
Exact controllability of a piezoelectric body.

Theory and numerical simulation

Bernadette Miara∗ and Arnaud Münch†

August 28, 2008

Abstract

We study the exact controllability of a three-dimensional body made of a material

whose constitutive law introduces an elasticity-electricity coupling. We show that a

coupled elastic–electric control acting on the whole boundary of the body drives the

system to rest after time large enough. Two-dimensional numerical experiments suggest

that controllability can still be achieved by relaxing this restrictive condition using

either both controls on a reduced support or elastic control alone.
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1 Introduction

Piezoelectric materials are part of the family of “smart materials” (such as magnetostrictive
materials, electro-rheological fluids, shape memory alloys). The electromechanical coupling
they present (mechanical deformations in response to applied electric field and conversely
dielectric polarization in response to strain) is used in the design of adaptive structures
that can be monitored with large accuracy. For example their use as control elements is
widespread: piezoelectric sensors or actuators patches are bonded to a surface, fibers are
embedded within the structure to be controlled or stabilized (we refer to [22] for some
applications of piezoelectric devices used in control). The problem under study here is the
control of a body made of such a material, let us state it now.

Let Ω be a domain (connected, bounded subset) of R3 with regular boundary Γ (this
assumption will be made more precise later). Let T > 0, we denote by Q the domain
Ω× (0, T ) and by Σ its boundary, Σ = Γ× (0, T ). The evolution equations satisfied by the
elastic displacement field1 y = (yi) : Q → R3, and the scalar electric potential θ : Q → R
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de Gray 25030 Besançon, France; e-mail : arnaud.munch@univ-fcomte.fr, Phone: +33-381 666 489, Fax:

+33-381 666 623. Partially supported by grants ANR-05-JC-0182-01 and ANR-07-JC-1832-84.
1Latin exponents and indices take their values in the set {1, 2, 3}, Einstein convention for repeated

exponents and indices is used and bold face letters represent vectors or vector spaces.

1



1 INTRODUCTION 2

of a piezoelectric body (without any volume electric charges or mechanical forces) under
Cauchy initial conditions (y0,y1) and Dirichlet boundary conditions (y, θ) reads

ρy′′ − div T (y, θ) = 0 in Q,
−div D(y, θ) = 0 in Q,
y = y, θ = θ on Σ,

y(0) = y0,y′(0) = y1 in Ω,

(1)

where ρ is the mass density and where the stress tensor T = (T ij) and the electric dis-
placement D = (Di) are related to the linearized deformation tensor and to the gradient
of the electric potential through the constitutive law given in the next section, the symbol
prime ′ denotes the derivative with respect to time and div the divergence with respect
to the space variables. In this work we address the question of the exact controllability,
by a Dirichlet boundary action, of the solution of the piezoelectric problem introduced be-
fore. This controllability problem may be stated as follows: does it exists a minimal control
time T 0, some initial conditions (y0,y1) to be found in appropriate functional spaces and
a boundary control (y, θ) such that the solution y = y(t;y, θ) of problem (1) can be driven
to equilibrium at time T 0, i.e.,

y(T ;y, θ) = y′(T ;y, θ) = 0, θ(T ;y, θ) = 0 in Ω for all T ≥ T 0.

The method we use to investigate this question relies on the Hilbert Uniqueness Method [16]
whose principle we recall now. First we consider the homogeneous evolution problem in
(u, ϕ) with u0 ∈ D(Ω),u1 ∈ D(Ω)

ρu′′ − div T (u, ϕ) = 0 in Q,
−div D(u, ϕ) = 0 in Q,
u = 0, ϕ = 0 on Σ,

u(0) = u0,u′(0) = u1 in Ω,

and the adjoint (backward, nonhomogeneous) problem in (v, ψ)
ρv′′ − div T (v, ψ) = 0 in Q,

−div D(v, ψ) = 0 in Q,
v = v(u, ϕ), ψ = ψ(u, ϕ) on Σ,

v(T ) = v′(T ) = 0 in Ω.

Next we prove that, for an appropriate choice of the boundary conditions (v(u, ϕ), ψ(u, ϕ)),
there exists a functional space F and its dual space F ′ such that for T large enough, the
linear operator

Λ : (u0,u1) ∈ D(Ω)×D(Ω) → (v′(0),−v(0))

can be extended to an operator (still denoted Λ) Λ : F → F ′ continuous and coercive.
Therefore by solving the equation Λ(u0,u1) = (y1,−y0), (y1,−y0) ∈ F ′ we get first the
unique initial conditions (u0,u1) ∈ F and next the boundary control (y(u, ϕ), θ(u, ϕ)) that
drives the system to rest.

The plan of this paper is as follows: in Section 2 we recall the model of static piezoelectric
bodies, in Section 3 we give the model of the evolution problem, in Section 4 we introduce
the multipliers technique in order to get the so called “direct” and “strong ” or “indirect”
regularities of the solution of the homogeneous evolution problem, in Section 5 the conditions
for exact controllability are obtained. Finally these theoretical results are illustrated, in a two
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dimensional situation, in Section 6, by numerical experiments applied to PZT piezoelectric
material. We conclude this work with some remarks in Section 7.
The mathematical approach presented in that paper has first been exposed without details
in [17]; extensions have also been obtained for layered materials [11, 12] as well as exact
controllability for shells [18], stabilization by semi-group theory is under study [19]. We also
refer the reader to [6, 7, 23] for the controllability of so-called piezo-electric beams and to
[3] for the optimal control of a piezo-electric shells model.

2 The static problem

We consider a piezoelectric body whose reference configuration Ω is assumed to be stress-free
and we denote by x = (xi) a point in R3.

2.1 The equilibrium equations

Under the action of applied volume force f = (fi) : Ω → R3 and charges γ : Ω → R the
body undergoes an elastic displacement field u = (ui) : Ω → R3 and an electric potential
ϕ : Ω → R. The couple (u, ϕ) solves the equilibrium equations{

−div T (u, ϕ) = f in Ω,
−div D(u, ϕ) = γ in Ω,

(2)

with (div T )i = ∂kT
ki,div D = ∂kD

k. To avoid difficulties which are not relevant for this
study we only consider homogeneous Dirichlet boundary conditions

u = 0, ϕ = 0 on Γ. (3)

2.2 The constitutive law

The properties of the material are described through three tensors. The fourth order tensor
of elasticity (cijkl) is symmetric and positive definite,

cijkl = cjikl = cklij , ∃αc > 0 : cijklXijXkl ≥ αcXijXij , ∀Xij = Xji ∈ R.

The third order coupling tensor (eijk) is symmetric, eijk = eikj . Finally, the second order
dielectric tensor (dij) is symmetric and positive definite,

dij = dji, ∃αd > 0 : dijXiXj ≥ αdXiXi, ∀Xi ∈ R.

In this paper the coefficients of these tensors are assumed to be independent of x. Let
skl(u) = (∂kul + ∂luk)/2 be the components of the linearized deformation tensor with
∂kul = ∂ul/∂xk. Therefore the constitutive law that relates the stress tensor T = (T ij) and
the electric displacement D = (Di) to the linearized deformation tensor and to the gradient
of the electric potential reads{

T ij(u, ϕ) = cijklskl(u) + ekij∂kϕ in Ω,
Di(u, ϕ) = −eiklskl(u) + dij∂jϕ in Ω.
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2.3 Properties of the static solution

We introduce the three bilinear functionals c, e, d given by
c(u,v) = cijklsij(u)skl(v),
e(v, ψ) = eijksjk(v)∂iψ,

d(ϕ,ψ) = dij∂iϕ ∂jψ,

and the notation u · v = uivi, |v|2 = v · v. We are now in a position to give the main
properties of the solution to problem (2-3).

Lemma 2.1 Let the boundary Γ be Lipschitz-continuous and let u ∈ H2(Ω), ϕ ∈ H2(Ω).
(i) For all test functions v ∈ H1(Ω), ψ ∈ H1(Ω) we have 2

−
∫

Ω

div T (u, ϕ) · v =
∫

Ω

(
c(u,v) + e(v, ϕ)

)
−

∫
Γ

T ij(u, ϕ)vjni,

−
∫

Ω

div D(u, ϕ)ψ =
∫

Ω

(
− e(u, ϕ) + d(ϕ,ψ)

)
−

∫
Γ

Di(u, ϕ)ψni.

