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Abstract

We consider a linear damped wave equation defined on a bi-dimensional domain Ω,
with a dissipative term localized on the subset ω. We address in this work the shape
design problem which consists in optimizing the shape of ω in order to minimize the
energy of the system at a given time T . By introducing an adjoint problem, we first
obtain explicitly the (shape) derivative of the energy at time T with respect to the
variation of ω. Expressed as a boundary integral on ∂ω, this derivative is then used as
an advection velocity in an Hamilton-Jacobi equation for changing the shape. We use
the level-set methodology on a fixed working Eulerian mesh as well as the topological
derivative notion. We also consider the optimization with respect to the value of the
damping parameter. The numerical approximation is presented in details and several
numerical experiments are performed and relate the over-damping phenomenon to the
well-posedness of the problem.

Key Words: Shape design, wave equation, level set, topological derivative, numerical
viscosity.
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1 Introduction - Problem statement

Let T > 0 and Ω a bounded domain of class C2(R2). We consider the standard damped
wave equation on the cylinder:







y′′ω,a − ∆yω,a + a(x)y′ω,a = 0 in Ω × (0, T ),
yω,a = 0 on ∂Ω × (0, T ),
yω,a(x, 0) = y0(x), y′ω,a(x, 0) = y1(x) in Ω.

(1)

where the symbol ′ denotes partial differentiation with respect to time. We assume that the
damping potential a ∈ L∞(Ω,R+) takes the expression

a(x) = aXω(x) ∀x ∈ Ω (2)

for any a ∈ R
+. Xω designates the characteristic function of any domain ω strictly included

in Ω. Moreover, we assume that (y0, y1) ∈ (H2(Ω) ∩H1
0 (Ω)) ×H1

0 (Ω) are independent of ω
and a. System (1) is well-posed (see [19]) and the unique solution satisfies

yω,a ∈ C((0, T );H2(Ω) ∩H1
0 (Ω)) ∩ C1((0, T );H1

0 (Ω)) ∩ C2((0, T );L2(Ω)). (3)
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1 INTRODUCTION - PROBLEM STATEMENT 2

The energy of the system (1)

E(ω, a, t) =
1

2

∫

Ω

(|y′ω,a(x, t)|2 + |∇yω,a(x, t)|2)dx, ∀ t > 0, (4)

satisfies the following dissipation law

E′(ω, a, t) = −
∫

Ω

a(x)|y′ω,a(x, t)|2dx ≤ 0, ∀t > 0. (5)

so that the linear wave equation (1) models the dissipation of a membrane by an internal
actuator. yω,a(x, t) denotes the transversal displacement at point x and time t, while y0
and y1 denote the initial position and the velocity respectively.

In this work, we consider the numerical resolution of the following nonlinear problems

(Pω) : inf
ω∈Ω

E(ω, a, T ) ; (Pa) : inf
a∈L∞(Ω,R+)

E(ω, a, T ). (6)

Problem (Pω) - illustrated on Figure 1 - is a so-called shape design problem and consists
in optimizing the dissipation of the system at time T with respect to ω. This a typical ill-
posed problem in the sense that the infimum may be not reached in the class of characteristic
function: the optimal domain ω is then composed of an arbitrarily large number of disjoint
components. In [25] (extended to the elasticity operator in [26]), a full well-posed relaxation
of (Pω) is given, using a non-convex variational analysis (we also refer to [11] for an analysis
in the 1-D case). The analysis performed in [25] highlights the effect of the overdamping
phenomenon characteristic to this damped wave equation ([12, 20]), for which the dissipation
vanishes for large value of the constant a: precisely, (Pω) loose his well-posedness as soon
as this constant is large enough (with respect to the data of the problem). This observation
motivates the numerical resolution of problem (Pa), not studied so far in the general case
(in the 1-D case, we refer to [12]).

We highlight, that in this work, we do not make any geometrical assumption on ω
(contrary to [15, 16] which maximize the exponential decay rate of the energy with respect
to ω, assuming the optic geometrical condition, well-known in control theory [4]).

damping

a(x) = 0

a(x) > 0

y′′ − ∆y + a(x)y′ = 0

ω?

Ω fixed

Figure 1: Illustration of (Pω) - Optimization of the location and shape of ω, support of the
damping function a in order to minimize the energy E at time T .

This paper provides a numerical solution to the nonlinear problems (6) in order to com-
plete the previous theoretical work [25]. Provided some additional geometrical conditions
on the ω, observe that problem (Pω) is well-posed [18]. In order to use a gradient descent
algorithm, a key point is to determine the derivative of E with respect to ω and a. This is
done using the domain derivative method [9]: the derivative with respect to ω is expressed
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as a curvilinear integral over Γ = ∂ω×(0, T ) and is a function of yω,a and pω,a solution of an
adjoint problem and the jump of a across ∂ω. The derivative with respect to a, expressed on
ω×(0, T ) is also function of pω,a. Then, the optimal shape design problem (Pω) is addressed
with a level set approach, following the recent works [1, 31] (see [5] for a survey on this ques-
tion). From a numerical viewpoint, we discuss the approximation of the wave equation in
such a way that the spurious high frequencies get damped out uniformly with respect to the
discretization parameters. In order to ensure the convergence of the derivative of the energy
derivative (which is necessary for the convergence of the discrete optimal design), we use a
modified scheme with viscosity terms introduced and analyzed in [24].

The paper is organized as follows. The next section is devoted to the computation of
the (shape) derivative of E with respect to the variation of ω and also with respect to the
damping function. Section 3 aims at recalling some aspects of level set methods and presents
the algorithm of minimization. Section 4 is devoted to the numerical approximation of the
problem using a modified finite difference scheme. Section 5 presents several numerical
simulations of problems (Pω), (Pa) and also of problem (Pω,a) which consists of minimizing
the energy which respect to ω and a simultaneously. We conclude with some remarks in
Section 6.

2 Existence results and derivative of E

2.1 Overview of existence results for (Pω) and (Pa)

The aim of this part is to recall some assumptions which ensure the existence of at least one
solution to problems (Pω) and (Pa). Let us first make the following important remarks.

