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Abstract

We consider the heat equation in (0, T ) × Ω, Ω ⊂ R
N , N ≥ 1, and address the

nonlinear optimal design problem which consists in finding the distribution in Ω of

two given isotropic materials which minimizes a suitable cost functional depending on

the heat flux. We obtain well-posed relaxations of the problem by using two well-

known approaches: the homogenization method and the classical tools of non-convex,

vector, variational problems. We also implement several numerical experiments based

on these relaxed formulations in the two-dimensional case which justify the relaxation

procedures and support the theoretical results. Finally, we point out some differences

and analogies of the two proposed methods.

Résumé

Dans le cadre de l’équation de la chaleur posée sur le cylindre borné (0, T ) × Ω,

Ω ⊂ R
N , N ≥ 1, on adresse le problème non linéaire de la distribution optimale de deux

matériaux isotropes minimisant le flux de chaleur dans Ω. En utilisant d’une part la

théorie de l’homogénéisation et d’autre part une approche variationnelle basée sur la

mesure de Young, on obtient deux relaxations bien posées et équivalentes du problème

d’optimisation initial. Enfin, une application numérique dans le cas bi-dimensionnel

justifie les procédures de relaxation et permet de confirmer les résultats théoriques puis

de comparer les formulations relaxées obtenues.
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1 Introduction - Problem Formulation

Optimal design problems in which the goal is to know the best way of mixing two different

materials in order to optimize some physical quantity associated with the resultant struc-

ture have been extensively studied during the last decades, mainly in the case where the

underlying state equation is elliptic. We refer the reader to [10, 16]. Among the techniques

and tools used to deal with this type of problems, homogenization and variational formula-

tions have played a very important role (see also [1, 2, 5, 18, 21]). More recently, optimal

design problems for time-dependent state equations like the wave equation have been also

considered ([11, 12, 13]). As far as we know, the case of the heat equation has been treated

only from a more applied engineering point of view (see [22] and the references there in).

In this work, we aim to analyze the following nonlinear optimal design problem for the

heat equation:

(P) Minimize in X : J (X ) =
1

2

∫ T

0

∫

Ω

K (x)∇u (t, x) · ∇u (t, x) dxdt

where the state variable u = u (t, x) is the solution of the system





β (x)u′ (t, x) − div (K (x)∇u (t, x)) = f (t, x) in (0, T ) × Ω,

u = 0 on (0, T ) × ∂Ω,

u (0, x) = u0 (x) in Ω,

(1)

with {
β (x) = X (x)β1 + (1 −X (x))β2,

K (x) = X (x) k1IN + (1 −X (x)) k2IN ,

and the design variable X ∈ L∞ (Ω; {0, 1}) satisfies the volume constraint
∫

Ω

X (x) dx = L |Ω| for some fixed 0 < L < 1. (2)

We assume that T > 0 is a final time and Ω ⊂ R
N , N ≥ 1 is a bounded domain composed of

two homogeneous, isotropic materials with mass densities ρi > 0, specific heats ci > 0, and

thermal conductivities ki > 0, i = 1, 2 such that k1 6= k2. We have put βi = ρici, i = 1, 2. IN

denotes the identity matrix of order N , f is an heat source, u0 the initial temperature, and

u (t, x) the temperature at time t and position x. The design variable X is a characteristic

function which indicates the region occupied by the first material (β1, k1). As a consequence,

the condition (2) constraints the amount of this material that we have at our disposal.

Regarding system (1), it is well-known that for f ∈ L2 ((0, T ) × Ω) and u0 ∈ L2 (Ω) ,

there exists a unique weak solution

u ∈ L2
(
0, T ;H1

0 (Ω)
)
, with u′ ∈ L2

(
0, T ;H−1 (Ω)

)

(see for instance [6, Chap. 11] and [7, Chap. 7]).

As for the physical meaning of the cost function J (X ), it is a measure of the heat flux

during the period of time (0, T ). Therefore, the design problem (P) consists in finding the

optimal distribution of two different materials in order to minimize the gradient part of the

energy for the heat equation. We recall that the energy at time T corresponding to the

solution of (1) is defined by

E (T ) =
1

2

∫

Ω

β (x)u2 (T, x) dx +
1

2

∫ T

0

∫

Ω

K (x)∇u (t, x) · ∇u (t, x) dxdt. (3)
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The same optimal design problem, but with a cost function depending only on the tem-

perature u, was considered in [22] where the numerical simulations suggest the non-existence

of optimal designs in the class of characteristic functions. The optimal design is then found

in the form of a composite material. For the steady-state case, a counterexample on the

non-existence of solutions may be found in [1, p. 206-211]. Relaxation is the appropriate

way of dealing mathematically with this type of situations. This basically consists in re-

placing the original problem by another suitable one which has (at least) a minimizer and,

in addition, the optimal cost associated with this new problem coincides with the infimum

of the original one. The process is successfully completed whenever we are able to find out

the behavior of some minimizing sequences of the original problem from the information

codified in the minimizers of the relaxed one.

As indicated above, the homogenization method and the classical tools of non-convex

variational problems (in particular, Young measures) are, for the moment, two of the most

popular approaches in the mathematical literature to analyze this type of optimal design

problems. In this work, we aim to carry out the relaxation procedure in full by using both

techniques, homogenization and Young measures. Our study will be not limited to theoreti-

cal results. We shall implement several numerical experiments based on both procedures in

the two dimensional case.

Finally, we would like to emphasize that this work is only a first step towards a better

understanding of optimal design for parabolic equations. Many interesting questions still

remain open. We list some of them at the end of the paper.

2 The Homogenization Method

We will obtain a suitable relaxation for the optimal design problem (P). This will be done

by using both the homogenization method and a variational approach based on the use

of div-curl Young measures. We first focus on the homogenization method, and defer an

analysis based on Young measures to the next section.

In order to make this section easier to read we first collect some well-known results

on Homogenization theory. Relaxation will follow directly from these results. Throughout

this section, we denote by Xn ∈ L∞ (Ω; {0, 1}) , n = 1, 2, · · · , a sequence of characteristic

functions and by Kn ∈ MN×N a sequence of tensors of the form

Kn = Xn (x) k1IN + (1 −Xn (x)) k2IN , (4)

with k1, k2 > 0.

2.1 Previous results on homogenization

The material of this subsection has been taken from [1, Chap. 1 and 2] and [3].

