤ cε ‖v‖Hε(Γ) and

cε = max

(
2c1
π

√∑
r≥1

1
r2ε , 2c2

√∑
r≥1

1
r2ε ,

|α|
a

)
.

Proposition 3.1 gives that Hε (Γ) ⊂ D (D) for every ε ∈ (1/2, 1]. This implies
that D : D (D) ⊂ L2 (Γ)→ H is an unbounded operator with dense domain in L2 (Γ).
Consequently, the adjoint operator D∗ of D is well-defined as an unbounded operator
D∗ : D (D∗) ⊂ H → L2 (Γ).

Proposition 3.2. D∗ is given by

D (D∗) =

{
g ∈ H,

∫
Γ

(
∂(A−1g)1

∂ν + α
(
A−1g

)
2
ν1

)2

dσ < +∞

}
D∗g =

(
∂(A−1g)1

∂ν + α
(
A−1g

)
2
ν1

)
|Γ

where A−1g =
( (

A−1g
)

1(
A−1g

)
2

)
, ∀g ∈ D (D∗).

Proof. For v ∈ D (D) and g ∈ H, we have

〈Dv,g〉H =
∑
p,q≥1

(〈
Dv,e+

p,q

〉
H

〈
g,e+

p,q

〉
H

+
〈
Dv,e−p,q

〉
H

〈
g,e−p,q

〉
H

)
+
∑
q≥1

〈Dv,eq〉H 〈g,eq〉H .

By (3.2) and (3.3), we have

〈Dv,g〉H =
∑
p≥1

v1,p

∑
q≥1

 qπ
(
λ+
p,q−a

) 〈
g,e+

p,q

〉
H

λ+
p,q

√(
λ+
p,q−a

)2
+α2p2π2

+
qπ
(
λ−p,q−a

) 〈
g,e−p,q

〉
H

λ−p,q
√(
λ−p,q−a

)2
+α2p2π2


+
∑
q≥1

v2,q

∑
p≥1

pπ (λ+
p,q−a+α2

) 〈
g,e+

p,q

〉
H

λ+
p,q

√(
λ+
p,q−a

)2
+α2p2π2

+
pπ
(
λ−p,q−a+α2

) 〈
g,e−p,q

〉
H

λ−p,q
√(
λ−p,q−a

)2
+α2p2π2


+

α

a
√

2
〈g, eq〉H

)
. (3.9)

By definition of the adjoint of an unbounded operator, D (D∗) is the set of the elements
g ∈ H such that v 7→ 〈Dv, g〉H is a continuous linear form on L2 (Γ). Using (3.9), we
see that D (D∗) is the set of the elements g ∈ H such that the two following sequences

are in l2 (N∗):

(∑
q≥1

(
qπ(λ+

p,q−a)〈g,e+p,q〉H
λ+
p,q

q
(λ+
p,q−a)2

+α2p2π2
+

qπ(λ−p,q−a)〈g,e−p,q〉H
λ−p,q

q
(λ−p,q−a)2

+α2p2π2

))
p≥1

,
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p≥1

(
pπ(λ+

p,q−a+α2)〈g,e+p,q〉H
λ+
p,q

q
(λ+
p,q−a)2

+α2p2π2
+
pπ(λ−p,q−a+α2)〈g,e−p,q〉H
λ−p,q

q
(λ−p,q−a)2

+α2p2π2

)
+ α
a
√

2
〈g, eq〉H

)
q≥1

. It is easily

seen that∥∥∥∥∥∂
(
A−1g

)
1

∂ν
+ α

(
A−1g

)
2
ν1

∥∥∥∥∥
2

L2(Γ)

=
∑
q≥1

∑
p≥1

pπ (λ+
p,q−a+α2

) 〈
g,e+

p,q

〉
H

λ+
p,q

√(
λ+
p,q−a

)2
+α2p2π2

+
pπ
(
λ−p,q−a+α2

) 〈
g,e−p,q

〉
H

λ−p,q
√(
λ−p,q−a

)2
+α2p2π2

+
α

a
√

2
〈g,eq〉H

2

+
∑
p≥1

∑
q≥1

 qπ
(
λ+
p,q−a

) 〈
g,e+

p,q

〉
H

λ+
p,q

√(
λ+
p,q−a

)2
+α2p2π2

+
qπ
(
λ−p,q−a

) 〈
g,e−p,q

〉
H

λ−p,q
√(
λ−p,q−a

)2
+α2p2π2

2

.

This allows to conclude that D (D∗) =

{
g ∈ H,

∥∥∥∥∂(A−1g)1
∂ν +α

(
A−1g

)
2
ν1

∥∥∥∥
L2(Γ)

<∞

}
.

Now we suppose that g ∈ D (D∗). Then we can easily check that (3.9) leads to

〈Dv,g〉H =
∫

Γ
v

(
∂(A−1g)1

∂ν +α
(
A−1g

)
2
ν1

)
dσ and then D∗g =

(
∂(A−1g)1

∂ν +α
(
A−1g

)
2
ν1

)
|Γ
.

Proposition 3.3. D : D (D) ⊂ L2 (Γ)→ H is a closed operator on L2 (Γ).
Proof. Let (vn)n∈N be a sequence in D (D) which converges to a certain v in

L2 (Γ) and such that Dvn converges in H to an element θ. Let vn1,p and vn2,q denote

vn1,p = 2
∫ 1

0

vn(x, 0) sin (pπx) dx, vn2,q = 2
∫ 1

0

vn(0, y) sin (qπy) dy.

Similarly, let v1,p = 2
∫ 1

0
v(x, 0) sin (pπx) dx and v2,q = 2

∫ 1

0
v(0, y) sin (qπy) dy. Since

‖vn − v‖2L2(Γ) =
1
2

∑
p≥1

∣∣vn1,p − v1,p

∣∣2 +
∑
q≥1

∣∣vn2,q − v2,q

∣∣2 ,

we clearly have: vn1,p →
n→+∞ v1,p for any p ∈ N∗ and vn2,q →

n→+∞ v2,q for any q ∈ N∗.
From (3.2) and (3.3) we deduce that for every (p, q) ∈ N∗ × N∗:〈

Dvn, e±p,q
〉
H
→

n→+∞
pπ(λ±p,q−a+α2)

λ±p,q
q

(λ±p,q−a)2
+α2p2π2

v2,q +
qπ(λ±p,q−a)

λ±p,q
q

(λ±p,q−a)2
+α2p2π2

v1,p

〈Dvn, eq〉H →
n→+∞

α
a
√

2
v2,q.

Besides, the convergence of Dvn to θ in H implies the convergence of
〈
Dvn, e±p,q

〉
H

(resp. 〈Dvn, eq〉H) to
〈
θ, e±p,q

〉
H

(resp. 〈θ, eq〉H) for every (p, q) ∈ N∗×N∗. We deduce
that, for all (p, q) ∈ N∗ × N∗〈

θ, e±p,q
〉
H

=
pπ(λ±p,q−a+α2)

λ±p,q
q

(λ±p,q−a)2
+α2p2π2

v2,q +
qπ(λ±p,q−a)

λ±p,q
q

(λ±p,q−a)2
+α2p2π2

v1,p

〈θ, eq〉H = α
a
√

2
v2,q.

From (3.2) and (3.3), it means that θ = Dv. Since θ ∈ H, this implies that v ∈ D (D).
We have thus proved that D is closed.
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3.2. Toward an internal control problem. We introduce the following nota-
tions:

X = H ×H−1/2, X−1 = H−1/2 ×H−1, X1 = H1/2 ×H,

and

L : D (L) ⊂ X−1 → X−1, L =
(

0 I
−A 0

)
, D (L) = X.

Note that the operator occuring in the definition of L is the extension of A from H
to H−1.

In this part we transform the boundary control problem (1.1) into the familiar
form of an internal control problem:{

Z ′ = LZ +Bv in QT

Z(0) =
(
u0, u1

)T in Ω.
(3.10)

The originality of this problem is that B is an unbounded control operator from L2 (Γ)
to X−1.