Remark 1 We underline that no condition is imposed on ∂ω. This will allow us to use the
level set approach which consists of decoupling the description of the moving boundary ∂ω
from the description of the mesh of Ω. It is also important to notice that, in the case where
a ∈ L∞(Ω), the unique solution y of (1) is such that ∇y is continuous on and through ∂ω.
Precisely, we recall that when Ω = (Ω\ω) ∪ ω ∪ ∂ω, then

H1(Ω) = {v ∈ L2(Ω), v|ω ∈ H1(ω), v|(Ω\ω) ∈ H1(Ω\ω), [[v]] = 0 on ∂ω} (7)

where [[v]] denotes the jump of v through ∂ω. Then, the interpretation of the following
variational formulation associated with (1), for all ϕ ∈ D(Ω) and for all t > 0,

< y′′ω,a, ϕ >(H−1(Ω),H1
0
(Ω)) +

∫

Ω

∇yω,a.∇ϕdx +

∫

ω

ay′ω,aϕdx = 0 (8)

implies using the density of D(Ω) in H1
0 (Ω) that

∫

∂ω
[[∇yω,a ·ν]]ϕdσ = 0 for all ϕ ∈ H1/2(∂ω)

and finally [[∇yω,a · ν]] = 0. Then, [[yω,a]] = 0 implies [[∇yω,a.τ ]] = 0. �

Remark 2 The energy E at time T - called the cost function in the sequel - is not monotonous
with respect to the area of ω. Moreover, without any restriction on the area of ω, one may
conjecture that the trivial solution is ω = Ω. Similarly, one may conjecture that the inclusion
ω1 ⊂ ω2 ⊂ Ω implies the inequality E(ω2, a, T ) ≤ E(ω1, a, T ), ∀T > 0. These two points
which seem open from the theoretical viewpoint are numerically observed. Consequently, we
use in the sequel the following subset

VL = {ω ⊂ Ω, |ω| = L|Ω|}, L ∈ (0, 1) (9)

where |ω| designates the measure of ω and replace (Pω) by the problem (Pω,L) : infω∈VL
E(ω, a, T )

for L fixed in (0, 1). �
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It is well-known that the static version of (Pω) - and a fortiori (Pω) - is not well-
posed on the set of admissible shapes VL and has usually no solution ([9, 25]). In order to
obtain existence of solutions, some geometrical constraints are required [18]. We mention
for instance the perimeter constraint leading to a well-posed problem. Since the domain
ω is assumed time-independent, it is easy to adapt results of the static case. Using the
independence of the initial condition (y0, y1) with respect to ω and the decay of the energy,
we obtain the following result (we refer to [21] for a study in the time-dependent case).

Proposition 2.1 Let L ∈ (0, 1). We assume that ω is of class C1,1(Ω) (Uniformly lipschitz
continuous on Ω). Then, there exists at least one ω ⊂ VL minimizing the functional ω →
E(ω, a, T ). �

This work being devoted to numerical simulation, we do not reproduce the proof here and
refer to [25] for a mathematical analysis. We also state without proof the following simpler
result obtained using the independence of the initial condition with respect to the damping
function a.

Proposition 2.2 Let L ∈ (0, 1). Let ω be fixed in VL and a(x) = aXω(x). Then, there
exists at least one scalar a ∈ R

+
⋆ minimizing the functional a→ E(ω, a, T ). �

2.2 Shape derivative of the cost with respect to ω

From now, we simply denote yω,a by y. A standard procedure for this constrained problem
(Pω,L) is to relax the condition ω ∈ VL via a penalization parameter ε leading to the new
problem:

(P εω,L) : inf
ω⊂Ω

Eε(ω, a, T ) (10)

where

Eε(ω, a, T ) = E(ω, a, T ) +
1

2
ε−1(|ω| − L |Ω|)2. (11)

In order to solve (P εω,L) using a gradient descent procedure, we now compute explicitly an
expression of the derivative of the functional Eε with respect to ω. The domain Ω is fixed
and it is worth noticing that the initial condition (y0, y1) is independent of ω. Let η ∈ R

+.
From now on, we assume that ω is in C1,1(Ω) and introduce a vector field θ ∈ W 1,∞(Ω,R2),
with θ|∂Ω = 0 and θ not vanishing on a neighborhood of ∂ω.

Definition 2.1 The derivative of the functional Eε with respect to a variation of ω ⊂ Ω in
the direction θ is defined as the Fréchet derivative in W 1,∞(Ω,R2) at 0 of the application
θ → Eε((Id + ηθ)(ω)), i.e.

Eε((Id+ ηθ)(ω), a, T ) = Eε(ω, a, T ) + η
∂Eε(ω, a, T )

∂ω
· θ + o(||θ||W 1,∞(Ω,R2)). (12)

�

We refer the reader to [9, 18] for more details. Moreover the derivative is a continuous lin-
ear form on W 1,∞(Ω,R2) and depends only of the field θ in an arbitrary small neighborhood
of ∂ω.

Theorem 2.2 The derivative of Eε is given by the following expression:

∂Eε(ω, a, T )

∂ω
· θ =

∫

∂ω

[

ε−1(|ω| − L|Ω|) + a

∫ T

0

y′(x, t)p(x, t)dt

]

θ · νdσ (13)
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where ν denotes the outward normal and p the solution of the following adjoint problem:














p′′ − ∆p− a(x)p′ = 0 in Ω × (0, T ),
p = 0 on (∂Ω\∂ω)× (0, T ),
p(x, T ) = −y′(x, T ) in Ω,
p′(x, T ) = −a(x)y′(x, T )− ∆y(x, T ) in Ω.

(14)

�

Remark 3 If the function a takes the value a1 on ω and a2 on Ω\ω, the derivative takes
the form

∂Eε(ω, a, T )

∂ω
· θ =

∫

∂ω

[

ε−1(|ω| − L|Ω|) +

∫ T

0

[[a]] y′(x, t)p(x, t)dt

]

θ · νdσ (15)

where the jump [[a]] of a across ∂ω is defined as [[a]] = a1 − a2. In particular, if the jump
is equal to zero and if ω ⊂ VL, then the derivative with respect to ω is null. �

Remark 4 From (3), (p(T ), p′(T )) ∈ (H1
0 (Ω), L2(Ω)). Therefore, the system (14) is well-

posed and there exists a unique solution p such that

p ∈ C((0, T );H1
0 (Ω)) ∩ C1((0, T );L2(Ω)). (16)

Consequently, ay′p ∈ C((0, T );W 1,1(Ω)) and the derivative (13) is well-defined as a function
on ∂ω. �

Proof of Theorem 2.2. In order to simplify the notations and to avoid duality products,
we present a formal proof assuming the solution y and p are sufficiently regular to justify the
integration by parts (we refer to [6] for rigorous developments). We associate with the system
(1) a variational formulation keeping in mind that the domain Ω and ω are independent of
time. For all ϕ ∈ C((0, T );H1

0 (Ω)), we then consider the formulation















∫ T

0

∫

Ω

(

y′′ϕ+ ∇y · ∇ϕ
)

dxdt+

∫ T

0

∫

ω

ay′ϕdxdt = 0,

∫

Ω

(y(., 0) − y0)ϕ(., 0) dx = 0,

∫

Ω

(y′(., 0) − y1)ϕ(., 0) dx = 0,

(17)

and apply the derivation method in order to obtain the formulation associated with the
first lagrangian derivative Y . We obtain



































∫ T

0

∫

Ω

(Y ′′ϕ+ ∇Y · ∇ϕ)dxdt +

∫ T

0

∫

ω

aY ′ϕdxdt

+

∫ T

0

∫

Ω

(A(θ) · ∇y · ∇ϕ+ y′′divθϕ)dxdt+

∫ T

0

∫

ω

ay′divθϕdxdt = 0,

∫

Ω

(Y (., 0) −∇y0 · θ)ϕ(., 0)dx = 0;

∫

Ω

(Y ′(., 0) −∇y1 · θ)ϕ(., 0)dx = 0.

