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Abstract

We consider a circular arch of thickness ε and curvature r−1 whose elastic deforma-

tions are described by a 2×2 system of linear partial differential equation. The system

- of the type y′′ + Aεy = 0,y = (y1, y3) - involves the tangential y1 and normal y3

component of the arch displacement. We analyze in this work the null controllability

of these two components by acting on the boundary through a Dirichlet and a Neu-

mann control simultaneously. Using the multiplier technic we show that, for any ε > 0

fixed, the arch may be exactly controlled provided that the curvature be small enough.

Then, we consider the numerical approximation of the controllability problem, using

a C0 − C1 finite element method and analyze some experiments with respect to the

curvature and the thickness of the arch. We also highlight and discuss numerically the

loss of uniform controllability as the thickness ε goes to zero, due to apparition of an

essential spectrum for the limit operator A0.

Key Words. Arch equation, Null controllability, Dirichlet and Neumann control.

Mathematics Subject Classification. 35L05, 49J20, 65K10, 65M60, 93B05.

1 Introduction

Let ω be a domain in R with boundary ∂ω, ϕ : ω → R2 a smooth function and ε > 0.
We consider an arch clamped on ∂ω, made with homogeneous and isotropic, linear elastic
material, with thickness ε and whose middle surface is ϕ(ω). Submitted to applied forces
with resultant f (expressed in a covariant basis attached to ϕ(ω)) and to initial condition
(y0,y1) at time t = 0 the arch undergoes a displacement field y = (y1, y3) (expressed
in the associated contravariant basis) which satisfies a system of linear partial differential
equations:

(1)


y′′ +Aεy = f in QT = ω × (0, T ),

y = 0, ∂νy3 = 0 on ΣT = ∂ω × (0, T ),

(y(·, 0),y′(·, 0)) = (y0,y1) in ω.
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The symbol ′ denotes the partial differentiation with respect to time and Aε a partial
differential linear operator of the fourth order (depending on the map ϕ and specified in the
sequel). ∂νy3 designates the normal derivative of y3.

We address in this work, on a theoretical and numerical viewpoint, the null controllability
of the dynamical system (1): given any T > 0 large enough and any initial condition (y0,y1)
in a suitable space, do there exists a function v = (v1, v3) acting on the system only through
the boundary as follows:

y1 = v1, y3 = 0, ∂νy3 = v3 on ΣT

such that

(2) y(·, T ) = y′(·, T ) = 0 in ω ?

y1 and y3 denotes respectively the tangential and normal components of the displacement of
the arch. v1 acts on the tangential component and may be qualified as a Dirichlet control.
v3 acts on the derivative of the normal component and may be qualified as a Neumann
control. Following linear arch and shell theory (we refer to [6], chapter 7), the operator Aε

is decomposed as follows:

Aε = AM +
ε2

3
AF

where AM and AF designate the membrane and flexural operator respectively.
In spite of several works in the eighties about the controllability of beam and plate (see

[17] and the references therein), much less is known in the case of the shell and rod. In this
case, due to the coupling provided by the curvature, the study is more involved and most
of the existing works deal with specific examples of the map ϕ. Thus, in [9, 11], Geymonat,
Loreti and Valente show the exact controllability of an axi-symmetrical spherical cap for a
small enough curvature. In [10], the same authors consider also the case of an hemispher-
ical shell and get controllability using harmonic analysis. For these two cases the analysis
highlights the loss of exact controllability in the transition shell-membrane, i.e. when the
thickness ε tends to zero. From the analytical expression of the eigenvalues of Aε for the
hemi-spherical, it appears that the spectrum of Aε does not fulfill a uniform gap condition
with respect to ε and exhibit a minimal time of controllability Tmin of order O(ε−1). More-
over, the operator AM has a non empty essential spectrum σess(AM ) = {a}, a > 0. This
non-controllability result is extended in [12] to more general operators. According to this
property, relaxed exact spectral [24] or partial [16] controllability of membrane shells have
been studied. For ε > 0, we also mention [20] where a controllability result is obtained for
a shallow Koiter’s shell using the Hilbert Uniqueness Method [18] and more recently [15]
in the context of so-called intrinsic shell model. Furthermore, on the related thematic of
stabilization, let us mention [4, 14] where dissipative terms are added on the shell model in
order to obtain a specific decay of the corresponding energy. The boundary stabilization of
a nonlinear arch is studied in [22].

From a numerical viewpoint, few works are available for mainly two reasons. First,
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independently of the controllability problem, the numerical approximation of arch and shell
(by finite element method) remains difficult because of the locking phenomenon that may
appear in the flexural case (we refer to [5], chapter 3). Secondly, since the pioneering work
of Glowinski et al [13] (see [25] for a recent review), the exact controllability for hyperbolic
systems is known to be sensitive to numerical approximation.

In this numerically oriented work, we address the exact controllability issue in the simple
but rich case of a circular arch with the aim of producing some numerical experiments
and discuss the sensitivity of the control with respect to the parameters, in particular the
curvature and the thickness. In Section 2, we define precisely the operatorAε and state some
existence results for the corresponding static formulation (Lemma 2.2). Similar qualitative
results are given for the homogeneous dynamic problem (i.e. without control) in Section 3.1
(Lemma 3.1). In Section 3.2, we use the multiplier technic to obtain respectively the so-called
hidden -regularity inequality (Theorem 3.1) and the observability inequality (Theorem 3.2),
both involving the energy of the homogeneous solution. Then, Section 4, using the Hilbert
Uniqueness Method introduced by J.-L. Lions in [18], these estimates permit to construct
explicitly a control, assuming the curvature of the elastic arch small enough (see Theorem
4.1). In Section 5, we then address the numerical approximation of this control and study the
influence of the curvature and thickness. The assumption on the curvature appears weak in
practice (Section 5.2). Moreover, we numerically check, Sectionsec-influence-epsilon, the loss
of uniform controllability as the thickness ε goes to zero. As explained, this phenomenon
is due to the fact that the limit operator AM posseses an essential spectrum: precisely,
0 ∈ σess(AM ). Then, we observe that the uniform controllability is not recovered for initial
datum (y0,y1) ∈ (KerAM )⊥. This is related to the non convergence of σ(Aε) toward
σ(AM ), enhanced by the degeneracy of the boundary conditions on y3. Section 6 concludes
this work with some perspectives and Appendix 7 analyzes the spectrum of Aε and exhibits
its densification over R+ as ε→ 0, responsible of the lack of uniform spectral gap property.

2 Static problem

We explicit in this section the operator Aε in the case of a circular arch and then state some
important existence and regularity results in the static case.

2.1 The case of a cylindrical arch

Without loss of generality, let us assume that the mid-surface of the arch is ω = (0, 1) and
note by ξ ∈ ω the curvilinear abscissa. For a cylindrical arch, the map ϕ : ω → R2 may
takes the following expression

ϕ(ξ) =
(
r sin(r−1ξ), r cos(r−1ξ)

)
= x = (x1, x3)

where r > 0 denotes the constant radius of curvature of the arch. The curvature is then r−1.
Remark that the length of the arch is equal to 1 for all r > 0. The tangent vector τ = ∂ξϕ
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and the normal vector ν take the expression

τ =
(

cos(r−1ξ),− sin(r−1ξ)
)
, ν =

(
sin(r−1ξ)), cos(r−1ξ)

)
and any displacement vector y(x) of component (ŷ1, ŷ3) in the orthonormal basis (e1, e3)
of R2 so that y(x) = ŷ1(x)e1 + ŷ3(x)e3 may then be expressed as follows

y(x) = y1(ξ)τ (ξ) + y3(ξ)ν(ξ), ξ ∈ ω

in the contravariant basis (τ ,ν) (which coincides here with the covariant basis). The oper-
ator Aε is then defined by Aε = AM + ε2/3AF where

(3) AMy = a

(
− (y1,1 + r−1y3),1

r−1(y1,1 + r−1y3)

)

and

(4) AFy = a

(
2r−1(y3,11 − 2r−1y1,1 − r−2y3),1

y3,1111 − 2r−1y1,111 − 2r−2y3,11 + 2r−3y1,1 + r−4y3

)
.

a designates the longitudinal elasticity coefficient of the arch. For simplicity, we take a = 1 in
the sequel. Moreover, yi,1 denotes the partial derivative of yi with respect to the curvilinear
abcissa ξ: yi,1(ξ, t) = ∂yi(ξ, t)/∂ξ, i ∈ {1, 3}.