Homogenization is based on the concept of H−convergence. Precisely, a sequence of ten-

sors {Kn (x)}n∈N
H−converges to the tensor K∗ ∈ L∞

(
Ω;MN×N

)
if for any f ∈ H−1 (Ω)

the sequence of solutions un ∈ H1
0 (Ω) of

{
−div (Kn∇un) = f in Ω,

un = 0 on ∂Ω,

satisfies {
un ⇀ u weak in H1

0 (Ω) ,

Kn∇un ⇀ K∗∇u weak in
(
L2 (Ω)

)N
,
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where u is the solution of the homogenized system

{
−div (K∗∇u) = f in Ω,

u = 0 on ∂Ω.

We shall write Kn
H
→ K∗ to indicate this kind of convergence.

Assume now that there exists θ ∈ L∞ (Ω; [0, 1]) and K∗ ∈ L∞
(
Ω;MN×N

)
such that

{
Xn ⇀ θ weak ? in L∞ (Ω) ,

Kn
H
→ K∗.

The H−limit K∗ is said to be the homogenized or effective tensor of two isotropic materials

obtained by mixing k1 and k2 in proportions θ and 1−θ, respectively, with a microstructure

defined by Xn.

As we will see later on, it is very important to identify all possible homogenized tensors

obtained by mixing two given materials with all possible micro-structures. This is the so-

called G−closure problem. Precisely, we have the following definition.

Definition 2.1 Given θ ∈ L∞ (Ω; [0, 1]), the Gθ−closure of two isotropic materials is de-

fined as the set of tensors K∗ ∈ L∞
(
Ω;MN×N

)
such that there exist Xn ∈ L∞ (Ω; {0, 1})

and Kn of the form (4) satisfying
{

Xn ⇀ θ weak ? in L∞ (Ω) ,

Kn
H
→ K∗.

Fortunately, for the case of two isotropic materials, the Gθ−closure is well-known.

Theorem 2.2 Given θ ∈ L∞ (Ω; [0, 1]), the Gθ−closure of two isotropic materials ki > 0,

i = 1, 2, is the set of all symmetric matrices with eigenvalues λ1, · · · , λN satisfying




λ−

θ ≤ λj ≤ λ+
θ , 1 ≤ j ≤ N,

∑N
j=1

1
λj−k1

≤ 1
λ−

θ
−k1

+ N−1
λ+

θ
−k1

,

∑N
j=1

1
k2−λj

≤ 1
k2−λ−

θ

+ N−1
k2−λ+

θ

,

where λ−

θ =
(

θ
k1

+ 1−θ
k2

)−1

is the harmonic mean and λ+
θ = θk1 + (1 − θ) k2 the arithmetic

mean of (k1, k2).

We conclude this section with an homogenization result for the heat equation (we refer

to [3, Th. 7.1] for the proof).

Theorem 2.3 Let Xn ∈ L∞ (Ω; {0, 1}) and let Kn be of the form (4). Assume that
{

Xn ⇀ θ weak ? in L∞ (Ω) ,

Kn
H
→ K∗.

Consider the system





βn (x)u′
n (t, x) − div (Kn (x)∇un (t, x)) = f (t, x) in (0, T ) × Ω,

un = 0 on (0, T ) × ∂Ω,

un (0, x) = u0 (x) in Ω,
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where βn = Xnβ1 + (1 −Xn) β2, with β1, β2 > 0, f ∈ L2 ((0, T ) × Ω) and u0 ∈ L2 (Ω). Then

∫ T

0

∫

Ω

Kn (x)∇un (t, x) · ∇un (t, x) dxdt →

∫ T

0

∫

Ω

K∗ (x)∇u (t, x) · ∇u (t, x) dxdt, (5)

u being the solution of the limit system





β (x) u′ (t, x) − div (K∗ (x)∇u (t, x)) = f (t, x) in (0, T ) × Ω,

u = 0 on (0, T ) × ∂Ω,

u (0, x) = u0 (x) in Ω,

(6)

with β = θβ1 + (1 − θ)β2.

2.2 Relaxation by the homogenization method

As indicated in the introduction, problem (P) is usually ill-posed in the sense that there are

no minimizers in the space of classical designs

CD = {X ∈ L∞ (Ω; {0, 1}) : X satisfies (2)} .

The idea of relaxation basically consists in considering a larger class of admissible designs

with the hope that the optimal design problem to be well-posed in this new class of designs.

Having this in mind and based on Theorem 2.2 we introduce the space of relaxed designs

RD =
{
(θ,K∗) ∈ L∞

(
Ω; [0, 1] ×MN×N

)
: K∗ (x) ∈ Gθ(x) a.e. x ∈ Ω and θ satisfies (2)

}
,

where Gθ(x) is as in Theorem 2.2.

From Theorem 2.3 is then natural to consider, for (θ,K∗) ∈ RD, the relaxed cost

J∗ (θ,K∗) =
1

2

∫ T

0

∫

Ω

K∗ (x)∇u (t, x) · ∇u (t, x) dxdt (7)

where u is the solution of (6).

Finally, we consider the optimal design problem

(RP) Minimize in (θ,K∗) ∈ RD : J∗ (θ,K∗)

where J (θ,K∗) is defined by (7). We have the following main result.

Theorem 2.4 (RP) is a relaxation of (P) in the sense that

(i) there exists at least one minimizer for (RP) in the space RD,

(ii) up to a subsequence, every minimizing sequence of classical designs Xn converges, weakly

? in L∞ (Ω; [0, 1]) , to a relaxed density θ, and its associated sequence of tensors

Kn = Xnk1IN + (1 −Xn) k2IN

H−converges to an effective tensor K∗ such that (θ,K∗) is a minimizer for (RP), and

(iii) conversely, every relaxed minimizer (θ,K∗) ∈ RD of (RP) is attained by a minimizing

sequence Xn of (P) in the sense that
{

Xn ⇀ θ weak ? in L∞ (Ω) ,

Kn
H
→ K∗.
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Proof. The proof of this result follows the same lines as in the static case (see [1, p.p.

213-215]). Anyway, we include it here for completeness.

Let Xn be a minimizing sequence for (P). Since ‖Xn‖L∞(Ω) ≤ 1, there exists a subse-

quence, still denoted by Xn, such that

Xn ⇀ θ∞ weak ? in L∞ (Ω) .

Moreover, since Xn satisfies the volume constraint (2) and Xn ⇀ θ∞ weak ?,
∫

Ω

θ∞ (x) dx = L |Ω| .

