Approximation of control and inverse problems for PDEs using variational methods

Arnaud Diego Münch

Université Clermont Auvergne - Clermont-Ferrand
Laboratoire de Mathématiques Blaise Pascal
http://math.univ-bpclermont.fr/ munch/

Oberwolfach - January 9-13, 2017
with Nicolae Cîndea (CF), Enrique Fernández-Cara
(Sevilla)

Context

We discuss hyperbolic and parabolic equations and try to emphasize the interest of space-time variational methods with respect to time marching methods.

Wave like equation with initial data in $\mathrm{L}^{2} \times \mathrm{H}^{-1}$
$\Omega \subset \mathbb{R}^{N}$ bounded domain with C^{2}-boundary; $T>0 ; Q_{T}:=\Omega \times(0, T) ; c \in C^{1}(\bar{\Omega}, \mathbb{R})$; $d \in L^{\infty}\left(Q_{T}\right) ; \Gamma_{0} \subset \partial \Omega$

$$
\left\{\begin{array}{lr}
L y:=y_{t t}-\nabla \cdot(c(x) \nabla y)+d(x, t) y=0, & Q_{T}:=\Omega \times(0, T), \tag{1}\\
y=v 1_{\Gamma_{0}}(x), & \Sigma_{T}:=\partial \Omega \times(0, T), \\
\left(y(\cdot, 0), y_{t}(\cdot, 0)\right)=\left(y_{0}, y_{1}\right) \in \boldsymbol{H}:=L^{2}(\Omega) \times H^{-1}(\Omega), & \Omega
\end{array}\right.
$$

$v=v(t)$ - control function in $L^{2}\left(\Sigma_{T}\right)$.

$$
\|y\|_{L^{\infty}\left(0, T_{i} L^{2}(\Omega)\right)} \leq C_{\Omega, T}\left(\left\|y_{0}, y_{1}\right\|_{\boldsymbol{H}}+\|v\|_{L^{2}\left(\Sigma_{T}\right)}\right)
$$

> NULL CONTROLLABILITY (Lions'88, Lebeau'92, Lasiecka'93,) If $\left(T, \Gamma_{0}, \Omega\right)$ satisfies a geometric optic condition, system (1) is null controllable at time T uniformly with respect to the initial condition $\left(y_{0}, y_{1}\right)$: there exist control functions $v \in L^{2}\left(\Sigma_{T}\right)$ such that

Wave like equation with initial data in $\mathrm{L}^{2} \times \mathrm{H}^{-1}$
$\Omega \subset \mathbb{R}^{N}$ bounded domain with C^{2}-boundary; $T>0 ; Q_{T}:=\Omega \times(0, T) ; c \in C^{1}(\bar{\Omega}, \mathbb{R})$; $d \in L^{\infty}\left(Q_{T}\right) ; \Gamma_{0} \subset \partial \Omega$

$$
\left\{\begin{array}{lr}
L y:=y_{t t}-\nabla \cdot(c(x) \nabla y)+d(x, t) y=0, & Q_{T}:=\Omega \times(0, T), \tag{1}\\
y=v 1_{\Gamma_{0}}(x), & \Sigma_{T}:=\partial \Omega \times(0, T), \\
\left(y(\cdot, 0), y_{t}(\cdot, 0)\right)=\left(y_{0}, y_{1}\right) \in \boldsymbol{H}:=L^{2}(\Omega) \times H^{-1}(\Omega), & \Omega .
\end{array}\right.
$$

$v=v(t)$ - control function in $L^{2}\left(\Sigma_{T}\right)$.
Existence - Uniqueness (Lions'88)
$\exists!y=y(v) \in C^{0}\left([0, T] ; L^{2}(\Omega)\right) \cap C^{1}\left([0, T] ; H^{-1}(\Omega)\right)$ and

$$
\|y\|_{L^{\infty}\left(0, T ; L^{2}(\Omega)\right)} \leq C_{\Omega, T}\left(\left\|y_{0}, y_{1}\right\|_{\boldsymbol{H}}+\|v\|_{L^{2}\left(\Sigma_{T}\right)}\right)
$$

NuLL Controllability (Lions'88, Lebeau'92, Lasiecka'93,) If (T, Γ_{0}, Ω) satisfies a geometric optic condition, system (1) is null controllable at time T uniformly with respect to the initial condition $\left(y_{0}, y_{1}\right)$: there exist control functions $v \in L^{2}\left(\Sigma_{T}\right)$ such that

$$
\begin{equation*}
\left(y_{v}(\cdot, T),\left(y_{v}\right)_{t}(\cdot, T)\right)=(0,0), \quad \text { in } \Omega \tag{2}
\end{equation*}
$$

Link with the observability for the adjoint system

The controllability property of the hyperbolic equation is equivalent to the observability for the corresponding adjoint problem :

$$
\begin{align*}
& \begin{cases}L^{\star} \varphi:=\varphi_{t t}-\nabla \cdot(c(x) \nabla \varphi)+d \varphi=0 & \text { in } Q_{T}, \\
\varphi=0 & \text { on } \Sigma_{T}, \\
\left(\varphi(\cdot, T), \varphi_{t}(\cdot, T)\right)=\left(\varphi_{0}, \varphi_{1}\right) \in \boldsymbol{V} & \text { in } \Omega\end{cases} \tag{3}\\
& \boldsymbol{V}:=H_{0}^{1}(\Omega) \times L^{2}(\Omega)=\boldsymbol{H}^{\prime} .
\end{align*}
$$

Observability inequality- System (3) is observable in time T if there exists a positive constant $C_{o b s}>0$ such that

$$
\begin{array}{r}
\left\|\left(\varphi_{0}, \varphi_{1}\right)\right\|_{V}^{2} \leq C_{o b s} \int_{0}^{T} \int_{\Gamma_{0}}\left|\frac{\partial \varphi}{\partial \nu}\right|^{2} d \sigma d t \quad \forall\left(\varphi_{0}, \varphi_{1}\right) \in \boldsymbol{V} . \tag{4}\\
C_{o b s}=C_{o b s}\left(T, \Gamma_{0}, \Omega,\|c\|_{C^{1}(\bar{\Omega})},\|d\|_{L^{\infty}\left(Q_{T}\right)}\right)-\text { Observability constant }
\end{array}
$$

Minimal L^{2}-norm control

$$
\left\{\begin{array}{l}
\text { Minimize } J(y, v)=\frac{1}{2} \int_{0}^{T} \int_{\Gamma_{0}}|v|^{2} d t \tag{5}\\
\text { Subject to }(y, v) \in \mathcal{C}\left(y_{0}, y_{1} ; T\right)
\end{array}\right.
$$

where $\mathcal{C}\left(y_{0}, y_{1} ; T\right)$ denotes the non-empty linear manifold

$$
\mathcal{C}\left(y_{0}, y_{1} ; T\right)=\left\{(y, v): v \in L^{2}\left(\Sigma_{T}\right), y \text { solves (1) and satisfies (2) }\right\} .
$$

Using the Fenchel-Rockafellar theorem [Ekeland-Temam 74], [Brezis 84] we get that

Minimal L^{2}-norm control

$$
\left\{\begin{array}{l}
\text { Minimize } J(y, v)=\frac{1}{2} \int_{0}^{T} \int_{\Gamma_{0}}|v|^{2} d t \tag{5}\\
\text { Subject to }(y, v) \in \mathcal{C}\left(y_{0}, y_{1} ; T\right)
\end{array}\right.
$$

where $\mathcal{C}\left(y_{0}, y_{1} ; T\right)$ denotes the non-empty linear manifold

$$
\mathcal{C}\left(y_{0}, y_{1} ; T\right)=\left\{(y, v): v \in L^{2}\left(\Sigma_{T}\right), y \text { solves (1) and satisfies (2) }\right\}
$$

Using the Fenchel-Rockafellar theorem [Ekeland-Temam 74], [Brezis 84] we get that

$$
\inf _{(y, v) \in \mathcal{C}\left(y_{0}, y_{1} ; T\right)} J(y, v)=-\min _{\left(\varphi_{0}, \varphi_{1}\right) \in V} J^{\star}\left(\varphi_{0}, \varphi_{1}\right)
$$

$$
\left\{\begin{array}{l}
\text { Minimize } J^{\star}\left(\varphi_{0}, \varphi_{1}\right)=\frac{1}{2} \int_{0}^{T} \int_{\Gamma_{0}}\left|\frac{\partial \varphi}{\partial \nu}\right|^{2} d \sigma d t+<\left(\varphi_{0}, \varphi_{1}\right),\left(y_{0}, y_{1}\right)> \tag{6}\\
\text { Subject to }\left(\varphi_{0}, \varphi_{1}\right) \in \boldsymbol{V} \text { where } L^{\star} \varphi=0+I C
\end{array}\right.
$$

$<\left(\varphi_{0}, \varphi_{1}\right),\left(y_{0}, y_{1}\right)>:=<y_{0}, \varphi_{1}>_{L^{2}, L^{2}}-<y_{1}, \varphi_{0}>_{H^{-1}, H_{0}^{1}}$
Optimal control: $v=\frac{\partial \varphi}{\partial \nu} 1_{\Gamma_{0}}$

Approximation and minimization of J^{\star} over $V:=H_{0}^{1}(\Omega) \times L^{2}(\Omega)$

$$
\left\{\begin{array}{l}
\operatorname{Min} J^{\star}\left(\varphi_{0}, \varphi_{1}\right)=\frac{1}{2} \int_{0}^{T} \int_{\Gamma_{0}}\left|\frac{\partial \varphi}{\partial \nu}\right|^{2} d \sigma d t+<\left(\varphi_{0}, \varphi_{1}\right),\left(y_{0}, y_{1}\right)> \tag{7}\\
\text { Subject to }\left(\varphi_{0}, \varphi_{1}\right) \in V=H_{0}^{1}(\Omega) \times L^{2}(\Omega) \text { where } L^{\star} \varphi=0 \quad+I C
\end{array}\right.
$$

The numerical minimization over a finite dimensional space of \boldsymbol{V} w.r.t. $\left(\varphi_{0}, \varphi_{1}\right)$ may be done using iterative gradient method.
The "difficulty" then is to respect at the finite dimensional level the constraint $L^{\star} \varphi=0$!!!!
The usual "trick", developed initially by Glowinski ${ }^{1}$ is first to discretize the hyperbolic equation and then to exactly control the corresponding finite dimensional system.

Approximation and minimization of J^{\star} over $V:=H_{0}^{1}(\Omega) \times L^{2}(\Omega)$

$$
\left\{\begin{array}{l}
\operatorname{Min} J^{\star}\left(\varphi_{0}, \varphi_{1}\right)=\frac{1}{2} \int_{0}^{T} \int_{\Gamma_{0}}\left|\frac{\partial \varphi}{\partial \nu}\right|^{2} d \sigma d t+<\left(\varphi_{0}, \varphi_{1}\right),\left(y_{0}, y_{1}\right)> \tag{7}\\
\text { Subject to }\left(\varphi_{0}, \varphi_{1}\right) \in \boldsymbol{V}=H_{0}^{1}(\Omega) \times L^{2}(\Omega) \quad \text { where } \quad L^{\star} \varphi=0 \quad+I C
\end{array}\right.
$$

The numerical minimization over a finite dimensional space of \boldsymbol{V} w.r.t. $\left(\varphi_{0}, \varphi_{1}\right)$ may be done using iterative gradient method.
The "difficulty" then is to respect at the finite dimensional level the constraint $L^{\star} \varphi=0$!!!!
The usual "trick", developed initially by Glowinski ${ }^{1}$ is first to discretize the hyperbolic equation and then to exactly control the corresponding finite dimensional system.

[^0]
1D - Negative Commutation diagram

Centered finite difference in space and time - Uniform discretization - Constant coefficients $c:=1, d:=0$

$$
\left(\overline{\mathcal{S}}_{h, \Delta t}\right)\left\{\begin{array}{l}
\Delta_{\Delta t} y_{h, \Delta t}-\Delta_{h} y_{h, \Delta t}=0 \tag{8}\\
+ \text { Initial conditions and Boundary terms }
\end{array}\right.
$$

produces a non discrete uniformly bounded and convergent control under the (CFL) condition $\Delta t<h$.

For high frequency components of the discrete solution, the discrete observability constant $C_{\text {obs, } h}$ blows up as $h \rightarrow 0$
[Glowinski-Lions'90] then [Zuazua team later].

Numerical example

$$
\begin{align*}
\Omega=(0,1)-\Gamma_{0}=\{1\}-T & =2.4 \\
& y_{0}(x)=\left\{\begin{array}{cc}
16 x & x \in[0,1 / 2], \\
0 & x \in] 1 / 2,1] .
\end{array} \quad y_{1}(x)=0 .\right. \tag{9}
\end{align*}
$$

The control v with minimal L^{2}-norm is discontinuous :

$$
v(t)=\left\{\begin{array}{cc}
0 & t \in[0,0.9] \cup[1.9, T], \tag{10}\\
8(t-1.4) & t \in] 0.9,1.9[,
\end{array}\right.
$$

leading to $\|v\|_{L^{2}(0, T)}=4 / \sqrt{3} \approx 2.3094$.

Usual centered finite difference scheme - control

Figure: Control $P\left(\boldsymbol{v}_{\boldsymbol{h}}\right)(t)$ vs. $t \in[0, T], \Delta t / h=0.98, T=2.4$ and $h=1 / 10,1 / 20,1 / 30$ and $h=1 / 40$.

1D - Positive Commutation diagram with a modified scheme

2

$$
\left(\overline{\mathcal{S}}_{h, \Delta t}\right)\left\{\begin{array}{l}
\Delta_{\Delta t} y_{h, \Delta t}+\frac{1}{4}\left(h^{2}-\Delta t^{2}\right) \Delta_{h} \Delta_{\Delta t} y_{h, \Delta t}-\Delta_{h} y_{h, \Delta t}=0 \tag{11}\\
+ \text { Initial conditions and Boundary terms }
\end{array}\right.
$$

produces a discrete uniformly bounded and converging control under the condition $\Delta t<h \sqrt{T / 2}$.

Within this approach (discretize then control), remedies in the general case (general domain, non constant coefficients) are unknown.

[^1]
1D - Positive Commutation diagram with a modified scheme

2

$$
\left(\overline{\mathcal{S}}_{h, \Delta t}\right)\left\{\begin{array}{l}
\Delta_{\Delta t} y_{h, \Delta t}+\frac{1}{4}\left(h^{2}-\Delta t^{2}\right) \Delta_{h} \Delta_{\Delta t} y_{h, \Delta t}-\Delta_{h} y_{h, \Delta t}=0, \tag{11}\\
+ \text { Initial conditions and Boundary terms }
\end{array}\right.
$$

produces a discrete uniformly bounded and converging control under the condition $\Delta t<h \sqrt{T / 2}$.

Within this approach (discretize then control), remedies in the general case (general domain, non constant coefficients) are unknown.

[^2]
Modified scheme - control

Figure: Modified scheme - Control $P\left(\boldsymbol{v}_{\boldsymbol{h}}\right)(t)$ vs. $t \in[0, T]-\Delta t=1.095445 h$, $T=2.4$ and $h=1 / 20,1 / 40,1 / 80,1 / 160$.

Second method to bypass the fact that $L^{\star} \varphi_{h} \neq 0$

Since we can not achieve $L^{\star} \varphi_{h}=0$, the idea is to relax the constraint $L^{\star} \varphi_{h}=0$!!!?!!

The idea is to replace the observability inequality

by a "generalized observability inequality"

$$
\begin{equation*}
\left\|\varphi(\cdot, 0), \varphi_{t}(\cdot, 0)\right\|_{V}^{2} \leq C_{\Omega, T}\left(1+C_{o b s}\right)\left(\left\|\frac{\partial \varphi}{\partial \nu}\right\|_{L^{2}\left(\Gamma_{T}\right)}^{2}+\left\|L^{\star} \varphi\right\|_{L^{2}\left(Q_{T}\right)}^{2}\right) \tag{13}
\end{equation*}
$$

Why? If $\varphi_{h} \in \boldsymbol{\Phi}_{h}$ a finite dimensional subspace of $\boldsymbol{\Phi}$, then

(14)

Second method to bypass the fact that $L^{\star} \varphi_{h} \neq 0$

Since we can not achieve $L^{\star} \varphi_{h}=0$, the idea is to relax the constraint $L^{\star} \varphi_{h}=0$!!!?!!

The idea is to replace the observability inequality

$$
\left\{\begin{array}{l}
\left\|\varphi_{0}, \varphi_{1}\right\|_{V}^{2} \leq C_{o b s}\left\|\frac{\partial \varphi}{\partial \nu}\right\|_{L^{2}\left(\Gamma_{T}\right)}^{2}, \quad \forall\left(\varphi_{0}, \varphi_{1}\right) \tag{12}\\
L^{\star} \varphi=0, \quad \varphi_{\mid \Sigma_{T}}=0
\end{array}\right.
$$

by a "generalized observability inequality" :

$$
\begin{equation*}
\left\|\varphi(\cdot, 0), \varphi_{t}(\cdot, 0)\right\|_{V}^{2} \leq C_{\Omega, T}\left(1+C_{o b s}\right)\left(\left\|\frac{\partial \varphi}{\partial \nu}\right\|_{L^{2}\left(\Gamma_{T}\right)}^{2}+\left\|L^{\star} \varphi\right\|_{L^{2}\left(Q_{T}\right)}^{2}\right), \quad \forall \varphi \in \boldsymbol{\Phi} \tag{13}
\end{equation*}
$$

Why ? If $\varphi_{h} \in \Phi_{h}$ a finite dimensional subspace of Φ, then

Second method to bypass the fact that $L^{\star} \varphi_{h} \neq 0$

Since we can not achieve $L^{\star} \varphi_{h}=0$, the idea is to relax the constraint $L^{\star} \varphi_{h}=0$!!!?!!