Remark 1 When the curvature is assumed to be small (r−1 < 1), one may simplify the
operator AF as follows:

A?Fy = a

(
r−1(y3,1 − r−1y1),11

(y3,1 − r−1y1),111

)
.

When the curvature is assumed to be very small (r−1 << 1), one may consider simply

(5) A??F y = a

(
0

y3,1111

)
.

The operator AM remains unchanged in both cases. We refer for instance to [8], chapter 4.

Remark 2 The curvature r−1 is the coupling parameter between the two components y1 and
y3, so that when r−1 = 0, the components are respectively solution of the wave and beam
equation

y′′1 − y1,11 = 0, y′′3 +
ε2

3
y3,1111 = 0 in QT .

The first equation is null controllable for any T > 1 and (y0
1 , y

1
1) ∈ L2(ω)×H−1(ω) through

y1 = v1 ∈ L2(ΣT ) (see [18], chapter 3). For any ε > 0, the second equation is null
controllable for any T > 0 and (y0

3 , y
1
3) ∈ L2(ω) × H−2(ω) through ∂νy3 = v3 ∈ L2(ΣT ),
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taking y3 = 0 on ΣT (see [18], chapter 5).

Before to proceed to the analysis of the null controllability of system 1, let us insist on
the following point. In the two-dimensional shell theory as presented in detail in [6, 7], the
mid-surface ω belongs to R2 and systems involves three components of the displacement
(u1, u2, u3). The operator AM and AF given in that section are derived from the 2−d case
by simply eliminating the variable u2. Moreover, the operator Aε = AM + ε2/3AF appears
in the well-admitted Koiter shell model (we refer to [6, 7] for the analysis of the Koiter shell
model).

2.2 Some results for the static problem

In order to fix the notations, we summarize here some important results about the static
problem : find u = (u1, u3) such that

(6)

{
Aεu = f in ω,

u = 0, ∂νu3 = 0 on ∂ω.

Definition 2.1 For any v = (v1, v3) and u = (u1, u3), we introduce the following notation:
γ(v) = v1,1 + r−1v3,

ρ(v) = v3,11 − r−1v1,1 − r−1γ(v) = v3,11 − 2r−1v1,1 − r−2v3,

bM (u,v) = γ(u)γ(v), bF (u,v) = ρ(u)ρ(v), bε(u,v) = bM (u,v) +
ε2

3
bF (u,v).

γ is the linearized change of metric function associated with the map ϕ. ρ is the linearized
change of curvature function.

From these definitions, we may rewrite the operator AM and AF defined in (3) and (4)
respectively in term of γ and ρ:

(7) AMy =

(
−γ(y),1

r−1γ(y)

)
, AF y =

(
2r−1ρ(y),1

ρ(y),11 − r−2ρ(y)

)

Then, computations based on integrations by parts, lead to the following relations (we refer
to [20] for similar developments for shell operator).

Lemma 2.1 For all u ∈ H3(ω)×H4(ω), we have,

• For all v ∈ H1(ω)×H2(ω)∫
ω

AMu · vdξ =
∫
ω

bM (u,v)dξ − [γ(u)v1]10 ,∫
ω

AFu · vdξ =
∫
ω

bF (u,v)dξ + [ρ(u),1v3]10 − [ρ(u)v3,1]10 + 2r−1 [ρ(u)v1]10 ,
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• For all v ∈ H1
0 (ω)×H2

0 (ω)∫
ω

AMu · vdξ =
∫
ω

bM (u,v)dξ,
∫
ω

AFu · vdξ =
∫
ω

bF (u,v)dξ,

therefore ∫
ω

Aεu · vdξ =
∫
ω

bε(u,v)dξ.

We now introduce the space V = H1
0 (ω) × H2

0 (ω). As a consequence of the Poincaré’s
inequality on ϕ(ω) (see [6], chapter 4 for the counterpart Korn’s inequality for shell), the
energy norm

‖v‖V =
(∫

ω

bε(v,v)dξ
)1/2

is a norm over V . Therefore, the symmetric bilinear form (u,v) ∈ V →
∫
ω
bε(u,v)dξ is

continuous and V -coercive so that Lax-Milgram theorem leads to the following result (see
for instance [6]).

Lemma 2.2 (i) If f ∈ (L2(ω))2, there exists a unique weak solution u ∈ V to the variational
problem ∫

ω

bε(u,v)dξ =
∫
ω

f · vdξ, ∀v ∈ V .

(ii) Let E = (H3(ω)∩H1
0 (ω))×(H4(ω)∩H2

0 (ω)). If f ∈ H1(ω)×L2(ω), the unique solution
u of (6) belongs to E and satisfies the estimates

∃C > 0 : ‖u‖E ≤ C(‖f‖H1(ω)×L2(ω) + ‖u‖L2(ω)×L2(ω)).

3 Homogeneous evolution problem

The homogeneous problem plays an important role in the Hilbert Uniqueness Method. We
first recall some basic results and then derive several technical equalities related to the
multiplier method.

We introduce the space H = L2(ω)×L2(ω) endowed with the usual norm and identified
to its dual space. The Hilbert space V = H1

0 (ω) × H2
0 (ω) is dense in H with compact

imbedding. Let V ′ = H−1(ω)×H−2(ω) denote the dual space of V , so that V ⊂H ⊂ V ′.

3.1 Existence - Uniqueness

Let T > 0 be given. We consider in this section the uncontrolled system

(8)


u′′ +Aεu = f in QT = ω × (0, T ),

u = 0, ∂νu3 = 0 on ΣT = ∂ω × (0, T ),

(u(·, 0),u′(·, 0)) = (u0,u1) in ω.

The existence, uniqueness and regularity of the solution of (8) is given by the next lemma,
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direct consequence of Lions’s ”abstract” theorem (we refer to [19]) and of the regularity given
by Lemma 2.2.

Lemma 3.1 (i) For all (u0,u1,f) ∈ V × H × L2(0, T ;H), there exists a unique weak
solution u ∈ C(0, T ;V ) ∩ C1(0, T ;H) that satisfies the variational problem

< u′′,v >V ′,V +
∫
ω

bε(u,v)dξ =
∫
ω

f · vdξ, a.e. t ∈ (0, T ), ∀v ∈ V .

Moreover, the mapping (u0,u1,f)→ (u(t),u′(t)) is continuous :

∃C > 0; ‖u(t)‖2V + ‖u′(t)‖2H ≤ C
(
‖u0‖2V + |u1‖2H +

∫ t

0

|f‖2Hds
)
, t ∈ (0, T ).

(ii) For all (u0,u1,f) ∈ E × V × L2(0, T ;V ), there exists a unique strong solution u ∈
C(0, T ;E) ∩ C1(0, T ;V ) and

∃C > 0 : ‖u(t)‖2E + ‖u′(t)‖2V ≤ C
(
‖u0‖2E + ‖u1‖2V +

∫ t

0

‖f‖2V ds
)
, t ∈ (0, T ).