On the other hand, thanks to the compactness of the sequence of tensors Kn with respect

to H−convergence, up to a subsequence, there exists K∞ ∈ L∞
(
Ω;MN×N

)
such that

Kn
H
→ K∞. From Theorem 2.3 it follows that

lim
n→∞

J (Xn) = J∗ (θ∞,K∞) .

This proves that

m = inf
X

J (X ) = J∗ (θ∞,K∞) . (8)

Now let (θ,K∗) be a relaxed design. By the definition of the set Gθ, there exists Xn ∈

L∞ (Ω; {0, 1}) such that
{

Xn ⇀ θ weak ? in L∞ (Ω) ,

Kn
H
→ K∗.

In particular,

lim
n→∞

∫

Ω

Xn (x) dx =

∫

Ω

θ (x) dx = L |Ω| ,

but in principle each individual Xn does not satisfy the volume constraint (2). Nevertheless,

this difficulty may be overcome (see Proposition 2.1). So, assume that Xn is admissible for

(P). By using again Theorem 2.3,

J∗ (θ,K∗) = lim
n→∞

J (Xn) ≥ m.

Combining this inequality with (8) we obtain that (θ∞,K∞) is a minimizer for (RP). This

proves (i) and (ii).

Finally, to prove (iii), let (θ,K∗) ∈ RD be a minimizer for (RP). From the definition of

Gθ it follows that there exists Xn ∈ L∞ (Ω; {0, 1}) , which may be assumed to satisfy (2),

such that {
Xn ⇀ θ weak ? in L∞ (Ω)

Kn
H
→ K∗,

where Kn is the sequence of tensors defined by (4). As before, we also have J (θ,K∗) =

limn→∞ J (Xn) . Obviously, this implies that Xn is minimizing for (P). �

Proposition 2.1 Let Xn ∈ L∞ (Ω; {0, 1}) be such that




(i) Xn ⇀ θ weak ? in L∞ (Ω) ,

(ii) limn→∞

∫
Ω
Xn (x) dx = L |Ω| , and

(iii) Kn
H
→ K, where Kn is as in (4).
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Then there exists Xn ∈ L∞ (Ω; {0, 1}) such that





(a) Xn ⇀ θ weak ? in L∞ (Ω) ,

(b)
∫
Ω
Xn (x) dx = L |Ω| for all n ∈ N, and

(c) Kn
H
→ K, where Kn is as in (4) for Xn.

Proof. From (ii) we may construct a sequence of characteristic functions Xn such that

(b) holds and, in addition, the sequence of sets

Ωn =
{
x ∈ Ω : Xn (x) 6= Xn (x)

}

satisfies

|Ωn| → 0 as n → ∞. (9)

From this, it is not difficult to see that, up to a subsequence, not relabelled, we have the

convergence stated in (a).

Finally, let us denote by K the H-limit of (a subsequence of) Kn. Again, from (9) and

thanks to the locality of H-convergence (see [1, Prop. 1.4.5] or [6, Th. 13.4 (ii)]) it follows

that

K (x) = K (x) a.e x ∈ Ω,

which completes the proof. �

Theorem 2.4 gives us a relaxation of the original optimal design problem in which we

have replaced the original state equation (1) by the relaxed one (6), this last system being

written in terms of the homogenized tensor K∗ for which we have the information that

comes from Theorem 2.2. In the one-dimensional case, we have an explicit expression for

the optimal tensor:

Remark 1 In the 1-D case, the effective coefficient K∗ is explicitly known. Indeed, from

Theorem 2.2 it follows that K∗ equals the harmonic mean, that is,

K∗ (x) =
k1k2

θ (x) k2 + (1 − θ (x)) k1
, x ∈ Ω.

Hence, the relaxed problem (RP) has the simpler form

Minimize in θ : J∗(θ) =
1

2

∫ T

0

∫

Ω

k1k2

θ (x) k2 + (1 − θ (x)) k1
|ux (t, x)|

2
dxdt

subject to





(θβ1 + (1 − θ) β2) u′ −
(

k1k2

θk2+(1−θ)k1
ux

)
x

= f in (0, T ) × Ω,

u = 0 in (0, T ) × ∂Ω,

u (0, x) = u0 (x) in Ω,

θ ∈ L∞ (Ω; [0, 1]) ,
∫
Ω

θ (x) dx = L |Ω| .

Once the existence of optimal relaxed designs has been proved in Theorem 2.4, we stop

here our study based on the Homogenization method. We will go back to it in the section

devoted to the numerical resolution of the relaxed problem (RP).
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3 A Young Measure Approach

Next, we will analyze problem (P) from another different perspective. Precisely, we will use

the so-called div-curl Young measures as a key tool. We refer the reader to [8, 15, 20] for

the main properties of this class of measures and some applications to optimal design in

conductivity and stabilization in linear elasticity.

3.1 Div-curl Young measure associated with problem (P)

To begin with, we rewrite the heat equation in system (1) in divergence-free form

div(t,x) [(−β (x) u (t, x) ,K (x)∇u (t, x)) + F (t, x)] = 0 (10)

where the div(t,x) operator now includes the time variable t as the first variable and F (t, x)

is a vector field such that div(t,x)F = f. Since F will play not an important role, we put

F = 0 for simplicity throughout this section, but it is important to say that all the results

that follow hold true for F 6= 0.

For u0 ∈ H1
0 (Ω) , an integral solution (or solution in the Young measure sense) of (10)

exists (see [9, Section 6]): precisely, we recall that

u ∈ L∞
(
(0, T ) ;H1

0 (Ω)
)

with u′ ∈ L2 ((0, T ) × Ω)

is said to be an integral solution of (10) if this equation is satisfied in H−1 ((0, T ) × Ω) and

the initial and boundary conditions also hold.

Now let Xn be an admissible sequence of designs for (P) and let un be its corresponding

sequence of integral solutions. Consider the two sequences of vector fields

{
Gn (t, x) = (− (Xn (x) β1 + (1 −Xn (x))β2) un (t, x) , Kn (x)∇un (t, x)) ,

Hn (t, x) = (u′
n (t, x) , ∇un (t, x)) .

Since both sequences Gn and Hn are uniformly bounded in
(
L2 ((0, T ) × Ω)

)N+1
, we may

associate with (a subsequence of) the pair (Gn,Hn) a family of parameterized measures

ν =
{
ν(t,x)

}
(t,x)∈(0,T )×Ω

. Note also that the pair (Gn,Hn) satisfies

div(t,x)Gn = 0 and curl Hn = 0.