Assume that v is an element of H1 ([0, T ], D (D)). For the moment we denote by
Z the vector Z = (u, u′)T − (Dv, 0)T where u is solution of (1.1). Then Z is solution
of

Z ′ =
(

0 I
−Λ 0

)
Z −

(
Dv′
0

)
.

Since v ∈ H1 ([0, T ], D (D)), we have that Dv′ ∈ L2 ([0, T ], H) so that (Dv′, 0)T is an
element of L2 ([0, T ], D (L)). Therefore Z is solution of

Z ′ = LZ −
(
Dv′
0

)
in X−1

and the semigroup theory gives

Z(t) = S(t)Z(0)−
∫ t

0

S(t− s)
(
Dv′(s)

0

)
ds (3.11)

where (S(t))t≥0 is the C0-semigroup associated with the maximal and dissipative

operator L. Integrating by parts in (3.11) and using
(
Dv(s)

0

)
∈ D (L), we obtain

Z(t) = S(t)Z(0)−
(
Dv(t)

0

)
+ S(t)

(
Dv(0)

0

)
−
∫ t

0

S(t− s)L
(
Dv(s)

0

)
ds.

Replacing Z(t) by its definition, we obtain the following expression for (u(t), u′(t))T :(
u(t)
u′(t)

)
= S(t)

(
u0

u1

)
+
∫ t

0

S(t− s)Bv(s)ds (3.12)

where

B =
(

0
AD

)
: D(B) ⊂ L2 (Γ)→ X−1 (3.13)
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is an unbounded operator with dense domain D(B) = D (D). Formula (3.12) means
that (u, u′)T is the mild solution Z of the internal control system (3.10).

Theorem 3.4. For every
(
u0, u1

)
∈ X and every v ∈ H1 ([0, T ], D (D)), system

(1.1) has a unique solution u in X−1. Moreover, u ∈ C ([0, T ], H)∩C1
(
[0, T ], H−1/2

)
∩

C2 ([0, T ], H−1).
Proof. Let

(
u0, u1

)
∈ X and v ∈ H1 ([0, T ], D (D)). Set Z0 =

(
u0, u1

)T . We have
to solve system (3.10) in X−1. Let us prove that Bv ∈ H1 ([0, T ], X−1):

‖Bv‖2H1([0,T ],X−1) = ‖Bv‖2L2([0,T ],X−1) + ‖Bv′‖2L2([0,T ],X−1)

= ‖ADv‖2L2([0,T ],H−1) + ‖ADv′‖2L2([0,T ],H−1)

= ‖Dv‖2L2([0,T ],H) + ‖Dv′‖2L2([0,T ],H)

= ‖Dv‖2H1([0,T ],H)

≤ ‖v‖2H1([0,T ],D(D)) < +∞.

Since Bv ∈ H1 ([0, T ], X−1) and Z0 ∈ X, the semigroup theory (see [20, Theorem
4.1.6 page 113] ) ensures that system (3.10) has a unique solution Z in X−1 and that
Z ∈ C ([0, T ], X)∩C1 ([0, T ], X−1). The existence and uniqueness of the solution u of
(1.1) with the regularity u ∈ C ([0, T ], H)∩C1

(
[0, T ], H−1/2

)
∩C2 ([0, T ], H−1) follow.

4. Controllability and observability.

4.1. Formulation of the observability inequality. We introduce the control
operator LT : D (LT ) ⊂ L2 (Γ× (0, T ))→ X defined by

LT v =
∫ T

0

S(T − t)Bv(t)dt, (4.1)

with domain D (LT ) =
{
v ∈ L2 (Γ× (0, T )) , LT v ∈ X

}
. The exact boundary control-

lability problem for system (1.1) is the following: given T > 0 large enough, initial
data

(
u0, u1

)
∈ X and final data

(
u0
T , u

1
T

)
∈ X, to find a control function v in D (LT ),

such that the solution u of system (1.1) satisfies u(., T ) = u0
T , u

′(., T ) = u1
T in Ω.

Therefore, system (1.1) is exactly controllable at time T if and only if the operator
LT is onto.

The following proposition may be proved using similar arguments as in Proposi-
tion 3.3.

Proposition 4.1. LT : D (LT ) ⊂ L2 (Γ× (0, T ))→ X is a closed operator.
By Theorem 3.4, D(LT ) contains H1([0, T ],D(D)), which is dense in L2(Γ×(0, T ))

since D(D) is dense in L2 (Γ). Hence D(LT ) is dense in L2 (Γ× (0, T )). This allows to
compute the adjoint L∗T of LT . Since LT is closed, the surjectivity of LT is equivalent
(see for instance [4, Theorem II.19 page 29]) to the existence of a positive constant c
such that ∥∥∥∥L∗T ( Ψ0

Ψ1

)∥∥∥∥2

L2(ΣT )

≥ c
∥∥∥∥( Ψ0

Ψ1

)∥∥∥∥2

X

, ∀
(

Ψ0

Ψ1

)
∈ D (L∗T ) .

This last inequality is also equivalent to:∥∥∥∥L∗TL( Φ0

Φ1

)∥∥∥∥2

L2(ΣT )

≥ c
∥∥∥∥( Φ0

Φ1

)∥∥∥∥2

X1

, ∀
(

Φ0

Φ1

)
∈ D (L∗TL) . (4.2)
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Consequently, the exact controllability problem for system (1.1) relies on the
“observability inequality” (4.2). In what follows, we compute L∗TL to translate (4.2)
in terms of the adjoint system (1.3) of system (1.1).

By the definition of LT in (4.1) we have L∗T = B∗S(T−·)∗. So we have to compute
the adjoint of B.

Lemma 4.2. The adjoint B∗ : D (B∗) ⊂ X1 → L2 (Γ) of the operator B defined
in (3.13) is given by:

D (B∗) =
{(

Φ0,Φ1
)T ∈ X1 / Φ1 ∈ D (D∗)

}
B∗
(

Φ0

Φ1

)
= D∗Φ1, ∀

(
Φ0

Φ1

)
∈ D (B∗) .

(4.3)

Moreover for every
(

Φ0

Φ1

)
∈ D (B∗L) we have

B∗L
(

Φ0

Φ1

)
= −

(
∂Φ0

1

∂ν
+ αΦ0

2ν1

)
|Γ
, where Φ0 =

(
Φ0

1,Φ
0
2

)T
. (4.4)

Proof. Let v ∈ D (B) = D (D) and
(

Φ0

Φ1

)
∈ X1. We recall that since A is

self-adjoint in H, L is skew-adjoint in X−1 (i.e. L∗ = −L). This allows to write〈(
Φ0

Φ1

)
, Bv

〉
X1,X−1

=
〈(

Φ0

Φ1

)
, LL−1Bv

〉
X1,X−1

=
〈
L∗
(

Φ0

Φ1

)
, L−1Bv

〉
X

= −
〈
L

(
Φ0

Φ1

)
, L−1Bv

〉
X

= −
〈(

Φ1

−AΦ0

)
, L−1Bv

〉
X

.

It is easily seen that L−1 =
(

0 −A−1

I 0

)
so that L−1Bv =

(
−Dv

0

)
. It follows

that 〈(
Φ0

Φ1

)
, Bv

〉
X1,X−1

=
〈
Φ1,Dv

〉
H
.

This gives (4.3). Now suppose that
(

Φ0

Φ1

)
∈ D (B∗L). Then

B∗L
(

Φ0

Φ1

)
= B∗

(
Φ1

−AΦ0

)
= −D∗

(
AΦ0

)
.