(ii) For all test functions v ∈ H1
0(Ω), ψ ∈ H1

0 (Ω) we have
−

∫
Ω

div T (u, ϕ) · v =
∫

Ω

(
c(u,v) + e(v, ϕ)

)
,

−
∫

Ω

div D(u, ϕ)ψ =
∫

Ω

(
− e(u, ϕ) + d(ϕ,ψ)

)
.

�

Proof of Lemma 2.1 - For part (i) we use Green formula and the definition of the bilinear
functionals c, e, d leading to

−
∫

Ω

div T (u, ϕ) · v =
∫

Ω

T ij(u, ϕ)∂ivj −
∫

Γ

T ij(u, ϕ)vjni

=
∫

Ω

T ij(u, ϕ)sij(v)−
∫

Γ

T ij(u, ϕ)vjni,

=
∫

Ω

(
c(u,v) + e(v, ϕ)

)
−

∫
Γ

T ij(u, ϕ)vjni.

Similarly we get

−
∫

Ω

div D(u, ϕ)ψ =
∫

Ω

Di(u, ϕ)∂iψ −
∫

Γ

Di(u, ϕ)ψni

=
∫

Ω

(
− e(u, ϕ) + d(ϕ,ψ)

)
−

∫
Γ

Di(u, ϕ)ψni.

The computation of part (ii) is obtained by taking into account the homogeneous Dirichlet
boundary conditions. 2

The next Theorem states the conditions for a couple (u, ϕ) to be a strong or a weak solution
to problem (2-3).

Theorem 2.1 (i) Let the boundary Γ be Lipschitz-continuous. For smooth data f ∈ L2(Ω), γ ∈
L2(Ω) there exists a unique weak solution (u, ϕ) ∈ H1

0(Ω)×H1
0 (Ω) to the variational problem

∫
Ω

(
c(u,v) + e(v, ϕ)

)
=

∫
Ω

f · v ∀v ∈ H1
0(Ω),∫

Ω

(
− e(u, ψ) + d(ϕ,ψ)

)
=

∫
Ω

γψ ∀ψ ∈ H1
0 (Ω).

2For the sake of simplicity, measure terms dx, dt, dΓ, ∂Σ are removed from the integrals expression.
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In addition this solution is the saddle-point of the static energy

(v, ψ) ∈ H1
0(Ω)×H1

0 (Ω) → 1
2

∫
Ω

(
c(v,v) + 2e(v, ψ)− d(ψ,ψ)

)
−

∫
Ω

f · v −
∫

Ω

γψ.

(ii) Let Γ be of class C2. For regular data f ∈ H1(Ω) and γ ∈ H1(Ω), there exists a unique
strong solution (u ∈ H2(Ω) ∩H1

0(Ω), ϕ ∈ H2(Ω) ∩H1
0 (Ω)) to the variational problem

∫
Ω

(
c(u,v) + e(v, ϕ)

)
=

∫
Ω

f · v ∀v ∈ H1
0(Ω),∫

Ω

(
− e(u, ψ) + d(ϕ,ψ)

)
=

∫
Ω

γψ ∀ψ ∈ H1
0 (Ω).

�

Proof of Theorem 2.1- Due to the positivity of tensor cijkl and Korn’s inequality for elastic

material the bilinear form
∫

Ω

c(u,v)dx is coercive on H1
0(Ω) and similarly by positivity of

tensors dij and Poincaré-Wirtinger’s inequality, the bilinar form
∫

Ω

d(ϕ,ψ)dx is coercive on

H1
0 (Ω). Hence the proof is a consequence of Lax-Milgram Theorem. 2

3 The evolution problem

The evolution problem of a three dimensional body made with a piezoelectric material with
mass density ρ > 0 reads {

ρu′′ −div T (u, ϕ) = 0 in Q,
−div D(u, ϕ) = 0 in Q,

with Dirichlet boundary conditions and Cauchy initial conditions{
u = u on Σ0, ϕ = ϕ on Σ1,

u(0) = u0,u′(0) = u1 in Ω,

where u′′ = ∂2u/∂t2. We assume in the sequel that the mass density is constant and without
loss of generality ρ = 1, thus the associated homogeneous evolution problem reads: Find
u : (x, t) ∈ Q −→ R3, ϕ : (x, t) ∈ Q −→ R such that

u′′ − div T (u, ϕ) = 0 in Q,
−div D(u, ϕ) = 0 in Q,
u = 0, ϕ = 0 on Σ,

u(0) = u0,u′(0) = u1 in Ω.

(4)

As mentioned in the Introduction we have to consider the evolution problem in both cases
with homogeneous and with nonhomogeneous boundary conditions; their properties are given
in the next section.

3.1 The homogeneous problem

Lemma 3.1 (i) For Γ of class C2 and u0 ∈ H2(Ω) ∩H1
0(Ω), u1 ∈ H1

0(Ω), the system (4)
has a unique strong solution

u ∈ C(0, T ;H2(Ω) ∩H1
0(Ω)), u′ ∈ C(0, T ;H1

0(Ω)), ϕ ∈ C(0, T ;H2(Ω) ∩H1
0 (Ω)).
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(ii) For Γ Lipschitz-continuous and (u0 ∈ H1
0(Ω),u1 ∈ L2(Ω)), system (4) has a unique

weak solution

u ∈ C(0, T ;H1
0(Ω)), u′ ∈ C(0, T ;L2(Ω)), ϕ ∈ C(0, T ;H1

0 (Ω)).

�

Proof of Lemma 3.1 - This is a direct consequence of Lions “abstract” theorem [15].

3.2 The nonhomogeneous problem

Let us consider the nonhomogeneous problem
v′′ − div T (v, ψ) = 0 in Q,

−div D(v, ψ) = 0 in Q,
v = v, ψ = ψ on Σ,

v(0) = v0,v′(0) = v1 in Ω

(5)

and the associate reverse homogeneous problem
u′′ − div T (u, ϕ) = f in Q,

−div D(u, ϕ) = γ in Q,
u = 0, ϕ = 0 on Σ,

u(T ) = 0,u′(T ) = 0 in Ω.

(6)

The weak solution to this problem is given by the transposition method [16] as follows:
Formally, we multiply the first equation of (6) by v and the second one by ψ and similarly
we multiply the first equation of (5) by u and the second one by ϕ. Integration over
Q = Ω× (0, T ) then leads to∫

Q

f(t) · v(t) + γ(t)ψ(t) =
∫

Ω

u0 · v1 − u1 · v0 −
∫

Σ

(
cijklskl(u) + ekij∂kϕ

)
vjni

+
(
eiklskl(u)− dij∂jϕ

)
ψni.

(7)

Let F be a functional space and F ′ its dual space, for U(0) = (u0,u1) ∈ F ,V (0) =

(v1,−v0) ∈ F ′ we note < U(0),V (0) >=
∫

Ω

u0 · v1 − u1 · v0 where < ., . > is the du-

ality between F and F ′. The couple (v, ψ) is called a weak solution to (5) if, for ini-
tial condition V (0) ∈ F ′ and boundary condition

(
v ∈ L2(Σ)), ψ ∈ L2(Σ)

)
, it satisfies

(7) for all f ∈ D(Ω) and γ ∈ D(Ω). Thus we can state for example the following re-
sult for the nonhomogeneous problem (5) associated to the strong solution to (6) with
u0 ∈ H2(Ω) ∩H1

0(Ω),u1 ∈ H1
0(Ω).

Lemma 3.2 Let Γ be of class C2. For all v0 ∈ H−1(Ω),v1 ∈ (H2(Ω)∩H1
0(Ω))′,v ∈ L2(Σ)

and ψ ∈  L2(Σ), there exists a unique solution

v ∈ L∞(0, T ;H−1(Ω)), v′ ∈ L∞(0, T ; (H2(Ω) ∩H1
0(Ω))′), ψ ∈ L∞(0, T ;H−1(Ω)).

�
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4 Properties of the homogeneous evolution problem

We continue the investigation of the properties of the solution of the homogeneous problem,
namely that the energy of the weak solution is constant over its trajectory.