(18)

The operator A : W 1,∞(Ω,R2) → L∞(Ω,R2) is defined as A(θ) = divθId − (∇θ + ∇θ
⋆)

where ∇θ
⋆ designates the transpose of ∇θ. Using similar arguments, the derivative of the

energy is

∂E(ω, a, T )

∂ω
· θ =

1

2

∫

Ω

(

(|y′(T )|2 + |∇y(T )|2)divθ − (∇θ + (∇θ)⋆) · ∇y(T ) · ∇y(T )

)

dx

+

∫

Ω

(

y′(T )Y ′(T ) + ∇y(T ) · ∇Y (T )

)

dx.

(19)
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Let us rewrite this derivative in terms of y and p. A first computation leads to
∫

Ω

[y′(T )Y ′(T ) + ∇y(T ) · ∇Y (T )]dx =

∫ T

0

∫

Ω

(p′′Y − Y ′′p)dxdt+

∫

Ω

(p′(0)Y (0) − p(0)Y ′(0))dx +

∫

ω

ay′(T )Y (T )dx.

(20)

Using the formulation (1) and (14), we obtain that
∫ T

0

∫

Ω

(p′′Y − Y ′′p)dxdt =

∫

ω

a(p(T )Y (T ) − p(0)Y (0))dx

+

∫ T

0

∫

Ω

(A(θ) · ∇y · ∇p+ y′′p divθ)dxdt +

∫ T

0

∫

ω

ay′p divθdxdt.

(21)

The relation p(T ) = −y′(T ) then implies that

∂E(ω, a, T )

∂ω
· θ =

1

2

∫

Ω

(

(|y′(T )|2 + |∇y(T )|2)divθ − (∇θ + (∇θ)⋆) · ∇y(T ) · ∇y(T )

)

dx

+

∫ T

0

∫

Ω

(A(θ) · ∇y · ∇p+ y′′p divθ)dxdt +

∫ T

0

∫

ω

ay′p divθdxdt

−
∫

ω

ap(0)Y (0)dx+

∫

Ω

(p′(0)Y (0) − p(0)Y ′(0))dx.

(22)
Then, from A(θ) · ∇y · ∇p = (θ1,1 − θ2,2)(y,2p,2 − y,1p,1) − (θ1,2 + θ2,1)(y,1p,2 + y,2p,1) and
θ|∂Ω = 0, we obtain
∫ T

0

∫

Ω

(A(θ) · ∇y · ∇p+ y′′p divθ)dxdt =

∫ T

0

∫

Ω

(∇p · θ(∆y − y′′) + ∇y · θ∆p−∇y′′ · θp)dxdt

=

∫ T

0

∫

ω

∇p · θ ay′dxdt +

∫ T

0

∫

Ω

(∇y · θ∆p−∇y′′ · θp)dxdt.
(23)

Additional integrations by part, using that θ is time-independent, lead to the following
expression

∂E(ω, a, T )

∂ω
· θ =

1

2

∫

Ω

(

(|y′(T )|2 + |∇y(T )|2)divθ − (∇θ + (∇θ)⋆) · ∇y(T ) · ∇y(T )

)

dx

+

∫ T

0

∫

ω

div(ay′p θ)dωdt+

∫

Ω

(∇y′(T ) · θy′(T ) −∇y(T ).θ∆y(T ))dx.

(24)
Then, from div(|y′(T )|2θ) = |y′(T )|2divθ + 2y′(T )∇y′(T ).θ and the relation
∫

Ω

∇(|∇y(T )|2) ·θdx = −
∫

Ω

(∇θ +∇θ
⋆) · ∇y(T ) · ∇y(T )dx− 2

∫

Ω

∇y(T ) · θ∆y(T )dx (25)

we finally obtain

∂E(ω, a, T )

∂ω
· θ =

1

2

∫

Ω

div((|y′(T )|2 + |∇y(T )|2)θ)dx+

∫ T

0

∫

ω

div(ay′pθ)dxdt

=

∫ T

0

∫

∂ω

ay′p θ · νdσdt
(26)

using θ|∂Ω = 0 in the first integral. Finally, from

∂

∂ω
(|ω| − L |Ω|) · θ =

∫

∂ω

θ · νdσ. (27)

we obtain the relation (13). �
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2.3 Derivative of the cost with respect to the coefficient a

We now assume that the domain ω is fixed in Ω and optimize E with respect to the value
of the damping coefficient a. Since the cost is not monotonous with respect to a, it is not
necessary to introduce a penalization argument here. Let us consider a perturbation of a:

aη(x) = a(x) + ηa1(x), x ∈ Ω (28)

assuming η small enough for aη to remain in L∞(Ω,R+). We then assume that the variation
of the solution of the wave equation can be written as follows: yη = y + ηY + O(η2).

Theorem 2.3 The derivative of E with respect to a is

∂E(ω, a, T )

∂a
· a1 =

∫ T

0

∫

ω

a1y′(x, t)p(x, t)dxdt (29)

where p is solution of (14). �

Proof. The proof is simpler than in the previous case. We obtain that Y and a1 solve

∫ T

0

∫

Ω

(

Y ′′ϕ+∇Y ·∇ϕ
)

dxdt+

∫ T

0

∫

ω

(aY ′+a1y′)ϕdxdt = 0, ∀ϕ ∈ C((0, T );H1
0 (Ω)). (30)

Furthermore, since the initial conditions are independent of a, we have Y (., 0) = 0 and
Y ′(., 0) = 0 in Ω. The derivative of E with respect to a is then

∂Eε(ω, a, T )

∂a
· a1 =

∂E(ω, a, T )

∂a
· a1 =

∫

Ω

(

y′(T )Y ′(T ) + ∇y(T ) · ∇Y (T )

)

dx. (31)

We then adapt (20) to obtain

∫

Ω

[y′(T )Y ′(T ) + ∇y(T ) · ∇Y (T )]dx =

∫ T

0

∫

Ω

(p′′Y − Y ′′p)dxdt+

∫

ω

ay′(T )Y (T )dx. (32)

Y being solution of (30), we obtain

∫ T

0

∫

Ω

(p′′Y − Y ′′p)dxdt =

∫

ω

a(Y (T )p(T ) − Y (0)p(0))dx +

∫ T

0

∫

ω

a1y′p dxdt

= −
∫

ω

aY (T )y′(T )dx+

∫ T

0

∫

ω

a1y′p dxdt

(33)

and finally the relation (29). �

2.4 Topological derivative

In a similar manner, we may also compute the topological derivative associated with E,
notion introduced in [28] and then used efficiently in the context of shape optimization (see
for instance [2, 13]).