Proposition 3.2 easily gives (4.4).
Proposition 4.3. The operator L∗TL : D (L∗TL) ⊂ X1 → L2 (Γ× (0, T )) is given

by:

D (L∗TL) =
{(

Φ0

Φ1

)
∈ X1 /

∂ϕ

∂ν
+ αψν1 ∈ L2 (Γ× (0, T ))

}
L∗TL

(
Φ0

Φ1

)
= −

(
∂ϕ

∂ν
+ αψν1

)
|Γ

(4.5)
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where Φ = (ϕ,ψ)T is the solution of the backward adjoint system of (1.1):{
Φ′′ +AΦ = 0 in QT

Φ(., T ) = Φ0,Φ′(., T ) = Φ1 in Ω.
(4.6)

Proof. Let
(

Φ0

Φ1

)
∈ X1 such that

(
Φ0

Φ1

)
∈ D (L∗TL). Then

L∗TL
(

Φ0

Φ1

)
= B∗S(T − ·)∗L

(
Φ0

Φ1

)
= B∗LS(T − ·)∗

(
Φ0

Φ1

)
= B∗L

(
Φ
Φ̃

)

where
(

Φ
Φ̃

)
is the solution of


(

Φ
Φ̃

)′
= −L∗

(
Φ
Φ̃

)
= L

(
Φ
Φ̃

)
in [0, T ](

Φ
Φ̃

)
(T ) =

(
Φ0

Φ1

)
.

By (4.4) we have B∗L
(

Φ
Φ̃

)
= −

(
∂ϕ
∂ν + αψν1

)
|Γ

, where Φ = (ϕ,ψ)T . This proves

the proposition.
Thanks to Proposition 4.3, the observability inequality (4.2) consists in the fol-

lowing inequality:

∀
(

Φ0

Φ1

)
∈ D (L∗TL)

∫ T

0

∫
Γ

(
∂ϕ

∂ν
+ αψν1

)2

dσdt ≥ c
∥∥∥∥( Φ0

Φ1

)∥∥∥∥2

X1

where Φ = (ϕ,ψ)T is the solution of the backward adjoint system (4.6). Remark that
this is also equivalent to the same inequality when Φ = (ϕ,ψ)T denotes the solution of
the forward adjoint system (1.3). Consequently we have the following characterization
of the controllability:

Corollary 4.4. System (1.1) is exactly controllable at time T if and only if
there exists a constant C(T ) > 0 such that for all initial data

(
Φ0,Φ1

)T ∈ D (L∗TL),
the solution Φ = (ϕ,ψ)T of the adjoint system (1.3) with initial data

(
Φ0,Φ1

)
satisfies

the following observability inequality

∥∥(Φ0,Φ1
)∥∥2

X1
≤ C(T )

∫ T

0

∫
Γ

(
∂ϕ

∂ν
+ αψν1

)2

dσdt. (4.7)

4.2. Observability inequality in H+
1/2 ×H

+. From now on, we assume that
a ≤ 2π2. The main result of this paper is the following uniform observability of
(1.3) for initial data in D (L∗TL) ∩

(
H+

1/2 ×H
+
)

. Our proof adapts an Ingham type
theorem due to Mehrenberger (see [17]) which allows to prove, by a spectral method,
the observability inequality for the wave equation. The crucial point here is that the
discrete part {λ+

p,q}p,q≥1 of σ(A) has the same asymptotic behavior as σ(−∆).
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Theorem 4.5. Let γ = π
√
π

4
√

2π+|α| and T0 = 2π
γ

√
1 + 2(λ+

1,1−a+α2)2

(λ+
1,1−a)

2 . If a ≤ 2π2,

then for any T > T0 there exists a positive constant C+(T ) such that for all initial
data

(
Φ0,Φ1

)T in D (L∗TL)∩
(
H+

1/2 ×H
+
)

the solution of (1.3) satisfies the following
observability inequality:∥∥(Φ0,Φ1

)∥∥2

X1
≤ C+(T )

∫ T

0

∫
Γ

(
∂ϕ

∂ν
+ αψν1

)2

dσdt. (4.8)

4.2.1. The observability inequality in terms of Fourier series.
Fix

(
Φ0,Φ1

)T ∈ D (L∗TL)∩
(
H+

1/2 ×H
+
)

. By definition of H+
1/2 and H+, Φ0 and Φ1

may be written as

Φ0 =
∑
p,q≥1

Φ0
p,qe

+
p,q, Φ1 =

∑
p,q≥1

Φ1
p,qe

+
p,q

with
∑
p,q≥1

λ+
p,q

(
Φ0
p,q

)2
< +∞ and

∑
p,q≥1

(
Φ1
p,q

)2
< +∞. The solution Φ = (ϕ,ψ)T of

system (1.3) with initial data
(
Φ0,Φ1

)
is given by

Φ(t) =
1
2

∑
p,q≥1

Φ0
p,q − i

Φ1
p,q√
λ+
p,q

 ei
√
λ+
p,qt +

Φ0
p,q + i

Φ1
p,q√
λ+
p,q

 e−i
√
λ+
p,qt

 e+
p,q.

Using the definition of e+
p,q and the Parseval equality, we can easily prove that∫ T

0

∫
Γ

(
∂ϕ

∂ν
+ αψν1

)2

dσdt

=
1
2

∑
q≥1

∫ T

0

∣∣∣∣∣∣
∑
p≥1

pπ

Φ0
p,q−i

Φ1
p,q√
λ+
p,q

ei√λ+
p,qt+

Φ0
p,q+i

Φ1
p,q√
λ+
p,q

e−i√λ+
p,qt

 λ+
p,q − a+ α2√(

λ+
p,q−a

)2
+α2p2π2

∣∣∣∣∣∣
2

dt

+
1
2

∑
p≥1

∫ T

0

∣∣∣∣∣∣
∑
q≥1

qπ

Φ0
p,q−i

Φ1
p,q√
λ+
p,q

ei√λ+
p,qt+

Φ0
p,q+i

Φ1
p,q√
λ+
p,q

e−i√λ+
p,qt

 λ+
p,q − a√(

λ+
p,q−a

)2
+α2p2π2

∣∣∣∣∣∣
2

dt.

(4.9)

Notation 4.6.

1. For every (p, q) ∈ N∗ × N∗ we set ap,q = Φ0
p,q − i

Φ1
p,q√
λ+
p,q

.

2. For p ∈ Z∗ and q ∈ N∗ we define

xp,q =

πap,q
λ+
p,q−a+α2q

(λ+
p,q−a)2+α2p2π2

if p ≥ 1

−x−p,q if p ≤ −1.

3. For p ∈ N∗ and q ∈ Z∗ we define

yp,q =

πap,q
λ+
p,q−aq

(λ+
p,q−a)2+α2p2π2

if q ≥ 1

−yp,−q if q ≤ −1.
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The left-hand side of (4.8) is given by∥∥(Φ0,Φ1
)∥∥2

X1
=
∑
p,q≥1

(
λ+
p,q

(
Φ0
p,q

)2
+
(
Φ1
p,q

)2)
=
∑
p,q≥1

λ+
p,q |ap,q|

2
.

Furthermore, using Notation 4.6, we can write (4.9) in the form

2
∫ T

0

∫
Γ

(
∂ϕ

∂ν
+ αψν1

)2

dσdt =
∑
q∈N∗

∫ T

0

∣∣∣∣∣∣
∑
p∈N∗

p
(
xp,qe

i
√
λ+
p,qt+xp,qe−i

√
λ+
p,qt
)∣∣∣∣∣∣

2

dt

+
∑
p∈N∗

∫ T

0

∣∣∣∣∣∣
∑
q∈N∗

q
(
yp,qe

i
√
λ+
p,qt+yp,qe−i

√
λ+
p,qt
)∣∣∣∣∣∣

2

dt. (4.10)

Consequently, the observability inequality (4.8) is equivalent to the following inequal-
ity

C(T )
∑
p,q≥1

λ+
p,q |ap,q|

2 ≤
∑
q∈N∗

∫ T

0

∣∣∣∣∣∣
∑
p∈N∗

p
(
xp,qe

i
√
λ+
p,qt+xp,qe−i

√
λ+
p,qt
)∣∣∣∣∣∣

2

dt

+
∑
p∈N∗

∫ T

0

∣∣∣∣∣∣
∑
q∈N∗

q
(
yp,qe

i
√
λ+
p,qt+yp,qe−i

√
λ+
p,qt
)∣∣∣∣∣∣

2

dt (4.11)

where C(T ) is a positive constant which does not depend on (ap,q)(p,q)∈N∗×N∗ . We
recall below the main theorem of [17] for the observability of the wave equation in
two space dimension:

Theorem 4.7 (Mehrenberger [17]). We assume the existence of γ1 > 0 and
γ2 > 0 such that for every p, p′, q and q′ in N∗

p ≤ max (q, q′)⇒
∣∣√µpq ±√µpq′ ∣∣ ≥ γ1 |q ± q′|

q ≤ max (p, p′)⇒
∣∣√µpq ±√µp′q∣∣ ≥ γ2 |p± p′| .