For this reason, the measure ν is called a div-curl Young measure. In addition, we know

that

Kn∇un · ∇un ⇀ K∗∇u · ∇u, (11)

essentially due to Theorem 2.3. This condition will translate into a certain commutation

property that the underlying measure should verify. We also notice that since un is uniformly

bounded in H1 ((0, T ) × Ω), by the Rellich-Kondrachov compactness Theorem,

un → u strong in L2 ((0, T ) × Ω) .

Due to the particular form of (Gn,Hn) , each individual ν(t,x) is supported in the union of

the two linear manifolds

Λi =
{
(ρ, λ) ∈ R

N+1 × R
N+1 : ρ1 = −βiu, ρ = kiλ

}
, i = 1, 2 (12)

where

ρ = (ρ1; ρ) ∈ R × R
N and λ =

(
λ1;λ

)
∈ R × R

N . (13)
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Hence, the measure ν(t,x) may be written as

ν(t,x) = θ (x) ν1,(t,x) + (1 − θ (x)) ν2,(t,x), (14)

with supp νi,(t,x) ⊂ Λi, i = 1, 2, and θ being the weak ? limit in L∞ (Ω) of (a subsequence

of) Xn.

The importance of having more information on this measure is the following: suppose

that Xn is a minimizing sequence for (P) with the property that its associated |∇un|
2

is

equi-integrable. Then, by the fundamental property of Young measures (see [17, Th. 6.2]),

we may represent the limit of the costs associated with Xn through the measure ν. Precisely,

lim
n→∞

J (Xn) =
1

2

∫ T

0

∫

Ω

[
k1θ (x)

∫

RN

∣∣λ
∣∣2 dν

(2)
1,(t,x) + k2 (1 − θ (x))

∫

RN

∣∣λ
∣∣2 dν

(2)
2,(t,x)

]
dxdt

(15)

where ν
(2)
i,(t,x), i = 1, 2 stands for the projection of νi,(t,x) onto the last N−components of

the second copy of R
N+1. Therefore, with each minimizing sequence of the original problem

(P) we associate an optimal div-curl Young measure. In this sense, optimize with respect to

X is equivalent to optimize with respect to ν. For this reason, from now on, we concentrate

on measures rather than on characteristics functions (classical designs).

3.2 Variational reformulation and relaxation

We now proceed to the analysis of problem (P) in a similar fashion as in the stationary case

[20]. First step in this process is to put (P) into a variational setting. So, we consider the

functions

W (ρ, λ) =





k1

∣∣λ
∣∣2 if (ρ, λ) ∈ Λ1,

k2

∣∣λ
∣∣2 if (ρ, λ) ∈ Λ2,

+∞ else,

(16)

and

V (ρ, λ) =





1 if (ρ, λ) ∈ Λ1,

0 if (ρ, λ) ∈ Λ2,

+∞ else.

(17)

Then we associate with problem (P) the new problem

(P̃) Minimize in (G, u) :
1

2

∫ T

0

∫

Ω

W
(
G (t, x) ,∇(t,x)u (t, x)

)
dxdt

subject to





G ∈ L2
(
(0, T ) × Ω; RN+1

)
, u ∈ H1 ((0, T ) × Ω; R) ,

div(t,x)G = 0 in H−1 ((0, T ) × Ω) ,

u|∂Ω = 0 a. e. t ∈ [0, T ] , u (0) = u0 in Ω,

∫
Ω

V (G (t, x) ,∇u (t, x)) dx = L |Ω| a. e. t ∈ [0, T ] .

The crucial step in this approach is the computation of the constrained quasi-convexification

CQW of the density W because it provides us with a relaxation of (P̃). We remind that as

is usual in non-convex vector variational problems, a full relaxation of this type of problems
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is obtained by replacing the original density W by its constrained quasi-convex envelope

(see [18, 20] and the references there in). So, we concentrate on the computation of this new

relaxed density.

For fixed (θ, ρ, λ) ∈ [0, 1]×R
N+1×R

N+1 the constrained quasi-convex density CQW (θ, ρ, λ)

is computed by solving the problem in measures

(MP) Minimize in ν : CQW (θ, ρ, λ) = k1θ

∫

RN

∣∣λ
∣∣2 dν

(2)
1 + k2 (1 − θ)

∫

RN

∣∣λ
∣∣2 dν

(2)
2

subject to




ν = θν1 + (1 − θ) ν2, with supp νi ⊂ Λi, i = 1, 2,

ν is a div-curl Young measure verifying the commutation property associated with (11), and

ρ =
∫

RN+1 xdν(1) (x) , λ =
∫

RN+1 xdν(2) (x) , with ν(i) the two marginals.

We notice that after solving (MP) we plan to use the localization principle for div-curl Young

measures (see [20]) to analyze the optimal cost given by (15). In fact, for almost everywhere

(t, x) ∈ (0, T )×Ω, we have the identification θ = θ (x) , ρ = G (t, x) and λ = H (t, x) , where

G and H are the weak limits of Gn and Hn, respectively.

From the expression of the first moment of ν and taking into account (12), (13) and (14),

it follows that 



ρ1 = − (θβ1 + (1 − θ)β2) u,

ρ = k1θ
∫

RN ydν
(2)
1 + k2 (1 − θ)

∫
RN ydν

(2)
2 ,

λ1 = θ
∫
Λ1

y1dν1 + (1 − θ)
∫
Λ2

y1dν2,

λ = θ
∫

RN ydν
(2)
1 + (1 − θ)

∫
RN ydν

(2)
2 .

On the other hand, the div-curl condition on ν implies (see [20]) that
∫

Λ1∪Λ2

x · y dν (x, y) = ρ · λ,

where x · y stands for the inner product of x and y. Developing the left-hand side of this

expression,
∫

Λ1∪Λ2

x · y dν (x, y) = −θβ1uλ1
1 − (1 − θ) β2uλ2

1

+k1θ

∫

RN

|y|
2
dν

(2)
1 + k2 (1 − θ)

∫

RN

|y|
2
dν

(2)
2 .

Next, we introduce the second moments

s1 =

∫

RN

|y|
2
dν

(2)
1 and s2 =

∫

RN

|y|
2
dν

(2)
2 .