4.1 Energy and Maupertuis’ principle

Lemma 4.1 Let u be the weak solution of problem (4).
(i) When no mechanical forces or electric charges are applied, the energy

E(t) =
1
2

∫
Ω

|u′(t)|2 + c(u(t),u(t)) + d(ϕ(t), ϕ(t)) t ≥ 0

is constant along each trajectory, i.e.,

E(t) = E0 =
1
2

∫
Ω

|u1|2 + c(u0,u0) + d(ϕ0, ϕ0)

where ϕ0 ∈ H1
0 (Ω) is the unique weak solution to

∫
Ω

d(ϕ0, ψ) =
∫

Ω

e(u0, ψ) ∀ψ ∈ H1
0 (Ω).

(ii) The weak solution satisfies Maupertuis’ principle :∫
Q

|u′(t)|2 − c(u(t),u(t))− d(ϕ(t), ϕ(t)) =
∫

Ω

(
u′(t) · u(t)

)∣∣∣T
0

with the notation v
∣∣∣T
0

= v(T )− v(0). �

Proof of Lemma 4.1 - We first prove step (i) for strong solution. We use Lemma 2.1 (ii)
with test-functions v = u′ to get

−
∫

Ω

div T (u, ϕ) · u′ =
∫

Ω

c(u,u′) + e(u′, ϕ).

Then we differentiate with respect to time the second equation of problem (4) and use
similarly Lemma 2.1 (ii) with test-function ψ = ϕ

0 = −
∫

Ω

div D(u′, ϕ′)ϕ =
∫

Ω

−e(u′, ϕ) + d(ϕ,ϕ′).

Hence

−
∫

Ω

div T (u, ϕ) · u′ =
∫

Ω

c(u,u′) + d(ϕ,ϕ′) =
1
2
d

dt

∫
Ω

c(u,u) + d(ϕ,ϕ).

Finally an integration by parts yields

0 =
∫

Ω

(
u′′ − div T (u, ϕ)

)
· u′ =

1
2
d

dt

∫
Ω

|u′|2 + c(u,u) + d(ϕ,ϕ) =
d

dt
E(t).

Next when u is a weak solution we get the result by a density argument: let (u0
k,u

1
k) ∈

H2(Ω) ∩ H1
0(Ω) × H1

0(Ω) be a sequence of Cauchy conditions such that (u0
k,u

1
k) −→

(u0,u1) in H1
0(Ω) × L2(Ω) and let (uk, ϕk) be the associated strong solution. From the

continuous dependence of the solution with respect to the initial data, we have uk −→
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u in C(0,T; H1
0(Ω)) ∩ C1(0,T; L2(Ω)) and ϕk −→ ϕ in C(0, T ;H1

0 (Ω)) ∩ C1(0, T ;L2(Ω)).
Hence

Ek(t) =
1
2

∫
Ω

|u′k|2+c(uk,uk)+d(ϕk, ϕk) −→ E(t) =
1
2

∫
Ω

|u′|2+c(u,u)+d(ϕ,ϕ) in C(0, T ).

The step (ii) or Maupertuis principle is obtained by multiplying the first equation of (4)
by u, the second one by ϕ, by integrating over Q and taking into account the homogeneous
Dirichlet boundary conditions

0 =
∫

Q

(
u′′ − div T (u, ϕ)

)
· u =

∫
Q

−|u′|2 + c(u,u) + e(u, ϕ)−
∫

Γ

T ij(u, ϕ)ujni +
∫

Ω

(u′ · u)
∣∣∣T
0
,

=
∫

Q

−|u′|2 + c(u,u) + e(u, ϕ) +
∫

Ω

(u′ · u)
∣∣∣T
0
,

0 = −
∫

Ω

div D(u, ϕ)ϕ =
∫

Ω

−e(u, ϕ) + d(ϕ,ϕ)−
∫

Γ

Di(u, ϕ)ϕni =
∫

Ω

−e(u, ϕ) + d(ϕ,ϕ),

and therefore

0 =
∫

Q

(
u′′−div T (u, ϕ)

)
·u−

∫
Ω

div D(u, ϕ)ϕ =
∫

Q

−|u′|2+c(u,u)+d(ϕ,ϕ)+
∫

Ω

(u′·u)
∣∣∣T
0
. �

4.2 Direct and reverse identities

We introduce the classical multipliers technique to get the observability condition.

Lemma 4.2 (i) For any field q = (qm) ∈ C2(Ω) the weak solution satisfies the “direct”
identity

1
2

∫
Σ

(q · n)
(
c(u,u)+2e(u, ϕ)− d(ϕ,ϕ)

)
=

1
2

∫
Q

∂mqm

(
|u′|2 − c(u,u)− 2e(u, ϕ) + d(ϕ,ϕ)

)
+

∫
Ω

(u′ · qm∂mu)
∣∣∣T
0

+
∫

Q

(
cijklsij(u) + eikl∂iϕ

)
gkl(q,u) +

(
ekijsij(u)− dik∂iϕ

)
∂kqm∂mϕ

where gkl(q,u) = 1
2 (∂kqm∂mul + ∂lqm∂muk) and n is the unit normal vector.

(ii) For x0 ∈ R3 and p(x) = x− x0 the weak solution satisfies the “reverse” identity

1
2

∫
Σ

(p · n)
(
c(u,u) + 2e(u, ϕ)− d(ϕ,ϕ)

)
= TE0 +

∫
Ω

(
u′ · (pm∂mu + u)

)∣∣∣T
0
.

�

Proof of Lemma 4.2- The direct identity is obtained first for strong solution and then for
the weak solution with a density argument. Let us multiply the first equation (4) by the
multiplier qm∂mu and the second one by qm∂mϕ. We first prove (i). The proof is broken
into 5 steps.
• Step 1. . Let u be a strong solution to (4).We have∫

Q

u′′ · qm∂mu =
1
2

∫
Q

∂mqm|u′|2 +
∫

Ω

(
u′ · qm∂mu

)∣∣∣T
0
.
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This result is obtained by an integration by parts and by using the boundary condition
u′(t) = 0 on Γ (since u(t) = 0 on Γ for all t ≥ 0), therefore we get∫

Q

u′′ · qm∂mu =
∫

Ω

(
u′ · qm∂mu

)∣∣∣T
0
−

∫
Q

u′ · qm∂mu′,∫
Ω

u′ · qm∂mu′ =
1
2

∫
Ω

qm∂m|u′|2 = −1
2

∫
Ω

∂mqm|u′|2 +
1
2

∫
Γ

(q · n)|u′|2 = −1
2

∫
Ω

∂mqm|u′|2

• Step 2. For all q ∈ C2(Ω) and v ∈ H2(Ω), we have

skl(qm∂mv) = qm∂mskl(v) + gkl(q,v).

To show this result let us first consider a scalar multiplier q ∈ C1(Ω) and w = (wl) ∈ H1(Ω)
we get

skl(qw) =
1
2
(∂k(qw)l + ∂l(qw)k) = qskl(w) +

1
2
(wl∂kq + wk∂lq).

A direct computation gives skl(∂mv) = ∂mskl(v) for all v ∈ C2(Ω), and Step 2 is obtained
by letting q = qm,w = ∂mv.
• Step 3. For all q ∈ C2(Ω) and v ∈ H1

0(Ω), ψ ∈ H1
0 (Ω), we have

∫
Ω

c(v, qm∂mv) =
∫

Ω

(
− 1

2
∂mqm c(v,v) + cijklsij(v)gkl(q,v)

)
+

1
2

∫
Γ

(q · n) c(v,v),∫
Ω

e(v, qm∂mψ) =
∫

Ω

eijksjk(v)
(
qm∂miψ + ∂iqm∂mψ

)
,∫

Ω

e(qm∂mv, ψ) =
∫

Ω

(−∂mqme(v, ψ)− eijkqmskl(v)∂imψ + eijkgkl(q,v)∂iψ)

+
∫

Γ

(q · n) e(v, ψ),∫
Ω

d(ψ, qm∂mψ) =− 1
2

∫
Ω

∂mqmd(ψ,ψ) +
∫

Ω

dij∂iψ∂jqm∂mψ +
1
2

∫
Γ

(q · n) d(ψ,ψ).
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The result is obtained by easy computations:∫
Ω

c(v, qm∂mv) =
∫

Ω

cijklsij(v)skl(qm∂mv)