(4.12)

Then for any T > 2π
√

1
γ2
1

+ 1
γ2
2

, there exists a constant C(T ) > 0 such that

C(T )
∑
p,q≥1

(
p2+q2

)
|xp,q|2 ≤

∑
p∈N∗

∫ T

0

∣∣∣∣∣∣
∑
q∈N∗

q
(
xp,qe

i
√
µpqt+xp,qe−i

√
µpqt

)∣∣∣∣∣∣
2

dt

+
∑
q∈N∗

∫ T

0

∣∣∣∣∣∣
∑
p∈N∗

p
(
xp,qe

i
√
µpqt+xp,qe−i

√
µpqt

)∣∣∣∣∣∣
2

dt (4.13)

for every complex sequence (xp,q)(p,q)∈N∗×N∗ such that the sums involved are finite.
The use of Ingham type methods (see [11, 12]) is based on some gap properties

(here given by (4.12)). Our observability inequality (4.11) is similar to (4.13) since
λ+
p,q ∼ µpq as ‖(p, q)‖ → +∞. The difference is the presence of an other sequence

(yp,q)(p,q)∈N∗×N∗ which is different from the sequence (xp,q)(p,q)∈N∗×N∗ . Consequently,
we cannot apply directly Theorem 4.7 to obtain the observability inequality (4.11).
However, from the definition of xp,q and yp,q we can prove that both xp,q and yp,q
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are equivalent to the same term ap,q = Φ0
p,q − iΦ1

p,q/
√
λ+
p,q. This allows us to adapt

the proof of Theorem 4.7. The keypoint is to prove that we have some good gap
properties. To do this, we consider the sequence (Λp,q)(p,q)∈Z∗×Z∗ defined below.

Notation 4.8. For p ∈ Z∗ and q ∈ Z∗ let Λp,q denote

Λp,q =


√
λ+
p,q if p ≥ 1 and q ≥ 1

−
√
λ+
p,−q if p ≥ 1 and q ≤ −1

−
√
λ+
−p,q if p ≤ −1 and q ≥ 1.

With Notation 4.6 we deduce from (4.10) that

2
∫ T

0

∫
Γ

(
∂ϕ

∂ν
+ αψν1

)2

dσdt =
∑
q≥1

∫ T

0

∣∣∣∣∣∣
∑
p∈Z∗

pxp,qe
iΛp,qt

∣∣∣∣∣∣
2

dt+
∑
p≥1

∫ T

0

∣∣∣∣∣∣
∑
q∈Z∗

qyp,qe
iΛp,qt

∣∣∣∣∣∣
2

dt.

Thus the observability inequality (4.8) that we have to prove is the following inequality

C(T )
∑
p,q≥1

λ+
p,q|ap,q|

2 ≤
∑
q≥1

∫ T

0

∣∣∣∣∣∣
∑
p∈Z∗

pxp,qe
iΛp,qt

∣∣∣∣∣∣
2

dt+
∑
p≥1

∫ T

0

∣∣∣∣∣∣
∑
q∈Z∗

qyp,qe
iΛp,qt

∣∣∣∣∣∣
2

dt (4.14)

where C(T ) is a positive constant which does not depend on the sequence (ap,q)(p,q).

4.2.2. Some gap properties. To adapt the proof of Mehrenberger (see [17])
we prove the following gap properties for the sequence (Λp,q)(p,q)∈N∗×N∗ .

Proposition 4.9. Let γ be as in Theorem 4.5.
1. For all p ∈ N∗ and all (q, q′) ∈ Z∗ × Z∗ such that p ≤ max (q, q′),

|Λp,q − Λp,q′ | ≥ γ |q − q′| .

2. For all q ∈ N∗ and all (p, p′) ∈ Z∗ × Z∗ such that q ≤ max (p, p′),

|Λp,q − Λp′,q| ≥ γ |p− p′| .

Proof. 1. According to the definition of Λp,q, it is sufficient to show that
• for all p ∈ N∗ and all (q, q′) ∈ N∗ × N∗ such that p ≤ max (q, q′), we have∣∣∣∣√λ+

p,q −
√
λ+
p,q′

∣∣∣∣ ≥ γ |q − q′|.
• for all p, q and q′ in N∗, we have

√
λ+
p,q +

√
λ+
p,q′ ≥ γ (q + q′).

Let us first consider p ∈ N∗ and (q, q′) ∈ N∗ × N∗ such that p ≤ max (q, q′). We
can easily check that

∣∣∣λ+
p,q − λ+

p,q′

∣∣∣ =
1
2

∣∣q2 − q′2
∣∣π2

(
1 +

(
p2 + q2

)
π2 − a+

(
p2 + q′2

)
π2 − a√

δp,q +
√
δp,q′

)

with

δp,q =
((
p2 + q2

)
π2 − a

)2
+ 4α2p2π2. (4.15)
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From a ≤ 2π2, we have
(
p2 + q2

)
π2 − a ≥ 2π2 − a ≥ 0. Therefore,∣∣∣λ+

p,q − λ+
p,q′

∣∣∣ ≥ 1
2

∣∣q2 − q′2
∣∣π2.

Writing
∣∣∣∣√λ+

p,q −
√
λ+
p,q′

∣∣∣∣ =

˛̨̨
λ+
p,q−λ+

p,q′
˛̨̨

√
λ+
p,q+

q
λ+
p,q′

, we obtain

∣∣∣∣√λ+
p,q −

√
λ+
p,q′

∣∣∣∣ ≥ π2

2
q + q′√

λ+
p,q +

√
λ+
p,q′

|q − q′| . (4.16)

Consequently, we are reduced to bound from below the quantity q+q′√
λ+
p,q+

q
λ+
p,q′

. We

can remark that√
λ+
p,q =

1√
2

√
(p2 + q2)π2 + a+

√
((p2 + q2)π2 − a)2 + 4α2p2π2

≤ 1√
2

√
(p2 + q2)π2 + a+ (p2 + q2)π2 − a+ 2 |α| pπ

=
√
π
√

(p2 + q2)π + |α| p.

Thus

q + q′√
λ+
p,q +

√
λ+
p,q′

≥ 1√
π

q + q′√
(p2 + q2)π + |α| p+

√
(p2 + q′2)π + |α| p

. (4.17)

By assumption, p ≤ max(q, q′). Without loss of generality we can assume that q ≤ q′.
From (4.17) it follows that

q + q′√
λ+
p,q+

√
λ+
p,q′

≥ 1√
π

1 + q
q′√(

p2

q′2 + q2

q′2

)
π+|α| pq′2 +

√(
p2

q′2 +1
)
π+|α| pq′2

≥ 1√
π

1
2
√

2π+|α|
.

Combining this inequality with (4.16) we conclude that∣∣∣∣√λ+
p,q −

√
λ+
p,q′

∣∣∣∣ ≥ π
√
π

4
√

2π + |α|
|q − q′| = γ |q − q′| .

Now, consider any p, q and q′ in N∗. Writing√
λ+
p,q =

1√
2

√
(p2 + q2)π2 + a+

√
δp,q ≥

π√
2
q

with δp,q defined by (4.15), we obviously obtain√
λ+
p,q +

√
λ+
p,q′ ≥

π√
2

(q + q′) ≥ γ (q + q′) .

This completes the proof of item 1.
2. The second assertion of Proposition 4.9 can be proved in the same way by

interchanging (p, p′) and (q, q′).
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4.2.3. Proof of the observability inequality.