Theorem 2.4 For any x0 ∈ Ω and ρ such that D(x0, ρ) ≡ {x ∈ R
2, dist(x,x0) ≤ ρ} ⊂ Ω,

the functional associated with D(x0, ρ) may be expressed as follows:

E(D(x0, ρ), a, T ) = E(∅, a, T ) + πρ2

∫ T

0

ay′∅,0(x0, t)p∅,0(x0, t)dt+ o(ρ2) (34)

in terms only of the conservative solutions y∅,0, p∅,0. The term factor of ρ2 is called the
topological derivative of E. �
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Proof. The computation is very similar to the computation of the shape derivative (we refer
the reader to [28] for general developments). In our simple situation, we may obtained a
relation similar to (34) by using the interplay between ω and a (i.e. E(ω, 0, T ) = E(∅, a, T )
for all a and ω) and the variation of E with respect to a. Precisely, taking a = 0 and
ω = D(x0, ρ) ⊂ Ω in the equality

E(ω, a+ ηa1, T ) = E(ω, a, T ) + ηa1

∫

ω

∫ T

0

y′ω,a(x, t)pω,a(x, t)dtdx + o(η) (35)

leads to

E(D(x0, ρ), ηa
1, T ) = E(D(x0, ρ), 0, T ) + ηa1

∫

D(x0,ρ)

∫ T

0

y′∅,0(x, t)p∅,0(x, t)dtdx+ o(η).

(36)
and then from E(D(x0, ρ), 0, T ) = E(∅, ηa1, T ) (and replacing ηa1 by a), we obtain the
difference of the energies associated with the dissipative and conservative case respectively,
in function only of the solution of the conservative case y∅,0 and p∅,0

E(D(x0, ρ), a, T ) = E(∅, a, T ) + a

∫

D(x0,ρ)

∫ T

0

y′∅,0(x, t)p∅,0(x, t)dtdx+ o(a). (37)

We then easily get (34). Once again, these relation highlights the balance between a and
ω (or equivalently ρ) and will illustrates the over-damping phenomenon. We will use these
relation to obtain an efficient prediction of ω, for a or ρ small enough (see Section 5). �

3 Minimization of the cost

Thanks to the previous computations, we are now in position to apply a gradient descent
method for the minimization of the objective function Eε with respect to the position of ω
and for E with respect to the value of the function a respectively.

3.1 Minimization of Eε with respect to ω - Level set approach

From (13), the shape derivative is

∂Eε(ω, a, T )

∂ω
· θ =

∫

∂ω

jε(yω,a, pω,a, T )θ · ν dσ (38)

with jε(yω,a, pω,a, T ) = ε−1(|ω|−L|Ω|)+ a
∫ T

0 y′ω,a(x, t)pω,a(x, t)dt defined on Ω. A descent
direction is found by defining on ∂ω the vector field θ as follows :

θ = −jε(yω , pω, T )ν, (39)

and we then update the shape ω as ωη = (Id+ ηθ)(ω) (we recall that ω is in C1,1(Ω)). The
parameter η > 0 denotes a descent step small enough so that the formal following relation

Eε(ωη, a, T ) = Eε(ω, a, T )− η

∫

∂ω

(jε(yω,a, pω,a, T ))2dσ +O(η2) (40)

guarantees the decrease of Eε. This method can be implemented in the Lagrangian frame-
work : it suffices to mesh the domains ω, Ω\ω and then advect the mesh according to the
descent direction θ defined on ∂ω by (39). This imposes to mesh the moving interface ∂ω.
Morever, the re-meshing of the domain at each step may produce a costly method. Finally,
the change of topology of ∂ω is quite difficult to handle with this approach. Therefore,
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following recent works in optimal shape design [1, 31], we adopt an Eulerian approach and
we use a level-set method to capture the shape ω on a fixed mesh. Let us briefly recall the
main features of this method. The level set approach introduced in [27] (see [29, 30] for
a survey) consists in giving a description of the evolving interface ∂ω independent of the
discretizing mesh on Ω. We define the level-set function ψ in Ω in such a way that

ψ(x) ≤ 0 x ∈ ω, ψ(x) = 0 x ∈ ∂ω, ψ(x) ≥ 0 x ∈ Ω\ω. (41)

Therefore, the evolving interface ∂ω, is characterized by

∂ω = {x(τ) ∈ Ω such that ψ(x(τ), τ) = 0}, (42)

where τ denotes a pseudo-time variable, increasing with time, that may be the real time, a
load factor or in our case, the iterations of a given algorithm. Differentiation of (42) with
respect to τ then leads to

∂ψ

∂τ
(x(τ), τ) + ∇ψ(x(τ), τ) · dx(τ)

dτ
= 0. (43)

Denoting by F the speed in the outward normal direction, such that dx(τ)
dτ · ν = F (x(τ))

where ν = ∇ψ/|∇ψ|, we obtain the following nonlinear Hamilton-Jacobi equation of the
first order for ψ:

∂ψ

∂τ
(x, τ) + F (x, τ)|∇ψ(x, τ)| = 0, given ψ(x, τ = 0). (44)

Assuming that the shape ∂ω evolves in pseudo-time τ with the normal velocity F =
−jε(yω,a, pω,a, T )ν as proposed in (39), the transport of the level set function ψ is therefore
equivalent to moving the boundary of ω (the zero level-set of ψ) along the descent gradient
direction −∂Eε/∂ω. Consequently, the partial differential system which has to be solved is
given by















∂ψ

∂τ
− jε(yω,a, pω,a, T )|∇ψ| = 0 in Ω × (0,∞),

ψ(., τ = 0) = ψ0 in Ω,

ψ = ψ0 > 0 on ∂Ω × (0,∞).

(45)

We further impose that ψ be constant and positive on Ω in order to ensure that ∂ω∩∂Ω = ∅.
Finally, because of its advection, the level-set function may becomes too flat or too steep
yielding either large errors in the location of its zero level or large errors in the evaluation of
its gradient by finite differences. Therefore, a standard trick (see [30]) consists in replacing
the level-set ψ at the pseudo time τ0 by the regularized one, which solves the following
problem







∂ψ̃

∂τ
+ sign(ψ(τ0))(|∇ψ̃| − 1) = 0 in Ω × (0,∞),

ψ̃(., τ = 0) = ψ(τ0) in Ω,

(46)

admitting as a stationary solution the signed distance to the initial interface {ψ(x, τ0) = 0}.

3.2 Minimization of E with respect to a

Similarly, we use the expression (29) to minimize the cost function with respect to a. a
being constant on ω, a descent direction is obtained by defining a1 as follows :

a1 = −
∫ T

0

∫

ω

y′(x, t)p(x, t)dxdt. (47)
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Then, we update a on ω as aη = a+ ηa1 on ω where η > 0 designates a descent step small
enough so that

E(ω, aη, T ) = E(ω, a, T )− η

(
∫ T

0

∫

ω

y′(x, t)p(x, t)dxdt

)2

+O(η2) (48)

guarantees the decrease of E.

Remark 5 If we assume that a may vary in ω, then the descent direction is

a1(x) = −
∫ T

0

y′(x, t)p(x, t) dt (49)

leading to

∂E(ω, a, T )

∂a
· a1 = −

∫

ω

(
∫ T

0

y′(x, t)p(x, t)dt

)2

dx. (50)

�

4 Numerical Approximation - Optimization Algorithm

We present in this section some important numerical aspects. In particular, we focus on
the importance of adding some viscosity terms in the usual discrete approximation of the
wave systems (1) and (14), more sensitive to the numerical approximation than elliptic or
parabolic systems.