=
∫

Ω

qmc
ijklsij(v)∂mskl(v) + cijklsij(v)gkl(q,v),

=
∫

Ω

1
2
qm∂mc(v,v) + cijklsij(v)gkl(q,v),

=
∫

Ω

−1
2
∂mqm c(v,v) + cijklsij(v)gkl(q,v) +

1
2

∫
Γ

(q · n) c(v,v),∫
Ω

e(v, qm∂mψ) =
∫

Ω

eijksjk(v)∂i(qm∂mψ) =
∫

Ω

eijksjk(v)
(
qm∂miψ + ∂iqm∂mψ

)
,∫

Ω

e(qm∂mv, ψ) =
∫

Ω

eiklskl(qm∂mv)∂iψ =
∫

Ω

eikl
(
qm∂mskl(v) + gkl(q,v)

)
∂iϕ,

=
∫

Ω

(
− ∂mqme(v, ψ)− eijkqmskl(v)∂imψ + eijkqmgkl(q,u)∂iψ

)
+

∫
Γ

(q · n) e(v, ψ),∫
Ω

d(ψ, qm∂mψ) =
∫

Ω

dij∂iψ∂j(qm∂mψ),=
∫

Ω

dij∂iψ(qm∂mjψ + ∂jqm∂mψ),

=
∫

Ω

1
2
qm∂md(ψ,ψ) +

∫
Ω

dij∂iψ∂jqm∂mψ,

=−
∫

Ω

1
2
∂mqmd(ψ,ψ) +

∫
Ω

dij∂iψ∂jqm∂mψ +
∫

Γ

1
2
(q · n) d(ψ,ψ).

• Step 4. For all strong solution associated to initial conditions (u0,u1) ∈ H2(Ω)∩H1
0(Ω)×

H1
0(Ω) and for all q ∈ C2(ω), we have∫

Ω

−div T (u, ϕ)) · qm∂mu =− 1
2

∫
Γ

(q · n)
(
c(u,u) + 2e(u, ϕ)− d(ϕ,ϕ)

)
+

1
2

∫
Ω

−∂mqm

(
c(u,u) + 2e(u, ϕ)− d(ϕ,ϕ)

)
+

∫
Ω

(
cijklsij(u)gkl(q,u) + eijksjk(u)∂iqm∂mϕ− dij∂iϕ∂jqm∂mϕ

)
.

Proof. Since (u, ϕ) is a strong solution of (4) we can use Lemma 2.1(i) with v = qm∂mu

and ψ = qm∂mϕ. Therefore∫
Ω

−div T (u, ϕ) · qm∂mu =
∫

Ω

(
c(u, qm∂mu) + e(qm∂mu, ϕ)

)
−

∫
Γ

T ij(u, ϕ)qm∂mujni

=
∫

Ω

(
− 1

2
∂mqm c(u,u) + cijklsij(u)gkl(q,u)− ∂mqm e(u, ϕ)− eijkqmsjk(u)∂imϕ

)
+

∫
Γ

(q · n)
(1

2
c(u,u) + e(u, ϕ)

)
−

∫
Γ

T ij(u, ϕ)qm∂mujni,

and since

0 =
∫

Ω

−div D(u, ϕ)qm∂mϕ =
∫

Ω

−e(u, qm∂mϕ) + d(ϕ, qm∂mϕ)−
∫

Γ

Di(u, ϕ)qm∂mϕni,

=
∫

Ω

−eijksjk(u)
(
qm∂miϕ+ ∂iqm∂mϕ

)
−

∫
Ω

1
2
∂mqmd(ϕ,ϕ)

+
∫

Ω

dij∂iϕ∂jqm∂mϕ+
∫

Γ

1
2
(q · n) d(ϕ,ϕ)−

∫
Γ

Di(u, ϕ)qm∂mϕni,
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we finally obtain∫
Ω

−div T (u, ϕ)) · qm∂mu =
1
2

∫
Ω

−∂mqm( c(u,u) + 2e(u, ϕ)− d(ϕ,ϕ)

+
∫

Ω

cijklsij(u)gkl(q,u) + eijksjk(u)∂iqm∂mϕ− dij∂iϕ∂jqm∂mϕ

+
1
2

∫
Γ

(q · n)
(
c(u,u) + 2e(u, ϕ)− d(ϕ,ϕ)

)
−

∫
Γ

T ij(u, ϕ)qm∂mujni +Di(u, ϕ)qm∂mϕni.

Since u = 0 on Γ, then ∂mu = nm∂nu and qm∂mu = (q · n)∂nu or component-wise
qm∂mujni = (q · n)∂iuj on Γ. This implies

T ij(u, ϕ)qm∂mujni = (q·n)T ij(u, ϕ)∂iuj = (q·n)T ij(u, ϕ)sij(u) = (q·n)(c(u,u)+e(u, ϕ)) on Γ.

Similarly ϕ = 0 on Γ implies Di(u, ϕ)qm∂mϕni = (q ·n)(−e(u, ϕ) + d(ϕ,ϕ)) on Γ, thus the
first equality is obtained for strong solution.

• Step 5. The equality is then established by density for the weak solution. 2

Proof of (ii). By taking q = p = x − x0 we get gkl(p,u) = skl(u) (let us note that
∂mpi = δi

m and ∂mpm = 3 in dimension 3). Therefore

1
2

∫
Σ

(p · n)
(
c(u,u) + 2e(u, ϕ)− d(ϕ,ϕ)

)
=

3
2

∫
Q

(
|u′|2 − c(u,u)− 2e(u, ϕ) + d(ϕ,ϕ)

)
+

∫
Ω

(u′ · ∂mpmu)
∣∣∣T
0

+
∫

Q

(
c(u,u) + 2e(u, ϕ)− d(ϕ,ϕ)

)
.

Since 0 =
∫

Q

e(u, ϕ)− d(ϕ,ϕ) for all weak solution to the homogeneous problem we obtain

1
2

∫
Σ

(p · n)
(
c(u,u) + 2e(u, ϕ)− d(ϕ,ϕ)

)
=

1
2

∫
Q

(
|u′|2 + c(u,u) + d(ϕ,ϕ)

)
+

∫
Q

(
|u′|2 − c(u,u)− d(ϕ,ϕ)

)
+

∫
Ω

(u′ · ∂mpmu)
∣∣∣T
0

= TE0 +
∫

Q

(
|u′|2 − c(u,u)− d(ϕ,ϕ)

)
+

∫
Ω

(u′ · ∂mpmu)
∣∣∣T
0

and we get the result thanks to Maupertuis’ principle. 2

4.3 Uniqueness Theorem for the homogeneous evolution problem

In this section we establish other regularity conditions (the strong direct and reverse in-
equalities and consequently the hidden regularity and observability condition) for the weak
solution of the homogeneous piezoelectric problem.

Theorem 4.1 Let the boundary Γ be of class C2.
(i) There exists a positive constant K(q,Ω) such that weak solution satisfies the “ direct
inequality” ∣∣∣ ∫

Σ

(q · n)
(
c(u,u) + 2e(u, ϕ)− d(ϕ,ϕ)

)∣∣∣ ≤ K(q,Ω)(T + 1)E0
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(ii) This implies the “hidden regularity”: The quantity
∣∣∣ ∫

Σ

c(u,u) + 2e(u, ϕ)− d(ϕ,ϕ)
∣∣∣ is

bounded. �

Proof of Theorem 4.1.- Lemma 4.2 (i) yields∣∣∣ ∫
Σ

(q · n)
(
c(u,u)+2e(u, ϕ)− d(ϕ,ϕ)

)∣∣∣ ≤ ∣∣∣ ∫
Q

∂mqm

(
|u′|2 − c(u,u)− 2e(u, ϕ) + d(ϕ,ϕ)

)∣∣∣
+ 2

∣∣∣ ∫
Q

(
cijklsij(u) + eikl∂iϕ

)
gkl(q,u) +

(
ekijsij(u)− dik∂iϕ

)
∂kqm∂mϕ

∣∣∣
+ 2

∣∣∣ ∫
Ω

(
u′ · qm∂mu

)∣∣∣T
0

∣∣∣.
(8)

Since q ∈ C2(Ω) we note K1(q,Ω) a positive bound that depends only upon q and Ω such
that

sup
x∈Ω;(i,m)∈{1,3}

{|qi(x)|, |∂mqi(x)|} ≤ K1(q,Ω).