The idea is to replace the observability inequality

$$
\left\{\begin{array}{l}
\left\|\varphi_{0}, \varphi_{1}\right\|_{V}^{2} \leq C_{o b s}\left\|\frac{\partial \varphi}{\partial \nu}\right\|_{L^{2}\left(\Gamma_{T}\right)}^{2}, \quad \forall\left(\varphi_{0}, \varphi_{1}\right) \tag{12}\\
L^{\star} \varphi=0, \quad \varphi_{\mid \Sigma_{T}}=0
\end{array}\right.
$$

by a "generalized observability inequality" :

$$
\begin{equation*}
\left\|\varphi(\cdot, 0), \varphi_{t}(\cdot, 0)\right\|_{V}^{2} \leq C_{\Omega, T}\left(1+C_{o b s}\right)\left(\left\|\frac{\partial \varphi}{\partial \nu}\right\|_{L^{2}\left(\Gamma_{T}\right)}^{2}+\left\|L^{\star} \varphi\right\|_{L^{2}\left(Q_{T}\right)}^{2}\right), \quad \forall \varphi \in \Phi \tag{13}
\end{equation*}
$$

Why ? If $\varphi_{\boldsymbol{h}} \in \boldsymbol{\Phi}_{\boldsymbol{h}}$ a finite dimensional subspace of $\boldsymbol{\Phi}$, then

$$
\begin{equation*}
\left\|\varphi_{h}(\cdot, 0), \varphi_{h, t}(\cdot, 0)\right\|_{V}^{2} \leq C_{\Omega, T}\left(1+C_{o b s}\right)\left(\left\|\frac{\partial \varphi_{h}}{\partial \nu}\right\|_{L^{2}\left(\Gamma_{T}\right)}^{2}+\left\|L^{\star} \varphi_{h}\right\|_{L^{2}\left(Q_{T}\right)}^{2}\right), \quad \forall \varphi_{h} \in \boldsymbol{\Phi}_{h} \tag{14}
\end{equation*}
$$

with a constant $C_{\Omega, T}\left(1+C_{o b s}\right)$ independant of $h!!!$

Minimization of J^{\star}

We now replace the problem

$$
\left\{\begin{array}{l}
\left.\operatorname{Min} J^{\star}\left(\varphi_{0}, \varphi_{1}\right)=\frac{1}{2} \int_{0}^{T} \int_{\Gamma_{0}}\left|\frac{\partial \varphi}{\partial \nu}\right|^{2} d \sigma d t+<y_{0}, \varphi_{t}(\cdot, 0)\right\rangle_{L^{2}}-\left\langle y_{1}, \varphi(\cdot, 0)\right\rangle_{H^{-1}, H_{0}^{1}} \tag{15}\\
\text { Subject to }\left(\varphi_{0}, \varphi_{1}\right) \in \boldsymbol{V}=H_{0}^{1}(\Omega) \times L^{2}(\Omega) \quad \text { where } L^{\star} \varphi=0
\end{array}\right.
$$

by the equivalent problem

$$
\left\{\begin{array}{l}
\min J^{\star}(\varphi)=\frac{1}{2} \int_{0}^{T} \int_{\Gamma_{0}}\left|\frac{\partial \varphi}{\partial \nu}\right|^{2} d \sigma d t+<y_{0}, \varphi_{t}(\cdot, 0)>_{L^{2}}-\left\langle y_{1}, \varphi(\cdot, 0)\right\rangle_{H^{-1}, H_{0}^{1}} \\
\text { Subject to } \varphi \in \boldsymbol{W}:=\left\{\varphi: \varphi \in C^{0}\left(0, T ; H_{0}^{1}(\Omega)\right) \cap C^{1}\left(0, T ; L^{2}(\Omega)\right), L^{\star} \varphi=0 \in L^{2}\left(Q_{T}\right)\right\} \tag{16}
\end{array}\right.
$$

Remark- \boldsymbol{W} endowed with the norm $\|\varphi\|_{\boldsymbol{w}}:=\left\|\frac{\partial \varphi}{\partial \nu}\right\|_{L^{2}\left(\Gamma_{T}\right)}$ is an Hilbert space.

Minimization of J^{\star}

We now replace the problem

$$
\left\{\begin{array}{l}
\operatorname{Min} J^{\star}\left(\varphi_{0}, \varphi_{1}\right)=\frac{1}{2} \int_{0}^{T} \int_{\Gamma_{0}}\left|\frac{\partial \varphi}{\partial \nu}\right|^{2} d \sigma d t+\left\langle y_{0}, \varphi_{t}(\cdot, 0)\right\rangle_{L^{2}}-\left\langle y_{1}, \varphi(\cdot, 0)\right\rangle_{H^{-1}, H_{0}^{1}} \tag{17}\\
\text { Subject to }\left(\varphi_{0}, \varphi_{1}\right) \in \boldsymbol{V}=H_{0}^{1}(\Omega) \times L^{2}(\Omega) \quad \text { where } L^{\star} \varphi=0
\end{array}\right.
$$

by the equivalent problem

$$
\left\{\begin{array}{l}
\min J_{r^{\star}}^{\star}(\varphi)=\frac{1}{2} \int_{0}^{T} \int_{\Gamma_{0}}\left|\frac{\partial \varphi}{\partial \nu}\right|^{2} d \sigma d t+\frac{r}{2}\left\|L^{\star} \varphi\right\|_{L^{2}\left(Q_{T}\right)}^{2}+\left\langle y_{0}, \varphi_{t}(\cdot, 0)>_{L^{2}}-\left\langle y_{1}, \varphi(\cdot, 0)\right\rangle_{H^{-1}, H_{C}}\right. \tag{18}\\
\text { Subject to } \varphi \in \boldsymbol{W}:=\left\{\varphi: \varphi \in C^{0}\left(0, T ; H_{0}^{1}(\Omega)\right) \cap C^{1}\left(0, T ; L^{2}(\Omega)\right), L^{\star} \varphi=0 \in L^{2}\left(Q_{T}\right)\right\}
\end{array}\right.
$$

for all $r \geq 0$.

Remark- \boldsymbol{W} endowed with the norm $\|\varphi\| \boldsymbol{w}:=\left\|\frac{\partial \varphi}{\partial \nu}\right\|_{L^{2}\left(\Gamma_{T}\right)}$ is an Hilbert space.

Relaxation of $L^{\star} \varphi=0$

In order to address the $L^{2}\left(Q_{T}\right)$ constraint $L^{\star} \varphi=0$, we introduce a Lagrange multiplier $\lambda \in L^{2}\left(Q_{T}\right)$; we consider the saddle point problem ${ }^{3}$:

$$
\left\{\begin{array}{l}
\sup _{\lambda \in L^{2}\left(Q_{T}\right)} \inf _{\varphi \in \Phi} \mathcal{L}_{r}(\varphi, \lambda) \tag{19}\\
\mathcal{L}_{r}(\varphi, \lambda):=J_{r}(\varphi)+<L^{\star} \varphi, \lambda>_{L^{2}\left(Q_{T}\right)} \\
\boldsymbol{\Phi}:=\left\{\varphi: \varphi \in C^{0}\left(0, T ; H_{0}^{1}(\Omega)\right) \cap C^{1}\left(0, T ; L^{2}(\Omega)\right), L^{\star} \varphi \in L^{2}\left(Q_{T}\right)\right\} \supset \boldsymbol{W}
\end{array}\right.
$$

Remark- For all $\eta>0, \boldsymbol{\Phi}$ is endowed with the scalar product,

 $\|\varphi\|_{\Phi}:=\sqrt{\langle\varphi, \varphi\rangle_{\Phi}}$ is a norm and $\left(\Phi,\|\cdot\|_{\Phi}\right)$ is an Hilbert space.[^3]
Relaxation of $L^{\star} \varphi=0$

In order to address the $L^{2}\left(Q_{T}\right)$ constraint $L^{\star} \varphi=0$, we introduce a Lagrange multiplier $\lambda \in L^{2}\left(Q_{T}\right)$; we consider the saddle point problem ${ }^{3}$:

$$
\left\{\begin{array}{l}
\sup _{\lambda \in L^{2}\left(Q_{T}\right)} \inf _{\varphi \in \Phi} \mathcal{L}_{r}(\varphi, \lambda) \tag{19}\\
\mathcal{L}_{r}(\varphi, \lambda):=J_{r}(\varphi)+<L^{\star} \varphi, \lambda>_{L^{2}\left(Q_{T}\right)} \\
\boldsymbol{\Phi}:=\left\{\varphi: \varphi \in C^{0}\left(0, T ; H_{0}^{1}(\Omega)\right) \cap C^{1}\left(0, T ; L^{2}(\Omega)\right), L^{\star} \varphi \in L^{2}\left(Q_{T}\right)\right\} \supset \boldsymbol{W}
\end{array}\right.
$$

Remark- For all $\eta>0, \boldsymbol{\Phi}$ is endowed with the scalar product,

$$
<\varphi, \bar{\varphi}>_{\boldsymbol{\Phi}}:=<\frac{\partial \varphi}{\partial \nu}, \frac{\partial \bar{\varphi}}{\partial \nu}>_{L^{2}\left(\Gamma_{T}\right)}+\eta<L^{\star} \varphi, L^{\star} \bar{\varphi}>_{L^{2}\left(Q_{T}\right)}, \quad \forall \varphi, \bar{\varphi} \in \boldsymbol{\Phi} .
$$

$\|\varphi\|_{\boldsymbol{\Phi}}:=\sqrt{\langle\varphi, \varphi\rangle_{\boldsymbol{\Phi}}}$ is a norm and $\left(\boldsymbol{\Phi},\|\cdot\|_{\boldsymbol{\Phi}}\right)$ is an Hilbert space.

[^4]
Mixed formulation

Find $(\varphi, \lambda) \in \boldsymbol{\Phi} \times L^{2}\left(Q_{T}\right)$ solution of

$$
\left\{\begin{align*}
a_{r}(\varphi, \bar{\varphi})+b(\bar{\varphi}, \lambda) & =I(\bar{\varphi}), & & \forall \bar{\varphi} \in \Phi \tag{20}\\
b(\varphi, \bar{\lambda}) & =0, & & \forall \bar{\lambda} \in L^{2}\left(Q_{T}\right),
\end{align*}\right.
$$

where

$$
\begin{align*}
a_{r}: \boldsymbol{\Phi} \times \boldsymbol{\Phi} & \rightarrow \mathbb{R}, \quad a_{r}(\varphi, \bar{\varphi})=<\frac{\partial \varphi}{\partial \nu}, \frac{\partial \bar{\varphi}}{\partial \nu}>_{L^{2}\left(\Gamma_{T}\right)}+r<L^{\star} \varphi, L^{\star} \bar{\varphi}>_{L^{2}\left(Q_{T}\right)} \tag{21}\\
b: \boldsymbol{\Phi} \times L^{2}\left(Q_{T}\right) & \rightarrow \mathbb{R}, \quad b(\varphi, \lambda)=<L^{\star} \varphi, \lambda>_{L^{2}\left(Q_{T}\right)} \tag{22}\\
I: \Phi & \rightarrow \mathbb{R}, \quad I(\varphi)=-<y_{0}, \varphi_{t}(\cdot, 0)>_{L^{2}}+\left\langle y_{1}, \varphi(\cdot, 0)\right\rangle_{H^{-1}, H_{0}^{1}} \tag{23}
\end{align*}
$$

Well-posedness

Theorem

For all $r \geq 0$,

1. The mixed formulation is well-posed.
2. The unique solution $(\varphi, \lambda) \in \Phi \times L^{2}\left(Q_{T}\right)$ is the unique saddle-point of the Lagrangian $\mathcal{L}_{r}: \Phi \times L^{2}\left(Q_{T}\right) \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
\mathcal{L}_{r}(\varphi, \lambda)=\frac{1}{2} a_{r}(\varphi, \varphi)+b(\varphi, \lambda)-I(\varphi) . \tag{24}
\end{equation*}
$$

3. The optimal function φ given by 2. satisfies $\varphi \in \mathbf{W}$ and is the minimizer of J_{r}^{\star} over \boldsymbol{W} while the optimal function $\lambda \in L^{2}\left(Q_{T}\right)$ is the state of the controlled wave equation in the weak sense.
4. We have the following estimates

$$
\begin{aligned}
& \|\varphi\|_{\boldsymbol{\Phi}} \leq\left\|y_{0}, y_{1}\right\|_{\boldsymbol{H}} \\
& \|\lambda\|_{L^{2}} \leq \frac{1}{\delta}\left(1+\max \left(1, \frac{r}{\eta}\right)\right)\left\|y_{0}, y_{1}\right\|_{\boldsymbol{H}}, \quad \delta=\left(C_{\Omega, T}+\eta\right)^{-1 / 2}
\end{aligned}
$$

Well-posedness 2

The kernel $\mathcal{N}(b)=\left\{\varphi \in \boldsymbol{\Phi} ; b(\varphi, \lambda)=0 \quad \forall \lambda \in L^{2}\left(Q_{T}\right)\right\}$ coincides with \boldsymbol{W} : we get

$$
a_{r}(\varphi, \varphi)=\|\varphi\|_{\boldsymbol{\Phi}}^{2}, \quad \forall \varphi \in \mathcal{N}(b)=\boldsymbol{W} .
$$

It remains to check the inf-sup constant property : $\exists \delta>0$ such that

$$
\inf _{\lambda \in L^{2}} \sup _{\varphi \in \Phi} \frac{b(\varphi, \lambda)}{\|\varphi\| \phi\|\lambda\|_{L^{2}}} \geq \delta .
$$

For any fixed $\lambda \in L^{2}\left(Q_{T}\right)$, we define $\varphi^{0} \in \boldsymbol{\Phi}$ as the unique solution of

$$
L^{+} \varphi^{n}=\lambda \text { in } Q_{T}, \quad\left(\varphi^{n}(, 0), \varphi_{i}^{n}(, 0)\right)=(0,0) \text { on } \Omega, \quad \varphi^{n}=0 \text { on } \Sigma_{T} \text {. }
$$

We get $b\left(\varphi^{0}, \lambda\right)=\|\lambda\|_{L^{2}}^{2}$ and $\left\|\varphi^{0}\right\|_{\Phi}^{2}=\left\|\frac{\partial \varphi^{0}}{\partial \nu}\right\|_{L^{2}\left(\Gamma_{T}\right)}^{2}+\eta\|\lambda\|_{L^{2}}^{2}$.
The estimate $\left\|\frac{\partial \varphi^{0}}{\partial \nu}\right\|_{L^{2}\left(\Gamma_{T}\right)} \leq \sqrt{C_{\cap} T}\|\lambda\|_{L^{2}\left(Q_{T}\right)}$ implies that

leading to the inf-sup property with $\delta=\left(C_{\Omega, T}+\eta\right)^{-1 / 2}$.

Well-posedness 2

The kernel $\mathcal{N}(b)=\left\{\varphi \in \boldsymbol{\Phi} ; b(\varphi, \lambda)=0 \quad \forall \lambda \in L^{2}\left(Q_{T}\right)\right\}$ coincides with \boldsymbol{W} : we get

$$
a_{r}(\varphi, \varphi)=\|\varphi\|_{\boldsymbol{\Phi}}^{2}, \quad \forall \varphi \in \mathcal{N}(b)=\boldsymbol{w} .
$$

It remains to check the inf-sup constant property: $\exists \delta>0$ such that

$$
\begin{equation*}
\inf _{\lambda \in L^{2}} \sup _{\varphi \in \Phi} \frac{b(\varphi, \lambda)}{\|\varphi\|_{\Phi}\|\lambda\|_{L^{2}}} \geq \delta . \tag{25}
\end{equation*}
$$

For any fixed $\lambda \in L^{2}\left(Q_{T}\right)$, we define $\varphi^{0} \in \Phi$ as the unique solution of

Well-posedness 2

The kernel $\mathcal{N}(b)=\left\{\varphi \in \boldsymbol{\Phi} ; b(\varphi, \lambda)=0 \quad \forall \lambda \in L^{2}\left(Q_{T}\right)\right\}$ coincides with \boldsymbol{W} : we get

$$
a_{r}(\varphi, \varphi)=\|\varphi\|_{\boldsymbol{\Phi}}^{2}, \quad \forall \varphi \in \mathcal{N}(b)=\boldsymbol{w}
$$

It remains to check the inf-sup constant property: $\exists \delta>0$ such that

$$
\begin{equation*}
\inf _{\lambda \in L^{2}} \sup _{\varphi \in \Phi} \frac{b(\varphi, \lambda)}{\|\varphi\|_{\Phi}\|\lambda\|_{L^{2}}} \geq \delta \tag{25}
\end{equation*}
$$

For any fixed $\lambda \in L^{2}\left(Q_{T}\right)$, we define $\varphi^{0} \in \boldsymbol{\Phi}$ as the unique solution of

$$
L^{\star} \varphi^{0}=\lambda \text { in } Q_{T}, \quad\left(\varphi^{0}(\cdot, 0), \varphi_{t}^{0}(\cdot, 0)\right)=(0,0) \text { on } \Omega, \quad \varphi^{0}=0 \text { on } \Sigma_{T}
$$

We get $b\left(\varphi^{0}, \lambda\right)=\|\lambda\|_{L^{2}}^{2}$ and $\left\|\varphi^{0}\right\|_{\Phi}^{2}=\left\|\frac{\partial \varphi^{0}}{\partial \nu}\right\|_{L^{2}\left(\Gamma_{T}\right)}^{2}+\eta\|\lambda\|_{L^{2}}^{2}$.
The estimate $\left\lvert\, \frac{\partial \varphi^{0}}{\partial \nu}\right. \|_{L^{2}\left(\Gamma_{T}\right)} \leq \sqrt{C_{\Omega, T}\|\lambda\|_{L^{2}\left(Q_{T}\right)} \text { implies that }}$

Well-posedness 2

The kernel $\mathcal{N}(b)=\left\{\varphi \in \boldsymbol{\Phi} ; b(\varphi, \lambda)=0 \quad \forall \lambda \in L^{2}\left(Q_{T}\right)\right\}$ coincides with \boldsymbol{W} : we get

$$
a_{r}(\varphi, \varphi)=\|\varphi\|_{\boldsymbol{\Phi}}^{2}, \quad \forall \varphi \in \mathcal{N}(b)=\boldsymbol{W}
$$

It remains to check the inf-sup constant property: $\exists \delta>0$ such that

$$
\begin{equation*}
\inf _{\lambda \in L^{2}} \sup _{\varphi \in \Phi} \frac{b(\varphi, \lambda)}{\|\varphi\|_{\Phi}\|\lambda\|_{L^{2}}} \geq \delta \tag{25}
\end{equation*}
$$

For any fixed $\lambda \in L^{2}\left(Q_{T}\right)$, we define $\varphi^{0} \in \boldsymbol{\Phi}$ as the unique solution of

$$
L^{\star} \varphi^{0}=\lambda \text { in } Q_{T}, \quad\left(\varphi^{0}(\cdot, 0), \varphi_{t}^{0}(\cdot, 0)\right)=(0,0) \text { on } \Omega, \quad \varphi^{0}=0 \text { on } \Sigma_{T}
$$

We get $b\left(\varphi^{0}, \lambda\right)=\|\lambda\|_{L^{2}}^{2}$ and $\left\|\varphi^{0}\right\|_{\Phi}^{2}=\left\|\frac{\partial \varphi^{0}}{\partial \nu}\right\|_{L^{2}\left(\Gamma_{T}\right)}^{2}+\eta\|\lambda\|_{L^{2}}^{2}$.
The estimate $\left\|\frac{\partial \varphi^{0}}{\partial \nu}\right\|_{L^{2}\left(\Gamma_{T}\right)} \leq \sqrt{C_{\Omega, T}}\|\lambda\|_{L^{2}\left(Q_{T}\right)}$ implies that

$$
\sup _{\varphi \in \Phi} \frac{b(\varphi, \lambda)}{\|\varphi\|_{\Phi}\|\lambda\|_{L^{2}}} \geq \frac{b\left(\varphi^{0}, \lambda\right)}{\left\|\varphi^{0}\right\|_{\Phi}\|\lambda\|_{L^{2}}} \geq \frac{1}{\sqrt{C_{\Omega, T}+\eta}}>0
$$

leading to the inf-sup property with $\delta=\left(C_{\Omega, T}+\eta\right)^{-1 / 2}$.