When f = 0, we denote by E the ”natural” energy of the arch

E(t,u) =
1
2

∫
ω

(u′ · u′ + bε(u,u))dξ.

Lemma 3.2 When f = 0, the energy of the weak solution to (8) is constant in time: E(t) =
E(0), for all t ∈ (0, T ).

Proof. First, when u is the strong solution to (8), multiplying (8) by u′ and integrating
over ω, we have

∫
ω

(u′′+Aεu) ·u′dξ = 1/2d/dt
∫
ω

(u′ ·u′+Aεu ·u)dξ = 1/2d/dt
∫
ω

(u′ ·u′+
bε(u,u))dξ using the step (ii) of Lemma 2.1. Secondly, when u is a weak solution associated
with initial conditions (u0,u1) ∈ V ×H, we get the result by a density argument: let
(u0
k,u

1
k)(k>0) ∈ E × V be a sequence of Cauchy conditions and let uk be the associated

strong solution such that (u0
k,u

1
k)→ (u0,u1) in V ×H as k →∞. From the continuous de-

pendence of the solution with respect to the initial data, uk → u in C(0, T ;V )∩C1(0, T ;H).
Hence, Ek(t,uk) = 1/2(|u′k|

2
H

+ |uk|2V )→ E(t,u) = 1/2(|u′|2H + |u|2V ) as k →∞. �

In the sequel, we take f = 0 and note

E0(u) = E(t = 0,u) =
1
2

∫
ω

(u1 · u1 + bε(u0,u0))dξ.

3.2 Observability and direct inequalities on the homogeneous prob-

lem

In view of the null controllability, we establish in this section that for any T large enough,
r−1 small enough and any initial data (u0,u1) ∈ V ×H, there exist two positive constants
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C1 and C2 such that

(9) C2E0(u) ≤
∫ T

0

[
bε(u,u)

]1

0

dt ≤ C1E0(u).

Those inequalities, obtained using the multiplier technic, show that (
∫ T

0
[bε(u,u)]10dt)

1/2

defines a norm on the set of initial data. The left part of (9) is called the observability
inequality associated with the adjoint system (8) and allows to show that if u solution of (8)
is such that u ≡ 0 on ΣT , then u ≡ 0 in QT . In that sense, the whole solution is observed
from the boundary. This inequality requires that the time be large enough, due the finite
speed of propagation of the solution along ω. The right part of (9), easier to obtain, is called
the direct inequality, and does not require any condition on T . The right inequality is also
referred as the hidden inequality because implies extra regularity on the boundary terms.

3.2.1 Some technical lemma

The multiplier method is based on the multiplication of the conservative system (8) by
suitable functions and allows to express the solution u on QT in term of the solution on ΣT .
For the sake of clarity, we collect in this section such computations leading to Proposition
3.1.

Lemma 3.3 Let u be the strong solution of (8) and q ∈ C1(ω). We have

∫
QT

u′′ · qu,1dξdt =
1
2

∫
QT

q,1u
′ · u′dξdt+

∫
ω

[
u′ · qu,1

]T
0

dξ.

Proof. Integrating by part, we have∫
QT

u′′ · qu,1dξdt = −
∫
QT

u′ · qu′,1dξdt+
∫
ω

[
u′ · qu,1

]T
0

dξ

= −1
2

∫
QT

q (u′ · u′),1dξdt+
∫
ω

[
u′ · qu,1

]T
0

dξ

=
1
2

∫
QT

q,1u
′ · u′dξdt− 1

2

∫ T

0

[
qu′ · u′

]1

0

dt+
∫
ω

[
u′ · qu,1

]T
0

dξ

and the result follows since u = 0 on ΣT = ∂ω × (0, T ). �

We also have the following relations.

Lemma 3.4 For all q ∈ C2(ω) and v ∈ C2(ω)× C3(ω) we have

γ(qv,1) = qγ(v),1 + gM (q,v), ρ(qv,1) = qρ(v),1 + gF (q,v)

with
gM (q,v) = q,1v1,1, gF (q,v) = q,11v3,1 + 2q,1v3,11 − 2r−1q,1v1,1.



9

Proof. From Definition 2.1, we write for all q ∈ C1(ω) and v ∈ C2(ω)× C1(ω) that

γ(qv,1) = (qv1,1),1 + r−1qv3,1 = q,1v1,1 + qv1,11 + r−1qv3,1

= q(v1,1 + r−1v3),1 + q,1v1,1 = qγ(v),1 + gM (q,v)

Similarly, for all q ∈ C2(ω) and v ∈ C2(ω)× C3(ω), we write

ρ(qv,1) = (qv3,1),11 − 2r−1(qv1,1),1 − r−2qv3,1

= q,11v3,1 + qv3,111 + 2q,1v3,11 − 2r−1(q,1v1,1 + qv1,11)− r−2qv3,1

= q(v3,11 − 2r−1v1,1 − r−2v3),1 + q,11v3,1 + 2q,1v3,11 − 2r−1q,1v1,1

= qρ(v),1 + gF (q,v).

�

Lemma 3.4 then implies the following one.

Lemma 3.5 For all q ∈ C2(w) and v ∈ H3(ω)×H4(ω), we have∫
ω

bε(v, qv,1)dξ = −1
2

∫
ω

q,1b
ε(v,v)dξ +

1
2

[
qbε(v,v)

]1

0

+
∫
ω

gε(q,v)dξ

where

gε(q,v) = γ(v)gM (q,v) +
ε2

3
ρ(v)gF (q,v).

Proof. From the definition of bM (see Definition 2.1) and using Lemma 3.4, we write∫
ω

bM (v, qv,1)dξ =
∫
ω

γ(v)γ(qv,1)dξ =
∫
ω

γ(v)(qγ(v),1 + gM (q,v))dξ

=
1
2

∫
ω

qbM (v,v),1dξ +
∫
ω

γ(v)gM (q,v)dξ

=− 1
2

∫
ω

q,1bM (v,v)dξ +
1
2

[
qbM (v,v)

]1

0

+
∫
ω

γ(v)gM (q,v)dξ.

A similar computation for the term
∫
ω
bF (v, qv,1)dξ then leads to the result. �

Lemma 3.6 For all (u0,u1) ∈ E × V and all q ∈ C2(w), we have∫
ω

Aεu · qu,1dξ =
∫
ω

bε(u, qu,1)dξ −
[
qbε(u,u)

]1

0

.

Proof. Since u is a strong solution to (8), we use the step (i) of Lemma 2.1 with v = qu,1.
We write ∫

ω

AMu · qu,1dξ =
∫
ω

bM (u, qu,1)dξ −
[
γ(u)qu1,1

]1

0

.

Since u3 = 0 on ∂ω × (0, T ), the last integral is

−
[
γ(u)q(u1,1 + r−1u3)

]1

0

= −
[
γ(u)γ(u)q

]1

0

= −
[
bM (u,u)q

]1

0

.
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Similarly,∫
ω

AFu · qu,1dξ =
∫
ω

bF (u, qu,1)dξ +
[
q

(
ρ(u),1u3,1 − ρ(u)u3,11 + 2r−1u1,1

)]1

0

.

Once again, since u3 = u3,1 = 0 on ∂ω, the last term is [qρ(u)(−u3,11+2r−1u1,1+r−2u3)]10 =
−[qρ(u)ρ(u)]10 = −[qbF (u,u)]10. The result follows from bε(u,u) = bM (u,u)+ε2/3bF (u,u).

These lemmata lead to the following result.

Proposition 3.1 Let q ∈ C2(ω). For all (u0,u1) ∈ V × H, the weak solution to (8)
satisfies the identity

(10)

1
2

∫ T

0

[
qbε(u,u)

]1

0

dt =
1
2

∫
QT

q,1(u′ · u′ − bε(u,u))dξdt+
∫
ω

[
u′ · qu,1

]T
0

dξ

+
∫
QT

gε(q,u)dξdt.