Let us introduce the notations

|v|0 =
( ∫

Ω

|v|2
) 1

2
, |v|1 =

( ∑
m∈{1,3}

∫
Ω

|∂mv|2
) 1

2
.

Poincaré-Wirtinger inequality states that for all v ∈ H1(Ω) there exists a constant KP (Ω)
such that

|v|0 ≤ KP (Ω)|v|1 ∀v ∈ H1(Ω).

Korn’s inequality for elastic materials states that there exists a constant KK(Ω) such that
for all v ∈ H1

0(Ω)

||v||H1(Ω) ≤ KK(Ω)
( ∑

k,l∈{1,3}

∫
Ω

|skl(v)|2
) 1

2
.

Therefore by using the coercivity property of both tensors cijkl and dij (introduced in Section
2.2) we can establish an upper bound for each term of the right-hand side of (8): The two
first terms are bounded by K2(Ω)TE0, the last one is bounded by 2K3(Ω)E0 and hence the
global bound follows. Next, according to Komornik ([13], p.18), there exists a vector field
q ∈ C2(Ω) such that q = n on Γ. With this choice of multiplier the hidden regularity is
obtained. �

Remark 1 This is a weaker condition than the one obtained for pure elastic body which
is c(u,u) ∈ L1(Σ) or, for the classical wave equation, ∂nu ∈ L2(Σ). It comes from the
fact that in the elastic case the solution minimizes the energy, in the piezoelectric case the
solution is a saddle point of the energy. �

Theorem 4.2 Let the boundary Γ be of class C2. There exists a minimum time T 0 =
T 0(x0,Ω) such that for all T ≥ T 0 the weak solution satisfies the “ inverse inequality”

E0 (T − T 0) ≤ 1
2

∫
Σ

(p · n)
(
c(u,u) + 2e(u, ϕ)− d(ϕ,ϕ)

)
.

�
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Proof of Theorem 4.2- It is broken into 2 steps
• Step 1. We first show that there exists a constant α = α(Ω) (which depends only upon Ω)
such that ∫

Ω

u′ · (pm∂mu + u) ≤ αE0.

We follow [16]: For any constant β > 0, we have

2
∣∣∣ ∫

Ω

u′ · (pm∂mu + u)
∣∣∣ ≤ ∫

Ω

(
β|u′|2 +

1
β
|pm∂mu + u|2

)
.

Recalling that u = 0 on the boundary we have∫
Ω

pm∂mu · u =
1
2

∫
Ω

pm∂m|u|2 = −1
2

∫
Ω

∂mpm|u|2 +
1
2

∫
Γ

(p · n)|u|2 = −3
2

∫
Ω

|u|2

and we obtain∫
Ω

|pm∂mu + u|2 =
∫

Ω

(|pm∂mu|2 + |u|2 + 2pm∂mu · u) =
∫

Ω

(|pm∂mu|2 − 2|u|2),

≤
∫

Ω

|pm∂mu|2 ≤ 3R2

∫
Ω

|∇u|2,

where R = max
x∈Ω

|x − x0|. We use the same argument (Poincaré-Wirtinger and Korn’s

inequalities) as in the proof of the previous Theorem to get∫
Ω

|pm∂mu + u|2 ≤ 3R2KK(Ω)
∫

Ω

c(u,u) ≤ 3R2KK(Ω)E0.

Therefore

2
∣∣∣ ∫

Ω

u′ · (pm∂mu + u)
∣∣∣ ≤ ∫

Ω

(
β|u′|2 +

3R2KK(Ω)
β

c(u,u)
)
.

With the choice β =
√

3KK(Ω)R we get

2
∣∣∣ ∫

Ω

u′ · (pm∂mu + u)
∣∣∣ ≤ β

∫
Ω

(
|u′|2 + c(u,u)

)
≤ 2βE0

and thereby the result with α = β.

• Step 2. We rewrite the identity of Lemma 4.2 (ii)

1
2

∫
Σ

(p · n)
(
c(u,u) + 2e(u, ϕ)− d(ϕ,ϕ)

)
= TE0 +

∫
Ω

(u′ · (pm∂mu + u))
∣∣∣T
0

and use the bound obtained in Step 1,
∣∣∣ ∫

Ω

(
u′ · (pm∂mu + u)

)∣∣∣T
0

∣∣∣ ≤ 2
∣∣∣ ∫

Ω

(
u′ · (pm∂mu +

u)
)∣∣∣ ≤ 2αE0. Hence by letting T 0 = 2α we obtain

1
2

∫
Σ

(p · n)
(
c(u,u) + 2e(u, ϕ)− d(ϕ,ϕ)

)
≥ (T − T 0)E0.

�
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Remark 2 The sign of the quantity c(v,v)+2e(v, ψ)−d(ψ,ψ) is not known for any v and
ψ, hence the uniqueness result is of this special form: If, for all T ≥ T 0, the weak solution
satisfies the following property on Σ{

c(u,u) + 2e(u, ϕ)− d(ϕ,ϕ) ≤ 0 when p · n ≥ 0,
c(u,u) + 2e(u, ϕ)− d(ϕ,ϕ) ≥ 0 when p · n ≤ 0

then u = 0 and ϕ = 0 in Ω. �

The inverse inequality is now used to derive other uniqueness properties of the solution to
the homogeneous evolution problem.

Corollary 1 (i) Let Ω be a sphere with center x0 and radius R. Then there exists a mini-
mum time T 0 such that for all T ≥ T 0 the weak solution satisfies the “ inverse inequality”

E0 (T − T 0) =
R

2

∫
Σ

c(u,u) + 2e(u, ϕ)− d(ϕ,ϕ).

This implies that if, for all T ≥ T 0, c(u,u) + 2e(u, ϕ) − d(ϕ,ϕ) ≤ 0 on Σ then u = 0 and
ϕ = 0 in Ω.

(ii) Let Ω be x0-star shaped, i.e., p(x) · n(x) > 0 for all points x ∈ Γ. Then there ex-
ists a minimum time T 0 and a constant K (which depends upon the data (cijkl, eijk, dij))
such that for all T ≥ T 0 the weak solution satisfies the “ inverse inequality”

E0 (T − T 0) ≤ KR

∫
Σ

c(u,u),

with R = max
x∈Ω

|x− x0|.

For regular solution having a trace c(u,u) ∈ L1(Σ) this implies that if, for all T ≥ T 0,
c(u,u) = 0 on Σ then u = 0 and ϕ = 0 in Ω.

(iii) Let us consider the partition Γ = Γ+ ∪ Γ−,Γ+ ∩ Γ− = ∅ with p(x) · n(x) > 0 for
all points x ∈ Γ+ and p(x) · n(x) ≤ 0 for all points x ∈ Γ−, we note Σ+ = Γ+ × (0, T ),
Σ+ = Γ+ × (0, T ).
There exists a minimum time T 0 such that for all T ≥ T 0 the weak solution satisfies another
“ inverse inequality”

(T − T 0)E0 ≤ KR
( ∫

Σ+
c(u,u) +

∫
Σ−

d(ϕ,ϕ)
)
,

where the constant K depends upon the data (cijkl, eijk, dij).
For regular solution having traces c(u,u) ∈ L1(Σ+), d(ϕ,ϕ) ∈ L1(Σ−) this implies that if,
for all T ≥ T 0, c(u,u) = 0 on Σ+ and d(ϕ,ϕ) = 0 on Σ− then u = 0 and ϕ = 0 in Ω. �

• Proof of (i). For a sphere R = |x− x0|,x ∈ Γ, we have p · n = R, hence the result.
The uniqueness property is of the same kind as the one of Remark 2.
• Proof of (ii). Let us adapt the algebraic inequality

∀α > 0, 2|v ·w| ≤ α|v|2 +
1
α
|w|2 ∀v,w ∈ R3

in the following way: There exists two positive constants α > 0, β > 0 so that

2|e(v, ψ)| ≤ α c(v,v) + β d(ψ,ψ) ∀v ∈ H1(Ω), ψ ∈ H1(Ω)
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and we adjust these constants α, β to show that there exist two positive constants K1,K2

(that depend upon the data (cijkl, eijk, dij)) such that

−K1d(ϕ,ϕ) ≤ c(u,u) + 2e(u, ϕ)− d(ϕ,ϕ) ≤ K2c(u,u).