The multiplier λ

Taking $r=0$, the first equation reads

$$
\begin{equation*}
a_{r=0}(\varphi, \bar{\varphi})+b(\bar{\varphi}, \lambda)=l(\bar{\varphi}), \quad \forall \bar{\varphi} \in \Phi \tag{26}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\iint_{\Gamma_{T}} \frac{\partial \varphi}{\partial \nu} \frac{\partial \bar{\varphi}}{\partial \nu}+\iint_{Q_{T}} \lambda L^{\star} \bar{\varphi}=-\left\langle y_{0}, \bar{\varphi}_{t}(\cdot, 0)\right\rangle_{L^{2}}+\left\langle y_{1}, \bar{\varphi}(\cdot, 0)\right\rangle_{H^{-1}, H_{0}^{1}}, \forall \bar{\varphi} \in \boldsymbol{\Phi} \tag{27}
\end{equation*}
$$

which means $\lambda \in L^{2}\left(Q_{T}\right)$ is solution in the sense of transposition of

$$
\left\{\begin{array}{l}
L \lambda=0, \quad \text { in } Q_{T} \\
\left(\lambda(\cdot, 0), \lambda_{t}(\cdot, 0)\right)=\left(y_{0}, y_{1}\right) \in L^{2}(\Omega) \times H^{-1}(\Omega) \\
\left(\lambda(\cdot, T), \lambda_{t}(\cdot, T)\right)=(0,0), \\
\lambda=\frac{\partial \varphi}{\partial \nu} \text { on } \Gamma_{T}
\end{array}\right.
$$

Therefore, λ coincides with the weak solution of the wave equation controlled by v.

$$
\lambda \in C^{0}\left([0, T], L^{2}(\Omega)\right) \cap C^{1}\left([0, T], H^{-1}(\Omega)\right)
$$

The multiplier λ

Taking $r=0$, the first equation reads

$$
\begin{equation*}
a_{r=0}(\varphi, \bar{\varphi})+b(\bar{\varphi}, \lambda)=l(\bar{\varphi}), \quad \forall \bar{\varphi} \in \boldsymbol{\Phi} \tag{26}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\left.\iint_{\Gamma_{T}} \frac{\partial \varphi}{\partial \nu} \frac{\partial \bar{\varphi}}{\partial \nu}+\iint_{Q_{T}} \lambda L^{\star} \bar{\varphi}=-<y_{0}, \bar{\varphi}_{t}(\cdot, 0)\right\rangle_{L^{2}}+\left\langle y_{1}, \bar{\varphi}(\cdot, 0)\right\rangle_{H^{-1}, H_{0}^{1}}, \forall \bar{\varphi} \in \boldsymbol{\Phi} \tag{27}
\end{equation*}
$$

which means $\lambda \in L^{2}\left(Q_{T}\right)$ is solution in the sense of transposition of

$$
\left\{\begin{array}{l}
L \lambda=0, \quad \text { in } Q_{T} \tag{28}\\
\left(\lambda(\cdot, 0), \lambda_{t}(\cdot, 0)\right)=\left(y_{0}, y_{1}\right) \in L^{2}(\Omega) \times H^{-1}(\Omega) \\
\left(\lambda(\cdot, T), \lambda_{t}(\cdot, T)\right)=(0,0), \\
\lambda=\frac{\partial \varphi}{\partial \nu} \text { on } \Gamma_{T}
\end{array}\right.
$$

Therefore, λ coincides with the weak solution of the wave equation controlled by v.

$$
\lambda \in C^{0}\left([0, T], L^{2}(\Omega)\right) \cap C^{1}\left([0, T], H^{-1}(\Omega)\right)
$$

Dual of the dual - Minimization w.r.t. λ

Lemma

Let \mathcal{P}_{r} be the linear operator from L^{2} into L^{2} defined by

$$
\mathcal{P} \mathcal{P}_{r} \lambda:=L^{\star} \varphi, \quad \forall \lambda \in L^{2} \quad \text { where } \quad \varphi \in \boldsymbol{\Phi} \quad \text { solves } \quad a_{r}(\varphi, \bar{\varphi})=b(\bar{\varphi}, \lambda), \quad \forall \bar{\varphi} \in \boldsymbol{\Phi} .
$$

For any $r>0$, the operator \mathcal{P}_{r} is a strongly elliptic, symmetric isomorphism from L^{2} into L^{2}.

Dual of the dual - Minimization w.r.t. λ

Lemma

Let \mathcal{P}_{r} be the linear operator from L^{2} into L^{2} defined by

$$
\mathcal{P} \mathcal{P}_{r} \lambda:=L^{\star} \varphi, \quad \forall \lambda \in L^{2} \quad \text { where } \quad \varphi \in \boldsymbol{\Phi} \quad \text { solves } \quad a_{r}(\varphi, \bar{\varphi})=b(\bar{\varphi}, \lambda), \quad \forall \bar{\varphi} \in \boldsymbol{\Phi} .
$$

For any $r>0$, the operator \mathcal{P}_{r} is a strongly elliptic, symmetric isomorphism from L^{2} into L^{2}.

Dual of the dual - Minimization w.r.t. λ

Lemma

Let \mathcal{P}_{r} be the linear operator from L^{2} into L^{2} defined by

$$
\mathcal{P}_{r} \lambda:=L^{\star} \varphi, \quad \forall \lambda \in L^{2} \quad \text { where } \quad \varphi \in \boldsymbol{\Phi} \quad \text { solves } \quad a_{r}(\varphi, \bar{\varphi})=b(\bar{\varphi}, \lambda), \quad \forall \bar{\varphi} \in \boldsymbol{\Phi} .
$$

For any $r>0$, the operator \mathcal{P}_{r} is a strongly elliptic, symmetric isomorphism from L^{2} into L^{2}.

Theorem

$$
\sup _{\lambda \in L^{2}} \inf _{\varphi \in \Phi} \mathcal{L}_{r}(\varphi, \lambda)=-\inf _{\lambda \in L^{2}} J_{r}^{\star \star}(\lambda)+\mathcal{L}_{r}\left(\varphi_{0}, 0\right)
$$

where $\varphi_{0} \in \boldsymbol{\Phi}$ solves $a_{r}\left(\varphi_{0}, \bar{\varphi}\right)=I(\bar{\varphi}), \forall \bar{\varphi} \in \Phi$ and $J_{r}^{\star \star}: L^{2} \rightarrow \mathbb{R}$ defined by

$$
J_{r}^{\star \star}(\lambda):=\frac{1}{2}<\mathcal{P}_{r} \lambda, \lambda>_{L^{2}\left(Q_{T}\right)}-b\left(\varphi_{0}, \lambda\right)
$$

Conformal Approximation

Let then Φ_{h} and Λ_{h} be two finite dimensional spaces parametrized by the variable h such that

$$
\Phi_{h} \subset \Phi, \quad \Lambda_{h} \subset L^{2}\left(Q_{T}\right), \quad \forall h>0 .
$$

Then, we can introduce the following approximated problems : find $\left(\varphi_{h}, \lambda_{h}\right) \in \Phi_{h} \times \Lambda_{h}$ solution of

$$
\left\{\begin{align*}
a_{r}\left(\varphi_{h}, \bar{\varphi}_{h}\right)+b\left(\bar{\varphi}_{h}, \lambda_{h}\right) & =I\left(\bar{\varphi}_{h}\right), & & \forall \bar{\varphi}_{h} \in \Phi_{h} \tag{29}\\
b\left(\varphi_{h}, \bar{\lambda}_{h}\right) & =0, & & \forall \bar{\lambda}_{h} \in \Lambda_{h} .
\end{align*}\right.
$$

For any $h>0$, the well-posedness is again a consequence of two properties

Conformal Approximation

Let then Φ_{h} and Λ_{h} be two finite dimensional spaces parametrized by the variable h such that

$$
\Phi_{h} \subset \Phi, \quad \Lambda_{h} \subset L^{2}\left(Q_{T}\right), \quad \forall h>0
$$

Then, we can introduce the following approximated problems : find $\left(\varphi_{h}, \lambda_{h}\right) \in \Phi_{h} \times \Lambda_{h}$ solution of

$$
\left\{\begin{align*}
a_{r}\left(\varphi_{h}, \bar{\varphi}_{h}\right)+b\left(\bar{\varphi}_{h}, \lambda_{h}\right) & =I\left(\bar{\varphi}_{h}\right), & & \forall \bar{\varphi}_{h} \in \Phi_{h} \tag{29}\\
b\left(\varphi_{h}, \bar{\lambda}_{h}\right) & =0, & & \forall \bar{\lambda}_{h} \in \Lambda_{h} .
\end{align*}\right.
$$

For any $h>0$, the well-posedness is again a consequence of two properties

- the coercivity of the bilinear form a_{r} on the subset $\mathcal{N}_{h}(b)=\left\{\varphi_{h} \in \Phi_{h} ; b\left(\varphi_{h}, \lambda_{h}\right)=0 \quad \forall \lambda_{h} \in \Lambda_{h}\right\}$. From

$$
a_{r}(\varphi, \varphi) \geq \frac{r}{\eta}\|\varphi\|_{\boldsymbol{\Phi}}^{2}, \quad \forall \varphi \in \boldsymbol{\Phi}
$$

the form a_{r} is coercive on the full space $\boldsymbol{\Phi}$, and so a fortiori on $\mathcal{N}_{h}(b) \subset \Phi_{h} \subset \boldsymbol{\Phi}$.
\rightarrow The second property is a discrete inf-sup condition : there exists $\delta>0$ such that

Conformal Approximation

Let then Φ_{h} and Λ_{h} be two finite dimensional spaces parametrized by the variable h such that

$$
\Phi_{h} \subset \boldsymbol{\Phi}, \quad \Lambda_{h} \subset L^{2}\left(Q_{T}\right), \quad \forall h>0
$$

Then, we can introduce the following approximated problems : find $\left(\varphi_{h}, \lambda_{h}\right) \in \Phi_{h} \times \Lambda_{h}$ solution of

$$
\left\{\begin{align*}
a_{r}\left(\varphi_{h}, \bar{\varphi}_{h}\right)+b\left(\bar{\varphi}_{h}, \lambda_{h}\right) & =I\left(\bar{\varphi}_{h}\right), & & \forall \bar{\varphi}_{h} \in \Phi_{h} \tag{29}\\
b\left(\varphi_{h}, \bar{\lambda}_{h}\right) & =0, & & \forall \bar{\lambda}_{h} \in \Lambda_{h} .
\end{align*}\right.
$$

For any $h>0$, the well-posedness is again a consequence of two properties

- the coercivity of the bilinear form a_{r} on the subset $\mathcal{N}_{h}(b)=\left\{\varphi_{h} \in \Phi_{h} ; b\left(\varphi_{h}, \lambda_{h}\right)=0 \quad \forall \lambda_{h} \in \Lambda_{h}\right\}$. From

$$
a_{r}(\varphi, \varphi) \geq \frac{r}{\eta}\|\varphi\|_{\boldsymbol{\Phi}}^{2}, \quad \forall \varphi \in \boldsymbol{\Phi}
$$

the form a_{r} is coercive on the full space $\boldsymbol{\Phi}$, and so a fortiori on $\mathcal{N}_{h}(b) \subset \Phi_{h} \subset \boldsymbol{\Phi}$.

- The second property is a discrete inf-sup condition : there exists $\delta>0$ such that

$$
\begin{equation*}
\delta_{h}:=\inf _{\lambda_{h} \in \Lambda_{h}} \sup _{\varphi_{h} \in \Phi_{h}} \frac{b\left(\varphi_{h}, \lambda_{h}\right)}{\left\|\varphi_{h}\right\|_{\Phi_{h}}\left\|\lambda_{h}\right\|_{\Lambda_{h}}} \geq \delta \tag{30}
\end{equation*}
$$

Necessary condition: $\operatorname{dim}\left(\Phi_{h}\right)>\operatorname{dim}\left(\Lambda_{h}\right)$

Finite dimensional linear system

Let $n_{h}=\operatorname{dim} \Phi_{h}, m_{h}=\operatorname{dim} \Lambda_{h}$ and let the real matrices $A_{r, h} \in \mathbb{R}^{n_{h}, n_{h}}, B_{h} \in \mathbb{R}^{m_{h}, n_{h}}$, $J_{h} \in \mathbb{R}^{m_{h}, m_{h}}$ and $L_{h} \in \mathbb{R}^{n_{h}}$ be defined by

$$
\left\{\begin{aligned}
a_{r}\left(\varphi_{h}, \overline{\varphi_{h}}\right) & =<A_{r, h}\left\{\varphi_{h}\right\},\left\{\overline{\varphi_{h}}\right\}>_{\mathbb{R}^{n_{h}}, \mathbb{R}^{n_{h}}}, & & \forall \varphi_{h}, \overline{\varphi_{h}} \in \Phi_{h}, \\
b\left(\varphi_{h}, \lambda_{h}\right) & =<B_{h}\left\{\varphi_{h}\right\},\left\{\lambda_{h}\right\}>_{\mathbb{R}^{m_{h}}, \mathbb{R}^{m_{h}}}, & & \forall \varphi_{h} \in \Phi_{h}, \forall \lambda_{h} \in \Lambda_{h}, \\
I\left(\varphi_{h}\right) & =<L_{h},\left\{\varphi_{h}\right\}>, \quad \forall \varphi_{h} \in \Phi_{h} & &
\end{aligned}\right.
$$

where $\left\{\varphi_{h}\right\} \in \mathbb{R}^{n_{h}}$ denotes the vector associated to φ_{h} and $<\cdot, \cdot>_{\mathbb{R}^{n_{h}}, \mathbb{R}_{h}}$ the usual scalar product over $\mathbb{R}^{n_{h}}$. Problem (29) reads as follows :
find $\left\{\varphi_{h}\right\} \in \mathbb{R}^{n_{h}}$ and $\left\{\lambda_{h}\right\} \in \mathbb{R}^{m_{h}}$ such that

$$
\left(\begin{array}{cc}
A_{r, h} & B_{h}^{T} \tag{31}\\
B_{h} & 0
\end{array}\right)_{\mathbb{R}^{n_{h}+m_{h}, n_{h}+m_{h}}}\binom{\left\{\varphi_{h}\right\}}{\left\{\lambda_{h}\right\}}_{\mathbb{R}^{n_{h}+m_{h}}}=\binom{L_{h}}{0}_{\mathbb{R}^{n_{h}+m_{h}}} .
$$

$A_{r, h}$ is symmetric and positive definite for any $h>0$ and any $r>0$. The full matrix of order $m_{h}+n_{h}$ in (31) is symmetric but not positive definite.

Choice of the conformal spaces Φ_{h} and Λ_{h}

We introduce a triangulation \mathcal{T}_{h} such that $\overline{Q_{T}}=\cup_{K \in \mathcal{T}_{h}} K$ and we assume that $\left\{\mathcal{T}_{h}\right\}_{h>0}$ is a regular family. We note $h:=\max \left\{\operatorname{diam}(K), K \in \mathcal{T}_{h}\right\}$.

We define the finite dimensional space

The space Φ_{h} must be chosen such that $L^{*} \varphi_{h} \in L^{2}\left(Q_{T}\right)$ for any $\varphi_{h} \in \Phi_{h}$. This is guaranteed as soon as φ_{h} possesses second-order derivatives in $L^{2}\left(Q_{T}\right)$. A conformal approximation based on standard triangulation of Q_{T} is obtained with spaces of functions continuously differentiable with respect to both x and t.

We introduce the space Φ_{h} as follows:

where $\mathbb{P}(K)$ denotes an appropriate space of polynomial functions in x and t.

Choice of the conformal spaces Φ_{h} and Λ_{h}

We introduce a triangulation \mathcal{T}_{h} such that $\overline{Q_{T}}=\cup_{K \in \mathcal{T}_{h}} K$ and we assume that $\left\{\mathcal{I}_{h}\right\}_{h>0}$ is a regular family. We note $h:=\max \left\{\operatorname{diam}(K), K \in \mathcal{T}_{h}\right\}$.

We define the finite dimensional space

$$
\Lambda_{h}=\left\{\lambda_{h} \in C^{0}\left(\overline{Q_{T}}\right),\left.\lambda_{h}\right|_{K} \in \mathbb{P}_{1}(K) \quad \forall K \in \mathcal{T}_{h}, \lambda_{h}=0 \text { on } \Sigma_{T}\right\} \subset L^{2}\left(Q_{T}\right)
$$

The space Φ_{h} must be chosen such that $L^{*} \varphi_{h} \in L^{2}\left(Q_{T}\right)$ for any $\varphi_{h} \in \Phi_{h}$. This is guaranteed as soon as φ_{h} possesses second-order derivatives in $L^{2}\left(Q_{T}\right)$. A conformal approximation based on standard triangulation of Q_{T} is obtained with spaces of functions continuously differentiable with respect to both x and t.

We introduce the space Φ_{h} as follows:

where $\mathbb{P}(K)$ denotes an appropriate space of polynomial functions in x and t.