Proof. As in Proposition We first consider the strong solution associated with (u0,u1) ∈
E×V . Multiplying (8) by the multiplier qu,1 and integrating over QT , we obtain

∫
QT

(u′′ ·
qu,1 + Aεu · qu,1)dξ = 0 and the result follows using Lemmas 3.3,3.5 and 3.6. For weak
solution of (8) with the data (u0,u1) ∈ V ×H, the result is obtained using a classical density
argument. (see [18] for the wave and beam equation and [20] for the general situation of
shell operator.) �

3.2.2 Direct and inverse inequality

We are now in a position to prove the right inequality of (9), the so-called direct (or hidden-
regularity) inequality.

Theorem 3.1 Let ε > 0.There exists a constant C1, which depends only on ω and on the
map ϕ such that for all (u0,u1) ∈ V ×H, the weak solution to (8) satisfies the inequality∫ T

0

[
bε(u,u)

]1

0

dt ≤ C1(1 + T )E0(u).

Therefore, the linear mapping (u0,u1) ∈ V ×H → bε(u,u) ∈ L1(ΣT ) is continuous.

Proof. Let us take q ∈ C2(ω) such that q(0) = −1 and q(1) = 1. It follows from (10) that

∫ T

0

[
bε(u,u)

]1

0

dt =
∫
QT

q,1(u′ · u′ − bε(u,u))dξdt+ 2
∫
ω

[
u′ · qu,1

]T
0

dξ

+ 2
∫
QT

gε(q,u)dξdt.

The first integral is lower than ‖q,1‖L∞(ω)TE0(u). Similarly, using that (
∫
ω
bε(u,u)dξ)1/2

is a norm equivalent to ‖u‖V , the third term is lower than 2CT
∫
ω
bε(u,u)dξ ≤ 2CTE0(u)

for some C > 0. At last, the second term is less than 4CE0(u). The majoration follows. �
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The left inequality in (9) - the observability inequality - is obtained with the new multi-
plier p = 2(ξ − ξ0), ξ0 ∈ R, in this case Proposition 3.1 takes the following form.

Proposition 3.2 Let p = 2(ξ − ξ0), ξ0 ∈ R. For all (u0,u1) ∈ V ×H, the weak solution
to (8) satisfies the identity

1
2

∫ T

0

[
pbε(u,u)

]1

0

dt =TE0(u) +
∫
QT

(γ(u)γ(u) + ε2ρ(u)ρ(u))dξdt

+
∫
QT

hε(u)dξ +
∫
ω

[
u′ ·

(
pu,1 +

u

2

)]T
0

dξ.

Proof. As in Proposition 3.1, the identity is first established for Cauchy conditions
(u0,u1) ∈ E ×V corresponding to a strong solution and by the same density argument we
show that it is still valid for (u0,u1) ∈ V ×H.

Hence, Lemma 3.3 reads∫
QT

u′′ · pu,1dξdt =
1
2

∫
QT

2u′ · u′dξdt+
∫
ω

[
u′ · pu,1

]T
0

dξ.

From the relation ∫
QT

u′ · u′dξdt =
∫
ω

[
u′ · u

]T
0

dξ +
∫
QT

bε(u,u)dξdt,

we obtain that∫
QT

u′′ · pu,1dξdt =
1
2

∫
QT

u′ · u′dξdt+
1
2

∫
QT

bε(u,u)dξdt+
∫
ω

[
u′ ·

(
pu,1 +

u

2

)]T
0

dξ

= TE0(u) +
∫
ω

[
u′ ·

(
pu,1 +

u

2

)]T
0

dξ.

Lemma 3.4 now reads

γ(pv,1) = pγ(v),1 + 2v1,1 = pγ(v),1 + 2γ(v) + hM (v),

ρ(pv,1) = pρ(v),1 + 4v3,11 − 4r−1v1,1 ≡ pρ(v),1 + 4ρ(v) + hF (v)

where hM (v) = −2r−1v3 and hF (v) = 4r−1γ(v). At last Lemma 3.5 becomes∫
ω

bε(u, pu,1)dξ =
1
2

[
pbε(u,u)

]1

0

+
∫
ω

(γ(u)γ(u) + ε2ρ(u)ρ(u))dξ +
∫
ω

hε(u)dξ

where

hε(u) = γ(u)hM (u) +
ε2

3
ρ(u)hF (u).

Summarizing these equalities yields the result. �

Before showing the left part of (9), we need the following intermediate result :
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Proposition 3.3 Let p = 2(ξ − ξ0), ξ0 ∈ R, ε > 0 and r−1 > 0. There exist a constant
C > 0 which depends on ω, ε and on the map ϕ and a constant D which depends on ε such
that for all (u0,u1) ∈ V ×H, the weak solution to (8) satisfies the inequality

(11)
1
2

∫ T

0

[
pbε(u,u)

]1

0

dt ≥
(
T (1− r−1D(ε))− 2C

)
E0(u).

Proof. We first prove that there exists a constant C such that

(12)
∫
ω

u′ · (pu,1 +
u

2
)dξ ≤ CE0(u), ∀t ≥ 0.

For any constant B > 0, we have

2
∣∣∣∣∫
ω

u′ ·
(
pu,1 +

u

2

)
dξ

∣∣∣∣ ≤ ∫
ω

(
Bu′ · u′ + 1

B
(pu,1 +

u

2
) · (pu,1 +

u

2
)
)
dξ.

Using that
∫
ω
pu,1 · udξ = −

∫
ω
u · udξ, we obtain

∫
ω

∣∣∣∣pu,1 +
u

2

∣∣∣∣2dξ ≤ ∫
ω

pu,1 · pu,1dξ.

Moreover, from Poincaré’s inequality, there exists a constant CK such that∫
ω

(u,1 · u,1 + u · u)dξ ≤ CK
∫
ω

bε(u,u)dξ.

Hence, ∣∣∣∣∫
ω

u′ ·
(
pu,1 +

u

2

)
dξ

∣∣∣∣ ≤ 1
2

max
(
B,CK

‖p‖2L∞(ω)

B

)
E0(u).

(12) then follows with B =
√
CK‖p‖L∞(ω) and C = B/2. From Proposition 3.2, the inter-

mediate result is therefore that

1
2

∫ T

0

[
pbε(u,u)

]1

0

dt ≥ (T − 2C)E0(u) +
∫
QT

hε(u)dξdt.

From hε(u) = r−1γ(u)(−2u3 + 4 ε
2

3 ρ(u)) we first notice that the last term vanishes for
r−1 = 0 (corresponding to a flat arch) and then (11) follows with D = 0. For r−1 > 0,
using the equivalence of the norm in V and the elastic energy norm (

∫
ω
bε(u,u)dξ)1/2, there

exists a constant D(ε) independent of r such that∣∣∣∣∫
ω

hε(u)dξ
∣∣∣∣ ≤ r−1D(ε)

∫
ω

bε(u,u)dξ.

(11) then follows. �
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Let us now take ξ0 ∈ ω so that p defined by p(ξ) = 2(ξ − ξ0) satisfies p(0) < 0 and
p(1) > 0. Then, defining

T ?(r−1, ε) =
2C

1− r−1D(ε)

and assuming r large enough so that 1 − r−1D(ε) > 0, we deduce from (11) the following
result:

Theorem 3.2 Let ε > 0 and r−1 < 1/D(ε). For all T > T ?(r−1, ε), there exists a constant
C2 = (1 − r−1D(ε)) such that for all (u0,u1) ∈ V ×H, the weak solution to (8) satisfies
the inequality ∫ T

0

[
bε(u,u)

]1

0

dt ≥ C2(r−1, ε)(T − T ?)E0(u).