Moreover, using this notation we can expressed the commutation property corresponding to

(11) in the form

ρ · λ =

∫

Λ1∪Λ2

x · y dν(x, y) = θk1s1 + (1 − θ)k2s2. (18)
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If we put

λ1
1 =

∫

Λ1

y1dν1, λ2
1 =

∫

Λ2

y1dν2, λ1 =

∫

RN

ydν
(2)
1 and λ2 =

∫

RN

ydν
(2)
2 ,

then we can write some of those conditions in the form




ρ = k1θλ1 + k2 (1 − θ)λ2,

λ = θλ1 + (1 − θ)λ2, λ1 = θλ1
1 + (1 − θ) λ2

1,

k1θs1 + k2 (1 − θ) s2 − ρ · λ = θβ1uλ1
1 + (1 − θ)β2uλ2

1.

The first two equations can be used to solve for λ1 and λ2, namely,

λ1 =
1

θ (k1 − k2)

(
ρ − k2λ

)
, λ2 =

1

(1 − θ) (k2 − k1)

(
ρ − k1λ

)
.

The other two can also be used to solve for λ1
1 and λ2

1. If u 6= 0, then




λ1
1 = − 1

uθ(β1−β2)

(
θ (β2 − β1) uλ1 + ρ · λ − [k1θs1 + k2(1 − θ)s2]

)
,

λ2
1 = − 1

u(1−θ)(β1−β2)

(
(1 − θ) (β2 − β1) uλ1 + ρ · λ − [k1θs1 + k2(1 − θ)s2]

)
.

For u = 0 there is an infinity of possibilities for λ1
1 and λ2

1, namely

λ1
1 = γ, λ2

1 =
1

(1 − θ)
(λ1 − θγ)

with any γ ∈ R. Recall that we also have the equality (18). With all of these notations,

(PM) reads in the simpler form:

Minimize in (s1, s2) : k1θs1 + k2 (1 − θ) s2

subject to

s1 ≥

∣∣ρ − k2λ
∣∣2

θ2 (k1 − k2)
2 , s2 ≥

∣∣ρ − k1λ
∣∣2

(1 − θ)
2
(k2 − k1)

2

where the two inequalities appearing in the constraints are a consequence of Jensen’s in-

equality.

It is elementary to realize that the minimum of this problem is attained for

s1 =

∣∣ρ − k2λ
∣∣2

θ2 (k1 − k2)
2 and s2 =

∣∣ρ − k1λ
∣∣2

(1 − θ)
2
(k2 − k1)

2 ,

and in this case (18) becomes, after some algebra,

(θk2 + (1 − θ) k1) |ρ|
2 −

(
θ (1 − θ) (k1 − k2)

2
+ 2k1k2

)
ρ ·λ+(θk1 + (1 − θ) k2) k1k2|λ|

2 = 0.

(19)

Therefore,

CQW (θ, ρ, λ) ≥





k1
|ρ−k2λ|

2

θ(k1−k2)
2 + k2

|ρ−k1λ|
2

(1−θ)(k2−k1)
2 if (19) holds,

+∞ else.
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Here ρ = (ρ1, ρ) and λ = (λ1, λ).

Our next task is to see if this lower bound can be attained by a first-order div-curl

laminate (see [20] for the definition and main properties of this subclass of div-curl Young

measures). This would give us more information on the minimizing sequences of (P̃).

Note that due to the strict convexity of |·|
2
, the equality in Jensen’s inequality holds if

and only if the associated measure is a delta in the corresponding components, that is,

ν
(2)
1 = δ ρ−k2λ

θ(k1−k2)

and ν
(2)
2 = δ ρ−k1λ

(1−θ)(k2−k1)

.

Moreover, since supp νi ⊂ Λi, i = 1, 2, the projection of νi onto the last N−components of

the first copy of R
N+1 has the form

ν
(1)
1 = δ

k1
ρ−k2λ

θ(k1−k2)

and ν
(1)
2 = δ

k2
ρ−k1λ

(1−θ)(k2−k1)

.

So, the optimal first-order laminate we are looking for looks like

ν = θδ(
−β1u,k1

ρ−k2λ

θ(k1−k2)
;λ1

1,
ρ−k2λ

θ(k1−k2)

) + (1 − θ) δ(
−β2u,k2

ρ−k1λ

(1−θ)(k2−k1)
;λ2

1,
ρ−k1λ

(1−θ)(k2−k1)

)
.

(20)

Remark that according to our previous formulae, we must choose λ1
1 and λ2

1 such that





λ1 = θλ1
1 + (1 − θ)λ2

1,

−θβ1uλ1
1 − (1 − θ)β2uλ2

1 = ρ · λ −

[
k1

|ρ−k2λ|
2

θ(k1−k2)
2 + k2

|ρ−k1λ|
2

(1−θ)(k2−k1)
2

]
,

that is, if u 6= 0, then




λ1
1 = − 1

uθ(β1−β2)

(
θ (β2 − β1) uλ1 + ρ · λ −

[
k1

|ρ−k2λ|
2

θ(k1−k2)
2 + k2

|ρ−k1λ|
2

(1−θ)(k2−k1)
2

])
,

λ2
1 = − 1

u(1−θ)(β1−β2)

(
(1 − θ) (β2 − β1) uλ1 + ρ · λ −

[
k1

|ρ−k2λ|
2

θ(k1−k2)
2 + k2

|ρ−k1λ|
2

(1−θ)(k2−k1)
2

])
,

and for u = 0 there is an infinity of possibilities for λ1
1 and λ2

1, namely

λ1
1 = γ, λ2

1 =
1

(1 − θ)
(λ1 − θγ)

with γ ∈ R. In this last case, the div-curl compatibility condition reduces to

ρ · λ =

[
k1

∣∣ρ − k2λ
∣∣2

θ (k1 − k2)
2 + k2

∣∣ρ − k1λ
∣∣2

(1 − θ) (k2 − k1)
2

]
.

The above means that optimal measures leading to the exact value for CQW (θ, ρ, λ)

may be found in the form of first-order laminates in the form (20). As we will see later on,

this will enable us to build optimal micro-structures for problem (P̃). Note also that thanks

to the particular form of this measure, the first component of the vector field G, say G1, is

equal to − (θβ1 + (1 − θ) β2) u. This, together with the divergence-free character of G leads

to the equation

− (θβ1 + (1 − θ) β2) u′ + div G = 0

where we have put G =
(
G1, G

)
.