4.1 Resolution of the wave equations (1) and (14) - Introduction
of viscosity terms

For simplicity, we take Ω = (0, 1)2 and choose to approximate the wave system with finite
difference schemes. Let us consider J ∈ N, h = 1/(J + 1) and a uniform grid (x1,i, x2,j)(i,j)
of Ω such that 0 = xk,0 < xk,1 < ... < xk,J < xk,J+1 = 1, with xk,j = jh and k = 1, 2. Let
us also consider N ∈ N, ∆t = T/N and a uniform grid of the time interval (0, T ) given by
0 = t0 < t1 < ... < tN = T , with tn = n∆t. h and ∆t denotes the space and time step
respectively. Let us denote by yni,j the approximation of y at the point (x1,i, x2,j) and time
tn:

yni,j ≈ y(x1,i, x2,j , tn), 0 ≤ i, j ≤ J + 1, 0 ≤ n ≤ N. (51)

The simplest way (see [8]) to approximate the wave equation is to approximate the derivative
in time by a centered finite difference as follows :

2∆t y′ = yn+1 − yn−1 +O(∆t3), ∆t2 y′′ = yn+1 − 2yn + yn−1 +O(∆t4), (52)

and to approximate the Laplacian by the 5 points finite difference

h2∆y(x1,i, x2,j) = yi+1,j + yi−1,j + yi,j+1 + yi,j−1 − 4yi,j +O(h4) ≡ h2∆hyi,j +O(h4) (53)

leading to a centered scheme of order two in space and time, and stable under the condition
∆t ≤ h/

√
2 (we refer to [24] for the details). However, as observed initially in [3] in the

context of stabilization and in [14] in the context of exact controllability, this scheme is not
uniformly convergent with respect to the dissipation property. The interaction of waves with
a numerical mesh produces dispersion phenomena and spurious high frequencies. Because of
this nonphysical interaction of waves with the discrete medium, the velocity of propagation
of numerical waves may converge to zero when the wavelength of solutions is of the order of
the size of the mesh. Consequently, the time needed to uniformly damp the numerical waves
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from a subset of Ω\ω in which they propagate may tend to infinity as the mesh becomes
finer. Thus, the dissipation mechanism may disappear completely if the initial conditions
are represented by high frequency components (see [24] for numerical illustrations). This
is the case for discontinuous initial data. Mathematically speaking, the convergence of the
solution in the energy norm is not ensured. We replace the standard scheme by the scheme
associated with the following equation

y′′ − ∆y + a(x)y′ − h2∆y′ = 0 in Ω × (0, T ) (54)

including a so-called viscous term h2∆y′ negligible for the low frequency components and
of order of the energy for the high frequency ones. The modified implicit scheme is then :



































(

1 +
∆t

2
(ai,j − ∆h)

)

yn+1
i,j = (2 + r2∆h)y

n
i,j −

(

1 − ∆t

2
(ai,j − ∆h)

)

yn−1
i,j ,

1 ≤ i, j ≤ J, 1 ≤ n ≤ N,

yni,j = 0, i = {0, J + 1} or j = {0, J + 1}, 1 ≤ n ≤ N,

y0
i,j = y0(x1,i, x2,j), y1

i,j = (1 +
r2

2
∆h)y

0
i,j + ∆t y1(x1,i, x2,j), 1 ≤ i, j ≤ J,

(55)

where r = ∆t/h. It is shown in [24] that this scheme is a convergent approximation of
(1) under the condition ∆t ≤ h/

√
2 and provides a uniform approximation of the energy

as h and ∆t go to zero. The same modification is needed for the adjoint problem. This
is due to the fact that the initial conditions at time T defined by p(T ) = −y′(T ) and
p′(T ) = a(x)p(T ) − ∆y(T ) are a priori less regular than y0 and y1. Therefore, we consider
the discretization of the following equation

p′′ − ∆p− a(x)p′ + h2∆p′ = 0 in Ω × (0, T ) (56)

leading to :






































(

1 +
∆t

2
(ai,j − ∆h)

)

pn−1
i,j = (2 + r2∆h)p

n
i,j −

(

1 − ∆t

2
(ai,j − ∆h)

)

pn+1
i,j ,

1 ≤ i, j ≤ J, 1 ≤ n ≤ N

pni,j = 0, i = {0, J + 1} or j = {0, J + 1}, 1 ≤ n ≤ N

pNi,j = −
yN+1
i,j − yN−1

i,j

2∆t
, pN−1

i,j = (1 − ai,j∆t)p
N
i,j +

∆t

h2
∆hy

N
i,j , 1 ≤ i, j ≤ J.

(57)

4.2 Resolution of the Hamilton-Jacobi equation

Let us now consider the resolution of the non-linear Hamilton-Jacobi equation (45). We
introduce a parameter ∆τ > 0 and note by ψki,j the approximation of the function ψ at the
point xi,j = (x1,i, x2,j) and at the pseudo-time τ = k∆t. We note by jεi,j the approximation
of jε(yω,a(xi,j), pω,a(xi,j)) such that

jεi,j = ε−1(|ωh| − L|Ωh|) + ai,j

N
∑

n=0

yn+1
i,j − yn−1

i,j

2
pni,j (58)

where ai,j = a(xi,j) = aX(ψi,j≤0), |Ωh| = 1 and |ωh| = ‖X(ψh(xi,j)≤0)‖L1
h
(Ω). The hyperbolic

system (45) is solved using an explicit weighted essentially non-oscillatory scheme of order
one in pseudo-time τ and of order two in space (see [29, 30] for a complete description):

ψk+1 − ψk

∆τ
+

(

max(−jε(yk, pk), 0)∇+
k + min(−jε(yk, pk), 0)∇−

k

)

= 0, k > 0 (59)
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where (∇+
k ,∇−

k ) designates forward and upward approximation of |∇ψk|. This explicit
scheme is stable under the condition ∆τ ≤ h/maxΩ|jε(yk, pk)|. Finally, in order that the
pseudo-time step ∆τ decreases with respect to the iteration k, we consider the following
pseudo-time step

∆τk = min

(

1,maxΩ|jε(yk, pk)|
)

h

maxΩ|jε(yk, pk)|
(≤ ∆τk−1), ∀k > 0. (60)

Remark 6 The upwind scheme (59) is motivated by the propagation of information through
characteristics in the first order hyperbolic equation (44). Very interestingly with respect to
the discussion of the previous section, this scheme may be replaced by usual centered finite
differences ones, provided the addition of an artificial viscosity term (see [29]) (namely the
approximation of ψτ + F |∇ψ| = h∆ψ instead of (44)). The reason to introduce this term
here is however different. �

4.3 Optimization algorithm

The algorithm to solve numerically the problem (P εω,L) may be structured as follows :

(i) Meshing once for all of the fixed domain Ω. Initialization of the level-set ψ0 corre-
sponding to an initial guess ω0 (obtained for instance using (34) or (37))

(ii) Iteration until convergence, for k ≥ 0:

• Computation on Ω of the state yk, solution of the forward wave system (1) using
the scheme (55).