Choice of the conformal spaces Φ_{h} and Λ_{h}

We introduce a triangulation \mathcal{T}_{h} such that $\overline{Q_{T}}=\cup_{K \in \mathcal{T}_{h}} K$ and we assume that $\left\{\mathcal{T}_{h}\right\}_{h>0}$ is a regular family. We note $h:=\max \left\{\operatorname{diam}(K), K \in \mathcal{T}_{h}\right\}$.

We define the finite dimensional space

$$
\Lambda_{h}=\left\{\lambda_{h} \in C^{0}\left(\overline{Q_{T}}\right),\left.\lambda_{h}\right|_{K} \in \mathbb{P}_{1}(K) \quad \forall K \in \mathcal{T}_{h}, \lambda_{h}=0 \text { on } \Sigma_{T}\right\} \subset L^{2}\left(Q_{T}\right)
$$

The space Φ_{h} must be chosen such that $L^{\star} \varphi_{h} \in L^{2}\left(Q_{T}\right)$ for any $\varphi_{h} \in \Phi_{h}$. This is guaranteed as soon as φ_{h} possesses second-order derivatives in $L^{2}\left(Q_{T}\right)$. A conformal approximation based on standard triangulation of Q_{T} is obtained with spaces of functions continuously differentiable with respect to both x and t.

We introduce the space Φ_{h} as follows:
where $\mathbb{P}(K)$ denotes an appropriate space of polynomial functions in x and t.

Choice of the conformal spaces Φ_{h} and Λ_{h}

We introduce a triangulation \mathcal{T}_{h} such that $\overline{Q_{T}}=\cup_{K \in \mathcal{T}_{h}} K$ and we assume that $\left\{\mathcal{I}_{h}\right\}_{h>0}$ is a regular family. We note $h:=\max \left\{\operatorname{diam}(K), K \in \mathcal{T}_{h}\right\}$.

We define the finite dimensional space

$$
\Lambda_{h}=\left\{\lambda_{h} \in C^{0}\left(\overline{Q_{T}}\right),\left.\lambda_{h}\right|_{K} \in \mathbb{P}_{1}(K) \quad \forall K \in \mathcal{T}_{h}, \lambda_{h}=0 \text { on } \Sigma_{T}\right\} \subset L^{2}\left(Q_{T}\right)
$$

The space Φ_{h} must be chosen such that $L^{\star} \varphi_{h} \in L^{2}\left(Q_{T}\right)$ for any $\varphi_{h} \in \Phi_{h}$. This is guaranteed as soon as φ_{h} possesses second-order derivatives in $L^{2}\left(Q_{T}\right)$. A conformal approximation based on standard triangulation of Q_{T} is obtained with spaces of functions continuously differentiable with respect to both x and t.

We introduce the space Φ_{h} as follows:

$$
\Phi_{h}=\left\{\varphi_{h} \in \Phi_{h} \in C^{1}\left(\overline{Q_{T}}\right):\left.\varphi_{h}\right|_{K} \in \mathbb{P}(K) \quad \forall K \in \mathcal{T}_{h}, \varphi_{h}=0 \text { on } \Sigma_{T}\right\} \subset \Phi
$$

where $\mathbb{P}(K)$ denotes an appropriate space of polynomial functions in x and t.

Choice of the conformal spaces Φ_{h} and Λ_{h}

We introduce a triangulation \mathcal{T}_{h} such that $\overline{Q_{T}}=\cup_{K \in \mathcal{T}_{h}} K$ and we assume that $\left\{\mathcal{I}_{h}\right\}_{h>0}$ is a regular family. We note $h:=\max \left\{\operatorname{diam}(K), K \in \mathcal{T}_{h}\right\}$.

We define the finite dimensional space

$$
\Lambda_{h}=\left\{\lambda_{h} \in C^{0}\left(\overline{Q_{T}}\right),\left.\lambda_{h}\right|_{K} \in \mathbb{P}_{1}(K) \quad \forall K \in \mathcal{T}_{h}, \lambda_{h}=0 \text { on } \Sigma_{T}\right\} \subset L^{2}\left(Q_{T}\right)
$$

The space Φ_{h} must be chosen such that $L^{\star} \varphi_{h} \in L^{2}\left(Q_{T}\right)$ for any $\varphi_{h} \in \Phi_{h}$. This is guaranteed as soon as φ_{h} possesses second-order derivatives in $L^{2}\left(Q_{T}\right)$. A conformal approximation based on standard triangulation of Q_{T} is obtained with spaces of functions continuously differentiable with respect to both x and t.

We introduce the space Φ_{h} as follows:

$$
\Phi_{h}=\left\{\varphi_{h} \in \Phi_{h} \in C^{1}\left(\overline{Q_{T}}\right):\left.\varphi_{h}\right|_{K} \in \mathbb{P}(K) \quad \forall K \in \mathcal{T}_{h}, \varphi_{h}=0 \text { on } \Sigma_{T}\right\} \subset \Phi
$$

where $\mathbb{P}(K)$ denotes an appropriate space of polynomial functions in x and t.

C^{1} finite element over Q_{T}

4

$$
\Phi_{h}=\left\{\varphi_{h} \in \Phi_{h} \in C^{1}\left(\overline{Q_{T}}\right):\left.\varphi_{h}\right|_{K} \in \mathbb{P}(K) \quad \forall K \in \mathcal{T}_{h}, \varphi_{h}=0 \text { on } \Sigma_{T}\right\}
$$

where $\mathbb{P}(K)$ denotes an appropriate space of polynomial functions in x and t.

We may consider the following choices for $\mathbb{P}(K)$:
${ }^{4}$ P.G. Ciarlet, The finite element for elliptic problems, North-Holland, 1979

$$
\Phi_{h}=\left\{\varphi_{h} \in \Phi_{h} \in C^{1}\left(\overline{Q_{T}}\right):\left.\varphi_{h}\right|_{K} \in \mathbb{P}(K) \quad \forall K \in \mathcal{T}_{h}, \varphi_{h}=0 \text { on } \Sigma_{T}\right\}
$$

where $\mathbb{P}(K)$ denotes an appropriate space of polynomial functions in x and t.

We may consider the following choices for $\mathbb{P}(K)$:

1. The Bogner-Fox-Schmit (BFS for short) C^{1} element defined for rectangles. It involves 16 degrees of freedom, namely the values of $\varphi_{h}, \varphi_{h, x}, \varphi_{h, t}, \varphi_{h, x t}$ on the four vertices of each rectangle K.
2. The reduced Hsieh-Clough-Tocher (HCT for short) C^{1} element defined for triangles. This is a so-called composite finite element and involves 9 degrees of freedom, namely the values of $\varphi_{h}, \varphi_{h}, x, \varphi_{h, l}$ on the three vertices of each triangle K.
[^5]
C^{1} finite element over Q_{T}

4

$$
\Phi_{h}=\left\{\varphi_{h} \in \Phi_{h} \in C^{1}\left(\overline{Q_{T}}\right):\left.\varphi_{h}\right|_{k} \in \mathbb{P}(K) \quad \forall K \in \mathcal{T}_{h}, \varphi_{h}=0 \text { on } \Sigma_{T}\right\}
$$

where $\mathbb{P}(K)$ denotes an appropriate space of polynomial functions in x and t.

We may consider the following choices for $\mathbb{P}(K)$:

1. The Bogner-Fox-Schmit (BFS for short) C^{1} element defined for rectangles. It involves 16 degrees of freedom, namely the values of $\varphi_{h}, \varphi_{h, x}, \varphi_{h, t}, \varphi_{h, x t}$ on the four vertices of each rectangle K.
2. The reduced Hsieh-Clough-Tocher (HCT for short) C^{1} element defined for triangles. This is a so-called composite finite element and involves 9 degrees of freedom, namely the values of $\varphi_{h}, \varphi_{h, x}, \varphi_{h, t}$ on the three vertices of each triangle K.
[^6]Convergence rate in Φ and in $L^{2}\left(Q_{T}\right)$
Proposition (BFS element for $N=1$ - Convergence in Φ)
Let $h>0$, let $k \leq 2$. If $(\varphi, \lambda) \in H^{k+2}\left(Q_{T}\right) \times H^{k}\left(Q_{T}\right)$, $\exists K>0$

$$
\begin{aligned}
& \left\|\varphi-\varphi_{h}\right\|_{\Phi} \leq K\left(1+\frac{1}{\sqrt{\eta} \delta_{h}}+\frac{1}{\sqrt{\eta}}\right) h^{k} \\
& \left\|\lambda-\lambda_{h}\right\|_{L^{2}\left(Q_{T}\right)} \leq K\left(\left(1+\frac{1}{\sqrt{\eta} \delta_{h}}\right) \frac{1}{\delta_{h}}+\frac{1}{\sqrt{\eta} \delta_{h}}\right) h^{k} .
\end{aligned}
$$

Writing the ineq. obs. for $\varphi-\varphi_{h} \in \Phi$ and using that $L^{*}\left(\varphi-\varphi_{h}\right)=-L^{*} \varphi_{h}$, we get

Convergence rate in Φ and in $L^{2}\left(Q_{T}\right)$
Proposition (BFS element for $N=1$ - Convergence in Φ)
Let $h>0$, let $k \leq 2$. If $(\varphi, \lambda) \in H^{k+2}\left(Q_{T}\right) \times H^{k}\left(Q_{T}\right)$, $\exists K>0$

$$
\begin{aligned}
& \left\|\varphi-\varphi_{h}\right\|_{\Phi} \leq K\left(1+\frac{1}{\sqrt{\eta} \delta_{h}}+\frac{1}{\sqrt{\eta}}\right) h^{k} \\
& \left\|\lambda-\lambda_{h}\right\|_{L^{2}\left(Q_{T}\right)} \leq K\left(\left(1+\frac{1}{\sqrt{\eta} \delta_{h}}\right) \frac{1}{\delta_{h}}+\frac{1}{\sqrt{\eta} \delta_{h}}\right) h^{k} .
\end{aligned}
$$

Writing the ineq. obs. for $\varphi-\varphi_{h} \in \Phi$ and using that $L^{*}\left(\varphi-\varphi_{h}\right)=-L^{*} \varphi_{h}$, we get

Convergence rate in Φ and in $L^{2}\left(Q_{T}\right)$
Proposition (BFS element for $N=1$ - Convergence in Φ)
Let $h>0$, let $k \leq 2$. If $(\varphi, \lambda) \in H^{k+2}\left(Q_{T}\right) \times H^{k}\left(Q_{T}\right), \exists K>0$

$$
\begin{aligned}
& \left\|\varphi-\varphi_{h}\right\|_{\Phi} \leq K\left(1+\frac{1}{\sqrt{\eta} \delta_{h}}+\frac{1}{\sqrt{\eta}}\right) h^{k}, \\
& \left\|\lambda-\lambda_{h}\right\|_{L^{2}\left(Q_{T}\right)} \leq K\left(\left(1+\frac{1}{\sqrt{\eta} \delta_{h}}\right) \frac{1}{\delta_{h}}+\frac{1}{\sqrt{\eta} \delta_{h}}\right) h^{k}
\end{aligned}
$$

Writing the ineq. obs. for $\varphi-\varphi_{h} \in \Phi$ and using that $L^{\star}\left(\varphi-\varphi_{h}\right)=-L^{\star} \varphi_{h}$, we get

$$
\begin{aligned}
\left\|\varphi-\varphi_{h}\right\|_{L^{2}\left(Q_{T}\right)}^{2} & \leq C_{\Omega, T}\left(C_{o b s}+1\right)\left(\left\|\partial_{\nu}\left(\varphi-\varphi_{h}\right)\right\|_{L^{2}\left(\Gamma_{T}\right)}^{2}+\left\|L^{\star} \varphi_{h}\right\|_{L^{2}\left(Q_{T}\right)}^{2}\right) \\
& \leq C_{\Omega, T}\left(C_{o b s}+1\right) \max \left(1, \frac{2}{\sqrt{\eta}}\right)\left\|\varphi-\varphi_{h}\right\|_{\Phi}
\end{aligned}
$$

Theorem (BFS element for $N=1$ - Convergence in $L^{2}\left(Q_{T}\right)$) Let $h>0$, let $k \leq 2$. If $(y, \lambda) \in H^{k+2}\left(Q_{T}\right) \times H^{k}\left(Q_{T}\right)$,

$$
\left\|\varphi-\varphi_{h}\right\|_{L^{2}\left(Q_{T}\right)} \leq K \max \left(1, \frac{2}{\sqrt{\eta}}\right)\left(1+\frac{1}{\sqrt{\eta} \delta_{h}}+\frac{1}{\sqrt{\eta}}\right) h^{K} .
$$

$N=1$ - Numerical experiments

$$
\begin{align*}
& \Omega=(0,1)-\Gamma_{0}=\{1\}-T=2.4 \\
& \\
& \quad(\mathbf{E X}) \quad y_{0}(x)=4 \times 1_{(0,1 / 2)}(x), \quad y_{1}(x)=0, \quad x \in \Omega \tag{32}\\
& v(t)=2(1-t) 1_{(1 / 2,3 / 2)}(t), \quad t \in(0, T), \quad\|v\|_{L^{2}(0, T)}=1 / \sqrt{3} \approx 0.5773 .
\end{align*}
$$

$N=1$ - Numerical experiments

Figure: Control of minimal L^{2}-norm v and its approximation v_{h} on $(0, T) ; r=10^{-2} ; h=2.46 \times 10^{-2}$

Example 1- $N=1$ - Numerical experiments

h	1.41×10^{-1}	7.01×10^{-2}	3.53×10^{-2}	1.76×10^{-2}	8.83×10^{-3}		
$\left\\|v_{h}\right\\|_{L^{2}(0, T)}$	0.6003	0.5850	0.5776	0.5752	0.5747		
$\left\\|v-v_{h}\right\\|_{L^{2}(0, T)}$	2.87×10^{-1}	2.05×10^{-1}	1.47×10^{-1}	1.08×10^{-1}	8.18×10^{-2}		
$\left\\|\lambda_{h}\right\\|_{L^{2}\left(Q_{T}\right)}$	0.62	0.598	0.586	0.581	0.578		
$\left\\|L^{\star} \varphi_{h}\right\\|_{L^{2}\left(Q_{T}\right)}$	1.02×10^{-1}	7.53×10^{-2}	5.8×10^{-2}	4.55×10^{-2}	3.6×10^{-2}		
$\left\\|L^{\star} \varphi_{h}\right\\|_{H^{-1}\left(Q_{T}\right)}$	1.92×10^{-16}	3.83×10^{-16}	7.46×10^{-16}	1.51×10^{-15}	2.81×10^{-15}		

Table: BFS element $-r=1$.

$$
\begin{array}{ll}
r=1: & \left\|v-v_{h}\right\|_{L^{2}(0, T)} \approx 1.12 \cdot h^{0.52}, \quad\left\|L^{\star} \varphi_{h}\right\|_{L^{2}\left(Q_{T}\right)} \approx 15.67 \cdot h^{0.72}, \\
r=10^{-2}: \quad\left\|v-v_{h}\right\|_{L^{2}(0, T)} \approx 0.83 \cdot h^{0.45}, \quad\left\|L^{\star} \varphi_{h}\right\|_{L^{2}\left(Q_{T}\right)} \approx 0.24 \cdot h^{0.37}
\end{array}
$$

A curiosity: $\left\|v_{h}\right\|_{L^{2}(0, T)}$ is close to $\left\|y_{h}\right\|_{L^{2}\left(Q_{T}\right)}$!?!!

Example 1-N =1-Numerical experiments

Figure: The dual variable φ_{h} in $Q_{T} ; h=2.46 \times 10^{-2} ; r=10^{-2}$.

Example 1- $N=1$ - Numerical experiments

Figure: The primal variable λ_{h} in $Q_{T} ; h=2.46 \times 10^{-2} ; r=10^{-2}$.

Mesh adaptation

Figure: Iterative refinement of the triangular mesh over Q_{T} with respect to the variable λ_{h} : 142, 412, 1 154, $2556 ; r=2 \times 10^{-3}$.

Example 1- $N=1$ - Numerical experiments

Figure: The dual variable φ_{h} in Q_{T} corresponding to the finer mesh; $r=2 \times 10^{-3}$.

Example 1- $N=1$ - Numerical experiments

Figure: The primal variable λ_{h} in Q_{T} corresponding to the finer mesh.

Minimization of $J_{r}^{\star \star}$ with respect to λ

$$
J_{r}^{\star \star}(\lambda):=\frac{1}{2}<\mathcal{P}_{r} \lambda, \lambda>_{L^{2}\left(Q_{T}\right)}-b\left(\varphi_{0}, \lambda\right)
$$

Figure: Evolution of $\left\|g^{n}\right\|_{L^{2}\left(Q_{T}\right)} /\left\|g^{0}\right\|_{L^{2}\left(Q_{T}\right)}$ w.r.t. the iterate n for $r=10^{2}(\star), r=1$ ($\square), r=10^{-2}(\circ)$ and $r=h^{2}(<) ; h=9.99 \times 10^{-3}$.

Minimization of $J_{r}^{\star \star}$ with respect to λ

$$
J_{r}^{\star \star}(\lambda):=\frac{1}{2}<\mathcal{P}_{r} \lambda, \lambda>_{L^{2}\left(Q_{T}\right)}-b\left(\varphi_{0}, \lambda\right)
$$

h	1.56×10^{-1}	7.92×10^{-2}	3.99×10^{-2}	1.99×10^{-2}	9.99×10^{-3}		
\sharp iterates	20	26	31	44	61		
$m_{h}=\operatorname{card}\left(\left\{\lambda_{h}\right\}\right)$	231	840	3198	12555	49749		
$\left\\|\lambda_{h}(1, \cdot)\right\\|_{L^{2}(0, T)}$	0.6089	0.5867	0.5775	0.5746	0.5742		
$\left\\|v-\lambda_{h}(1, \cdot)\right\\|_{L^{2}(0, T)}$	2.40×10^{-1}	1.68×10^{-1}	1.28×10^{-1}	9.69×10^{-2}	7.62×10^{-2}		
$\left\\|\lambda_{h}\right\\|_{L^{2}\left(Q_{T}\right)}$	0.6178	0.5963	0.5857	0.5806	0.5784		

Table: BFS element - Conjugate gradient algorithm - $r=1$.