We then find a relaxation of (P̃) in the following form:
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Theorem 3.1 Assume that Ω is of class C1 and that u0 ∈ H1
0 (Ω) . Then the variational

problem

(R̃P) Minimize in
(
θ,G, u

)
: J(θ,G, u) =

1

2

∫ T

0

∫

Ω

CQW
(
θ (x) , G (t, x) ,∇(t,x)u (t, x)

)
dxdt

subject to




G ∈ L2
(
(0, T ) × Ω; RN+1

)
, u ∈ H1 ((0, T ) × Ω; R) ,

(θβ1 + (1 − θ)β2) u′ − div G = 0 in H−1 ((0, T ) × Ω) ,

u|∂Ω = 0 a. e. t ∈ [0, T ] , u (0) = u0 in Ω,

θ ∈ L∞ (Ω; [0, 1]) ,
∫
Ω

θ (x) dx = L |Ω| .

is a relaxation of (P̃) in the sense that

(i) there exists at least one minimizer for (R̃P),

(ii) the minimum of (P̃) equals the infimun of (R̃P), and

(iii) the underlying Young measure associated with (R̃P) (and therefore the optimal mi-

crostructure of (P̃)) can be found in the form of a first-order laminate. Moreover, at

the points where ∇u 6= 0, the normal to this laminate is perpendicular to ∇u.

Proof. Once the constrained quasi-convex density CQW has been computed, the proof is

standard in non-convex vector variational problems (see for instance [15] or [17, Chapter 4]).

There is, however, a technical point which deserves an additional explanation. It concerns

the equi-integrability property of |∇un|
2

that is needed to represent the limit cost associated

with a minimizing sequence of designs through its corresponding Young measure. Note that

we also have to face the same problem with the sequence of characteristic functions Xn (x)

as in the homogenization case (see Proposition 2.1).

This problem may be easily overcome if we assume the regularity on the domain Ω and

the initial datum u0 as stated above. Precisely, this implies that the solutions of the heat

equation have the regularity

un ∈ L2
(
0, T ;H2 (Ω)

)

with uniform estimates in the norm of this space (see [7, p. 360]). By using the Sobolev

embedding theorem it follows that |∇un|
2
∈ Lp/2 for some p > 2 (with uniform bounds) and

a. e. t ∈ [0, T ] . From this and Hölder inequality one deduces that |∇un|
2

is equi-integrable.

Concerning the direction of lamination, it is not hard to show that if u is a solution of

system (1) and φ ∈ H1
0 (Ω), then

∫

Γ

(k1 − k2)∇u · n φdΓ = 0,

with Γ the interface and n the unit normal vector to Γ. This proves our claim. �

Remark 2 Note that although the design variable X = X (x) does not depend on time,

however a minimizing sequence of optimal designs Xn (x) are associated with an optimal

first-order laminate whose mass points are time dependent. This means that in looking at

optimal micro-structures the proportion of the two materials is time independent, but having

the same proportion of materials, the way (=direction) in which we should mix the materials

depend on time according to ∇u (t, x).
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Remark 3 Notice that (R̃P) may also be written as

Minimize in
(
θ,G, u

)
:

1

2

∫ T

0

∫

Ω

G · ∇u dxdt

subject to




u ∈ L2
(
0, T ;H1

0 (Ω)
)
, with u′ ∈ L2

(
0, T ;H−1 (Ω)

)

∣∣G
∣∣2 −

(
λ+

θ + λ−

θ

)
G · ∇u + λ+

θ λ−

θ |∇u|
2

= 0,

(θβ1 + (1 − θ)β2) u′ − div G = 0 in (0, T ) × Ω,

u|∂Ω = 0 a. e. t ∈ [0, T ] , u (0) = u0 in Ω,

θ ∈ L∞ (Ω; [0, 1]) ,
∫
Ω

θ (x) dx = L |Ω| .

where λ+
θ and λ−

θ are the arithmetic and harmonic mean, respectively.

3.3 Another relaxation

The constraint expressed in (19) is rather tedious to keep in numerical simulations because

it is a point-wise condition. We would like to find another relaxation where we should not

keep track of this sort of constraints. In our situation, this is easily achieved. Indeed, it has

already been done in Section 3. Notice that all of our computations in the preceding section

could have been performed without any reference to (19). In fact, in those computations this

constraint does not play a role. This in fact implies that we can forget about this constraint

altogether to get a new relaxation which is, we believe, easier to implement numerically as

we do not have to bother about that pointwise constraint. Precisely, we have:

Theorem 3.2 The problem (R̂P)

Minimize in
(
θ,G, u

)
: J(θ,G, u) =

1

2

∫ T

0

∫

Ω

[
k1

∣∣G − k2∇u
∣∣2

θ (k1 − k2)
2 + k2

∣∣G − k1∇u
∣∣2

(1 − θ) (k2 − k1)
2

]
dxdt

subject to




u ∈ L2
(
0, T ;H1

0 (Ω)
)
, with u′ ∈ L2

(
0, T ;H−1 (Ω)

)

(θβ1 + (1 − θ) β2) u′ − div G = 0 in (0, T ) × Ω,

u|∂Ω = 0 a. e. t ∈ [0, T ] , u (0) = u0 in Ω,

θ ∈ L∞ (Ω; [0, 1]) ,
∫
Ω

θ (x) dx = L |Ω| ,

is also a relaxation of the problem (P̃ ) with underlying micro-structures which are again

first-order laminates.

Let us again stress that one gets this relaxation by simply forgetting about (19). Our

claim is that even if we forget this constraint at the outset, at the end the optimal solutions

for this relaxation will comply with (19). Even further, we conjecture that the problem

(RP) Minimize in θ : J(θ) =
1

2

∫ T

0

∫

Ω

k1k2

θk2 + (1 − θ) k1
|∇u|

2
dxdt
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subject to





(θβ1 + (1 − θ) β2) u′ − div
(

k1k2

θk2+(1−θ)k1
∇u

)
= 0 in (0, T ) × Ω,

u|∂Ω = 0 a. e. t ∈ [0, T ] , u (0) = u0 in Ω,

θ ∈ L∞ (Ω; [0, 1]) ,
∫
Ω

θ (x) dx = L |Ω| ,

(21)

is also a relaxation for our original problem. Our intuition here is rooted in the fact that if

in the expression for CQW , we find the minimum in ρ for λ fixed, with or without constraint

(19), then we arrive at a linear relationship given by the harmonic mean between λ and ρ

ρ =
k1k2

(1 − θ)k1 + θk2
λ.