• Computation of the adjoint state pk, solution of the backward wave system (14)
using the scheme (57).

• Computation on Ω of the integrand jε(yk, pk) (see Theorem 2.2) using the ap-
proximation (58).

• Deformation of the shape by solving the transport Hamilton-Jacobi system (45)
using the scheme (59). The new domain ωk+1 is characterized by the level-
set function ψk+1 solution of (45) after a pseudo-time step ∆τk starting from
the initial condition ψk with velocity −jε(yk, pk). The pseudo-time step ∆τk is
chosen according to (60). The value ∆τk monitored by the stability condition
(60) is usually small enough to ensure the decrease of the cost function.

(iii) From time to time, for stability reasons, we re-initialize the level-set function ψ by
solving (46) using a scheme analogous to (59) .

Since, for each iteration, the computation of the state yk and the adjoint pk is much more
expensive in CPU time than the resolution of the Hamilton-Jacobi system, we perform
several explicit pseudo-time steps of (45) after each resolution of (1) and (14). During
these explicit pseudo-time steps, we perform regularly some re-initialization of the level set
function by solving (46).

Remark 7 One of the main advantage of the level-set method is to easily handle topology
changes, i.e. merging and cancellations of holes. Under the strict stability condition (60), the
algorithm can not create holes. This is a consequence of the maximum principle associated
to the solution of (45). Therefore, the only possible mechanism is that an initial hole splits
in two new holes. This phenomenon will appear in one example developed in Section 5. �

The algorithm used to solve problem (Pa) has a similar structure. The integrand is obtained
by approximating (47) or (49).
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Finally, we will consider in the application the optimization of the energy with respect
to ω and a simultaneously, i.e.

inf
ω∈VL, a∈L∞(Ω,R+)

Eε(ω, a, T ). (61)

An iteration of the gradient algorithm may be then written as follows :

(

ωk+1

ak+1

)

=

(

ωk
ak

)

−
(

η1νk
η2

)

.

(

ε−1(|ωk| − L|Ω|) +
∫ T

0 aky
′
kpkdt

∫ T

0

∫

ωk
y′kpkdxdt

)

(62)

with η = (η1, η2) small enough.

5 Numerical experiments

We now present some numerical simulations. In all the computations, the domain Ω is the
unit square. A uniform mesh is used with h = 1/150 and ∆t = h/

√
2. We first consider

smooth initial conditions, and then some irregular ones in order to stress the necessity of
the additional viscosity term in the discretization of the wave system.

5.1 Regular initial conditions

5.1.1 Minimization with respect to ω

We assume that the function a is fixed. We first consider the following regular initial
condition function of the first frequency component:

y0(x) = 100 sin(πx1) sin(πx2), y1(x) = 0., x = (x1, x2) ∈ Ω. (63)

We take L = 1/10, ε = 10−5, T = 1 and a(x) = 10Xω(x). Before giving numerical results,
let us apply the relation (37). Let α =

√
2π. The conservative solution associated with

(y0, y1) is yω,0(x, t) = cos(αt)y0(x) so that











pω,0(x, t) = α sin(αT )y0(x), p′ω,0(x, t) = α2 cos(αT )y0(x),

pω,0(x, t) = α

(

sin(αT ) cos(α(t− T )) + cos(αT ) sin(α(t − T ))

)

y0(x)
(64)

and
∫ T

0
y′(x, t)p(x, t)dt = −α

4 (2αT − sin(2αT ))y0(x)2 < 0. From the relation (37), we have

E(ω, a, T ) − E(ω, 0, T ) = −aα
4

(2αT − sin(2αT ))

∫

ω

(y0(x))2dx+ o(a), ∀T ≥ 0. (65)

For a small enough and for all T > 0, the dissipation is then optimal for ω which maximizes
the integral

∫

ω(y0(x))2dx, i.e. centered on the unit square Ω. The simulations confirm this
prediction. Figure 2 depicts the evolution of the zero-level set {x ∈ Ω, ψk(x) = 0} = ∂ωk
with respect to the iteration k (equivalently with respect to the pseudo-time parameter
τ > 0). Let us denote by ω(c) the disc of radius

√

L/π and center (c, c). The sequence of
domain ωk is initialized by ω0 = ω(0.35) so that |ω0| = L (the boundary ∂ω0 is in dash-dot
on Figure 2). Figure 3 depicts the cost function and |ωk| with respect to k. As expected,
the limit of the sequence (ωk)k>0 is near from a disc centered on (1/2, 1/2). We check
that we obtain exactly a disc when Ω is itself a disc. We also observe that the value of
ε = 10−5 is small enough to maintain |ωk| near from L. This result is invariant with respect
to T and also with respect to the initialization ω0. Figures 4 and 5 display the evolution
of ∂ωk when ω0 is composed of 4 and 9 disjoints discs respectively. Figures 6 and 7 and



5 NUMERICAL EXPERIMENTS 14

display the evolution of the corresponding area and cost. The limit cost functions obtained
with these three initializations are very similar. Let us now consider the initial condition
y0(x) = 100 sin(2πx1) sin(πx2) for which yω,0(x, t) = 100 cos(

√
5πt) sin(2πx1) sin(πx2). The

relation (65) still holds for α =
√

5π showing that for a small enough, the optimal position of
ω is related to the points (1/4, 1/2) and (3/4, 1/2) where the function y2

0 admits two maxima.
Once again, the numerical simulations are in good agreement with this prediction. Figures
8 and 9 display the evolution of the sequence (ωk)k>0 when ω0 is composed of one and one
hundred disjoints parts respectively. For these examples, the invariance with respect to ω0

illustrates (for a small) the uniqueness of the minimum.
On the other hand, with more general initial condition (for instance without symmetries

in space), the limit of the sequence (ωk)k>0 may depend on both ω0 and T , highlighting
the presence of local minima. In this case, we observe that an initialization ω0 composed of
several components provides a lower value of the cost (i.e. a better local minima). Figure
10 displays the limit of ∂ωk for T = 1 and T = 2 and four configurations of ω0 when
y0(x) = 300x1x2(x1 − 1)(x2 − 1) cos(5πx1(x2 − 1)) sin(2πx1x2) and y1 = 0. Table 10 gives
the energy E(ω, a, T ) associated with these limits. Remark that the existence of several
local minima does not imply necessarily that the problem (Pω) is ill-posed: since a finite
number of frequency component is present in y0 and since a is small, we may conjecture
that the optimal design is composed by a finite number of disjoint components. For these

data, Figure 11 depicts the topological derivative x →
∫ T

0 y′∅,0(x, t)p∅,0(x, t)dt in Ω (see eq.

37); the corresponding characteristic function (on the bottom) of size L illustrates how this
derivative provides an efficient initialization (we refer to [2, 13] for a strong coupling between
level set and topological derivative).