Hence∫
Σ

(p · n)
(
c(u,u) + 2e(u, ϕ)− d(ϕ,ϕ)

)
≤ K2

∫
Σ

(p · n)c(u,u) ≤ K2R

∫
Σ

c(u,u).

• Proof of (iii). We make use of the partition Σ = Σ+ ∪ Σ− to obtain∫
Σ

(p · n)
(
c(u,u) + 2e(u, ϕ)− d(ϕ,ϕ)

)
=

∫
Σ+

(p · n)
(
c(u,u) + 2e(u, ϕ)− d(ϕ,ϕ)

)
+

∫
Σ−

(−p · n)
(
− c(u,u)− 2e(u, ϕ) + d(ϕ,ϕ)

)
.

As in the previous step,∫
Σ+

(p · n)
(
c(u,u) + 2e(u, ϕ)− d(ϕ,ϕ)

)
≤ K2

∫
Σ+

(p · n)c(u,u) ≤ K2R

∫
Σ+

c(u,u)

and∫
Σ−

(−p · n)
(
− c(u,u)− 2e(u, ϕ) + d(ϕ,ϕ)

)
≤ K1

∫
Σ−

(−p · n)d(ϕ,ϕ) ≤ K1R

∫
Σ−

d(ϕ,ϕ).

�

Remark 3 The restriction to regular solutions in steps (ii) and (iii) is due to the fact that
there is no traces c(u,u), d(ϕ,ϕ) in L1(Σ) for weak solutions. �

5 Exact controllability

We are now in a position to state our controllability result. We follow the scheme detailed
in the Introduction. The evolution problem reads: Find the elastic displacement field y and
the electric potential θ governed by the hyperbolic equations

y′′ − div T (y, θ) = 0 in Q,
−div D(y, θ) = 0 in Q,
y = y, θ = θ on Σ,

y(0) = y0,y′(0) = y1 in Ω.

(9)

In the next two sections we consider the adjoint reverse problem in (v, ψ) and show how to
compute the boundary conditions (y, θ) to drive the system to rest.

5.1 The adjoint backward problem

Associated to the solution (u, ϕ) of problem (4) with smooth initial conditions (u0,u1) ∈
D(Ω) × D(Ω) we consider the adjoint backward and nonhomogeneous problem in (v, ψ)
(with nonhomogeneous boundary Dirichlet conditions depending on (u, ϕ) and final Cauchy
conditions)
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u′′ − div T (u, ϕ) = 0 in Q,

−div D(u, ϕ) = 0 in Q,
u = 0, ϕ = 0 on Σ,

u(0) = u0,u′(0) = u1 in Ω,


v′′ − div T (v, ψ) = 0 in Q,

−div D(v, ψ) = 0 in Q,
v = v(u, ϕ), ψ = ψ(u, ϕ) on Σ,

v(T ) = v′(T ) = 0 in Ω,
(10)

the dependence v(u, ϕ) and ψ(u, ϕ) will be made more precise later. The condition for
existence and uniqueness of the solution (v, ψ) is given in Section 3.2. With the same
notation as in [16] we introduce the operator Λ:

(u0,u1) ∈ D(Ω)×D(Ω) → Λ(u0,u1) = (v′(0),−v(0)).

We note that if we can solve the equation

Λ(u0,u1) = (y1,−y0) (11)

then the boundary conditions of problem (9) needed to control the system are

y = v(u, ϕ), θ = ψ(u, ϕ).

Thus the problem we face now is to explicit these boundary conditions and to examine under
which conditions equation (11) can be solved. Hence, let (z, ζ) be the solution to the direct
homogeneous problem associated to initial conditions (z0,z1) ∈ D(Ω)×D(Ω)

z′′ − div T (z, ζ) = 0 in Q,
−div D(z, ζ) = 0 in Q,
z = 0, ζ = 0 on Σ,

z(0) = z0,z′(0) = z1 in Ω.

A simple computation yields∫
Ω

Λ(u0,u1) · (z0,z1) =
∫

Σ

cijklskl(z)vj(u, ϕ)ni + eiklskl(z)ψ(u, ϕ)ni

+ ekij∂kζvj(u, ϕ)ni − dij∂jζψ(ϕ)ni.

The aim of next section is to show that there exists a choice of boundary values v, ψ and
functional spaces F and F ′ such that operator Λ can be uniquely continued from F to F ′,
and therefore that the bilinear form

(u0,u1) ∈ F , (z0,z1) ∈ F −→
∫

Ω

Λ(u0,u1) · (z0,z1)

is continuous and coercive so that equation (11) can be solved by Lax-Milgram theorem.

5.2 Choice of boundary conditions

• (i) Case of a sphere Ω.
Let us choose {

v(u, ϕ) = ∂nu on Σ,
ψ(u, ϕ) = ∂nϕ on Σ.
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This yields
∫

Ω

Λ(u0,u1) · (z0,z1) =
∫

Ω

Λ(z0,z1) · (u0,u1) =
∫

Σ

c(u,z) + e(z, ϕ) + e(u, ζ)− d(ζ, ϕ),∫
Ω

Λ(u0,u1) · (u0,u1) =
∫

Σ

c(u,u) + 2e(u, ϕ)− d(ϕ,ϕ) =
2
R
E0 (T − T 0).

The bilinear operator Λ defines a scalar product but not a semi-norm over D(Ω) × D(Ω),
however the choice of boundary conditions presented below is more relevant for this geometry.

• (ii) Case of a star shaped domain Ω.
Let us choose {

v(u, ϕ) = ∂nu on Σ,
ψ(u, ϕ) = −∂nϕ on Σ.

This yields
∫

Ω

Λ(u0,u1) · (z0,z1) =
∫

Σ

c(u,z)− e(z, ϕ) + e(u, ζ) + d(ζ, ϕ),∫
Ω

Λ(u0,u1) · (u0,u1) =
∫

Σ

c(u,u) + d(ϕ,ϕ)

which, according to Corollary (ii), implies∫
Ω

Λ(u0,u1) · (u0,u1) ≥
∫

Σ

c(u,u) ≥ E0

KR
(T − T 0). (12)

Hence for strong solution with traces c(u,u) ∈ L1(Σ), d(ϕ,ϕ) ∈ L1(Σ), the semi-norm∣∣∣∣∣∣(u0,u1)
∣∣∣∣∣∣ =

( ∫
Σ

c(u,u) + d(ϕ,ϕ)
) 1

2

is a norm over D(Ω)×D(Ω). Let us note F the closure of D(Ω)×D(Ω) for this norm and
F ′ its dual space (without identification) (see Komornik [13, 14])

F ⊂ (H2(Ω) ∩H1
0(Ω))×H1

0(Ω).

The operator Λ can be uniquely continued in an operator Λ : F → F ′. The coercivity of Λ
implies that, for any (y1,−y0) ∈ F ′, equation (11) has a unique solution (u0,u1) ∈ F which
implies c(u,u) ∈ L1(Σ) and d(ϕ,ϕ) ∈ L1(Σ), in other words ∂nu ∈ L2(Σ) and ∂nϕ ∈ L2(Σ).

• (iii) Case of a partition of the boundary Γ.
We consider the partition of the boundary Γ = Γ+ ∪ Γ−,Γ+ ∩ Γ− = ∅. Let us choose{

v(u) = ∂nu on Σ+, v(u) = 0 on Σ−,
ψ(ϕ) = −∂nϕ on Σ−, ψ(ϕ) = 0 on Σ+.

This yields

∫
Ω

Λ(u0,u1) · (z0,z1) =
∫

Σ+
c(u,z) + e(u, ζ) +

∫
Σ−

d(ζ, ϕ)− e(z, ϕ),∫
Ω

Λ(u0,u1) · (u0,u1) =
∫

Σ+
c(u,u) + e(u, ϕ) +

∫
Σ−

−e(u, ϕ) + d(ϕ,ϕ)

≥ K
( ∫

Σ+
c(u,u)− d(ϕ,ϕ) +

∫
Σ−

−c(u,u) + d(ϕ,ϕ)
)
.