Remind: $\|v\|_{L^{2}(0, T)} \approx 0.5773$

Comparison with the bi-harmonic regularization

[Glowinski'92]

$$
\left\{\begin{array}{l}
\min _{\left(\varphi_{0}, \varphi_{1}\right) \in \tilde{V}} J_{\epsilon}^{\star}\left(\varphi_{0}, \varphi_{1}\right):=J^{\star}\left(\varphi_{0}, \varphi_{1}\right)+\frac{\epsilon}{2}\left\|\varphi_{0}, \varphi_{1}\right\|_{\tilde{V}}^{2}, \quad \epsilon>0 \tag{33}\\
\tilde{V}:=H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega)
\end{array}\right.
$$

Time Marching method here ! : $h=\Delta x ; \Delta t=0.8 \Delta x$

h	1.56×10^{-1}	7.92×10^{-2}	3.99×10^{-2}	1.99×10^{-2}	9.99×10^{-3}		
\sharp iterates	62	>5000	78	58	39		
$\operatorname{card}\left(\left\{\varphi_{0 h}, \varphi_{1 h}\right\}\right)$	44	84	164	324	644		
$\left\\|v_{h}\right\\|_{L^{2}(0, T)}$	0.5484	0.5603	0.5671	0.5712	0.5736		
$\left\\|v-v_{h}\right\\|_{L^{2}(0, T)}$	2.72×10^{-1}	2.23×10^{-1}	1.81×10^{-1}	1.47×10^{-1}	1.24×10^{-1}		
$\left\\|y_{h}\right\\|_{L^{2}\left(Q_{T}\right)}$	0.5386	0.5557	0.5649	0.5701	0.5731		

Table: Biharmonic Tychonoff regularization; $\epsilon=h^{1.8}$.

Comparison with the bi-harmonic regularization

[Glowinski'92]

$$
\left\{\begin{array}{l}
\min _{\left(\varphi_{0}, \varphi_{1}\right) \in \tilde{V}} J_{\epsilon}^{\star}\left(\varphi_{0}, \varphi_{1}\right):=J^{\star}\left(\varphi_{0}, \varphi_{1}\right)+\frac{\epsilon}{2}\left\|\varphi_{0}, \varphi_{1}\right\|_{\tilde{V}}^{2}, \quad \epsilon>0, \tag{33}\\
\tilde{V}:=H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega)
\end{array}\right.
$$

Time Marching method here ! : $h=\Delta x ; \Delta t=0.8 \Delta x$

h	1.56×10^{-1}	7.92×10^{-2}	3.99×10^{-2}	1.99×10^{-2}	9.99×10^{-3}		
\sharp iterates	62	>5000	78	58	39		
$\operatorname{card}\left(\left\{\varphi_{0 h}, \varphi_{1 h}\right\}\right)$	44	84	164	324	644		
$\left\\|v_{h}\right\\|_{L^{2}(0, T)}$	0.5484	0.5603	0.5671	0.5712	0.5736		
$\left\\|v-v_{h}\right\\|_{L^{2}(0, T)}$	2.72×10^{-1}	2.23×10^{-1}	1.81×10^{-1}	1.47×10^{-1}	1.24×10^{-1}		
$\left\\|y_{h}\right\\|_{L^{2}\left(Q_{T}\right)}$	0.5386	0.5557	0.5649	0.5701	0.5731		

Table: Biharmonic Tychonoff regularization; $\epsilon=h^{1.8}$.

Remind: $\|v\|_{L^{2}(0, T)} \approx 0.5773$
Remark: If $\epsilon=h^{2}$, the CG algorithm diverges.

The discrete inf-sup test - Evaluation of δ_{h}

$$
\begin{equation*}
\delta_{h}:=\inf _{\lambda_{h} \in \Lambda_{h}} \sup _{\varphi_{h} \in \Phi_{h}} \frac{b\left(\varphi_{h}, \lambda_{h}\right)}{\left\|\varphi_{h}\right\|_{\Phi_{h}}\left\|\lambda_{h}\right\|_{\Lambda_{h}}} \geq \delta \tag{34}
\end{equation*}
$$

Taking $\eta=r>0$ so that $a_{r}(\varphi, \bar{\varphi})=(\varphi, \bar{\varphi})_{\Phi}$, we have ${ }^{5}$

$$
\begin{equation*}
\delta_{h}=\inf \left\{\sqrt{\delta}: B_{h} A_{r, h}^{-1} B_{h}^{T}\left\{\lambda_{h}\right\}=\delta J_{h}\left\{\lambda_{h}\right\}, \quad \forall\left\{\lambda_{h}\right\} \in \mathbb{R}^{m_{h}} \backslash\{0\}\right\} \tag{35}
\end{equation*}
$$

BFS finite element $-h \rightarrow \sqrt{r} \delta_{h, r}$ for $r=1$ (\square), $r=10^{-2}(0), r=h(*)$ and $r=h^{2}(<)$

[^7]
The discrete inf-sup test - Evaluation of δ_{h}

$$
\begin{equation*}
\delta_{h}:=\inf _{\lambda_{h} \in \Lambda_{h}} \sup _{\varphi_{h} \in \Phi_{h}} \frac{b\left(\varphi_{h}, \lambda_{h}\right)}{\left\|\varphi_{h}\right\|_{\Phi_{h}}\left\|\lambda_{h}\right\|_{\Lambda_{h}}} \geq \delta \tag{34}
\end{equation*}
$$

Taking $\eta=r>0$ so that $a_{r}(\varphi, \bar{\varphi})=(\varphi, \bar{\varphi})_{\Phi}$, we have ${ }^{5}$

$$
\begin{equation*}
\delta_{h}=\inf \left\{\sqrt{\delta}: B_{h} A_{r, h}^{-1} B_{h}^{T}\left\{\lambda_{h}\right\}=\delta J_{h}\left\{\lambda_{h}\right\}, \quad \forall\left\{\lambda_{h}\right\} \in \mathbb{R}^{m_{h}} \backslash\{0\}\right\} \tag{35}
\end{equation*}
$$

$$
\begin{aligned}
& \delta_{h} \approx C_{r} \frac{h}{\sqrt{r}} \text { as } h \rightarrow 0^{+} \\
& \text {If } r=h^{2},\left(\Phi_{h}, \Lambda_{h}\right) \text { passes } \\
& \text { the discrete inf-sup test! }
\end{aligned}
$$

BFS finite element $-h \rightarrow \sqrt{r} \delta_{h, r}$ for $r=1(\square)$,

$$
r=10^{-2}(\circ), r=h(\star) \text { and } r=h^{2}(<)
$$

[^8]
Stabilized mixed formulation "à la Barbosa-Hughes"

6
$\alpha>0$

$$
\left\{\begin{array}{l}
\sup _{\lambda \in \Lambda} \inf _{\varphi \in \Phi} \mathcal{L}_{r, \alpha}(\varphi, \lambda) \tag{36}\\
\mathcal{L}_{r, \alpha}(\varphi, \lambda):=\mathcal{L}_{r}(\varphi, \lambda)-\frac{\alpha}{2}\|L \lambda\|_{L^{2}\left(H^{-1}(\Omega)\right)}^{2}-\frac{\alpha}{2}\left\|\lambda-\partial_{\nu} \varphi\right\|_{L^{2}\left(\Gamma_{T}\right)}^{2}
\end{array}\right.
$$

$\Lambda:=\left\{\lambda: \lambda \in C\left([0, T] ; L^{2}(\Omega)\right) \cap C^{1}\left([0, T] ; H^{-1}(\Omega)\right)\right.$, $\left.L \lambda \in L^{2}\left([0, T] ; H^{-1}(\Omega)\right), \lambda(\cdot, 0)=\lambda_{t}(\cdot, 0)=0, \lambda_{\mid \Gamma_{T}} \in L^{2}\left(\Gamma_{T}\right)\right\}$.
Λ is a Hilbert space endowed with the following inner product

$$
\langle\lambda, \bar{\lambda}\rangle_{\Lambda}:=\int_{0}^{T}\langle L \lambda(t), L \bar{\lambda}(t)\rangle_{H^{-1}(\Omega)} d t+\iint_{\Gamma_{T}} \lambda \bar{\lambda} d \sigma d t
$$

using notably that

$$
\|\lambda\|_{L^{2}\left(Q_{T}\right)} \leq C_{\Omega, T} \sqrt{<\lambda, \lambda>_{\Lambda}}, \quad \forall \lambda \in \Lambda
$$

for some positive constant $C_{\Omega, T}$. We denote $\|\lambda\|_{\Lambda}:=\sqrt{<\lambda, \lambda>\Lambda}$.
${ }^{6}$ H. Barbosa, T. Hugues : The finite element method with Lagrange multipliers on the boundary: circumventing the Babusÿka-Brezzi condition, 1991

Stabilized mixed formulation "à la Barbosa-Hughes"

6
$\alpha>0$

$$
\left\{\begin{array}{l}
\sup _{\lambda \in \Lambda} \inf _{\varphi \in \Phi} \mathcal{L}_{r, \alpha}(\varphi, \lambda) \tag{36}\\
\mathcal{L}_{r, \alpha}(\varphi, \lambda):=\mathcal{L}_{r}(\varphi, \lambda)-\frac{\alpha}{2}\|L \lambda\|_{L^{2}\left(H^{-1}(\Omega)\right)}^{2}-\frac{\alpha}{2}\left\|\lambda-\partial_{\nu} \varphi\right\|_{L^{2}\left(\Gamma_{T}\right)}^{2}
\end{array}\right.
$$

$\Lambda:=\left\{\lambda: \lambda \in C\left([0, T] ; L^{2}(\Omega)\right) \cap C^{1}\left([0, T] ; H^{-1}(\Omega)\right)\right.$,
$\left.L \lambda \in L^{2}\left([0, T] ; H^{-1}(\Omega)\right), \lambda(\cdot, 0)=\lambda_{t}(\cdot, 0)=0, \lambda_{\mid \Gamma_{T}} \in L^{2}\left(\Gamma_{T}\right)\right\}$.
Λ is a Hilbert space endowed with the following inner product

$$
\langle\lambda, \bar{\lambda}\rangle_{\Lambda}:=\int_{0}^{T}\langle L \lambda(t), L \bar{\lambda}(t)\rangle_{H^{-1}(\Omega)} d t+\iint_{\Gamma_{T}} \lambda \bar{\lambda} d \sigma d t, \quad \forall \lambda, \bar{\lambda} \in \Lambda
$$

using notably that

$$
\begin{equation*}
\|\lambda\|_{L^{2}\left(Q_{T}\right)} \leq C_{\Omega, T} \sqrt{<\lambda, \lambda>_{\Lambda}}, \quad \forall \lambda \in \Lambda \tag{37}
\end{equation*}
$$

for some positive constant $C_{\Omega, T}$. We denote $\|\lambda\|_{\Lambda}:=\sqrt{\langle\lambda, \lambda\rangle_{\Lambda}}$.

[^9]
Stabilized mixed formulation "à la Barbosa-Hughes" - 2

Then, $\forall \alpha \in(0,1)$, we consider the following mixed formulation:

$$
\left\{\begin{align*}
a_{r, \alpha}(\varphi, \bar{\varphi})+b_{\alpha}(\bar{\varphi}, \lambda) & =l_{1}(\bar{\varphi}), & & \forall \bar{\varphi} \in \Phi \tag{38}\\
b_{\alpha}(\varphi, \bar{\lambda})-c_{\alpha}(\lambda, \bar{\lambda}) & =0, & & \forall \bar{\lambda} \in \Lambda,
\end{align*}\right.
$$

where

$$
\begin{equation*}
a_{r, \alpha}: \Phi \times \Phi \rightarrow \mathbb{R}, \quad a_{r, \alpha}(\varphi, \bar{\varphi})=(1-\alpha) \iint_{\Gamma_{T}} \partial_{\nu} \varphi \partial_{\nu} \bar{\varphi} d \sigma d t+r \iint_{Q_{T}} L^{\star} \varphi L^{\star} \bar{\varphi} d x d t \tag{39}
\end{equation*}
$$

$$
\begin{align*}
& b_{\alpha}: \Phi \times \Lambda \rightarrow \mathbb{R}, \quad b_{\alpha}(\varphi, \lambda)=\iint_{Q_{T}} L^{\star} \varphi \lambda d x d t-\alpha \iint_{\Gamma_{T}} \partial_{\nu} \varphi \lambda d \sigma d t \tag{40}\\
& c_{\alpha}: \Lambda \times \Lambda \rightarrow \mathbb{R}, \quad c_{\alpha}(\lambda, \bar{\lambda})=\alpha \int_{0}^{T}\langle L \lambda(t), L \bar{\lambda}(t)\rangle_{H^{-1}(\Omega)} d t+\alpha \iint_{\Gamma_{T}} \lambda \bar{\lambda} d \sigma d t \tag{41}
\end{align*}
$$

Stabilized mixed formulation "à la Barbosa-Hughes" - 3

Proposition

$\forall \alpha \in(0,1)$, the stabilized mixed formulation (38) is well-posed. Moreover, the unique pair $(\varphi, \lambda) \in \Phi \times \wedge$ satisfies

$$
\begin{equation*}
\theta\|\varphi\|_{\Phi}^{2}+\alpha\|\lambda\|_{\Lambda}^{2} \leq \frac{(1-\alpha)^{2}+\alpha \theta}{\theta}\left\|y_{0}, y_{1}\right\|_{L^{2} \times H^{-1}}^{2} \tag{42}
\end{equation*}
$$

with $\theta:=\min (1-\alpha, r / \eta)$.

Stabilized mixed formulation "à la Barbosa-Hughes" - 3

Proposition

$\forall \alpha \in(0,1)$, the stabilized mixed formulation (38) is well-posed. Moreover, the unique pair $(\varphi, \lambda) \in \Phi \times \wedge$ satisfies

$$
\begin{equation*}
\theta\|\varphi\|_{\Phi}^{2}+\alpha\|\lambda\|_{\Lambda}^{2} \leq \frac{(1-\alpha)^{2}+\alpha \theta}{\theta}\left\|y_{0}, y_{1}\right\|_{L^{2} \times H^{-1}}^{2} \tag{42}
\end{equation*}
$$

with $\theta:=\min (1-\alpha, r / \eta)$.

Proposition

If $\alpha \in(0,1)$, the solution $(\varphi, \lambda) \in \Phi \times L^{2}(\Omega)$ coincides with the stabilized solution $\left(\varphi_{\alpha}, \lambda_{\alpha}\right) \in \Phi \times \Lambda$

Stabilized mixed formulation "à la Barbosa-Hughes" - Numerical approximation

 $\alpha \in(0,1), r>0$.$$
\Phi_{h} \subset \Phi, \quad \tilde{\Lambda}_{h} \subset \Lambda, \quad \forall h>0
$$

Find $\left(\varphi_{h}, \lambda_{h}\right) \in \Phi_{h} \times \tilde{\Lambda}_{h}$ solution of

$$
\left\{\begin{align*}
a_{r, \alpha}\left(\varphi_{h}, \bar{\varphi}_{h}\right)+b_{\alpha}\left(\lambda_{h}, \bar{\varphi}_{h}\right) & =\iota_{1}\left(\bar{\varphi}_{h}\right), & & \forall \bar{\varphi}_{h} \in \Phi_{h} \tag{43}\\
b_{\alpha}\left(\bar{\lambda}_{h}, \varphi_{h}\right)-c_{\alpha}\left(\lambda_{h}, \bar{\lambda}_{h}\right) & =0, & & \forall \bar{\lambda}_{h} \in \widetilde{\Lambda}_{h} .
\end{align*}\right.
$$

In view of the properties of $a_{r, \alpha}, c_{\alpha}, l_{1}$, this formulation is well-posed.

$$
\widetilde{\Lambda}_{h}=\left\{\lambda \in \Phi_{h} ; \lambda(\cdot, 0)=\lambda_{t}(\cdot, 0)=0\right\} .
$$

Stabilized mixed formulation "à la Barbosa-Hughes" - Numerical approximation

 $\alpha \in(0,1), r>0$.$$
\Phi_{h} \subset \Phi, \quad \tilde{\Lambda}_{h} \subset \Lambda, \quad \forall h>0
$$

Find $\left(\varphi_{h}, \lambda_{h}\right) \in \Phi_{h} \times \tilde{\Lambda}_{h}$ solution of

$$
\left\{\begin{align*}
a_{r, \alpha}\left(\varphi_{h}, \bar{\varphi}_{h}\right)+b_{\alpha}\left(\lambda_{h}, \bar{\varphi}_{h}\right) & =l_{1}\left(\bar{\varphi}_{h}\right), & & \forall \bar{\varphi}_{h} \in \Phi_{h} \tag{43}\\
b_{\alpha}\left(\bar{\lambda}_{h}, \varphi_{h}\right)-c_{\alpha}\left(\lambda_{h}, \bar{\lambda}_{h}\right) & =0, & & \forall \bar{\lambda}_{h} \in \widetilde{\Lambda}_{h} .
\end{align*}\right.
$$

In view of the properties of $a_{r, \alpha}, c_{\alpha}, l_{1}$, this formulation is well-posed.

$$
\begin{equation*}
\tilde{\Lambda}_{h}=\left\{\lambda \in \Phi_{h} ; \lambda(\cdot, 0)=\lambda_{t}(\cdot, 0)=0\right\} . \tag{44}
\end{equation*}
$$

Proposition (BFS element for $N=1$ - Rate of convergence for the norm $\Phi \times \wedge$)
Let $h>0$, let $k \leq 2$ be a positive integer and $\alpha \in(0,1)$. Let (y, λ) and $\left(y_{h}, \lambda_{h}\right)$ be the solution of (38) and (43) respectively. If (y, λ) belongs to $H^{k+2}\left(Q_{T}\right) \times H^{k+2}\left(Q_{T}\right)$, then there exists a positive constant $K=K\left(\|\varphi\|_{H^{k+2}\left(Q_{T}\right)}, \alpha, r, \eta\right)$ independent of h, such that

$$
\begin{equation*}
\left\|\varphi-\varphi_{h}\right\|_{\Phi}+\left\|\lambda-\lambda_{h}\right\|_{\Lambda} \leq K h^{k} \tag{45}
\end{equation*}
$$

Remark - no δ_{h} here !!!! $r>0$ is arbitrary

Remark 1: The situation may be simpler with a different cost !?

$$
\left\{\begin{array}{l}
\text { Minimize } J(y, v)=\frac{1}{2} \iint_{Q_{T}}|y|^{2} d x d t+\frac{1}{2} \int_{0}^{T} \int_{\Gamma_{0}}|v|^{2} d \sigma d t \tag{46}\\
\text { Subject to }(y, v) \in \mathcal{C}\left(y_{0}, y_{1} ; T\right)
\end{array}\right.
$$

$$
v=\frac{\partial \varphi}{\partial \nu} \text { in }(0, T) \times \Gamma_{0} \text { and } y=\mu \text { in } Q_{T} .
$$

$$
\left\{\begin{align*}
\text { Minimize } J^{\star}\left(\mu, \varphi_{0}, \varphi_{1}\right) & =\frac{1}{2} \iint_{Q_{T}}|\mu|^{2} d x d t+\frac{1}{2} \int_{0}^{T} \int_{\Gamma_{0}}\left|\frac{\partial \varphi}{\partial \nu}\right|^{2} d \sigma d t \tag{47}\\
& +<\left(\varphi_{0}, \varphi_{1}\right),\left(y_{0}, y_{1}\right)> \\
\text { Subject to }\left(\mu, \varphi_{0}, \varphi_{1}\right) & \in L^{2}\left(Q_{T}\right) \times \boldsymbol{V}
\end{align*}\right.
$$

where φ solves the nonhomogeneous backward problem

$$
\begin{equation*}
L^{\star} \varphi=\mu \quad \text { in } \quad Q_{T}, \quad \varphi=0 \quad \text { on } \quad \Sigma_{T}, \quad\left(\varphi(\cdot, 0), \varphi^{\prime}(\cdot, 0)\right)=\left(\varphi_{0}, \varphi_{1}\right) \tag{48}
\end{equation*}
$$

Remark 1: The situation may be much simpler with a different cost !!?!