T ♯ω0 = 1 ♯ ω0 = 9 ♯ ω0 = 25 ♯ ω0 = 49
1 502.64 261.88 256.86 249.10
2 322.88 117.99 96.53 88.17

Table 1: E(ω, a = 10., T ) for different initial predictions ω0 - ♯ ω0: number of disjoint parts
of ω0 - (associated with Fig. 10).

5.1.2 Minimization with respect to the damping function a

We consider once again the initial condition y0(x) = 100 sin(πx1) sin(πx2), y1 = 0, fixe ω
and optimize with respect to a. Figure 12 represents the energy E(ω(1/2), a, 1) with respect
to the constant a on ω = ω(1/2). The minimum of the energy with respect to a is obtained
for a ≈ 15.33 and E(ω(1/2), 15.33, 1) ≈ 439.59. The value 15.33 is obtained using the
descent direction (47). Figure 12 illustrates the over-damping phenomenon : since y1 = 0,
E(ω, a, T = 1) converges towards E(ω, a, 0) = E(∅, 0, 0) = E(ω, 0, T ) as a goes to infinity.
Numerically, we obtain E(ω, 0, T )− E(ω, a, T ) ≈ O(a−0.78).

Obviously, the value 439.59 is improved if we assume that the function a may depends
on x in ω. Figure 13 describes the graph of ak(x1, 1/2), x1 ∈ [0, 1] for different iterations
k of the descent algorithm using the direction (49). We observe, in agreement with the
theoretical analysis in [12, 20], that the functions ak(x) take negative values in ω. We
also observe that the norm ‖ak‖L∞(ω) is not bounded with respect to k: precisely, on the
boundary of ω, the function ak tends to infinity with k. This simulation suggests that the
derivative of the damping potential is as important as his sign for the dissipation. This is
in agreement with [7] where it is shown that the unbounded function a(x) = 1/x in (0, 1)
extinguishes in finite time the solution of the 1-d damped wave equation. We remark however
that the average

∫

ω ak(x)dx/|ω| remains bounded and converges as k goes to infinity to the
value 15.33 (optimal for a constant in ω). These observations illustrate the influence of
the over-damping phenomenon and the richness of problem (Pa). The optimal value of a
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Figure 2: (y0, y1) = (100 sin(πx1) sin(πx2), 0), T = 1., a = 10. - Evolution of the zero-level
set {x ∈ Ω, ψk(x) = 0} with respect to k.
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Figure 3: (y0, y1) = (100 sin(πx1) sin(πx2), 0), T = 1 - Evolution of E(ωk, a, T ) (Left) and
|ωk|) (Right) with respect to k (associated with Fig. 2).

depends also on the domain ω. For instance, for ω = ω(0.35), the optimal damping constant
is a ≈ 24.89 leading to E(ω(0.35), 24.89, 1) ≈ 4916.93.

Very interestingly, if we now come back to the problem (Pω) with a larger value than
a = 10. (used in Section 5.1.1) - for instance a = 25 - and ω0 = ω(0.35), we do not obtain
anymore a centered disc. The limit in k of the zero-level set {x ∈ Ω, ψk(x) = 0} is depicted
on Figure 14 (top left) leading to a cost E(ω(0.35), a = 25, T ) ≈ 101.08 (in comparison
with E(ω(1/2), 15.33, T ) ≈ 439.59 < E(ω(1/2), a = 25, T )). At the limit, the domain ω is
divided in three parts ! Remark that this point is not in contradiction with the relation
(65) because the value a = 25 is not ”small” enough. We remark that this value is on the
increasing part of the function a → E(ω, a, T ) (see Figure 12) whereas the value a = 10.
used in Section 5.1.1 is on the decreasing part. Moreover, for this value, the invariance with
respect to the initialization ω0 is lost. Figure 14 depicts the limit in k of the zero-level
set {x ∈ Ω, ψk(x) = 0} for three other initial predictions ω0. Even for a symmetric ω0

(Fig. 14 bottom right), the limit is not a centered disc but is associated with a limit cost
function E(ωk, a, T ) ≈ 50.35 significantly smaller than E(ω(1/2), a = 25, T ) ≈ 1278.48. This
highlights the existence of several local minima. Actually, for this value, problem (Pω) is
ill-posed (see [25]) and the optimal domain is composed of an arbitrarily numbers of disjoint
components distributed in ω: this phenomenon may be numerically detected by taking a
sequence (in p) of initial guess (ω0,p)(p) with an increasing number of disjoint components
♯ ω0,p: if the corresponding sequence ♯ ωk,p - associated with the limit sequence of domain
(ωk,p)p - increases, then the ill-posedness is likely to hold.

5.1.3 Minimization with respect to both ω and a(x)

Using the algorithm (62), we now minimize the cost function with respect to both ω
and a. According to our previous observations, these two variables are strongly cou-
pled. We simply consider the case a constant in ω. Figure 15, associated with (y0, y1) =
(100 sin(πx1) sin(πx2), 0.), depicts the limit of the zero-level set sequence {x ∈ Ω, ψk(x) = 0}
obtained for different initializations ω0 and a0 = 10. whereas Figure 16 depicts the evolution
of ak with respect to k. The results are summarized in Table 2. Except for ω0 = ω(0.35)

and a0 = 10. (see Fig 16 top left) leading to E(ωk, a, T ) ≈ 140.12, the minimization with
respect to both ω and a leads to an impressive reduction of the cost function. Once again,
the result depends on the initial values (ω0, a0) and is improved when ω0 is composed of
several disjoints parts. Finally, a better reduction is observed when the function a varies in
ω.

Similar results are obtained with the viscous schemes (55) and (57).
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Figure 4: (y0, y1) = (100 sin(πx1) sin(πx2), 0), T = 1,a = 10. - Evolution of the zero-level
set {x ∈ Ω, ψk(x) = 0} with respect to k.
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Figure 5: (y0, y1) = (100 sin(πx1) sin(πx2), 0), T = 1,a = 10. - Evolution of the zero-level
set {x ∈ Ω, ψk(x) = 0} with respect to k.
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Figure 6: (y0, y1) = (100 sin(πx1) sin(πx2), 0), T = 1, a = 10. - Evolution of E(ωk, a, T )
(Left) and |ωk| (Right) with respect to k (associated with Fig. 4).
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Figure 7: (y0, y1) = (100 sin(πx1) sin(πx2), 0), T = 1, a = 10. - Evolution of E(ωk, a, T )
(Left) and |ωk| (Right) with respect to k (associated with Fig. 5).