The bilinear operator Λ does not define a semi-norm over D(Ω)×D(Ω).
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5.3 The controllability result

Theorem 5.1 Let Ω be x0-star-shaped with C2 boundary and F the Hilbert space defined
in 5.2 (ii). Let (y1,−y0) ∈ F ′ be the initial conditions for problem (9). If the evolution
problem (4) associated to initial conditions (u0,u1) ∈ F given by (11) has a strong solution
(u, ϕ) then there exists a minimum time T 0 > 0 and a control (y, θ) ∈ L2(Σ)×L2(Σ) acting
on the whole boundary Σ

y = ∂nu, θ = −∂nϕ on Σ.

This control drives system (9) to rest for T ≥ T 0. �

Proof of Theorem 5.1- The existence and uniqueness of the solution (y, θ) is a consequence
of the definition of a weak solution to the nonhomogeneous problem as explained in section
3.2 and the controllability is a direct consequence of the appropriate choice of boundary
conditions of 5.2 (ii). �

6 Numerical experiments

We now present some simple numerical experiments in order to support the result of con-
trollability. For simplicity, we consider the (star-shaped and non Lipschitz domain) unit
square Ω = (0, 1)2. Following [9], the control (y, θ) is obtained by minimizing over V ×H

the functional J : V ×H → R defined by

J (u0,u1) =
1
2

∫
Ω

(Λ(u0,u1), (u0,u1))dx− < (u0,u1), (y1,y0) >V ×H,V ′×H′ .

This functional, associated to the linear equation (11) is convex, continuous and, from the
observability inequality (12), coercive. The minimization of J is performed using the conju-
gate gradient (CG) algorithm and requires at each iteration the resolution of the backward
and forward system (10). The spatial approximation is done using mass lumping technic
(see [5]) and continuous finite elements of order one approximating the spaces L2(Ω) and
H1(Ω) by the following finite dimensional space:

Vh = {vh, vh ∈ C0(Ω), vh|Q ∈ P1(Q),∀Q ∈ Qh},

where P1(Q) denotes the space of polynomial functions of degree ≤ 1 on Q, the notation
(Qh)h>0 stands for a regular quasi-uniform family of quadrangulations characterized by the
space step h such that Ω = ∪Q∈Qh

Q. Remark that such approximation is non-conforming
for our problem, since the space F (defined in Section 5.2 ii)) would require at least C1-finite
element. The temporal approximation is performed in a standard way using centered finite
differences of order two. Moreover, as is well known since [9], such approximation may not
provide convergent results with respect to the parameters of discretization, when the initial
data (y0,y1) are generated by high frequency modes: in that case, the approximation Jh of
J is not uniformly coercive with respect to h (we also refer to [4, 20]). In order to avoid this
phenomenon and obtain a convergent sequence of controls with respect to h, we consider only
regular initial data. Moreover, we use the Bi-Grid method (introduced in [9] in the context
of the wave equation and apply in [2] for the elasticity system), which consists to compute, at
each iteration of the CG algorithm, the new descent direction on a coarse grid. This method
permits to improve the numerical stability. We refer to [4, 20] for others recent remedies in
a similar context in the critical situation where the initial position y0 is discontinuous. The
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algorithm, initialized by (u0,u1) = (0,0) is stopped as soon as the residual r(k) (related
to the norm of the descent direction) of the algorithm becomes lower than 10−8. Finally,
in order to have a smooth control at time t = 0 and t = T , we introduce a cut-off function
ρ ∈ Vη = {v, v ∈ C1([0, T ]), v(0) = v(T ) = v′(0) = v′(T ) = 0, v > 0 ∈]η, T − η[} for any
0 < η << T and search for a control of (9) under the form (ρy, ρθ) ∈ (L2(Σ))3. This is
natural from a mechanical point of view (the control can not suddenly acts at time 0) and
improves the performances of the CG algorithm.

For the numerical simulations we have selected the PZT4 material which is of particular
interest in the design of transformers, its characteristics (mass density ρ, stiffness cαβ , piezo-
electric coupling eαα and permittivity ε11) are given in Table 1 (see [8]).

c11(N/m2) c12(N/m2) c22(N/m2) ρ(Kg/m3) e11 = e22(C/m2) ε11(F/m)
13.9× 1010 7.8× 1010 2.36× 1010 7.5× 103 12.7 65× 10−10

Table 1: Constants of the PZT4 material.

In the next sections, some numerical experiments obtained for different positions of the
control (y1, y2, θ) for the piezo-electric system (9) are discussed. The notation S(y1, y2, θ) =
(Σ1,Σ2,Σ3) used in the sequel signifies that the support of y1, y2 and θ are Σ1,Σ2 and
Σ3 respectively (for any Σi ⊂ Σ, i = 1..3). In particular, we consider the supports Σ± =
Γ± × (0, T ) with

Γ+ = {x = (x1, x2) ∈ Γ, x2(1− x1) = 0}, Γ− = {x = (x1, x2) ∈ Γ, x1(1− x2) = 0}.

The space step and time step parameter are taken equal to h = 1/60 and ∆t = h/4 respec-
tively. Finally, we use η = T/10.

6.1 Example 1

We use the simplest low frequency mode as initial condition on the unit square :

y0 = (sin(πx1) sin(πx2), 0), y1 = (0, 0), (x1, x2) ∈ (0, 1)2

and take T = 4.
Let us first consider the situation of the theoretical part (precisely of Section 5.2 ii))

where the system (9) is controlled by an elastic and electric Dirichlet force on the whole
boundary Σ (i.e. S(y1, y2, θ) = (Σ,Σ,Σ)). Figure 1-left depicts the evolution of the total
energy and kinetic energy with respect to the time t in [0, T ] highlighting the vibrations
of the structure. We obtain at the convergence the ratio E(T )/E(0) ≈ 7.58 × 10−5 (E(t)
denotes (the approximation of) the energy of the controlled system (9) at time t) which
illustrates the (numerical) exact controllability. On the other hand, Figure 1-right depicts
the evolution with respect to the time of the L2(Γ)-norm of the elastic control y1, y2 and
electric control θ. From Table 2, we observe that the corresponding L2(Σ)-norm of the three
control are similar. Finally, the convergence obtained after only 7 iterations is very fast
(with respect to the value of h). Numerical values are collected in Table 2.

Following the discussion of Section 5.2, we then analyze to which extend we may re-
duced the support of the control. Figure 2 and Table 3 address the situation S(y1, y2, θ) =
(Σ+,Σ+,Σ+) still yielding a positive answer (of controllability). Numerical values are very
similar : the norm of the controls and the number of iterations are slightly greater. Remark
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Figure 1: S(y1, y2, θ) = (Σ,Σ,Σ) - Left: Total energy (solid line) and kinetic energy (dashed
line) vs. t ∈ [0, T ] ; Right: L2(Γ)-norm of the control y1 (solid line), y2 (dashed line) and
θ (dotted line) vs. t ∈ [0, T ] (Example 1).

‖y1‖L2(Σ) ‖y2‖L2(Σ) ‖θ‖L2(Σ) E(T )/E(0) ‖y(T )‖L2(Γ) ‖y′(T )‖L2(Γ) Nb. It
7.87× 10−2 7.86× 10−2 6.29× 10−2 7.58× 10−5 2.19× 10−4 1.55× 10−2 7

Table 2: Numerical values corresponding to S(y1, y2, θ) = (Σ,Σ,Σ) (Example 1).
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Figure 2: S(y1, y2, θ) = (Σ+,Σ+,Σ+) - Left: Total energy (solid line) and kinetic energy
(dashed line) vs. t ∈ [0, T ] ; Right: L2(Γ)- norm of the control y1 (solid line), y2 (dashed
line) and θ (dotted line) vs. t ∈ [0, T ] (Example 1).

‖y1‖L2(Σ) ‖y2‖L2(Σ) ‖θ‖L2(Σ) E(T )/E(0) ‖y(T )‖L2(Γ) ‖y′(T )‖L2(Γ) Nb. It
1.11× 10−1 1.12× 10−1 8.90× 10−2 2.40× 10−4 3.76× 10−4 2.86× 10−2 9

Table 3: Numerical values corresponding to S(y1, y2, θ) = (Σ+,Σ+,Σ+) (Example 1).
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that this observation, obtained for one single mode, is not in contradiction with Section 5.2.