See [19] for more on these ideas for the elliptic case. This computation is elementary. We

will try to validate this conjecture in our numerical experiments.

4 Numerical Applications

In this section, we compare numerically in the two dimensional case (N = 2) the relaxed

formulations (RP ) and (R̂P ) obtained from the Homogenization and Young measure theory

respectively.

4.1 Numerical resolution of the relaxed problems

We first explain the numerical resolution of the relaxed problem (RP ) derived from the

Homogenization method (see section 2.2).

A convenient way to minimize J∗ consists first in using a parametrization of the homog-

enized tensor K∗ ∈ Gθ in terms of its Y -transform (we refer to [1, p. 122]): the Y -transform

is the map on the set of symmetric matrices defined by

Y (K∗) = (λ+
θ IN − K∗)((λ−

θ )−1K∗ − IN )−1. (22)

For N = 2, denoting by y1, y2 the eigenvalues of Y (K∗), K∗ belongs to Gθ if and only if

min(k1, k2)
2 ≤ y1y2 ≤ max(k1, k2)

2, y1, y2 ≥ 0. (23)

The advantage is that the set Y (Gθ) does not depend on θ. Its inverse mapping is

K∗(Y ) = (λ+
θ IN + Y )((λ−

θ )−1Y + IN )−1. (24)

We then parameterize a composite design by (θ, Y ∗) with Y ∗ = Y (A∗) for some A∗ ∈

Gθ. The interest is that the constraints on θ and Y are now uncoupled making easier the

implementation of gradient algorithm. Consequently, A∗ ∈ Gθ is parameterized by the

density θ, the two eigenvalues y1 and y2 and the angle of rotation φ such that

K∗(θ, y1, y2, φ) =

(
cos φ sin φ

− sin φ cos φ

)( λ+
θ

+y1

y1/λ−

θ
+1

0

0
λ+

θ
+y2

y2/λ−

θ
+1

)(
cos φ − sin φ

sinφ cos φ

)
. (25)
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Finally, we compute the first derivative of the resulting function (still denoted by J∗) with

respect to θ, Y ∗ and φ and apply a gradient algorithm. The first derivative in any direction

(δθ, δY ∗, δφ) takes the following expression

∂J∗(θ, Y ∗, φ)

∂(θ, Y ∗, φ)
· (δθ, δY ∗, δφ) =

∫

Ω

∫ T

0

(
1

2
K∗

φ∇u · ∇u + K∗
φ∇u · ∇p

)
dt δφdx

+

∫

Ω

∫ T

0

(
1

2
K∗

Y ∗∇u · ∇u + K∗
Y ∗∇u · ∇p

)
dt · δY ∗dx

+

∫

Ω

∫ T

0

(
1

2
K∗

θ∇u · ∇u + K∗
θ∇u · ∇p + (β1 − β2)u

′p

)
dt δθdx

(26)

where p designates the adjoint solution of the backward system




−β(θ)p′ − div (K∗(θ, Y ∗, φ)∇p) = div (K∗(θ, Y ∗, φ)∇u) in (0, T ) × Ω,

p = 0 on (0, T ) × ∂Ω,

p (T, x) = 0 in Ω

(27)

and K∗
θ ,K∗

Y ∗ ,K∗
φ the derivatives of K∗ with respect to θ, Y ∗ and φ respectively. At last,

we use lagrangian multipliers to enforce the constraints θ ∈ L∞(Ω, [0, 1]),
∫
Ω

θ(x)dx = L|Ω|

and (23).

The relaxed problem (R̂P ) (see Theorem 3.2) derived from the second approach, although

less standard, may be solved in a similar way using a descent algorithm. Precisely, the

minimization of J is done over θ and G while u is determined via the constraint (θβ1 + (1−

θ)β)u′ − divG = 0. The first variation of J with respect to (θ,G) in any direction (δθ, δG)

is given by

∂J(θ,G, u)

∂(θ,G)
· (δθ, δG) =

∫

Ω

∫ T

0

[
(β1 − β2)u

′p −
k1

θ2

|G − k2∇u|2

(k1 − k2)2
+

k2

(1 − θ)2
|G − k1∇u|2

(k1 − k2)2

]
dt δθdx

+

∫ T

0

∫

Ω

[
k1

θ

(G − k2∇u)

(k1 − k2)2
+

k2

1 − θ

(G − k1∇u)

(k1 − k2)2
+ ∇p

]
· δGdxdt

(28)

where p is solution of the following problem :




(θβ1 + (1 − θ)β2)p
′ = k1k2

(k1−k2)2
div

(
(G−k2∇u)

θ + (G−k1∇u)
1−θ

)
in (0, T ) × Ω,

p = 0 on (0, T ) × ∂Ω,

p(T, x) = 0 in Ω.

(29)

Once again, a multiplier is necessary to deal with the constraints on θ. Finally, the resolution

of the problem (RP) is standard and we refer to [14] for the details in the context of the

wave equation.

For all the variables, we use a continuous finite element approximation of second order

with respect to x on a uniform mesh and a finite difference approximation of first order

with respect to t. In the resolution of problem (R̂P), since G is a time-space variable, a

regularization of the variable p via a viscosity term in (29) is applied (see [13] for a similar

phenomenon where the density is time-space dependent).

4.2 Numerical experiments

We consider the following simple initial data on the unit square : Ω = (0, 1)2:

u0(x) = sin(πx1) sin(πx2), x = (x1, x2) ∈ Ω (30)
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and take T = 0.5, L = 1/2, (β1, k1) = (10, 0.1) and (β2, k2) = (20, 1). At last, the numerical

results presented in this section are obtained with the spatial discretisation parameter h =

1/50 and with the temporal discretisation parameter dt = h/4.

We first give the results obtained for the problem (RP) derived from the Homogenization

approach. The algorithm is initialized with constant functions: we take θ ≡ L|Ω|, yi ≡

(k1 +k2)/2, i = 1, 2, and φ ≡ 0 on Ω. Figure 1 depicts the functions θ and φ, local minima of

J∗. Figure 2 depicts the corresponding function y1 and y2. We obtain J∗(θ, y1, y2, φ) ≈ 0.202

and we observe that θ is a characteristic function in L∞(Ω, {0, 1}). The corresponding

gradient part of the energy with respect to the time is given in Figure 3 highlighting the

diffusion of the heat. We also observe - this is the main drawback of gradient method -

that the result depends on the initialization. Figure 4 depicts the iso-values of θ and φ

obtained at convergence of the algorithm initialized still with θ = L|Ω|, φ = 0 but now with

y1 = min(k1, k2) and y2 = max(k1, k2). The value of the cost function is however similar

highlighting the existence of local minima and a low dependence of J∗ with respect to the

variables.
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Figure 1: Resolution of (RP) - L = 1/2 - T = 0.5 - (β1, β2) = (10, 20), (k1, k2) = (0.1, 1) -

Iso-values of θ (Left) and φ (Right)- J∗(θ, y1, y2, φ) ≈ 0.202.