Notation 4.10. Given T > T0, we denote by k the function

k(t) :=

{
sin
(
πt
T

)
if 0 ≤ t ≤ T

0 else

and we define the following quantities:

I1 :=
∑
p≥1

∫ T

0

k(t)

∣∣∣∣∣∑
q≥p

qyp,qe
iΛp,qt

∣∣∣∣∣
2

dt, I2 :=
∑
q≥1

∫ T

0

k(t)

∣∣∣∣∣∑
p≥q

pxp,qe
iΛp,qt

∣∣∣∣∣
2

dt

I3 :=

∣∣∣∣∣∣∣
∑
p≥1

∫ T

0

k(t)

∑
q∈Z?
q<p

qyp,qe
iΛp,qt


∑
q∈Z?
q≥p

qyp,qe
−iΛp,qt

 dt

∣∣∣∣∣∣∣
I4 :=

∣∣∣∣∣∣∣
∑
q≥1

∫ T

0

k(t)

∑
p∈Z?
p<q

pxp,qe
iΛp,qt


∑
p∈Z?
p≥q

pxp,qe
−iΛp,qt

 dt

∣∣∣∣∣∣∣ .

It is easily seen that the Fourier transform of k is given by

k̂(ξ) = e−i
ξT
2 T
√

2π
cos
(
ξT
2

)
π2 − T 2ξ2

, ∀ξ ∈ R. (4.18)

In particular,
∣∣k̂∣∣ is an even function and k̂(0) = T

π

√
2
π is real. In the following lemma

we bound from below the right-hand side of the observability inequality (4.14), using
the quantities Ij for j = 1, . . . , 4.

Lemma 4.11.

∑
q≥1

∫ T

0

∣∣∣∣∣∣
∑
p∈Z∗

pxp,qe
iΛp,qt

∣∣∣∣∣∣
2

dt+
∑
p≥1

∫ T

0

∣∣∣∣∣∣
∑
q∈Z∗

qyp,qe
iΛp,qt

∣∣∣∣∣∣
2

dt ≥ I1 + I2 − 2 (I3 + I4) .

Proof. If we prove that
∑
p≥1

∫ T

0

∣∣∣∣∣∑
q∈Z?

qyp,qe
iΛp,qt

∣∣∣∣∣
2

dt ≥ I1 − 2I3, then, replacing p

by q and yp,q by xp,q, we deduce that
∑
q≥1

∫ T

0

∣∣∣∣∣∑
p∈Z?

pxp,qe
iΛp,qt

∣∣∣∣∣
2

dt ≥ I2 − 2I4.
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Since 0 ≤ k(t) ≤ 1 for all t ∈ [0, T ], it follows that

∑
p≥1

∫ T

0

∣∣∣∣∣∑
q∈Z?

qyp,qe
iΛp,qt

∣∣∣∣∣
2

dt ≥
∑
p≥1

∫ T

0

k(t)

∣∣∣∣∣∑
q∈Z?

qyp,qe
iΛp,qt

∣∣∣∣∣
2

dt

=
∑
p≥1

∫ T

0

k(t)

∣∣∣∣∣∣∣
∑
q∈Z?
q≥p

qyp,qe
iΛp,qt +

∑
q∈Z?
q<p

qyp,qe
iΛp,qt

∣∣∣∣∣∣∣
2

dt

≥
∑
p≥1

∫ T

0

k(t)

∣∣∣∣∣∣∣
∑
q∈Z?
q≥p

qyp,qe
iΛp,qt

∣∣∣∣∣∣∣
2

dt+
∑
p≥1

∫ T

0

k(t)

∣∣∣∣∣∣∣
∑
q∈Z?
q<p

qyp,qe
iΛp,qt

∣∣∣∣∣∣∣
2

dt

−2

∣∣∣∣∣∣∣
∑
p≥1

∫ T

0

k(t)

∑
q∈Z?
q≥p

qyp,qe
−iΛp,qt


∑
q∈Z?
q<p

qyp,qe
iΛp,qt

dt
∣∣∣∣∣∣∣

=I1 +
∑
p≥1

∫ T

0

k(t)

∣∣∣∣∣∣∣
∑
q∈Z?
q<p

qyp,qe
iΛp,qt

∣∣∣∣∣∣∣
2

dt− 2I3 ≥ I1 − 2I3.

As a consequence of Lemma 4.11, the observability inequality will be established
if we bound from below I1 and I2 and bound from above I3 and I4.

Lemma 4.12. [Lower bound of I1]

I1 ≥
2T
π

(
1−

(
2π
γT

)2
)∑

p≥1

∑
q≥p

q2 |yp,q|2 .

Proof. First, we remark that:

I1=
∑
p≥1

∫ T

0

k(t)

∣∣∣∣∣∑
q≥p

qyp,qe
iΛp,qt

∣∣∣∣∣
2

dt

=
∑
p≥1

∫ T

0

k(t)

(∑
q≥p

qyp,qe
iΛp,qt

)(∑
q′≥p

q′yp,q′e−iΛp,q′ t
)
dt

=
√

2π
∑
p≥1

∑
q≥p

∑
q′≥p

qyp,qq
′yp,q′ k̂ (Λp,q′ − Λp,q)

≥
√

2π
∑
p≥1

̂k(0)
∑
q≥p

q2|yp,q|2−
∑
q≥p

∑
q′≥p
q′ 6=q

q |yp,q| q′ |yp,q′ |
∣∣∣k̂ (Λp,q′−Λp,q)

∣∣∣


≥
√

2π
∑
p≥1

̂k(0)
∑
q≥p

q2|yp,q|2−
∑
q≥p

∑
q′≥p
q′ 6=q

q2|yp,q|2+q′2|yp,q′ |2

2

∣∣∣k̂ (Λp,q′−Λp,q)
∣∣∣
.(4.19)



EXACT BOUNDARY OBSERVABILITY 21

Fix p ∈ N∗. From parity of
∣∣k̂∣∣ it follows

∑
q≥p

∑
q′≥p
q′ 6=q

q2|yp,q|2+q′2|yp,q′ |2

2

∣∣∣k̂ (Λp,q′−Λp,q)
∣∣∣=∑

q≥p

q2|yp,q|2

∑
q′≥p
q′ 6=q

∣∣∣k̂ (Λp,q′−Λp,q)
∣∣∣
. (4.20)

Now, consider q ∈ Z∗ and q′ ∈ Z∗ such that q ≥ p, q′ ≥ p and q 6= q′. Proposition 4.9
yields

|Λp,q′ − Λp,q| ≥ γ |q − q′| > γ. (4.21)

Since T > T0 = 2π
γ

√
1 + 2(λ+

1,1−a+α2)2

(λ+
1,1−a)

2 ≥ 2π
γ , we obtain

|Λp,q′ − Λp,q| > γ >
2π
T
. (4.22)

Using (4.18), (4.22) and then (4.21), we get∣∣∣k̂ (Λp,q′ − Λp,q)
∣∣∣ ≤ T

√
2π

T 2 (Λp,q′ − Λp,q)
2 − π2

= k̂(0)
(

2π
γT

)2 1

4
(

Λp,q′−Λp,q
γ

)2

−
(

2π
γT

)2

≤ k̂(0)
(

2π
γT

)2 1
4 (q − q′)2 − 1

.

Suming over q′ ≥ p, we obtain

∑
q′≥p
q′ 6=q

∣∣∣k̂ (Λp,q′ − Λp,q)
∣∣∣ ≤ k̂(0)

(
2π
γT

)2 ∑
q′≥p
q′ 6=q

1
4 (q − q′)2 − 1

≤ k̂(0)
(

2π
γT

)2 ∑
r∈Z∗

1
4r2 − 1

= k̂(0)
(

2π
γT

)2

.