7
Replacing μ by $L^{\star} \varphi$ and miniminiz over φ lead to

$$
\left\{\begin{align*}
\text { Minimize } J_{1}^{\star}(\varphi)= & \frac{1}{2} \iint_{Q_{T}}\left|L^{\star} \varphi\right|^{2} d x d t+\frac{1}{2} \int_{0}^{T} \int_{\Gamma_{0}}\left|\frac{\partial \varphi}{\partial \nu}\right|^{2} d \sigma d t \tag{49}\\
& +<\left(\varphi(\cdot, 0), \varphi_{t}(\cdot, 0)\right),\left(y_{0}, y_{1}\right)>
\end{align*}\right.
$$

and to the well-posed variational formulation: find $\varphi \in \boldsymbol{\Phi}$ such that

$$
\begin{equation*}
\iint_{Q_{T}} L^{\star} \varphi L^{\star} \bar{\varphi} d x d t+\int_{0}^{T} \int_{\Gamma_{0}} \frac{\partial \varphi}{\partial \nu} \frac{\partial \bar{\varphi}}{\partial \nu} d \sigma d t=<\left(\bar{\varphi}(\cdot, 0), \bar{\varphi}_{t}(\cdot, 0)\right),\left(y_{0}, y_{1}\right)>, \quad \forall \bar{\varphi} \in \Phi \tag{50}
\end{equation*}
$$

[^10]Non constant coefficient: $L y:=y_{t t}-\left(c(x) y_{x}\right)_{x}+d(x, t) y$ $c \in C^{1}([0,1])$

$$
c(x)=\left\{\begin{array}{lrr}
1 & x \in[0,0.45] \tag{51}\\
\in[1 ., 5 .] & \left(c^{\prime}(x)>0\right), & x \in(0.45,0.55) \\
5 & x \in[0.55,1]
\end{array}\right.
$$

Figure: $y_{0}(x) \equiv e^{-500(x-0.2)^{2}}$ and c given by (51) -The solution \hat{y}_{h} over Q_{T} $h=(1 / 80,1 / 80)$.

Remark 2: The distributed case

$$
L y=v 1_{q_{T}}, \quad q_{T}=\omega \times(0, T) \subset \Omega \times(0, T)
$$

$$
\left\{\begin{array}{l}
\min J^{\star}(\varphi)=\frac{1}{2} \int_{0}^{T} \int_{\omega}|\varphi|^{2} d x d t+<y_{0}, \varphi_{t}(\cdot, 0)>_{H^{1}, H^{-1}}-\left\langle y_{1}, \varphi(\cdot, 0)\right\rangle_{L^{2}} \tag{52}\\
\text { Subject to } \varphi \in \boldsymbol{W}:=\left\{\varphi: \varphi \in L^{2}\left(q_{T}\right), \varphi_{\mid \Sigma_{T}}=0, L^{\star} \varphi=0 \in L^{2}\left(0, T, H^{-1}(\Omega)\right)\right\}
\end{array}\right.
$$

Optimal control : $v=\varphi 1_{q_{T}}$
Generalized observability inequality : $\exists C_{o b s}$ s.t.

$$
\left\|\varphi_{0}, \varphi_{1}\right\|_{L^{2}(\Omega) \times H^{-1}(\Omega)}^{2} \leq C_{o b s}\left(\|\varphi\|_{L^{2}\left(q_{T}\right)}^{2}+\left\|L^{\star} \varphi\right\|_{L^{2}\left(0, T ; H^{-1}\right)}^{2}\right), \quad \forall \varphi \in \Phi
$$

Multiplier :

$$
b(\varphi, \lambda)=\int_{0}^{T}<\lambda(\cdot, t), L^{\star} \varphi(\cdot, t)>_{H_{0}^{1}(\Omega), H^{-1}(\Omega)} d t, \quad \lambda \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)
$$

The distributed case : Non cylindrical situation in 1D with constant coefficient

 89
The variational approach is well-adapted to the non cylindrical situation.

Time dependent domains $q_{T} \subset Q_{T}=\Omega \times(0, T)$

[^11]Remark 3 : Inverse problems -

Given a distributed observation $y_{o b s} \in L^{2}\left(q_{T}\right), f \in X:=L^{2}\left(H^{-1}\right)$, reconstruct y such that

$$
L y=f \quad \text { in } \quad Q_{T}, \quad y=0 \quad \text { on } \quad \Sigma_{T}, \quad y-y_{o b s}=0 \quad \text { on } \quad q_{T}
$$

$$
(L S) \begin{cases}\text { minimize } & J\left(y_{0}, y_{1}\right):=\frac{1}{2}\left\|y-y_{o b s}\right\|_{L^{2}\left(q_{T}\right)}^{2} \\ \text { subject to } & \left(y_{0}, y_{1}\right) \in L^{2} \times H^{-1} \text { where } \quad L y-f=0\end{cases}
$$

The "Discretization then Inverse problem" procedure is discussed in [L. Baudouin, M. De Buhan, S. Ervedoza, 2013]

Keeping y as the main variable ${ }^{10}$.

The multiplier $\lambda \in X^{\prime}$ is a "measure" of the quality of $y_{o b s}$ to reconstruct y.

[^12]
Remark 3 : Inverse problems -

Given a distributed observation $y_{o b s} \in L^{2}\left(q_{T}\right), f \in X:=L^{2}\left(H^{-1}\right)$, reconstruct y such that

$$
\begin{aligned}
& L y=f \quad \text { in } Q_{T}, \quad y=0 \quad \text { on } \quad \Sigma_{T}, \quad y-y_{o b s}=0 \quad \text { on } \quad q_{T} \\
& (L S) \quad \begin{cases}\text { minimize } & J\left(y_{0}, y_{1}\right):=\frac{1}{2}\left\|y-y_{o b s}\right\|_{L^{2}\left(q_{T}\right)}^{2} \\
\text { subject to } & \left(y_{0}, y_{1}\right) \in L^{2} \times H^{-1} \text { where } L y-f=0\end{cases}
\end{aligned}
$$

The "Discretization then Inverse problem" procedure is discussed in [L. Baudouin, M. De Buhan, S. Ervedoza, 2013]

Keeping y as the main variable ${ }^{10}$.

The multiplier $\lambda \in X^{\prime}$ is a "measure" of the quality of $y_{o b s}$ to reconstruct y.

Remark 3 : Inverse problems -

Given a distributed observation $y_{o b s} \in L^{2}\left(q_{T}\right), f \in X:=L^{2}\left(H^{-1}\right)$, reconstruct y such that

$$
L y=f \quad \text { in } \quad Q_{T}, \quad y=0 \quad \text { on } \quad \Sigma_{T}, \quad y-y_{o b s}=0 \quad \text { on } \quad q_{T}
$$

(LS) $\begin{cases}\text { minimize } & J\left(y_{0}, y_{1}\right):=\frac{1}{2}\left\|y-y_{o b s}\right\|_{L^{2}}^{2}\left(q_{T}\right) \\ \text { subject to } & \left(y_{0}, y_{1}\right) \in L^{2} \times H^{-1} \text { where } \quad L y-f=0\end{cases}$
The "Discretization then Inverse problem" procedure is discussed in [L. Baudouin, M. De Buhan, S. Ervedoza, 2013]

Keeping y as the main variable ${ }^{10} \ldots$.
$(\mathcal{P}) \quad\left\{\begin{array}{l}\inf J(y):=\frac{1}{2}\left\|y-y_{o b s}\right\|_{L^{2}\left(a_{T}\right)}^{2}+\frac{r}{2}\|L y-f\|_{X}^{2}, \quad r \geq 0 \\ \text { subject to } \quad y \in W:=\{y \in Z ; L y-f=0 \text { in } X\}\end{array}\right.$
The multiplier $\lambda \in X^{\prime}$ is a "measure" of the quality of $y_{o b s}$ to reconstruct y.

[^13]
$2 D$ example - Observation on q_{T}

(a)

(b)

Mesh number	0	1	2
Number of elements	5730	44900	196040
Number of nodes	3432	24633	103566

Characteristics of the three meshes associated with Q_{T}.

$2 D$ example - Observation on q_{T}

$$
\left\{\begin{array}{lll}
-\Delta y_{0}=10, & \text { in } \Omega & y_{1}=0 . \tag{53}\\
y_{0}=0, & \text { on } \partial \Omega, &
\end{array}\right.
$$

Mesh number	0	1	2				
$\frac{\left\\|\bar{y}_{y}-y_{h}\right\\|_{L^{2}}\left(Q_{T}\right)}{\left\\|\bar{y}_{h}\right\\|_{L^{2}\left(Q_{T}\right)}}$	1.88×10^{-1}	8.04×10^{-2}	5.41×10^{-2}				
$\left\\|L y_{h}\right\\|_{L^{2}\left(Q_{T}\right)}$	3.21	2.01	1.17				
$\left\\|\lambda_{h}\right\\|_{L^{2}\left(Q_{T}\right)}$	8.26×10^{-5}	3.62×10^{-5}	2.24×10^{-5}				

$$
r=h^{2}-T=2
$$

$2 D$ example - Observation on q_{T}

Example $2-N=2$ - The stadium

$$
T=3
$$

Figure: Bunimovich's stadium and the subset Γ of $\partial \Omega$ on which the observations are available. Example of mesh of the domain Q_{T}.

Example $2-N=2$ - Recovering of the initial data

$$
T=3
$$

(a)

(b)

Figure: (a) Initial data y_{0} given by (53). (b) Reconstructed initial data $y_{h}(\cdot, 0)$.

Parabolic case

$\Omega \subset \mathbb{R}^{N} ; Q_{T}=\Omega \times(0, T) ; q_{T}=\omega \times(0, T)$

$$
\left\{\begin{array}{lll}
y_{t}-\nabla \cdot(c(x) \nabla y)+d(x, t) y=v 1_{\omega}, & \text { in } & Q_{T}, \tag{54}\\
y=0, & \text { in } & \Sigma_{T}, \\
y(x, 0)=y_{0}(x), & \text { in } & \Omega .
\end{array}\right.
$$

$c:=\left(c_{i, j}\right) \in C^{1}\left(\bar{\Omega} ; \mathcal{M}_{N}(\mathbb{R})\right) ;(c(x) \xi, \xi) \geq c_{0}|\xi|^{2}$ in $\bar{\Omega}\left(c_{0}>0\right)$,
$d \in L^{\infty}\left(Q_{T}\right), y_{0} \in L^{2}(\Omega) ;$
$v=v(x, t)$ is the control $\quad y=y(x, t)$ is the associated state.
We introduce the linear manifold
$\mathcal{C}\left(y_{0}, T\right)=\left\{(y, v): v \in L^{2}\left(q_{T}\right), y\right.$ solves (54) and satisfies $\left.y(T, \cdot)=0\right\}$.
non ompty (see Funsikov-Imanuy'lov'os, Pobbiano-Lebenu'95).

Parabolic case

$\Omega \subset \mathbb{R}^{N} ; Q_{T}=\Omega \times(0, T) ; q_{T}=\omega \times(0, T)$

$$
\left\{\begin{array}{lll}
y_{t}-\nabla \cdot(c(x) \nabla y)+d(x, t) y=v 1_{\omega}, & \text { in } & Q_{T}, \tag{54}\\
y=0, & \text { in } & \Sigma_{T}, \\
y(x, 0)=y_{0}(x), & \text { in } & \Omega .
\end{array}\right.
$$

$c:=\left(c_{i, j}\right) \in C^{1}\left(\bar{\Omega} ; \mathcal{M}_{N}(\mathbb{R})\right) ;(c(x) \xi, \xi) \geq c_{0}|\xi|^{2}$ in $\bar{\Omega}\left(c_{0}>0\right)$,
$d \in L^{\infty}\left(Q_{T}\right), y_{0} \in L^{2}(\Omega) ;$
$v=v(x, t)$ is the control $\quad y=y(x, t)$ is the associated state.

We introduce the linear manifold

$$
\mathcal{C}\left(y_{0}, T\right)=\left\{(y, v): v \in L^{2}\left(q_{T}\right), \quad y \text { solves (54) and satisfies } y(T, \cdot)=0\right\} .
$$

non empty (see Fursikov-Imanuvilov'96, Robbiano-Lebeau'95)).

Notations -

$$
L y:=y_{t}-\nabla \cdot(c(x) \nabla y)+d(x, t) y ; \quad L^{\star} \varphi:=-\varphi_{t}-\nabla \cdot(c(x) \nabla \varphi)+d(x, t) \varphi
$$

$N=1-L^{2}\left(q_{T}\right)$-norm of the HUM control with respect to time

Figure: $y_{0}(x)=\sin (\pi x)-T=1-\omega=(0.2,0.8)-t \rightarrow\|v(\cdot, t)\|_{L^{2}(0,1)}$ in $[0, T]$
$N=1-L^{2}$-norm of the HUM control with respect to time: Zoom near T

Figure: $y_{0}(x)=\sin (\pi x)-T=1-\omega=(0.2,0.8)-t \rightarrow\|v(\cdot, t)\|_{L^{2}(0,1)}$ in $[0.92 T, T]$

Minimal L^{2} norm control

Since it is difficult to construct pairs $(v, y) \in \mathcal{C}\left(y_{0}, T\right)$ (a fortiori minimizing sequences for J !), it is standard to consider the corresponding dual :

$$
\inf _{(y, v) \in \mathcal{C}\left(y_{0}, T\right)} J(y, v)=-\inf _{\phi_{T} \in H} J^{\star}\left(\phi_{T}\right), J^{\star}\left(\phi_{T}\right)=\frac{1}{2} \int_{q_{T}} \phi^{2} d x d t+\int_{\Omega} \phi(0, \cdot) y_{0} d x
$$

where ϕ solves the backward system

$$
\left\{\begin{array}{l}
L^{\star} \phi=0 \quad Q_{T}=(0, T) \times \Omega, \\
\phi=0 \quad \Sigma_{T}=(0, T) \times \partial \Omega, \quad \phi(T, \cdot)=\phi_{T} \quad \Omega
\end{array}\right.
$$

The Hilbert space H is defined as the completion of $\mathcal{D}(\Omega)$ with respect to the norm

From the observability inequality

Minimal L^{2} norm control

Since it is difficult to construct pairs $(v, y) \in \mathcal{C}\left(y_{0}, T\right)$ (a fortiori minimizing sequences for J !), it is standard to consider the corresponding dual :

$$
\inf _{(y, v) \in \mathcal{C}\left(y_{0}, T\right)} J(y, v)=-\inf _{\phi_{T} \in H} J^{\star}\left(\phi_{T}\right), J^{\star}\left(\phi_{T}\right)=\frac{1}{2} \int_{q_{T}} \phi^{2} d x d t+\int_{\Omega} \phi(0, \cdot) y_{0} d x
$$

where ϕ solves the backward system

$$
\left\{\begin{array}{l}
L^{\star} \phi=0 \quad Q_{T}=(0, T) \times \Omega, \\
\phi=0 \quad \Sigma_{T}=(0, T) \times \partial \Omega, \quad \phi(T, \cdot)=\phi_{T} \quad \Omega
\end{array}\right.
$$

The Hilbert space H is defined as the completion of $\mathcal{D}(\Omega)$ with respect to the norm

$$
\left\|\phi_{T}\right\|_{H}=\left(\int_{q_{T}} \phi^{2}(t, x) d x d t\right)^{1 / 2} .
$$

From the observability inequality

$$
\|\phi(0, \cdot)\|_{L^{2}(\Omega)}^{2} \leq C_{o b s}(\omega, T)\left\|\phi_{T}\right\|_{H}^{2} \quad \forall \phi_{T} \in L^{2}(\Omega)
$$

Minimal L^{2} norm control

Since it is difficult to construct pairs $(v, y) \in \mathcal{C}\left(y_{0}, T\right)$ (a fortiori minimizing sequences for J !), it is standard to consider the corresponding dual :

$$
\inf _{(y, v) \in \mathcal{C}\left(y_{0}, T\right)} J(y, v)=-\inf _{\phi_{T} \in H} J^{\star}\left(\phi_{T}\right), J^{\star}\left(\phi_{T}\right)=\frac{1}{2} \int_{q_{T}} \phi^{2} d x d t+\int_{\Omega} \phi(0, \cdot) y_{0} d x
$$

where ϕ solves the backward system

$$
\left\{\begin{array}{l}
L^{\star} \phi=0 \quad Q_{T}=(0, T) \times \Omega, \\
\phi=0 \quad \Sigma_{T}=(0, T) \times \partial \Omega, \quad \phi(T, \cdot)=\phi_{T} \quad \Omega
\end{array}\right.
$$

The Hilbert space H is defined as the completion of $\mathcal{D}(\Omega)$ with respect to the norm

$$
\left\|\phi_{T}\right\|_{H}=\left(\int_{q_{T}} \phi^{2}(t, x) d x d t\right)^{1 / 2}
$$

From the observability inequality

$$
\|\phi(0, \cdot)\|_{L^{2}(\Omega)}^{2} \leq C_{o b s}(\omega, T)\left\|\phi_{T}\right\|_{H}^{2} \quad \forall \phi_{T} \in L^{2}(\Omega)
$$

J^{\star} is coercive on H. The HUM control is given by $v=\phi \mathcal{X}_{\omega}$ on Q_{T}.