Further numerical simulations then suggest that the controllability still holds if the
support is less restrictive. For instance, the cases S(y1, y2, θ) = (Σ+,Σ+,Σ−) (Table 4),
S(y1, y2, θ) = (Σ,Σ, ∅) (Table 5 ) for which the electric control is simply removed also leads
to controllability. On the contrary, considering the case S(y1, y2, θ) = (∅, ∅,Σ), we observe
that the electric control θ is not sufficient to drive to rest the field y and θ. Observe that
the case S(y1, y2, θ) = (Σ+,Σ+,Σ−) produces very similar numerical values than the case
S(y1, y2, θ) = (Σ+,Σ+,Σ+).
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Figure 3: L2(Γ)-norm of the controls in the case S(y1, y2, θ) = (Σ+,Σ+,Σ−) (Left) and
S(y1, y2, θ) = (Σ,Σ, ∅) (Right) vs. t ∈ [0, T ] (Example 1).

‖y1‖L2(Σ) ‖y2‖L2(Σ) ‖θ‖L2(Σ) Eh(T )/Eh(0) ‖y(T )‖L2(Γ) ‖y′(T )‖L2(Γ) Nb. It
1.11× 10−1 1.12× 10−1 8.94× 10−2 1.47× 10−4 3.05× 10−4 2.26× 10−2 8

Table 4: Numerical values corresponding to S(y1, y2, θ) = (Σ+,Σ+,Σ−) (Example 1).

‖y1‖L2(Σ) ‖y2‖L2(Σ) ‖θ‖L2(Σ) Eh(T )/Eh(0) ‖y(T )‖L2(Γ) ‖y′(T )‖L2(Γ) Nb. It
8.69× 10−2 8.68× 10−2 0. 6.23× 10−5 1.82× 10−4 1.27× 10−2 6

Table 5: Numerical values corresponding to S(y1, y2, θ) = (Σ,Σ, ∅) (Example 1).

We still observe controllability if the elastic controls are supported on Σ+ (i.e. S(y1, y2, θ) =
(Σ+,Σ+, ∅)) (see Table 6) and if one of y1 or y2 is supported on the whole boundary (i.e.
S(y1, y2, θ) = (Σ, ∅, ∅)) (see Table 7). The controllability, lost if y1 (or y2) only acts on Σ+,
is recovered if we add for instance the electric control θ on Σ− (or on Σ+) (Figure 5 and
Table 8).

6.2 Example 2

Still on the unit square, we now consider the following initial data

y0 = (x1(1− x1)x2(1− x2)e−30(x1−0.3)2−30(x2−0.3)2 , 0),y1 = (0, 0)
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Figure 4: L2(Γ)-norm of the controls in the case S(y1, y2, θ) = (Σ+,Σ+, ∅) (Left) and
S(y1, y2, θ) = (Σ, ∅, ∅) (Right) vs. t ∈ [0, T ] (Example 1).

‖y1‖L2(Σ) ‖y2‖L2(Σ) ‖θ‖L2(Σ) Eh(T )/Eh(0) ‖y(T )‖L2(Γ) ‖y′(T )‖L2(Γ) Nb. It
1.22× 10−1 1.24× 10−1 0. 1.5× 10−4 3.33× 10−4 2.28× 10−2 7

Table 6: Numerical values corresponding to S(y1, y2, θ) = (Σ+,Σ+, ∅) (Example 1).

‖y1‖L2(Σ) ‖y2‖L2(Σ) ‖θ‖L2(Σ) Eh(T )/Eh(0) ‖y(T )‖L2(Γ) ‖y′(T )‖L2(Γ) Nb. It
1.76× 10−1 0. 0. 8.85× 10−4 8.25× 10−4 5.66× 10−2 15

Table 7: Numerical values corresponding to S(y1, y2, θ) = (Σ, ∅, ∅) (Example 1).
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Figure 5: S(y1, y2, θ) = (Σ+, ∅,Σ−) - Left: Total energy (solid line) and kinetic energy
(dashed line) vs. t ∈ [0, T ] ; Right: L2(Γ)- norm of the control y1 (solid line) and θ (dotted
line) vs. t ∈ [0, T ] (Example 1).

‖y1‖L2(Σ) ‖y2‖L2(Σ) ‖θ‖L2(Σ) Eh(T )/Eh(0) ‖y(T )‖L2(Γ) ‖y′(T )‖L2(Γ) Nb. It
2.12× 10−1 0. 1.69× 10−1 7.56× 10−4 8.16× 10−4 5.13× 10−2 16

Table 8: Numerical values corresponding to S(y1, y2, θ) = (Σ+, ∅,Σ−) (Example 1).
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in order to exhibit more frequency modes than the first example. The case S(y1, y2, θ) =
(Σ,Σ,Σ) controllable for T = 4 is summarized in Figure 6 and Table 9. The evolution in
time of the L2-norm of the controls are slightly less smooth than for the first example and the
number of iteration to convergence is greater. Moreover, our numerical experiment suggests
that T = 4 is not sufficient to control the system from the boundary Σ+ (i.e. S(y1, y2, θ) =
(Σ+,Σ+,Σ+)). The controllability is recovered if, for instance, T = 5. Figure 8 gives the
electric field θ in Ω at time t = iT/5, i = 0, .., 5 for the case S(y1, y2, θ) = (Σ+,Σ+,Σ−) for
which the controllability holds (see also Figure 7 and Table 10). Remark that the electric
field θ is not equal to zero at time t = 0.
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Figure 6: S(y1, y2, θ) = (Σ,Σ,Σ) - Left: Total energy (solid line) and kinetic energy (dashed
line) vs. t ∈ [0, T ] ; Right: L2(Γ)- norm of the control y1 (solid line), y2 (dashed line) and
θ (dotted line) vs. t ∈ [0, T ] (Example 2).

‖y1‖L2(Σ) ‖y2‖L2(Σ) ‖θ‖L2(Σ) E(T )/E(0) ‖y(T )‖L2(Γ) ‖y′(T )‖L2(Γ) Nb. It
1.97× 10−1 1.99× 10−1 1.62× 10−1 2.29× 10−4 2.10× 10−3 1.29× 10−1 10

Table 9: Numerical values corresponding to S(y1, y2, θ) = (Σ,Σ,Σ) (Example 2).

‖y1‖L2(Σ) ‖y2‖L2(Σ) ‖θ‖L2(Σ) E(T )/E(0) ‖y(T )‖L2(Γ) ‖y′(T )‖L2(Γ) Nb. It
2.73× 10−1 3.01× 10−1 2.21× 10−1 5.02× 10−4 3.77× 10−3 1.90× 10−1 11

Table 10: Numerical values corresponding to S(y1, y2, θ) = (Σ+,Σ+,Σ−) (Example 2).

7 Concluding remarks

We have proved in this work an exact controllability result for a piezo-electric PDE system,
assuming the (Dirichlet) control active on the whole boundary and the time of controllability
large enough. The proof is based on the observability inequality through the multiplier
method and HUM. Numerical experiments confirm these results and also suggest that the
assumption on the support may be relaxed: for instance, the controllability is still observed
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Figure 7: S(y1, y2, θ) = (Σ,Σ,Σ) - Left: Total energy (solid line) and kinetic energy (dashed
line) vs. t ∈ [0, T ] ; Right: L2(Γ)- norm of the control y1 (solid line), y2 (dashed line) and
θ (dotted line) vs. t ∈ [0, T ] (Example 2).

when the elastic controls act on the part Σ+ of the boundary while the electric one acts on
the complementary part Σ−. The numerical experiments also suggest that the elastic control
suffices to drive to rest both the elastic and electric field. It would be interesting to analyze
deeper the interplay between the elastic and electric control, and examine in particular their
optimal respective position on the boundary, as it is done in a similar context in [21]. It is
of interest also to note that the boundary control has been obtained for so-called shallow
shells in [18] (with the condition of shallowness removed in [1]) and to the observability and
stabilization of three dimensional bodies in [11, 12] and [19].
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