We then conclude from Theorem 3.1 and Theorem 3.2 that for all (u0,u1) ∈ V ×H, if
r−1 < 1/D(ε) and T > T ?, then the semi-norm (

∫ T
0

[bε(u,u)]10dt)
1/2 is a norm over V ×H.

Similarly, the observability from the right extremity ξ = 1 is obtained with the choice ξ0 = 0
in p.

4 The control problem

Let V ′ the dual space of V defined by V ′ = H−1(ω) × H−2(ω). We show in this section
that for any (y0,y1) in H × V ′, there exists a control function v ∈ (L2(ΣT ))2 such that
the solution y of

(13)


y′′ +Aεy = 0 in QT ,

y1 = v1, y3 = 0, ∂νy3 = v3 on ΣT ,

(y(·, 0),y′(·, 0)) = (y0,y1) in ω,

is at rest at time T , i.e. satisfy (2). Following [20], we first establish an existence theorem
for (13) and then construct the control v.

Proposition 4.1 For any (y0,y1,v) ∈H×V ′× (L2(ΣT ))2, there exists a unique solution
y ∈ C(0, T ;H) ∩ C1(0, T ;V ′) and the mapping (y0,y1,v)→ (y(t),y′(t)) is continuous:

∃C > 0 : ‖y(t)‖2H + ‖y′(t)‖2V ′ ≤ C(‖y0‖2H + ‖y1‖2V ′ + ‖v‖2(L2(ΣT ))2), t ∈ (0, T ).

Proof. We refer to a detailed proof for hyperbolic equation to [18] and to [20] for shell
system. For clarity, let us simply precise how the estimate is obtained. Let us first define
a weak solution of (13). Let D(ω) = C∞c (ω). For all (u0,u1) ∈ D(ω)× D(ω), let u be the
unique solution of (8). Multiplying (13) by u and (8) by y, and integrating over QT , we
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get, for all t ∈ (0, T )∫
ω

(u′(t) · y(t)− u(t) · y′(t))dξ =
∫
ω

(u1 · y0 − y1 · u0)dξ +
∫ t

0

∫
ω

(Aεy · u−Aεu · y)dtdξ

=
∫
ω

(u1 · y0 − y1 · u0)dξ +
∫ t

0

[
Bε(u,v)

]1

0

dt

where, from Lemma 2.1, the boundary operator Bε reads

Bε(u,v) = γ(u)v1 +
ε2

3
ρ(u)(v3,1 − 2r−1v1).

Noting < u,v >=
∫
ω
u · vdξ the duality product between H and H ′(= H) or V and V ′,

the previous equality becomes

(14) < u′(t),y(t) > − < u(t),y′(t) >=< u1,y0 > − < y1,u0 > +
∫ t

0

[
Bε(u,v)

]1

0

dt.

Therefore, y is a weak solution to (13) if it satisfies (14). Now, according to Lemma 3.1, for
(u0,u1) ∈ V ×H, there exists C1 > 0 such that

‖u(t)‖V + ‖u′(t)‖H +
(∫ t

0

[
bε(u(s),u(s))

]1

0

ds

)1/2

≤ C1(‖u0‖V + ‖u1‖H).

Moreover, from the definition of Bε, there exists a constant C2 > 0 such that∫ t

0

[
Bε(u,v)

]1

0

ds ≤ C2|v|(L2(ΣT ))2

(∫ t

0

[
bε(u(s),u(s))ds

]1

0

)1/2

.

The estimate of Proposition 4.1 then follows from the relation (14). Finally, the regularity
on y is obtained by density argument. �

We can now apply the duality HUM method (see [18]) to get the following controllability
result.

Theorem 4.1 (Null controllability) Let ε > 0, r > D(ε) and T > T ?. For any
(y0,y1) ∈ H × V ′, there exists a control v = (v1, v3) ∈ (L2(ΣT ))2 such that y(·, T ) =
y′(·, T ) = 0 in ω.

Proof. We introduce the following backward system :

(15)


z′′ +Aεz = 0 in QT ,

z1 = ∂νu1, z3 = 0, ∂νz3 = ∂2
ννu3 on ΣT ,

(z(·, T ), z′(·, T )) = (0,0) in ω.
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From Proposition 4.1 and from the reversibility property of (15), there exists a unique
solution z ∈ C(0, T ;H) ∩ C1(0, T ;V ′). Moreover, since

< z′(0),u0 > − < u1, z(0) >=
∫ T

0

[
γ(u)z1

]1

0

dt

+
ε2

3

∫ T

0

[
(−ρ(u),1z3 + ρ(u)z3,1 − 2r−1ρ(u)z1)

]1

0

dt

we get

(16) < z′(0),u0 > − < u1, z(0) >=
∫ T

0

[
Bε(u, z)

]1

0

dt =
∫ T

0

[
bε(u,u)

]1

0

dt.

Then, as a consequence of (9), the linear mapping Λε : (u0,u1) ∈ V ×H → (z′(0),−z(0)) ∈
V ′ ×H verifies

< Λε(u0,u1), (u0,u1) >=
∫ T

0

[
bε(u,u)

]1

0

dt

and is an isomorphism. Thus, for any (y0,y1) such that (−y1,y0) ∈ V ′ ×H, there exists
a control function v = (u1,1ν, u3,11) on ΣT and the solution y of (13) is y = z and satisfies
E(T,y) = 0. Finally, the hidden regularity implies that bε(ϕ,ϕ) ∈ L1(ΣT ). Therefore
v2

1 + ε2(v3,1 − 2r−1v1)2 belongs to L1(ΣT ) and so v1, v3 ∈ L2(ΣT ). �

Remark 3 From the characterization (16), we obtain that the control v = (v1, v3) obtained
from Theorem 4.1 is among all the admissible controls, the one which minimizes ‖v2

1 +
ε2(v3,1 − 2r−1v1)/3‖L1(ΣT ).

As a summary, we obtain the exact null controllability of the arch by acting, on the
extremities, on the tangential component y1 through a Dirichlet control v1 and on the
normal component y3 through a Neumann control v3. In the next section, we address the
numerical resolution of this control problem and highlight the influence of the parameter ε
and r−1.

5 Numerical experiments

According to Section 4, the controllability problem is reduced, via the duality HUM method,
to the solution of the following linear problem: find (u0,u1) ∈ V ×H such that

< Λε(u0,u1), (û0, û1) >=< (y1,−y0), (û0, û1) >V ′×H,V ×H , ∀(û0, û1) ∈ V ×H
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which is equivalent to minimize the following functional J : V ×H → R
(17)

J ε(u0,u1) =
1
2
< Λε(u0,u1), (u0,u1) > − < (y1,−y0), (u0,u1) >V ′×H,V ×H

=
1
2

∫ T

0

[
bε(u,u)

]1

0

dt+
∫

Ω

y0 · u1dξ− < y1,u0 >V ′,V

=
1
2

∫ T

0

[
u2

1,1 +
ε2

3
(u3,11 − 2r−1u1,1)2

]1

0

dt+
∫

Ω

y0 · u1dξ− < y1,u0 >V ′,V .

Actually, J ε is the conjugate function of Jε : (L2(ΣT ))2 → R defined by Jε(v) = 1/2‖v2
1 +

ε2(v3,1 − 2r−1v1)/3‖L1(ΣT ) (see Remark 3).
Since J ε is continuous, convexe and (V ×H)-elliptic for T and r sufficiently large, the

minimization can be done by a conjugate gradient (CG) algorithm (we refer to [13] for the
wave equation).