By (4.20), we can assert that

∑
q≥p

∑
q′≥p
q′ 6=q

q |yp,q| q′ |yp,q′ |
∣∣∣k̂ (Λp,q′ − Λp,q)

∣∣∣ ≤ k̂(0)
(

2π
γT

)2∑
q≥p

q2 |yp,q|2 . (4.23)

Combining this inequality with (4.19), we conclude that

I1 ≥
√

2πk̂(0)

(
1−

(
2π
γT

)2
)∑

q≥p
p≥1

q2 |yp,q|2 =
2T
π

(
1−

(
2π
γT

)2
)∑

q≥p
p≥1

q2 |yp,q|2 ,

which proves the lemma.
Interchanging p and q and replacing yp,q by xp,q, we also get

I2 ≥
2T
π

(
1−

(
2π
γT

)2
)∑

q≥1

∑
p≥q

p2 |xp,q|2 .
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Since λ+
p,q > a, it is easily seen that |xp,q| ≥ |yp,q| (see Notation 4.6). It follows that

I2 ≥
2T
π

(
1−

(
2π
γT

)2
)∑

q≥1

∑
p≥q

p2 |yp,q|2 . (4.24)

Combining Lemma 4.12 with (4.24), we obtain

I1 + I2 ≥
2T
π

(
1−

(
2π
γT

)2
)(∑

p≥1

∑
q≥p

q2 |yp,q|2 +
∑
q≥1

∑
p≥q

p2 |yp,q|2
)
.

Remarking that∑
p≥1

∑
q≥1

(
p2 + q2

)
|yp,q|2 ≤ 2

(∑
p≥1

∑
q≥p

q2 |yp,q|2 +
∑
q≥1

∑
p≥q

p2 |yp,q|2
)

we get

I1 + I2 ≥
T

π

(
1−

(
2π
γT

)2
) ∑

p,q≥1

(
p2 + q2

)
|yp,q|2 .

Replacing yp,q by its definition gives

I1 + I2 ≥ πT

(
1−

(
2π
γ1T

)2
) ∑

p,q≥1

(
p2 + q2

)
|ap,q|2

(
λ+
p,q − a

)2(
λ+
p,q−a

)2
+α2p2π2

. (4.25)

Now, let us bound from above I3.
Lemma 4.13. [Upper bound of I3]

I3 ≤ πT
(

2π
γT

)2∑
p≥1

∑
q≥1

q2 |ap,q|2
(
λ+
p,q − a

)2(
λ+
p,q − a

)2
+ α2p2π2

. (4.26)

Proof. By definition of I3 (see Notation 4.10), we have

I3 =

∣∣∣∣∣∣∣∣
∑
p≥1

∫ T

0

k(t)

∑
q∈Z?
q<p

qyp,qe
iΛp,qt


∑
q′∈Z?

q′≥p

q′yp,q′e−iΛp,q′ t

 dt

∣∣∣∣∣∣∣∣
=
√

2π

∣∣∣∣∣∣∣
∑
p≥1

∑
q∈Z?
q<p

∑
q′≥p

qyp,qq
′yp,q′ k̂ (Λp,q′ − Λp,q)

∣∣∣∣∣∣∣
≤
√

2π
2

∑
p≥1

∑
q∈Z?
q<p

∑
q′≥p

(
q2 |yp,q|2 + q′2 |yp,q′ |2

) ∣∣∣k̂ (Λp,q′ − Λp,q)
∣∣∣ .

Analysis similar to that in the proof of Lemma 4.12 shows that for all p ∈ N∗ and all
q ∈ Z∗ such that q < p we have∑

q′≥p

∣∣∣k̂ (Λp,q′ − Λp,q)
∣∣∣ ≤ k̂(0)

(
2π
γT

)2 ∑
q′≥p

1
4 (q − q′)2 − 1

≤ k̂(0)
(

2π
γT

)2∑
r≥1

1
4r2 − 1

=
k̂(0)

2

(
2π
γT

)2

.
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Therefore ∑
q∈Z?
q<p

∑
q′≥p

q2 |yp,q|2
∣∣∣k̂ (Λp,q′ − Λp,q)

∣∣∣ ≤ k̂(0)
2

(
2π
γT

)2 ∑
q∈Z?
q<p

q2 |yp,q|2 .

Similarly we can prove that∑
q′≥p

∑
q∈Z?
q<p

q′2 |yp,q′ |2
∣∣∣k̂ (Λp,q′ − Λp,q)

∣∣∣ ≤ k̂(0)
2

(
2π
γT

)2 ∑
q′≥p

q′2 |yp,q′ |2 .

Adding these last two inequalities we obtain: I3 ≤
√

2π
4 k̂(0)

(
2π
γT

)2 ∑
p≥1

∑
q∈Z?

q2 |yp,q|2 .

Replacing yp,q by its definition gives the desired inequality.
Similarly,

I4 ≤ πT
(

2π
γT

)2 ∑
p,q≥1

p2 |ap,q|2
(
λ+
p,q − a+ α2

)2(
λ+
p,q − a

)2
+ α2p2π2

. (4.27)

Adding (4.26) and (4.27) gives

I3 + I4 ≤ πT
(

2π
γT

)2 ∑
p,q≥1

(
p2 + q2

)
|ap,q|2

(
λ+
p,q − a+ α2

)2(
λ+
p,q − a

)2
+ α2p2π2

. (4.28)

From (4.25) and (4.28) it follows that

I1 + I2 − 2 (I3 + I4) ≥ πT
∑
p,q≥1

(
p2 + q2

)
|ap,q|2 bp,q, (4.29)

where (bp,q)(p,q)∈N∗×N∗ is defined by

bp,q =

(
1−

(
2π
γT

)2
) (

λ+
p,q − a

)2(
λ+
p,q − a

)2
+ α2p2π2

− 2
(

2π
γT

)2
(
λ+
p,q − a+ α2

)2(
λ+
p,q − a

)2
+ α2p2π2

.

To bound from below I1 + I2 − 2 (I3 + I4) by
∑
p,q≥1

λ+
p,q |ap,q|

2, it suffices to prove that

the sequence
(

(p2+q2)bp,q
λ+
p,q

)
(p,q)∈N∗×N∗

is bounded from below. Actually

bp,q =
1
T 2

(
λ+
p,q − a

)2(
λ+
p,q − a

)2
+ α2p2π2

(
T 2 −

(
2π
γ

)2
(

1 + 2

(
λ+
p,q − a+ α2

)2(
λ+
p,q − a

)2
))

and it is easy to check that

sup
(p,q)∈N∗×N∗

(
λ+
p,q − a+ α2

)2(
λ+
p,q − a

)2 =

(
λ+

1,1 − a+ α2
)2(

λ+
1,1 − a

)2 .

Since T > T0 = 2π
γ

√
1 + 2(λ+

1,1−a+α2)2

(λ+
1,1−a)

2 , this implies that bp,q > 0 for any (p, q) in

N∗ × N∗. Besides, from the asymptotic property λ+
p,q ∼
‖(p,q)‖→+∞

µpq =
(
p2 + q2

)
π2
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we deduce that (
p2 + q2

)
bp,q

λ+
p,q

∼
‖(p,q)‖→+∞

1
π2
bp,q.

It is easily seen that lim
‖(p,q)‖→+∞

bp,q = 1 − 3
(

2π
γT

)2

. Since T > T0 >
√

3 2π
γ , it

follows that lim
‖(p,q)‖→+∞

bp,q > 0. Consequently, the sequence
(

(p2+q2)bp,q
λ+
p,q

)
(p,q)∈N∗×N∗

which is positive with a positive limit is uniformly bounded from below by a positive
constant, denoted by c. It follows from (4.29) that

I1 + I2 − 2 (I3 + I4) ≥ πcT
∑
p,q≥1

λ+
p,q |ap,q|

2
,

which gives inequality (4.14) (according to Lemma 4.11) and then the observability
inequality (4.8).

4.2.4. Uniform controllability in H+×H+
−1/2. Theorem 4.5 implies, by usual

duality arguments (see [14, 20] and the references therein) the following controllability
result.