♯ ω0 = 1 ♯ ω0 = 4 ♯ ω0 = 16 ♯ ω0 = 49
E(ω2000, a2000, 1) 140.12 12.541 17.792 15.839

a2000 19.51 29.098 35.122 29.38

Table 2: E(ω, a., T = 1) for different initial prediction ω0 - ♯ ω0: number of disjoint parts of
ω0 - (associated with Fig. 15 and Fig. 16).
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Figure 8: (y0, y1) = (100 sin(2πx1) sin(πx2), 0), T = 1, a = 10. - Evolution of the zero-level
set {x ∈ Ω, ψk(x) = 0} with respect to k.
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Figure 9: (y0, y1) = (100 sin(2πx1) sin(πx2), 0), T = 1, a = 10. - Evolution of the zero-level
set {x ∈ Ω, ψk(x) = 0} with respect to k.
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Figure 10: (y0, y1) = (300x1x2(x1 − 1)(x2 − 1) cos(5πx1(x2 − 1)) sin(2πx1x2), 0), a = 10. -
“limit” of the sequence the zero-level set {x ∈ Ω, ψk(x) = 0} for different initial predictions
of ω0 - T = 1 (Left) and T = 2 (Right).
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Figure 11: (y0, y1) = (300x1x2(x1−1)(x2−1) cos(5πx1(x2−1)) sin(2πx1x2), 0). Topological

derivative x →
∫ T

0 y′∅,0(x, t)p∅,0(x, t)dt in Ω (Top) and corresponding initialization ω0 of

size L (Bottom) - T = 1 (Left) and T = 2 (Right).
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Figure 12: Illustration of the over-damping phenomenon when a is large -E(ω, a, T = 1)
with respect to a (constant on ω) - ω is the disc of radius

√

0.1/π centered on (1/2, 1/2) -
E(ω, 0, T )− E(ω, a, T ) ≈ O(a−0.78), a >> 1.
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Figure 13: Optimization of a(x) when ω is the disc of radius
√

L/π centered on (1/2, 1/2)
- Graph of ak(x1, x2 = 1/2) along the axis (Ox1) for different iterations.
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Figure 14: (y0, y1) = (100 sin(πx1) sin(πx2), 0), T = 1, a = 25 - “limit” in k of the zero-level
set sequence {x ∈ Ω, ψk(x) = 0} for different initial prediction ω0. - top left: E(ω, a, T ) =
101.08 - top right: E(ω, a, T ) = 93.47 - bottom left: E(ω, a, T ) = 34.82 - bottom right:
E(ω, a, T ) = 50.35.
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Figure 15: (y0, y1) = (100 sin(πx1) sin(πx2), 0), T = 1- Optimization with respect to a and
ω - “limit” of the sequence the zero-level set {x ∈ Ω, ψk(x) = 0} for four initial predictions
ω0.
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Figure 16: (y0, y1) = (100 sin(πx1) sin(πx2), 0), T = 1- Optimization with respect to a and
ω - Evolution of ak with respect to k associated with the initial prediction ω0 of Fig. 15.
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5.1.4 Interplay between the values of a and |ω| and topological derivative

The previous numerical simulation suggest that, for |ω| fixe, the problem (Pω) is not well-
posed as soon as a exceeds a critical value, says ac. This critical value, depends, among
others, on the size |ω|. As already explained at the beginning of section 5.1.1, these points -
related to the over-damping phenomenon - may be observed from the topological derivative.
Let us consider the initial data (63), L = |ω| = 1/10 and T = 1. According to the Section
5.1.1 and formula (37), if a is small enough, then the optimal position is the centered disc
D(x0, ρ) ⊂ Ω for any ρ with x0 = (1/2, 1/2). Similarly, from the relation (34), if |ω|
(equivalently ρ) is small enough, the disc D(x0, ρ) is optimal for any value of a, so that
ac is a decreasing function of |ω|. This bifurcation of the shape with respect to a may be
detected from the computation of the topological derivative. Figure 17 displays the function

x →
∫ T

0
y′ω,a(x, t)pω,a(x, t)dt for ω = D(x0, L/4) and two values of a = 10 (Left), a = 25

(Right). For a = 10, the derivative enforces the disc ω to increase smoothly (as expected)
while for a = 25, the centered disc degenerates into a ring. For a large enough, ω is composed
of an arbitrarily large number of disjoints components: such a structure may be obtained
from a relaxation procedure (we refer to [25]).
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Figure 17: (y0, y1) = (100 sin(πx1) sin(πx2), 0), T = 1-

5.2 Irregular initial conditions

So far, we have considered regular initial condition (y0, y1) for which - at the numerical level
- the use of viscosity terms is unnecessary. In order to highlight the importance of the high
frequency component on the mechanism of dissipation, let us consider the most singular
situation with a discontinuous initial condition y0. We give only one example and refer to
[16] in 1-D. On the unit square Ω = (0, 1)2, we define

y0(x) =

{

40 (x1, x2) ∈ (1
3 ,

2
3 )2

0 elsewhere
; y1(x) = 0, (66)

a(x) = 10.Xω(x) and then optimize with respect to ω. Figure 18 displays the limit in k
the boundary of ωk obtained respectively with the usual schemes without viscosity terms
and with the modified viscous schemes (55)-(57). The limit is different and we observe
that the modified scheme leads to an energy significantly lower (see Figure 19). Without
viscosity terms, we obtain E(ω, a, T ) ≈ 2768.70 whereas with viscosity terms, we obtain
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E(ω, a, T ) ≈ 1487.23. Once again, in spite of the symmetry of y0, the centered disc ω(1/2)

of area L is not the optimal domain: we compute E(ω(1/2), a, T ) ≈ 1984.72.
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Figure 18: Singular case. T = 1, a = 10 - “limit” in k of the zero-level set sequence
{x ∈ Ω, ψk(x) = 0} without viscosity terms E(ω, a, T ) ≈ 2768.70 (Left) and with viscosity
terms E(ω, a, T ) = 1487.23 (Right).
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Figure 19: Singular case. T = 1, a = 10 - Energy E(ωk, a, T = 1) with respect to k without
(Left) and with (Right) viscosity terms.

6 Concluding remarks

We have numerically solved the shape design problem which consists in optimizing the sup-
port of a damped term for the linear wave equation. This work completes the previous
theoretical study performed in [25] where a well-posed relaxation for (Pω) is derived. In
agreement with [25], the numerical experiments highlights the crucial influence of the over-
damping phenomenon on the optimal position. On the one hand, when the damping coeffi-
cient is small enough (this depends on the data of the problem), problem (Pω) is well-posed:
the topological derivative then provides a good approximation of the design, improved iter-
atively by the level set method. On the other hand, when the damping coefficient is large,
the problem is ill-posed and the algorithm yields to local optima. First, this illustrates the
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complexity and richness of the problem in contrast to the apparent simplicity of the linear
system. Secondly, this also emphasizes the efficiency of this descent method coupled with a
level set approach to detect or not local minima. Moreover, when the support is fixed, the
dissipation is optimized with high gradient and locally negative damping function. Once
again, this result, in agreement with the literature, is due to the over-damping phenomenon.

The case of the boundary dissipation may be numerically analyzed in a similar way as well
as others models such as piezo-elastic systems [10]. In the context of exact controllability
for the wave equation wave, we refer to [23] where the optimal shape of the control is
analyzed. Finally, adapting [21] and [32], it seems interesting and challenging to analyze the
non-cylindrical situation where the support ω may depend on time.
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