III-posedness

- The completed space H is huge:

$$
H^{-s} \subset H \quad \forall s>0!
$$

(H may also contain elements which are not distribution !!):
Micu ${ }^{11}$ proved in 1D that
the set of initial data y_{0}, for which the corresponding ϕ_{T}, minimizer of J^{\star}, does not belong to any negative Sobolev spaces, is dense in $L^{2}(0,1)$!!!
-The dual variable ϕ_{T} is the Lagrange multiplier for the constraint $y(\cdot, T)=0$ may belong to a "large" dual space, much larger than $L^{2}(\Omega)$:

$$
<y(\cdot, T), \phi_{T}>=0
$$

-III-posedness here is therefore related to the hugeness of H, poorly approximated numerically.
-This phenomenon is unavoidable (unless $\omega=\Omega!$) and is independent of the choice of the norm!

[^14]
Optimal backward solution ϕ on $\partial \omega \times[0, T]$

$$
T=1, \quad y_{0}(x)=\sin (\pi x), \quad a(x)=a_{0}=1 / 10, \quad \omega=(0.2,0.8)
$$

Figure: $T=1-\omega=(0.2,0.8)-\phi^{N}(\cdot, 0.8)$ for $N=80$ on $[0, T]$ (Left) and on $[0.92 T, T]$ (Right).
[Carthel-Glowinski-Lions'94, JOTA], [AM-Zuazua'11, Inverse Problems]

Remedies : Carleman weights !!

Change of the norm : framework of Fursikov-Imanuvilov'96 ${ }^{12}$

$$
\left\{\begin{array}{l}
\text { Minimize } J(y, v)=\frac{1}{2} \iint_{Q_{T}} \rho^{2}|y|^{2} d x d t+\frac{1}{2} \iint_{q_{T}} \rho_{0}^{2}|v|^{2} d x d t \tag{55}\\
\text { Subject to }(y, v) \in \mathcal{C}\left(y_{0}, T\right)
\end{array}\right.
$$

where ρ, ρ_{0} are non-negative continuous weights functions such that $\rho, \rho_{0} \in L^{\infty}\left(Q_{T-\delta}\right) \quad \forall \delta>0$.

[^15]
Primal (direct) approach

Following Fursikov-Imanuvilov'96, we assume Carleman type weights :

$$
\left\{\begin{array}{l}
\rho(x, t)=\exp \left(\frac{\beta(x)}{T-t}\right), \rho_{0}(x, t)=(T-t)^{3 / 2} \rho(x, t), \beta(x)=K_{1}\left(e^{K_{2}}-e^{\beta_{0}(x)}\right) \\
\text { where the } \left.K_{i} \text { are sufficiently large positive constants (depending on } T, c_{0} \text { and }\|c\|_{C^{1}}\right) \tag{56}\\
\text { and } \beta_{0} \in C^{\infty}(\bar{\Omega}), \beta_{0}>0 \text { in } \Omega,\left(\beta_{0}\right)_{\mid \partial \Omega}=0,\left|\nabla \beta_{0}\right|>0 \text { outside } \omega .
\end{array}\right.
$$

We introduce

$$
P_{0}=\left\{q \in C^{2}\left(\bar{Q}_{T}\right): q=0 \text { on } \Sigma_{T}\right\} .
$$

In this linear space, the bilinear form

$$
(p, q)_{P}:=\iint_{Q_{T}} \rho^{-2} L^{*} p L^{*} q d x d t+\iint_{q_{T}} \rho_{0}^{-2} p q d x d t
$$

is a scalar product (unique continuation property).
Let P be the completion of P_{0} for this scalar product.

Primal (direct) approach

Following Fursikov-Imanuvilov'96, we assume Carleman type weights :

$$
\left\{\begin{array}{l}
\rho(x, t)=\exp \left(\frac{\beta(x)}{T-t}\right), \rho_{0}(x, t)=(T-t)^{3 / 2} \rho(x, t), \beta(x)=K_{1}\left(e^{K_{2}}-e^{\beta_{0}(x)}\right) \tag{56}\\
\text { where the } \left.K_{i} \text { are sufficiently large positive constants (depending on } T, c_{0} \text { and }\|c\|_{C^{1}}\right) \\
\text { and } \beta_{0} \in C^{\infty}(\bar{\Omega}), \beta_{0}>0 \text { in } \Omega,\left(\beta_{0}\right)_{\mid \partial \Omega}=0,\left|\nabla \beta_{0}\right|>0 \text { outside } \omega .
\end{array}\right.
$$

We introduce

$$
P_{0}=\left\{q \in C^{2}\left(\bar{Q}_{T}\right): q=0 \text { on } \Sigma_{T}\right\}
$$

In this linear space, the bilinear form

$$
(p, q)_{P}:=\iint_{Q_{T}} \rho^{-2} L^{*} p L^{*} q d x d t+\iint_{q_{T}} \rho_{0}^{-2} p q d x d t
$$

is a scalar product (unique continuation property).
Let P be the completion of P_{0} for this scalar product.

Carleman estimates

Lemma (Fursikov-Imanuvilov'96, Fernández-Cara-Guerrero'06)
Let ρ and ρ_{0} be given by (56). For any $\delta>0$, one has

$$
P \hookrightarrow C^{0}\left([0, T-\delta] ; H_{0}^{1}(\Omega)\right),
$$

where the embedding is continuous. In particular, there exists $C>0$, only depending on ω, T, a_{0} and $\|a\|_{C^{1}}$, such that, for all $q \in P$,

$$
\begin{equation*}
\|q(\cdot, 0)\|_{H_{0}^{1}(\Omega)}^{2} \leq C\left(\iint_{Q_{T}} \rho^{-2}\left|L^{*} q\right|^{2} d x d t+\iint_{q_{T}} \rho_{0}^{-2}|q|^{2} d x d t\right) \tag{57}
\end{equation*}
$$

Primal (direct) approach

Proposition

Let ρ and ρ_{0} be given by (56). Let (y, v) be the corresponding optimal pair for J. Then there exists $p \in P$ such that

$$
\begin{equation*}
y=\rho^{-2} L^{*} p, \quad v=-\left.\rho_{0}^{-2} p\right|_{q_{T}} . \tag{58}
\end{equation*}
$$

The function p is the unique solution in P of

$$
\begin{equation*}
\iint_{Q_{T}} \rho^{-2} L^{*} p L^{*} q d x d t+\iint_{q_{T}} \rho_{0}^{-2} p q d x d t=\int_{0}^{1} y_{0}(x) q(x, 0) d x, \quad \forall q \in P \tag{59}
\end{equation*}
$$

Remark

p solves, at least in \mathcal{D}^{\prime}, the following differential problem, that is second order in time and fourth order in space:

Primal (direct) approach

Proposition

Let ρ and ρ_{0} be given by (56). Let (y, v) be the corresponding optimal pair for J. Then there exists $p \in P$ such that

$$
\begin{equation*}
y=\rho^{-2} L^{*} p, \quad v=-\left.\rho_{0}^{-2} p\right|_{q_{T}} \tag{58}
\end{equation*}
$$

The function p is the unique solution in P of

$$
\begin{equation*}
\iint_{Q_{T}} \rho^{-2} L^{*} p L^{*} q d x d t+\iint_{q_{T}} \rho_{0}^{-2} p q d x d t=\int_{0}^{1} y_{0}(x) q(x, 0) d x, \quad \forall q \in P \tag{59}
\end{equation*}
$$

Remark

p solves, at least in \mathcal{D}^{\prime}, the following differential problem, that is second order in time and fourth order in space:

$$
\left\{\begin{array}{lr}
L\left(\rho^{-2} L^{*} p\right)+\rho_{0}^{-2} p 1_{\omega}=0, & (x, t) \in(0,1) \times(0, T) \tag{60}\\
p(x, t)=0, \quad\left(-\rho^{-2} L^{*} p\right)(x, t)=0 & (x, t) \in\{0,1\} \times(0, T) \\
\left(-\rho^{-2} L^{*} p\right)(x, 0)=y_{0}(x), \quad\left(-\rho^{-2} L^{*} p\right)(x, T)=0, & x \in(0,1) .
\end{array}\right.
$$

Conformal approximation

For large integers N_{x} and N_{t}, we set $\Delta x=1 / N_{x}, \Delta t=T / N_{t}$ and $h=(\Delta x, \Delta t)$. Let us introduce the associated uniform triangulation \mathcal{T}_{h}, with

$$
\overline{Q_{T}}=\bigcup_{K \in \mathcal{T}_{h}} K .
$$

The following (conformal) finite element approximations of the space P are introduced:

$$
P_{h}=\left\{q_{h} \in C_{x, t}^{1,0}\left(\bar{Q}_{T}\right):\left.q_{h}\right|_{K} \in\left(\mathbb{P}_{3, x} \otimes \mathbb{P}_{1, t}\right)(K) \forall K \in \mathcal{T}_{h},\left.\quad q_{h}\right|_{\Sigma_{T}} \equiv 0\right\}
$$

where $C_{x, t}^{1,0}\left(\bar{Q}_{T}\right)$ is the space of the functions in $C^{0}\left(\bar{Q}_{T}\right)$ that are continuously differentiable with respect to x in \bar{Q}_{T}.
The variational equality (59) is approximated as follows:

Conformal approximation

For large integers N_{x} and N_{t}, we set $\Delta x=1 / N_{x}, \Delta t=T / N_{t}$ and $h=(\Delta x, \Delta t)$. Let us introduce the associated uniform triangulation \mathcal{T}_{h}, with

$$
\overline{Q_{T}}=\bigcup_{K \in \mathcal{T}_{h}} K .
$$

The following (conformal) finite element approximations of the space P are introduced:

$$
P_{h}=\left\{q_{h} \in C_{x, t}^{1,0}\left(\bar{Q}_{T}\right):\left.q_{h}\right|_{K} \in\left(\mathbb{P}_{3, x} \otimes \mathbb{P}_{1, t}\right)(K) \forall K \in \mathcal{T}_{h},\left.\quad q_{h}\right|_{\Sigma_{T}} \equiv 0\right\}
$$

where $C_{x, t}^{1,0}\left(\bar{Q}_{T}\right)$ is the space of the functions in $C^{0}\left(\bar{Q}_{T}\right)$ that are continuously differentiable with respect to x in \bar{Q}_{T}.
The variational equality (59) is approximated as follows:

$$
\left\{\begin{array}{l}
\iint_{Q_{T}} \rho^{-2} L^{*} p_{h} L^{*} q_{h} d x d t+\iint_{q_{T}} \rho_{0}^{-2} p_{h} q_{h} d x d t=\int_{0}^{1} y_{0}(x) q_{h}(x, 0) d x \tag{61}\\
\forall q_{h} \in P_{h} ; \quad p_{h} \in P_{h}
\end{array}\right.
$$

Conformal approximation

Theorem (Fernandez-Cara, AM)
Let $p_{h} \in P_{h}$ be the unique solution to (62). Let us set

$$
y_{h}:=\rho^{-2} L^{\star} p_{h}, \quad v_{h}:=-\rho_{0}^{-2} p_{h} 1_{q_{T}} .
$$

Then one has

$$
\left\|y-y_{h}\right\|_{L^{2}\left(Q_{T}\right)} \rightarrow 0 \text { and }\left\|v-v_{h}\right\|_{L^{2}\left(q_{T}\right)} \rightarrow 0, \quad \text { as } \quad h \rightarrow 0
$$

where (y, v) is the minimizer of J.

In practice, we introduce the variable $m_{h}:=\rho_{0}^{-1} p_{h} \in \rho_{0}^{-1} P_{h} \subset \rho_{0}^{-1} P \subset C\left([0, T], H_{0}^{1}(\Omega)\right)$ and we solve

Conformal approximation

Theorem (Fernandez-Cara, AM)
Let $p_{h} \in P_{h}$ be the unique solution to (62). Let us set

$$
y_{h}:=\rho^{-2} L^{\star} p_{h}, \quad v_{h}:=-\rho_{0}^{-2} p_{h} 1_{q_{T}} .
$$

Then one has

$$
\left\|y-y_{h}\right\|_{L^{2}\left(Q_{T}\right)} \rightarrow 0 \text { and }\left\|v-v_{h}\right\|_{L^{2}\left(q_{T}\right)} \rightarrow 0, \quad \text { as } \quad h \rightarrow 0
$$

where (y, v) is the minimizer of J.

In practice, we introduce the variable $m_{h}:=\rho_{0}^{-1} p_{h} \in \rho_{0}^{-1} P_{h} \subset \rho_{0}^{-1} P \subset C\left([0, T], H_{0}^{1}(\Omega)\right)$ and we solve

Conformal approximation

Theorem (Fernandez-Cara, AM)
Let $p_{h} \in P_{h}$ be the unique solution to (62). Let us set

$$
y_{h}:=\rho^{-2} L^{\star} p_{h}, \quad v_{h}:=-\rho_{0}^{-2} p_{h} 1_{q_{T}} .
$$

Then one has

$$
\left\|y-y_{h}\right\|_{L^{2}\left(Q_{T}\right)} \rightarrow 0 \text { and }\left\|v-v_{h}\right\|_{L^{2}\left(q_{T}\right)} \rightarrow 0, \quad \text { as } \quad h \rightarrow 0
$$

where (y, v) is the minimizer of J.

In practice, we introduce the variable $m_{h}:=\rho_{0}^{-1} p_{h} \in \rho_{0}^{-1} P_{h} \subset \rho_{0}^{-1} P \subset C\left([0, T], H_{0}^{1}(\Omega)\right)$ and we solve

$$
\left\{\begin{array}{l}
\iint_{Q_{T}} \rho^{-2} L^{*}\left(\rho_{0} m_{h}\right) L^{*}\left(\rho_{0} \overline{m_{h}}\right) d x d t+\iint_{Q_{T}} m_{h} \overline{m_{h}} d x d t=\int_{0}^{1} y_{0} \rho_{0}(\cdot, 0) \overline{m_{h}}(\cdot, 0) d x \tag{62}\\
\forall m_{h} \in \rho_{0}^{-1} P_{h} ; \quad \overline{m_{h}} \in \rho_{0}^{-1} P_{h} .
\end{array}\right.
$$

Experiment with $\omega=(0.2,0.8)$

$\Delta x=\Delta t$	$1 / 20$	$1 / 40$	$1 / 80$	$1 / 160$	$1 / 320$		
conditioning	1.33×10^{14}	1.76×10^{22}	7.86×10^{32}	2.17×10^{44}	2.30×10^{54}		
$\left\\|p_{h}(\cdot, T)\right\\|_{L^{2}(0,1)}$	2.85×10^{1}	2.04×10^{2}	1.59×10^{3}	4.70×10^{4}	6.12×10^{6}		
$\left\\|y_{h}(\cdot, T)\right\\|_{L^{2}(0,1)}$	4.37×10^{-2}	2.18×10^{-2}	1.09×10^{-2}	5.44×10^{-3}	2.71×10^{-3}		
$\left\\|v_{h}\right\\|_{L^{2}\left(q_{J}\right)}$	1.228	1.251	1.269	1.281	1.288		

Table: $T=1 / 2, y_{0}(x) \equiv \sin (\pi x), a(x) \equiv 10^{-1} .\left\|y_{h}(\cdot, T)\right\|_{L^{2}(0,1)}=\mathcal{O}(h)$.

Figure: $\omega=(0.2,0.8)$. The adjoint state p_{h} and its restriction to $(0,1) \times\{T\}$.

Experiments with $\omega=(0.2,0.8)$

$$
T=1 / 2, y_{0}(x) \equiv \sin (\pi x), a(x) \equiv 10^{-1}
$$

Figure: $\omega=(0.2,0.8)$. The state y_{h} (Left) and the control v_{h} (Right).

Experiments with $\omega=(0.3,0.4)$

$\Delta x=\Delta t$	$1 / 20$	$1 / 40$	$1 / 80$	$1 / 160$	$1 / 320$		
conditioning	3.06×10^{14}	5.24×10^{22}	2.13×10^{33}	5.11×10^{44}	4.03×10^{54}		
$\left\\|p_{h}(\cdot, T)\right\\|_{L^{2}(0,1)}$	1.37×10^{3}	5.51×10^{3}	5.12×10^{4}	2.16×10^{6}	3.90×10^{6}		
$\left\\|y_{h}(\cdot, T)\right\\|_{L^{2}(0,1)}$	1.55×10^{-1}	9.46×10^{-2}	6.12×10^{-2}	3.91×10^{-2}	2.41×10^{-2}		
$\left\\|v_{h}\right\\|_{L^{2}\left(q_{J}\right)}$	5.813	8.203	10.68	13.20	15.81		

Table: $T=1 / 2, y_{0}(x) \equiv \sin (\pi x), a(x) \equiv 10^{-1} .\left\|y_{h}(\cdot, T)\right\|_{L^{2}(0,1)}=\mathcal{O}\left(h^{0.66}\right)$.

Figure: $\omega=(0.3,0.4)$. The adjoint state p_{h} in Q_{T} (Left) and its restriction to $(0,1) \times\{T\}$ (Right).

Experiments with $\omega=(0.3,0.4)$

Figure: $\omega=(0.3,0.4)$. The state y_{h} (Left) and the control v_{h} (Right).