Theorem 4.14. Let γ = π
√
π

4
√

2π+|α| and T0 = 2π
γ

√
1 + 2(λ+

1,1−a+α2)2

(λ+
1,1−a)

2 . Assume

that a ≤ 2π2. For any T > T0, any initial data
(
u0, u1

)
∈ H+×H+

−1/2 and any target(
u0
T , u

1
T

)
∈ H+×H+

−1/2, there exist control functions v ∈ D (LT ) such that the unique
solution u of system (1.1) satisfies u(·, T ) = u0

T and u′(·, T ) = u1
T in Ω.

5. Lack of controllability and dependance with respect to α.

5.1. Controllability in Ha × Ha
−1/2. We also obtain the observability of the

adjoint system in D (L∗TL)∩(Ha
1/2×H

a), the eigenspace associated with the eigenvalue
a of infinite multiplicity. In that case, the observability inequality is simply∥∥((0, ψ0), (0, ψ1)

)∥∥2

X1
≤ C(T )

∫ T

0

∫ 1

0

α2ψ2(y, t)dydt (5.1)

with ψ(y, t) =
∑
q≥1

(
Φ0
q cos(

√
at) + Φ1

q
sin(
√
at)√
a

)
eq(y). Simple computations permit

to show that (5.1) is true for any T > π
2
√
a
. Remark that, in that specific case, the

observation is simply from Γ2 = {0} × [0, 1]. The corresponding controllability result
is the following:

Proposition 5.1. If T > π
2
√
a

, then for every
(
u0, u1

)
∈ Ha × Ha

−1/2 and any(
u0
T , u

1
T

)
∈ Ha × Ha

−1/2, there exists v ∈ D (LT ) such that the solution u of (1.1)
satisfies u(·, T ) = u0

T , u
′(·, T ) = u1

T in Ω.

Proof. Let
(
Φ0,Φ1

)T ∈ D (L∗TL) ∩
(
Ha

1/2 ×H
a
)

. We write Φ0 =
(
0, ψ0

)
and

Φ1 =
(
0, ψ1

)
in the form Φ0 =

∑
q≥1

Φ0
qeq and Φ1 =

∑
q≥1

Φ1
qeq, with

∥∥(Φ0,Φ1
)∥∥2

X1
=∑

q≥1

(
a
(
Φ0
q

)2 +
(
Φ1
q

)2). The solution Φ = (ϕ,ψ)T of system (1.3) with initial data(
Φ0,Φ1

)
is clearly given by

Φ(t) =
1
2

∑
q≥1

((
Φ0
q − i

Φ1
q√
a

)
ei
√
at +

(
Φ0
q + i

Φ1
q√
a

)
e−i
√
at

)
eq.
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Set cq = Φ0
q − i

Φ1
q√
a
. This gives for every ((x, y), t) ∈ Ω × [0, T ], ϕ ((x, y), t) = 0 and

ψ ((x, y), t) = 1
2

∑
q≥1

(
cqe

i
√
at + cqe

−i√at
)√

2 sin (qπy). Consequently,

∫ T

0

∫
Γ

(
∂ϕ

∂ν
+ αψν1

)2

dσdt =
α2

4

∫ T

0

∑
q≥1

(
cqe

i
√
at + cqe

−i√at
)2
dt.

Since 0 ≤ k(t) ≤ 1 for all t ∈ [0, T ], we obtain∫ T

0

∫
Γ

(
∂ϕ

∂ν
+ αψν1

)2

dσdt ≥ α2

4

∫ T

0

k(t)
∑
q≥1

(
cqe

i
√
at + cqe

−i√at
)2

dt

=
α2

4

∑
q≥1

∫ T

0

k(t)
(
cqe

i
√
at + cqe

−i√at
)2

dt. (5.2)

Let us study the integral
∫ T

0
k(t)

(
cqe

i
√
at+cqe−i

√
at
)2

dt. Using the parity of
∣∣k̂∣∣ we can

easily prove that
∫ T

0
k(t)

(
cqe

i
√
at+cqe−i

√
at
)2

dt = 2 |cq|2 k̂(0)+
(

(cq)
2+(cq)

2
)
k̂ (2
√
a).

Thus ∫ T

0

k(t)
(
cqe

i
√
at + cqe

−i√at
)2

dt = 2 |cq|2 k̂(0) + 2<
(
(cq)2

)
k̂
(
2
√
a
)

≥ 2 |cq|2
(
k̂(0)−

∣∣∣k̂ (2√a)∣∣∣) . (5.3)

If T > π
2
√
a
, then, using (4.18), we obtain

∣∣∣k̂ (2
√
a)
∣∣∣ ≤ √

2πT
|π2−4aT 2| <

√
2πT
π2 = k̂(0).

From (5.2), (5.3) and
∑
q≥1

|cq|2 =
∥∥(Φ0,Φ1

)∥∥2

X1
, we finally obtain

∫ T

0

∫
Γ

(
∂ϕ

∂ν
+αψν1

)2

dσdt ≥ α2

2

(
k̂(0)−

∣∣∣k̂ (2√a)∣∣∣) ∥∥(Φ0,Φ1
)∥∥2

X1

with k̂(0)−
∣∣∣k̂ (2
√
a)
∣∣∣ > 0. This gives (5.1).

5.2. Lack of controllability in H− × H−−1/2. In agreement with the general
result [10] we pointed out in the introduction, the lack of observability is related to
essential spectrum.

Proposition 5.2. For any T > 0 and any ε > 0, there exist initial data(
Φ0,Φ1

)
∈ H−1/2 ×H

− for which the solution Φ = (ϕ,ψ)T of (1.3) satisfies

∥∥(Φ0,Φ1)
∥∥−2

X1

∫ T

0

∫
Γ

(
∂ϕ

∂ν
+ αψν1

)2

dσdt < ε. (5.4)

Proof. We consider the two sequences (pn)n∈N and (qn)n∈N of positive integers
given by pn = n(n + 1)/2 and qn = n. Let Φn = (ϕn, ψn)T be the solution of the
adjoint system (1.3) with initial data

(
Φ0
n,Φ

1
n

)
=
(
e−pn,qn , 0

)
∈ H−1/2 × H−. The

norm of the initial data is given by
∥∥(Φ0

n,Φ
1
n

)∥∥2

X1
=
∥∥e−pn,qn∥∥2

H1/2
= λ−pn,qn . We can



26 F. AMMAR KHODJA, K. MAUFFREY AND A. MÜNCH

write (pn, qn) in the polar coordinates (pn, qn) = rn(cos(θn), sin(θn)). It is easily seen
that lim

n→+∞rn = +∞ and lim
n→+∞θn = 0. This readily implies lim

n→+∞λ
−
pn,qn = a − α2.

Since a > α2, we obtain lim
n→+∞

∥∥(Φ0
n,Φ

1
n

)∥∥2

X1
> 0. On the other hand, Φn(t) =

cos
(√

λ−pn,qnt
)
e−pn,qn implies that

∫ T

0

∫
Γ

(
∂ϕn
∂ν

+ αψnν1

)2

dσdt

= π2

T +
sin
(

2
√
λ−pn,qnT

)
2
√
λ−pn,qn

 cos2 θn
(
λ−pn,qn − a+ α2

)2 + sin2 θn
(
λ−pn,qn − a

)2
(λ−pn,qn−a)

2

r2n
+ α2 cos2 θnπ2

.

Letting n → +∞, we obtain lim
n→+∞

∫ T
0

∫
Γ

(
∂ϕn
∂ν + αψnν1

)2

dσdt = 0. This contradicts

the uniform observability since lim
n→+∞

∥∥(Φ0
n,Φ

1
n

)∥∥2

X1
> 0.

Remark that the counterexample is obtained for (Φ0,Φ1) composed of only one
eigenfunction for which the limit of the associated eigenvalue is λ = a−α2. This value
is very particular because any other datum (Φ0,Φ1) composed of one eigenfunction
associated with λ ∈ (a − α2, a] does not contradict the uniform observability (for
instance, we refer to previous section for λ = a). The loss of observability may be
exhibited by considering a (non trivial) combination of such modes (as done in [10]
using Weil sequence), in order to enhance the lack of spectral gap.