In this section, we present some numerical experiments of the minimization of J ε and
highlight the influence of the curvature r−1 and above all of the thickness ε. For the wave
equation (we refer to [3, 13, 21] and the references therein), the numerical approximation
of the exact control is very sensitive to the choice of the approximation method and to the
regularity of the initial data (y0,y1). This sensitivity is likely to remain for our 2×2 system
(1), at least for the Dirichlet control v1 which formally converges to the control of the wave
equation on y1 when r−1 vanishes (see Remark 2). Moreover, very little seems to be known
on the quality of approximation of the Neumann control.

Consequently, in order to expect a convergent approximation, we consider only regular
data involving first frequency components. Secondly, we regularize the control at time t = 0
and t = T : we introduce a compact support function ρ ∈ C1

c ([0, T ]) - typically ρ(t) =
sin2(tπ/T ) - and search for a control under the form (ρv1, ρv3). These two assumptions,
meaningful from a mechanical viewpoint, allow to obtain convergent and robust numerical
approximations (see Section 5.1). In this respect, since the weak adjoint solution u belongs
to C(0, T ;H1

0 (ω)×H2
0 (ω)), a conformal C0−C1 finite element method is used: introducing a

uniform subdivision {xi}(i=1,..,J) of ω = (0, 1), we approximate V by the finite dimensional
space

Vh =
{

(v1h, v3h) ∈ C0(ω)× C1(ω), (v1h)|[xi,xi+1] ∈ P1, (v3h)|[xi,xi+1] ∈ P3,∀i = 1, ..., J − 1
}

where Pk designates the space of the polynomials of degree ≤ k. The time approximation
is performed in a standard way using centered finite differences : in particular, we use a
Newmark method to get an unconditionally stable scheme. The introduction of a C1-finite
element as well as the presence of a Neumann control is a major difference and new ingredient
with respect to the numerical literature mainly devoted to the wave equation with Dirichlet
boundary condition.

Two stopping criteria for the CG algorithm may be used: the first one is related to the
residual r(k) at the iteration k, namely r(k) ≤ ηr(0), η > 0, permits to analyze the quality of
the numerical approximation. The second one is related to the numerical energy Eh of the
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system, namely Eh(T ) ≤ ηEh(0), permits to analyze the efficiency of the control.

Remark 4 A key point in the conjugate gradient algorithm is the choice of the scalar product
on V ×H: in this respect, we have replaced the usual scalar product(

(v0,v1), (ṽ0, ṽ1)
)
V ×H

=
∫
ω

(v0
1,1ṽ

0
1,1 + v0

3,11ṽ
0
3,11)dξ +

∫
ω

(v1
1 ṽ

1
1 + v1

3 ṽ
1
3)dξ

by the more natural one :(
(v0,v1), (ṽ0, ṽ1)

)
V ×H

=
∫
ω

bε(v0, ṽ0)dξ +
∫
ω

(v1
1 ṽ

1
1 + v1

3 ṽ
1
3)dξ.

Remark 5 One may improve the robustness of the algorithm (in particular reduce the num-
ber of iterations) by coupling the C0 −C1 finite element scheme with a Bi-grid method: in-
troduced in [13] for the wave equation, it consists in computing at each iteration the descent
direction on a coarse mesh. We have observed that the Bi-grid method remains efficient in
our context provided a careful extension (from the coarse to the fine mesh) of the nodal C1

finite element approximation of y3. The gain of robustness is very valuable when we are at
the theoretical limit of controllability (see Section 5.3).

5.1 Analysis with respect to h

Before highlighting the influence of the parameters ε and r−1 on the controllability, it is es-
sential to analyze our numerical approximation with respect to the discretization parameter
h and dt.

Let us first consider the following data : ε = 10−1, r−1 = 10−1, T = 3. We assume that
the control is acting on the left extremity ξ = 0 of ω = (0, 1) and we note Σ0

T = {0}× (0, T ).
On the right extremity ξ = 1, the arch is clamped. We start with the following simple initial
condition (in the local curvilinear frame) (y0,y1) ∈H × V ′:

(18) y0 = (y0
1 , y

0
3) = (sin(πξ), sin2(πξ)); y1 = (y1

1 , y
1
3) = (0, 0), ξ ∈ ω = (0, 1).

We use the stopping criterion related to the residual r(k) with η = 10−8 and take h = 1/64
and ∆t = h/2. Figure 1 depicts the initial condition of the system (8), minimum in V ×H
of the associated functional J (see 17). Figure 2-left represents the evolution with respect
to time of the associated control v = (v1, v3) ∈ (L2(Σ0

T ))2. As explained previously, the
control and its first derivative are zero at time t = 0 and t = T . Figure 2-right represents
the evolution of the energy (non monotonous). We check the (numerical) controllability by
computing the ratio Eh(T )/Eh(0) ≈ 4.75 × 10−5. Figure 3 represents the evolution of the
controlled tangential y1 and normal y3 displacement on QT (attached to the local basis).
Finally, for r−1 = 1/5 and r−1 = 1/10, Figure 4 represents the evolution of the circular
arch submitted to the initial position y0(x) = y0

1τ (ξ) + y0
3ν(ξ) and to the initial velocity

y1(x) = y1
1τ (ξ) + y1

3ν(ξ).
We then collect in Table 1 the evolution of several relevant quantities with respect to h =
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Figure 1: T = 3 - Initial conditions u0 = (u0
1, u

0
3) (Left) and u1 = (u1
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3) (Right) of the

system (8) and minimum of the functional J (defined by eq. 17).
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Figure 2: T = 3 - Left - Compact support control (v1, v3) = (∂νu1, ∂
2
ννu3) on Σ0

T ; Right -
Energy Eh(t,y) vs t.
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Figure 3: T = 3 - Controlled displacement y1 (Left) and y3 (Right) on QT .
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Figure 4: T = 3 - Evolution of the controlled cylindrical arch vs t ∈ [0, 3] for r−1 = 1/10
(Left) and r−1 = 1/5 (Right).

2−k, k = 4, ..., 7. In particular, the quantities ‖y0
1−y0

1h‖L2(ω)/‖y0
1‖L2(ω) and ‖y1

1−y1
1h‖H−1(ω)

measure how well the initial conditions (y0,y1) are recovered by the algorithm (recall that
they are obtained from the system (15)). The H−1 norm of any scalar function v is computed
writting that ‖v‖H−1(ω) = |w|H1(ω) with |w|H1(ω) = (

∫
ω
|∇w|2dξ)1/2 and w ∈ H1

0 (ω) is
the solution of the Dirichlet problem : −∆w = v in ω, w = 0 on ∂ω. Similarly, the
H−2 norm of any scalar function v is computed writing that ‖v‖H−2(ω) = |w|H2(ω) with
|w|H2(ω) = (

∫
ω
|∆w|2dξ)1/2 and w ∈ H2

0 (ω) is the solution of the problem : ∆2w = v in ω,
w = ∂νw = 0 on ∂ω.

The evolution of these quantities suggest the convergence of the approximation as h goes
to zero. Moreover, we observe that the number of iterations needed to reach the convergence
(the criterion r(k) ≤ 10−8r(0)) is independent of the mesh size h. We may also compute the
order of convergence of the controls (taking as reference solution the solution obtained with
the small mesh size h = 2−8): we obtain the following order

‖u1 − u1h‖L2(Ω) = O(h2.07), |u1 − u1h|H1(Ω) = O(h0.97),

‖u3 − u3h‖L2(Ω) = O(h2.12), |u3 − u3h|H2(Ω) = O(h1.07),

‖v1 − v1h‖L2(Σ0
T ) = O(h0.98), ‖v3 − v3h‖L2(Σ0

T ) = O(h1.01)

in full agreement with the order of the scheme used on a uniform discretization.