13
14

[^16]
L^{2}-weighted norm

$$
\left\{\begin{array}{l}
\text { Minimize } J(y, v)=\frac{1}{2} \iint_{q_{T}} \rho_{0}^{2}|v|^{2} d x d t \tag{63}\\
\text { Subject to }(y, v) \in \mathcal{C}\left(y_{0}, T\right)
\end{array}\right.
$$

where ρ_{0} are non-negative continuous weights functions such that $\rho, \rho_{0} \in L^{\infty}\left(Q_{T-\delta}\right) \quad \forall \delta>0$.

$$
\widetilde{W}_{\rho_{0}, \rho}=\left\{\varphi \in \widetilde{\Phi}_{\rho_{0}, \rho}: \rho^{-1} L^{\star} \varphi=0 \text { in } L^{2}\left(Q_{T}\right)\right\}
$$

L^{2}-weighted norm

$$
\left\{\begin{array}{l}
\text { Minimize } J(y, v)=\frac{1}{2} \iint_{q_{T}} \rho_{0}^{2}|v|^{2} d x d t \tag{63}\\
\text { Subject to }(y, v) \in \mathcal{C}\left(y_{0}, T\right)
\end{array}\right.
$$

where ρ_{0} are non-negative continuous weights functions such that $\rho, \rho_{0} \in L^{\infty}\left(Q_{T-\delta}\right) \quad \forall \delta>0$.

$$
\begin{align*}
\min _{\varphi \in \widetilde{W}_{\rho_{0}, \rho}} \hat{\jmath}^{\star}(\varphi) & =\frac{1}{2} \iint_{q_{T}} \rho_{0}^{-2}|\varphi(x, t)|^{2} d x d t+\left(y_{0}, \varphi(\cdot, 0)\right)_{L^{2}(\Omega)} \tag{64}\\
\widetilde{W}_{\rho_{0}, \rho} & =\left\{\varphi \in \widetilde{\Phi}_{\rho_{0}, \rho}: \rho^{-1} L^{\star} \varphi=0 \text { in } L^{2}\left(Q_{T}\right)\right\}
\end{align*}
$$

[^17]
Application: Controllability for semi-linear heat equation

$$
\left\{\begin{array}{lr}
y_{t}-0.1 y_{x x}-5 y \log ^{1.4}(1+|y|)=v 1_{(0.2,0.8)}, & (x, t) \in(0,1) \times(0,1 / 2) \tag{65}\\
y(x, t)=0, & (x, t) \in\{0,1\} \times(0,1 / 2) \\
y(x, 0)=40 \sin (\pi x), & x \in(0,1)
\end{array}\right.
$$

Without control, blow up at $t \approx 0.318$.

Figure: Fixed point method $-h=(1 / 60,1 / 60)-y_{0}(x)=40 \sin (\pi x)-$ Control v_{h} (Left) and corresponding controlled solution y_{h} (Right) in Q_{T}.

[^18]
A space-time Least-squares approach for controllability

We define the non-empty set ${ }^{17}$

$$
\begin{array}{r}
\mathcal{A}=\left\{(y, v) ; y \in C\left([0, T] ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) ; y^{\prime} \in L^{2}\left(0, T, H^{-1}(\Omega)\right),\right. \\
\left.y(\cdot, 0)=y_{0}, y(\cdot, T)=0, v \in L^{2}\left(q_{T}\right)\right\}
\end{array}
$$

and find $(y, v) \in \mathcal{A}$ solution of the heat eq. !

For any $(y, v) \in \mathcal{A}$, we define the "corrector" $c=c(y, v) \in H^{1}\left(Q_{T}\right)$ solution of the $Q_{T^{-}}$ elliptic problem

[^19]
A space-time Least-squares approach for controllability

We define the non-empty set ${ }^{17}$

$$
\begin{array}{r}
\mathcal{A}=\left\{(y, v) ; y \in C\left([0, T] ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) ; y^{\prime} \in L^{2}\left(0, T, H^{-1}(\Omega)\right),\right. \\
\left.y(\cdot, 0)=y_{0}, y(\cdot, T)=0, v \in L^{2}\left(q_{T}\right)\right\}
\end{array}
$$

and find $(y, v) \in \mathcal{A}$ solution of the heat eq. !

For any $(y, v) \in \mathcal{A}$, we define the "corrector" $c=c(y, v) \in H^{1}\left(Q_{T}\right)$ solution of the $Q_{T^{-}}$ elliptic problem

$$
\left\{\begin{array}{lr}
-c_{t t}-\nabla \cdot(a(x) \nabla c)+\left(L y-v 1_{\omega}\right)=0, & (x, t) \in Q_{T} \tag{66}\\
c_{t}=0, & x \in \Omega, t \in\{0, T\} \\
c=0, & x \in \Sigma_{T}
\end{array}\right.
$$

[^20]
Least-squares approach (2)

Theorem
y is a controlled solution of the heat eq. by the control function $v 1_{\omega} \in L^{2}\left(q_{T}\right)$ if and only if (y, v) is a solution of the extremal problem

$$
\begin{equation*}
\inf _{(y, v) \in \mathcal{A}} E(y, v):=\frac{1}{2} \iint_{Q_{T}}\left(\left|c_{t}\right|^{2}+a(x)|\nabla c|^{2}\right) d x d t \tag{67}
\end{equation*}
$$

Theorem

Any minimizing sequence $\left\{y_{k}, v_{k}\right\}_{k}>0$ for E converges strongly to a minimizer (which depend on (y_{0}, v_{0})).

Least-squares approach (2)

Theorem
y is a controlled solution of the heat eq. by the control function $v 1_{\omega} \in L^{2}\left(q_{T}\right)$ if and only if (y, v) is a solution of the extremal problem

$$
\begin{equation*}
\inf _{(y, v) \in \mathcal{A}} E(y, v):=\frac{1}{2} \iint_{Q_{T}}\left(\left|c_{t}\right|^{2}+a(x)|\nabla c|^{2}\right) d x d t \tag{67}
\end{equation*}
$$

Theorem

Any minimizing sequence $\left\{y_{k}, v_{k}\right\}_{k>0}$ for E converges strongly to a minimizer (which depend on $\left(y_{0}, v_{0}\right)$).

The numerical analysis has yet to be done! You are welcome!

A numerical application in 1D (inner controllability)

$N=1, \Omega=(0,1), \omega=(0.2,0.5), y_{0}(x)=\sin (\pi x), a(x)=a_{0}=0.25, T=1 / 2$, $d:=0$
Starting point of the algorithm: $(y, f)=\left(y_{0}(x)(1-t / T)^{2}, 0\right) \in \mathcal{A}$

$u_{0}(x)=\sin (\pi x)-$ Control acting on $\omega=(0.2,0.5)-\varepsilon=10^{-6}-\log _{10}\left(E_{h}\left(y_{h}^{n}\right)\right.$ (dashed line) and $\log _{10}\left(\left\|g_{n}^{n}\right\|_{\mathcal{A}}\right)$ (full line) vs. the iteration n of the CG algorithm.

A numerical application in 1D (inner controllability)

A numerical application in 1D (inner controllability)

Isovalues along Q_{T} of the corresponding corrector $c:\|c\|_{H^{1}\left(Q_{T}\right)} \approx 10^{-4}$

Inverse problem for heat - Reconstruction of y from $y_{q_{T}}$
$\left.\Omega \subset \mathbb{R}^{N}(N \geq 1)-T>0, c \in C^{1}(\bar{\Omega}, \mathbb{R})\right), d \in L^{\infty}\left(Q_{T}\right), y_{0} \in \boldsymbol{H}$

$$
\begin{cases}L y:=y_{t}-\nabla \cdot(c \nabla y)+d y=f, & Q_{T}:=\Omega \times(0, T) \tag{68}\\ y=0, & \Sigma_{T}:=\partial \Omega \times(0, T) \\ y(\cdot, 0)=y_{0}, & \Omega .\end{cases}
$$

- Inverse Problem : Distributed observation on $q_{T}=\omega \times(0, T), \omega \subset \Omega$

$$
\left\{\begin{array}{l}
X=L^{2}\left(q_{T}\right), \\
\text { Given }\left(y_{o b s}, f\right) \in\left(L^{2}\left(q_{T}\right), X\right), \text { find } y \text { s.t. }\left\{(68) \text { and } y-y_{o b s}=0 \text { on } q_{T}\right\}
\end{array}\right.
$$

Well-known Difficulty:

$$
\left(L y \in L^{2}\left(Q_{T}\right), y \in L^{2}\left(q_{T}\right), y_{\mid \Sigma_{T}}=0\right) \Longrightarrow y \in C\left([\delta, T], H_{0}^{1}(\Omega)\right), \quad \forall \delta>0
$$

${ }^{18}$ D. Araujo de Souza, AM, Inverse problems for linear parabolic equations using mixed formulations - Part 1 : Theoretical analysis. (2016)

Second order mixed formulation as in the previous part

We then define the following extremal problem :

$$
\left\{\begin{array}{l}
\text { Minimize } J(y):=\frac{1}{2} \iint_{q_{T}} \rho_{0}^{-2}\left|y(x, t)-y_{o b s}(x, t)\right|^{2} d x d t+r \iint_{Q_{T}}\left(\rho^{-1} L y\right)^{2} d x d t \\
\text { Subject to } y \in \mathcal{W}:=\left\{y \in \mathcal{Y}: \rho^{-1} L y=0 \text { in } L^{2}\left(Q_{T}\right)\right\} \tag{P}
\end{array}\right.
$$

with $\rho_{0}, \rho \in \mathcal{R}$ where $\left(\rho_{\star} \in \mathbb{R}_{\star}^{+}\right)$

$$
\mathcal{R}:=\left\{w: w \in C\left(Q_{T}\right) ; w \geq \rho_{\star}>0 \text { in } Q_{T} ; w \in L^{\infty}(\Omega \times(\delta, T)) \forall \delta>0\right\}
$$

$H_{0}^{1}-L^{2}$ first order formulation

First order formulation involving y and the flux $\mathbf{p}=c(x) \nabla y$.

$$
\begin{align*}
& \begin{cases}\mathcal{I}(y, \mathbf{p}):=y_{t}-\nabla \cdot \mathbf{p}+d y=f, \quad \mathcal{J}(y, \mathbf{p}):=c(x) \nabla y-\mathbf{p}=\mathbf{0} & \text { in } Q_{T}, \\
y=0 & \text { on } \Sigma_{T}, \\
y(x, 0)=y_{0}(x) & \text { in } \Omega_{0} .\end{cases} \tag{69}\\
& \left(y_{0}, f\right) \in L^{2}(\Omega) \times L^{2}\left(Q_{T}\right) \Longrightarrow p \in \mathrm{~L}^{2}\left(Q_{T}\right), y \in L^{2}\left(0, T, H_{0}^{1}(\Omega)\right), y_{t} \in L^{2}\left(0, T, H^{-1}(\Omega)\right)
\end{align*}
$$

- Inverse Problem : Distributed observation on $q_{T}=\omega \times(0, T), \omega \subset \Omega$

$$
\left\{\begin{array}{l}
X=L^{2}\left(q_{T}\right), \\
\text { Given }\left(y_{o b s}, f\right) \in\left(L^{2}\left(q_{T}\right), x\right), \text { find }(y, \mathbf{p}) \text { s.t. }\left\{(69) \text { and } y-y_{o b s}=0 \text { on } q_{T}\right\}
\end{array}\right.
$$

$N=1$ - Heat eq. Comparison with the standard method

$$
y_{0}(x)=\sin (\pi x)^{20}, \quad Q_{T}=(0,1) \times(0, T), \quad q_{T}=(0.7,0.8) \times(0, T), \quad T=1 / 2
$$

$$
\begin{equation*}
\min _{y_{0 h}}\left(J_{h}\left(y_{0 h}\right)+\frac{h^{2}}{2}\left\|y_{0 h}\right\|_{L^{2}(\Omega)}^{2}\right) \quad \text { vs. } \quad \min _{\lambda_{h}} J_{r}^{\star \star}\left(\lambda_{h}\right) \text { over } \quad \Lambda_{h} \tag{70}
\end{equation*}
$$

$$
\frac{\left\|y-y_{h}\right\|_{L^{2}\left(Q_{T}\right)}}{\|y\|_{L^{2}\left(Q_{T}\right)}} \approx 5.86 \times 10^{-2}, \quad \frac{\left\|y-y_{h}\right\|_{L^{2}\left(Q_{T}\right)}}{\|y\|_{L^{2}\left(Q_{T}\right)}} \approx 7.70 \times 10^{-2}
$$

$N=1$ - Comparison with the standard method

$$
y_{0}(x)=\sin (\pi x)^{20}, \quad Q_{T}=(0,1) \times(0, T), \quad q_{T}=(0.7,0.8) \times(0, T), \quad T=1 / 2
$$

$N=1$ - Comparison with the standard method

Evolution of the relative residu $\frac{\left\|g^{k}\right\|}{\left\|g^{0}\right\|}$ w.r.t. iterate k

Final comments

The variational approach can be used in the context of many other controllable systems for which appropriate Carleman estimates are aVAILABLE.

The approximation is robust (we have to inverse symmetric definite POSItIVE AND VERY SPARSE MATRICE WITH DIRECT LU AND CHOLESKY SOLVERS)

With conformal time-Space finite elements approximations, we obtain STRONG CONVERGENCE RESULTS WITH RESPECT TO $h=(\Delta x, \Delta t)$.

The price to pay is to used C^{1} finite elements (at least in space) BUT we MAY INTRODUCE LOWER ORDER SYSTEM.

In that space-time approach, the support of the control may varies in time (WITHOUT ADDITIONAL DIFFICULTIES).

THIS APPROACH MAY BE APPLIED FOR INVERSE PROBLEMS, OBSERVATION PROBLEMS, RECONSTRUCTION OF DATA,

Mesh Adaptivity may be very useful, in particular in the parabolic situation

Ongoing works

- Extension to sparse control (L^{1} term in the cost)

Ongoing works

- Extension to sparse control (L^{1} term in the cost)

Ongoing works

- Extension to sparse control (L^{1} term in the cost)
- Average controllability ${ }^{19}$

[^21]
Ongoing works

- Extension to sparse control (L^{1} term in the cost)
- Average controllability ${ }^{19}$

[^22]
Ongoing works

- Extension to sparse control (L^{1} term in the cost)
- Average controllability ${ }^{19}$
- Approximation of observability constant (to infer or not observability property)

$$
\begin{equation*}
C_{o b s}(T, \omega)=\sup _{\varphi_{T} \in H_{0}^{1}(\Omega)} \frac{\|\varphi(\cdot, 0)\|_{L^{2}(\Omega)}^{2}}{\|\varphi\|_{L^{2}(\omega \times(0, T))}^{2}}, \quad \text { where } \quad L^{\star} \varphi=0 \tag{71}
\end{equation*}
$$

in particular for the VERY SINGULAR case of the transport-diffusion equation

$$
\left\{\begin{array}{l}
y_{t}-\epsilon y_{x x}+y_{x}=0, \quad Q_{T}:=(0,1) \times(0, T) \tag{72}\\
y(0, t)=v_{\epsilon}(t), y(1, t)=0 \\
y(x, 0)=y_{0}(x) \in L^{2}(0,1)
\end{array}\right.
$$

```
as }\epsilon->\mp@subsup{0}{}{+}
```

[^23]
[^0]: ${ }^{1}$ R. Glowinski, C.H. Li, J.-L. Lions, A numerical approach to the exact boundary controllability of the wave equation, (1990)

[^1]: ${ }^{2}$ A. Münch, A uniformly controllable and implicit scheme for the 1-D wave equation,(2005)

[^2]: ${ }^{2}$ A. Münch, A uniformly controllable and implicit scheme for the 1-D wave equation,(2005)

[^3]: ${ }^{3} \mathrm{~N}$. Cindea, AM, A mixed formulation for the direct approximation of the control of minimal L^{2}-norm for linear type wave equations, (2015)

[^4]: ${ }^{3} \mathrm{~N}$. Cindea, AM, A mixed formulation for the direct approximation of the control of minimal L^{2}-norm for linear type wave equations, (2015)

[^5]: ${ }^{4}$ P.G. Ciarlet, The finite element for elliptic problems, North-Holland, 1979

[^6]: ${ }^{4}$ P.G. Ciarlet, The finite element for elliptic problems, North-Holland, 1979

[^7]: ${ }^{5}$ K. Bathe, D. Chapelle, The discrete inf-sup test, (2003)

[^8]: ${ }^{5}$ K. Bathe, D. Chapelle, The discrete inf-sup test, (2003)

[^9]: ${ }^{6}$ H. Barbosa, T. Hugues : The finite element method with Lagrange multipliers on the boundary: circumventing the Babusÿka-Brezzi condition, 1991

[^10]: ${ }^{7}$ N. Cindea, E. Fernandez-Cara, AM, Numerical controllability of the wave equation through primal methods and Carleman estimates (2012)

[^11]: ${ }^{8}$ C. Castro, N. Cindea, A. Münch, Controllability of the 1D wave equation with inner moving force, SICON (2014)]
 ${ }^{9}$ G. Lebeau, J. Le Rousseau, P. Terpolilli, E. Trélat, Geometric control condition for the wave equation with a time-dependent domain, (2016)

[^12]: ${ }^{10} \mathrm{~N}$. Cindea, AM, Inverse problem for linear hyperbolic equations using mixed formulations, Inverse Problems, (2015).

[^13]: ${ }^{10}$ N. Cindea, AM, Inverse problem for linear hyperbolic equations using mixed formulations, Inverse Problems, (2015).

[^14]: ${ }^{11}$ S. Micu, Regularity issues for the null-controllability of the linear 1-d heat equation, 2011

[^15]: ${ }^{12}$ A.V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series, number 34. Seoul National University, Korea, (1996) 4-163.

[^16]: ${ }^{13}$ E. Fernández-Cara and AM, Numerical null controllability of the 1-d heat equation: primal algorithms, (2013),
 ${ }^{14}$ E. Fernández-Cara and A. Münch, Numerical null controllability of the 1-d heat equation: Carleman weights and duality, JOTA, (2013)

[^17]: ${ }^{15}$ D. Araujo de Souza, AM, A mixed formulation for the direct approximation of the control of minimal L^{2}-weighted norm for the linear heat equation. (2016)

[^18]: ${ }^{16}$ E. Fernández-Cara and AM, Numerical null controllability of semi-linear 1D heat equations : fixed point, least squares and Newton methods, (2012)

[^19]: ${ }^{17}$ AM, P. Pedregal, Numerical null controllability of the heat equation through a least squares and variational approach. European Journal of Applied Mathematics, (2014)

[^20]: ${ }^{17}$ AM, P. Pedregal, Numerical null controllability of the heat equation through a least squares and variational approach. European Journal of Applied Mathematics, (2014)

[^21]: ${ }^{19}$ Martinez-Frutos, Kessler, M, Periago, Robust optimal Robin boundary control for the transient heat equation with random input data, (2016).

[^22]: ${ }^{19}$ Martinez-Frutos, Kessler, M, Periago, Robust optimal Robin boundary control for the transient heat equation with random input data, (2016).

[^23]: ${ }^{19}$ Martinez-Frutos, Kessler, M, Periago, Robust optimal Robin boundary control for the transient heat equation with random input data, (2016).