The results obtained for the relaxed problem (R̂P) derived from the variational approach

are qualitatively different. Once again, the density θ is initialized with θ ≡ L|Ω| on Ω which

does not privilege any location for the set of the first material (β1, k1). On the other hand,

the field G is initialized by G = λ−

θ ∇u where u is solution of (21). Figure 5 displays the

iso-values of the function θ. The results seem here independent of the initialization of the

algorithm: for instance, we get a similar result if we take G = λ+
θ ∇u. This suggests that

the function θ of Figure 5 is the global minimum: we obtain J(θ,G, u) ≈ 0.1806 which is

lower than in the previous case. Moreover, we observe that θ is no more a characteristic

function which suggests that for these data, the initial design problem (P) is not well-posed,

and therefore justifies the whole relaxation procedure. This also indicates that the functions

of Figure 1 are only local minima for J∗. Due to the constraints (23), the global minima for

J∗ seems more difficult to capture. Secondly, we check that the solution (θ,G, u) satisfies
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Figure 2: Resolution of (RP) - L = 1/2 - T = 0.5 - (β1, β2) = (10, 20), (k1, k2) = (0.1, 1) -

Iso-values of y1 (Left) and y2 (Right)- J∗(θ, y1, y2, φ) ≈ 0.202.
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Figure 3: Resolution of (RP) - L = 1/2 - T = 0.5 - (β1, β2) = (10, 20), (k1, k2) = (0.1, 1) -

Gradient part of the energy vs. t.
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Figure 4: Resolution of (RP) with a different initialization- L = 1/2 - T = 0.5 - (β1, β2) =

(10, 20), (k1, k2) = (0.1, 1) - Iso-values of θ (Left) and φ (Right)- J∗(θ, y1, y2, φ) ≈ 0.224.

the relation (19): precisely, we compute that

||
∣∣G

∣∣2 −
(
λ+

θ + λ−

θ

)
G · ∇u + λ+

θ λ−

θ |∇u|
2
||L2((0,T )×Ω)

||
∣∣G

∣∣2 ||L2((0,T )×Ω)

≈ 1.34 × 10−2 (31)

which shows, in agreement with the discussion at the beginning of Section 3.3, that the

problem (R̂P) coincides with the problem (R̃P) derived from the variational approach. At

last, we compute that

||G − λ−

θ ∇u||L2((0,T )×Ω)2

||G||L2((0,T )×Ω)2
≈ 4.35 × 10−3 (32)

which provides a numerical evidence that G = λ−

θ ∇u, and that, according to our conjecture

of Section 3.3, problems (R̂P) and (RP) coincide. However, if we naively replace this term

by the arithmetic mean λ+
θ = k1θ + k2(1 − θ), then we obtain the distribution of Figure 6

leading to a greater cost equal to 0.213.

Moreover, similarly to the hyperbolic case (see [13]), we observe that when the gap k2−k1

and β2−β1 between the coefficients is small enough (depending on the data of the problem),

the density θ is a characteristic function (see Figure 7 obtained for (β1, k1) = (10, 0.1) and

(β2, k2) = (10.2, 0.102)): this suggests that in this case the problem (P) is well-posed.

At last, on a physical point of view, the initial data being fixed, the distribution of the

two materials seems to depend mainly on the value of the ratio k2/k1 with respect to one.

Precisely, the material which have the greater diffusion coefficient (here k2) is distributed

on the center and on the corners of the unit square. The value of the ratio β2/β1 and of T

seems less preponderant. These observations are related to the exponential diffusion in time

of the heat solution u.

5 Concluding remarks

In this work, we have analyzed theoretically and numerically a typical nonlinear optimal

design problem for the heat equation. From a theoretical point of view, two relaxations
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Figure 5: Resolution of (R̂P) - L = 1/2 - T = 0.5 - (β1, β2) = (10, 20), (k1, k2) = (0.1, 1) -

Iso-values of θ - J(θ,G, u) ≈ 0.1806.
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Figure 6: L = 1/2 - T = 0.5 - (β1, β2) = (10, 20), (k1, k2) = (0.1, 1) - Iso-values of θ when

k1Xω + k2(1 −Xω) is directly replaced by the arithmetic mean λ+
θ - Cost function ≈ 0.213.
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Figure 7: Resolution of (R̂P) - L = 1/2 - T = 0.5 - (β1, β2) = (10, 10.2), (k1, k2) =

(0.1, 0.102) - Iso-values of θ - J(θ,G, u) ≈ 0.1126.

have been obtained by using the Homogenization method and the classical tools of non-

convex vector variational problems. The connection between both approaches is given by

the identity

K∗∇u = G.

The homogenization method permits to obtain quite easily a relaxed formulation and shows

that in the one-dimensional case, the optimal tensors K∗ is given by the harmonic mean of

k1 and k2, namely

K∗ =

(
θ

k1
+

1 − θ

k2

)−1

.

The variational approach, through the Young measure, more involved, leads to a somehow

more explicit relaxed problem, although less standard. It is worthwhile to mention that

this approach requires an extra-regularity for the initial datum u0 in order to get the equi-

integrability of |∇un|
2
. At present, we do not know if this assumption is necessary. Moreover,

the numerical simulations, performed in the two-dimensional case, first suggest that the

problem (P) may be ill-posed according to the data, and secondly, validate our conjecture

on the role of the harmonic mean when the ”compliance” cost function is considered.

As indicated in the Introduction, this paper is only a preliminary study on this topic.

Many interesting questions remain open. Among them, we could consider more general cost

involving anisotropic materials. Very likely, the extension of ([4, 17, 13]) to the parabolic

case will provide relaxed formulations. But this remains to be checked. It would also be

interesting to consider the case of spatio-temporal design problem where X ∈ L∞((0, T ) ×

Ω, {0, 1}).
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