Remark 6 Following [21] for the wave equation, one may exhibit the loss of convergence of
the approximated controls by considering less regular initial data (we also refer to [13]).

Being confident about the quality of the numerical approximation when regular initial
data are involved, we now study the influence of the parameters on the uniform controllability
result.
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h 1/16 1/32 1/64 1/128

# CG iterations 12 9 9 9
‖y0

1−y
0
1h‖L2(Ω)

‖y0
1‖L2(Ω)

3.21× 10−3 6.28× 10−4 1.11× 10−4 3.40× 10−5

‖y1
1 − y1

1h‖H−1(Ω) 1.39× 10−2 3.78× 10−3 1.25× 10−3 3.87× 10−5

‖y0
3−y

0
3h‖L2(Ω)

‖y0
3‖L2(Ω)

2.58× 10−4 5.70× 10−5 3.20× 10−5 3.08× 10−5

‖y1
3 − y1

3h‖H−2(Ω) 7.88× 10−5 9.52× 10−6 7.99× 10−7 7.74× 10−7

‖y1h(T )‖L2(Ω) 2.92× 10−3 5.28× 10−4 9.61× 10−5 2.64× 10−5

‖y3h(T )‖L2(Ω) 1.93× 10−3 2.73× 10−4 8.52× 10−5 3.15× 10−5

‖y′1h(T )‖H−1(Ω) 5.20× 10−3 2.98× 10−3 7.88× 10−4 2.33× 10−4

‖y′3h(T )‖H−2(Ω) 4.73× 10−4 1.85× 10−4 1.11× 10−4 5.99× 10−5

‖v1h‖L2({0}×(0,T )) 4.153× 10−1 4.177× 10−1 4.183× 10−1 4.184× 10−1

‖v3h‖L2({0}×(0,T )) 4.847 4.846 4.845 4.845

|u0
1h|H1(Ω) 4.83× 10−2 5.08× 10−2 5.14× 10−2 5.15× 10−2

|u0
3h|H2(Ω) 1.902× 10−1 1.978× 10−1 1.993× 10−1 1.995× 10−1

Eh(T )/Eh(0) 3.78× 10−3 4.04× 10−4 4.75× 10−5 7.56× 10−6

Table 1: Numerical approximations vs. h = 1/16, 1/32, 1/64 and h = 1/128 - ∆t = h/2.

5.2 Influence of the curvature r−1 on the controllability

The controllability result from Theorem 4.1 requires that the curvature - coupling parameter
between y1 and y3 - be small enough (r−1 ≤ 1/D(ε)). We highlight that this condition -
so called shallowness assumption - is also prescribed in the literature, both in the context
of controllability and stabilisation ([4, 11, 14, 20]). Table 2 gives the norm of the control
with respect to the curvature, from an almost rectilinear arch (r−1 = π/256) to a semi-
circle (r−1 = π). We take T = 3, ε = 1/10, the initial condition (18) and assume that
the control is active on the two extremities ξ = 0 and ξ = 1 of the arch. We observe
that these norm increase with r−1: however, the controllability still holds even in the very
curved situation so that the condition r−1 ≤ 1/D(ε) of Theorem 4.1 is not restrictive
in practice (remark that ε = 10−1 corresponds to a rather thick arch). The amount of
work ‖bε(u,u)‖L1(ΣT ) = ‖v2

1 + ε2/3(v3− 2r−1v1)2‖L1(ΣT ) produced by the control increases
smoothly with the curvature. Actually, spectral computation for the hemi-sphere performed
in ([10]) (by symmetry, the analysis is reduced to a one-dimensional analysis) that the time
T = T (r) of controllability is of order of r−1. The same result is obtained in [1] in the case
ε = 0. We also remark that the control v1 acting on the tangential displacement is more
active for large curvature. Finally, we also check that, when the curvature goes to zero,
the two controls converge toward the control of the wave equation and beam equation (see
Remark 2).
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r−1 π/256 π/64 π/16 π/4 π

# CG iterations 8 8 8 10 12
‖v1h‖L2(ΣT ) 2.95× 10−1 2.94× 10−1 2.91× 10−1 2.51× 10−1 3.67× 10−1

‖v3h‖L2(ΣT ) 3.372 3.376 3.439 4.175 3.033

‖bε(u,u)‖L1(ΣT ) 1.24× 10−1 1.24× 10−1 1.25× 10−1 1.29× 10−1 1.54× 10−1

Eh(T )/Eh(0) 6.92× 10−6 7.01× 10−6 8.58× 10−6 5.07× 10−5 4.54× 10−5

Table 2: Approximation of the control vs. the curvature - ΣT = ∂ω × (0, T ).

5.3 Loss of uniform controllability with respect to the thickness ε−1

As announced in the introduction, the controllability issue is more sensitive and subtle with
respect to the thickness. We first highlight that the system (1) where the elasticity operator
defined on ω × −]ε/2, ε/2[ is replaced by the operator Aε = AM + ε2/3AF on the mid
surface ω is an approximation of Koiter type assuming the variable ε small enough (see
[6, 23]). It it therefore interesting to known the behavior of the control when ε is arbitrarily
small. We take the data of the previous section. We use now the stopping criterion on the
energy, i.e. Eh(T ) ≤ ηEh(0) - with η = 10−8, which permits to compare controls leading
to a same level of (numerical) controllability. Figure 5 depicts the evolution of the L2-norm
of the controls v1 and v3 with respect to ε for T = 3, 4 and T = 5. Table 3 gives some
numerical values. It appears clearly that these norm blow up as ε goes to zero: precisely, as
soon as ε is small enough, the controllability properties does not hold anymore: for T = 3, 4
and T = 5, the critical thickness is approximatively ε = 0.037, 0.048 and 0.058 respectively
so that the minimal time of controllability - as a function of ε - behaves like T (ε) ≈ O(ε−1).
This illustrates the lack of uniform controllability of the system (1) with respect to ε and
is in full agreement with [11]. This also validates somehow our numerical approximation.
Remark that the non boundeness of the control observed in Table 3 is not in contradiction
with Theorem 4.1 because T is here fixed independent of ε. When T behaves like O(ε−1),
‖v1‖L2(ΣT ) and ‖εv3‖L2(ΣT ) remain bounded (see Table 4). Since ε varies here, it is more
relevant to consider in Table 4 the quantity εv3 (instead of v3) which appears in the bilinear
form bε.

ε = 1/10 ε = 1/20 ε = 1/30 ε = 1/40

# CG iterations 8 9 16 n.c.
‖v1h‖L2(ΣT ) 2.942× 10−1 2.952× 10−1 3.095× 10−1 n.c.

‖εv3h‖L2(ΣT ) 3.38× 10−1 3.56× 10−1 8.52× 10−1 n.c.

‖bε(u,u)‖L1(ΣT ) 1.24× 10−1 1.295× 10−1 3.37× 10−1 n.c.

Eh(T )/Eh(0) 7.29× 10−6 3.36× 10−5 1.90× 10−3 n.c.

Table 3: Approximation of the control vs. ε - T = 3 - C = π/32 - n.c. stands for non
controllability.

The loss of controllability as ε goes to zero is related to the property of the operator AM
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Figure 5: L2-norm ‖v1‖L2(ΣT ) (Left) and ‖v3‖L2(ΣT ) (Right) vs. the thickness ε.