Simpler, this phenomenon may be observed numerically as follows. Let H±N be
the space of the initial data

(
Φ0,Φ1

)
in H±1/2 ×H

± spanned by {e±p,q}1≤p,q≤N . If we

denote by Φ± ∈ R2N2
the components of

(
Φ0,Φ1

)T in the basis {e±p,q}1≤p,q≤N , then
we can write

∥∥(Φ0,Φ1
)∥∥2

X1
= (A±Φ±,Φ±)R2N2 ,

∫ T

0

∫
Γ

(
∂ϕ

∂ν
+ αψν1

)2

dσdt = (B±Φ±,Φ±)R2N2

for all
(
Φ0,Φ1

)
in H±N , where A±,B± ∈ R2N2×2N2

denote real symmetric matrices
and (·, ·)R2N2 denotes the scalar product in R2N2

. A± is diagonal. On H±N , the
observability inequality formally writes

(A±Φ±,Φ±)R2N2 ≤ C±N (T )(B±Φ±,Φ±)R2N2 .

The observability constant C±N (T ) whose behavior allows to detect the lack of observ-
ability, is then solution of the generalized eigenvalue problem

C±N (T ) = max{λ > 0, A±Φ = λB±Φ, Φ ∈ R2N2
\ {0}}. (5.5)

In practice, since A± is diagonal, it is easier to evaluate (C±N )−1 equal to the lowest
eigenvalue of B±(A±)−1. Table 5.1 gives the value of C−N (T ) for various values of N
and clearly exhibits the non-uniform boundedness with respect to N , in constrast to
C+
N (T ). This is in agreement with Theorem 4.14.
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N = 5 N = 10 N = 20 N = 40 N = 80
C+
N (T ) 5.01× 10−1 5.43× 10−1 5.71× 10−1 5.95× 10−1 6.02× 10−1

C−N (T ) 2.42× 101 4.41× 102 3.24× 103 8.6× 104 1.01× 106

Table 5.1
Evolution of the observability constant C±N (T ) vs. N for (a, α, T ) = (4, 1, 3).

5.3. Controllability with respect to α and T . If α = 0, then system (1.1)
degenerates into an uncoupled system and the control only acts on the variable u1.
However, we observe from the proof of Theorem 4.5, that the minimal time T0 as
well as the observability constant C+(T ) are uniformly bounded with respect to α.
Therefore, the controllability holds uniformly w.r.t. α in H+×H+

−1/2 and by classical
arguments, the corresponding controls converge toward controls for u1, the solution of
the wave equation with initial condition

(
u0

1, u
1
1

)
. This property is related to the fact

that the second component of {e+
p,q}p,q≥1 degenerates as α goes to zero. Numerically,

we observe that the variation of C+
N (T ) with respect to α is very low. For T = 3,

N = 50 and a = 4, we obtain C+
N (T ) = 6.02217 × 10−1 for α = 2 and C+

N (T ) =
6.02224× 10−1 for α = 2/100. Remark that the uniform controllability with respect
to α does not hold in H− ×H−−1/2, nor in Ha ×Ha

−1/2 (the right term of (5.1) going
to zero with α). The eigenvalue problem (5.5) allows also to estimate numerically
the minimal controllability time for a, α,N fixed. Figure 5.1 depicts the evolution
of C+

N (T ) with respect to T for (a, α,N) = (4, 1, 50) and suggests that the minimal
controllability time is about 2.5. The lower bound time T0 in Theorem 4.14 leading
for (a, α,N) = (4, 1, 50) to T0 ≈ 21.96 is thus not sharp.

2.5 3 3.5 4
0

1

2

3

4

5

6

7

8

9

10

T

Fig. 5.1. Evolution of C+
N (T ) with respect to T for (a, α,N) = (4, 1, 50).

6. Concluding remarks and comments.
1) Characterization of the controllable data - We can sum up the different
controllability results we have obtained in the following theorem:

Theorem 6.1. For every N ∈ N∗, let us denote by HN− (resp. HN−
−1/2) the

Hilbert subspace of H (resp. H−1/2) spanned by the e−p,q for 1 ≤ p, q ≤ N . If a ≤ 2π2,

then for any T > max
(
T0,

π
2
√
a

)
, any N ∈ N∗, any initial data

(
u0, u1

)
and final

data
(
u0
T , u

1
T

)
in
(
Ha ⊕H+ ⊕HN−

)
×
(
Ha
− 1

2
⊕H+

− 1
2
⊕HN−

−1/2

)
there exists a control
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function v in D (LT ) such that the solution u of (1.1) satisfies

u(·, T ) = u0
T , u

′(·, T ) = u1
T in Ω.

2) Partial controllability - Following [13], one may analyze the uniform partial
controllability which consists in controlling to rest only the first component u1. In
that weaker situation, the controllability is uniform with respect to the data

(
u0, u1

)
.

From the second equation of (1.1), we express the component u2 in terms of u1 as
follows u2(·, t) = −α

∫ t
0
∂xu1(·, s) sin(

√
a(t− s))ds in QT , assuming for simplicity that(

u0
2, u

1
2

)
= (0, 0). The variable u1 to be controlled is then solution of

u′′1 = ∆u1 − α2
∫ t

0
∂xxu1(·, s) sin(

√
a(t− s))ds in QT ,

u1 = v 1Γ on ΣT ,
(u1(·, 0), u′1(·, 0)) =

(
u0

1, u
1
1

)
in Ω.

The corresponding spectrum is {λ−p,q}p,q≥1∪{λ+
p,q}p,q≥1 with corresponding eigenfunc-

tions {e+
p,q}p,q≥1 and {e−p,q}p,q≥1. The difference with respect to the full controllability

problem, is that the Fourier coefficients in ϕ1, the adjoint solution of u1, are all con-
nected to each other. This allows a compensation of the modes {e−p,q}p,q by the modes
{e+
p,q}p,q (we refer to [13] for the analysis on a similar system). The analysis remains

to be fully written.
3) Null boundary controllability of a cylindrical membrane shell - The
operator which describes a membrane cylindrical elastic shell is as follows (see [19])

A =

 −a∂2
xx − c∂2

yy −(b+ c)∂2
xy −ar−1∂x

−(b+ c)∂2
xy −c∂2

xx − a∂2
yy −br−1∂y

r−1a∂x r−1b∂y r−2a


with a = 8µ(λ + µ)/(λ + 2µ), b = 4λµ/(λ + 2µ) and c = 2µ. λ, µ > 0 denote the
Lamé coefficients. r−1 > 0 denotes the curvature of the cylinder and is the coupling
parameter between the tangential displacement (u1, u2) and the normal displacement
u3 of the shell. Ω is still equal to (0, 1)2. This mixed order and self-adjoint operator
enters in the framework of [6] so that we can compute σess(A) using [7]. We obtain
σess(A) =

[
0, 2r−2(3λ+ 2µ)/ (λ+ µ)

]
.The spectrum of A is therefore composed of

two distinct parts, the essential spectrum plus a discrete spectrum with asymptotic
behavior equal, up to some constant, to σ(−∆). The difficulty here is that the discrete
spectrum is not known explicitly.
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pliquées pour la Mâıtrise. Masson, Paris (1983).

[5] E. B. Davies, Spectral theory and differential operators, Cambridge Studies in Advanced Math-
ematics, vol. 42, Cambridge University Press, Cambridge (1995).



EXACT BOUNDARY OBSERVABILITY 29

[6] G. Geymonat and G. Grubb, The essential spectrum of elliptic systems of mixed order, Math.
Ann., 227 (1977), pp. 247–276.

[7] G. Geymonat and G. Grubb, Eigenvalue asymptotics for selfadjoint elliptic mixed order
systems with nonempty essential spectrum, Bolletino U.M.I, 5 (1979), pp. 1032–1048.

[8] G. Geymonat, P. Loreti and V. Valente, Contrôlabilité exacte d’un modèle de coque mince,
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