ε = 1/10 ε = 1/20 ε = 1/30 ε = 1/40

# CG iterations 8 8 8 8
‖v1h‖L2(ΣT ) 2.942× 10−1 2.551× 10−1 2.302× 10−1 2.151× 10−1

‖εv3h‖L2(ΣT ) 3.38× 10−1 2.49× 10−1 2.41× 10−1 2.49× 10−1

‖bε(u,u)‖L1(ΣT ) 1.24× 10−1 8.57× 10−2 7.20× 10−2 6.70× 10−2

Eh(T )/Eh(0) 7.29× 10−6 1.04× 10−5 2.14× 10−4 1.38× 10−4

Table 4: Approximation of the control vs. ε - T (ε) = 3/(10ε) - C = π/32.

which formally appears when ε is zero. The system (1) then reduces to

(19)


y′′ +AMy = 0 in QT ,

y1 = 0 on ΣT ,

(y(·, 0),y′(·, 0)) = (y0,y1) in ω

with any boundary condition on the variable y3 (so that v1 is the only control for the
two components). We point out that when ε goes to zero, the boundary conditions εy3 =
εy3,1 = 0 on ΣT on the normal displacement degenerate, and H2(ω) is replaced by L2(ω)
without trace on ∂ω. The study performed in [1] (extended in [2] to a two-dimensional
setting) reveals that this limit system is not uniformly controllable (with respect to the data
(y0,y1)): the kernel KerAM is of infinite dimension (0 belongs to the essential spectrum
of the operator AM ). The controllability, through a Dirichlet boundary control on y1 holds
uniformly (only) for all data in the orthogonal of KerAM :

(KerAM )⊥ = {(ψ1, ψ3) ∈ H1
0 (ω)× L2(ω), r−1ψ1 + ψ3,1 = 0 in H−1(ω)}.

When ε goes to zero, the operator Aε loses his compactness property so that the minimal
controllability time T (ε) blows up. According to the study of the limit case, one can wonder
whether or not the controllability for (1) holds uniformly with respect to ε if (y0,y1) belongs
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to the non empty space KerAM ∩ (H ∩ V ′). Remark that the initial condition (18) does
not enjoy this property because r−1y0

1 + y0
3,1 = sin(πξ)(r−1 + 2π cos(πξ)) 6= 0. For instance,

we may consider the following initial data in (KerAM )⊥ ∩ (H × V ′)

(20) y0 = (y0
1 , y

0
3) = (−2π cos(πξ) sin(πξ), r−1 sin2(πξ)); y1 = y0, ξ ∈ ω = (0, 1).

Then, we minimize the following functional with respect to (u0,u1) in V ×H:

Jη(u0,u1) = J (u0,u1) + η−1‖r−1u0
1 + u0

3,1‖2H1
0 (ω) + η−1‖r−1u1

1 + u1
3,1‖2H−1(ω)

where we add a penalized term in order to enforce (asymptotically with respect to ε) the
initial condition (u0,u1) to be in (KerAM )⊥: in practice, we take η = ε. Table 5 collects
the norm of the control in this case. We observe that the norm of εv3 is not bounded with
respect to ε and therefore, the control (v1, v3) corresponding to that initial condition, does
not converge toward the control of the longitudinal case (corresponding to ε = 0, see [1]).

ε = 1/10 ε = 1/20 ε = 1/30 ε = 1/40 ”ε = 0”

# CG iterations 5 8 14 75 11
‖v1h‖L2(ΣT ) 1.121 1.124 1.127 1.128 1.251

‖εv3h‖L2(ΣT ) 9.99× 10−2 8.55× 10−2 2.14× 10−1 6.02× 100 0.

Eh(T )/Eh(0) 5.23× 10−6 5.43× 10−6 3.05× 10−5 5.32× 10−5 4.85× 10−7

Table 5: Approximation of the control vs. ε - T = 3 - r−1 = π/32 with the initial condition
(20) element of (KerAM )⊥ ∩ (H × V ′).

This suggest that it is not enough to eliminate the initial data in KerAM to obtain a
uniform convergence with respect to the thickness of the arch. This phenomenon is due to the
fact the spectrum σ(Aε) of Aε does not converge toward σ(AM ) = {0}∪ {r−2 + (kπ)2}k≥0

as ε→ 0. This fact, explained in detailled in [23] is due to two things : i) the fact that the
limit operator AM posseses an essential spectrum; ii) the fact that the boundary conditions
on y3 degenerate when ε→ 0. This implies a densification of the spectrum σ(Aε) along R+:
precisely (see [23], chapter 10 and the appendix)

lim
ε→0

σ(Aε) = R+ ∪ {+∞} 6= σ(AM ).

Remark that this limit coincides precisely with the convex envelop of σess(AM ) = {0,+∞}.
We also emphasize that the situation here is much complex than the situation considered
in [10], where for symmetry property, there is no degeneracy of the boundary condition,
and therefore no densification of the spectrum as ε goes to zero. We refer to the Appendix
where we characterize deeper the spectrum σ(Aε). It appears the part σ(Aε) ⊂ (r−2,∞) is
composed of two sets σε,+ and σε,− defined as follows :

σε,+ = {λεk > r−2,Aεψε,+k = λεkψ
ε,+
k , λεk → r−2 + (kπ)2,ψε,+k ⇀ vk in H},

σε,− = {λεk > r−2,Aεψε,−k = λεkψ
ε,−
k , λεk → µk /∈ σ(AM ),ψε,−k ⇀ 0 in H}.
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The first one is related to the spectrum of the limit operator AM while the second is
composed of spurious elements. The second set densifies over (r−2,∞) as ε→ 0 (see Figure
7) and prevents from uniform spectral gap. Using Ingham type argument (see [2] in a similar
context), one may show that controls vε for system (1) are uniformly bounded and convergent
toward control of (19) if and only if the intial data y0,y1 are generated by eigenfunctions
associated with σε,+. This proof out of the scope of this work will be presented in a distinct
work. Remark however that the approximate controllability problem, which consists to drive
the state (y(·, T ),y′(·, T )) in a neighborhood (independant of ε) of (0,0) holds uniformly
w.r.t. ε out of KerAM . This is due to the fact that the energy E(ψε,−k ,ψε,−k ) corresponding
to the spurious modes ψε,−k converges to zero as ε → 0 (related to the convergence of the
spectral family of the operator Aε; see once again [23]).

6 Final remarks

This work is a contribution to the challenging thematic of null controllability of elastic
arches and shells. The elastic cylindrical arch described by a Bernoulli type model, is
exactly controllable by two boundary controls acting respectively on the tangential and
normal displacement. The analysis highlights the influence and interplay of the curvature
r−1 and the thickness ε on the controllability. When ε is strictly positive and fixed, the
operator Aε enjoys compactness properties so that the arch is uniformly controllable after
a time T (r−1) which increases linearly with the curvature r−1. When the thickness goes to
zero, the spectrum σ(Aε) densifies all along R+, what implies non uniform gap properties
with respect to the thickness. The uniform controllability is then lost in H × V ′ (see also
[12]). This phenonenon, related to the non empty essential spectrum of the mixed order
operator AM and to the degeneracy of the initial condition, emphasizes how subtle the
subspace (included in H ×V ′) of uniformly controllable data is. Finally, when r−1 = 0 and
ε > 0, the two uncoupled components of the displacement are uniformly controllable. The
loss of controllability in the thickness is therefore enhanced by the curvature. A general arch
described by any map φ (except the trivial map φ(ξ) = (1, 0)) enjoys a similar phenomenon
(and in particular the loss of controllability as ε goes to zero). In the case of shells, the
asymptotic characterization of the subspace for which the controllability holds seems open
and challenging. We refer to [2] for the analysis of a cylinder for which the operator AM has
a kernel reduced to zero but an essential spectrum of the type [0, r−2]. Similarly, it would
be interesting for which class of data, the system 1 is null controllable with only one control.

Our numerical experiments are in full agreement with these properties. Morever, we
highlight that few works are concerned with exact controllability of system, a fortiori when
Dirichlet and Neumann boundary control are involved. In this longitudinal asymptotic
situation, there is no locking phenomenon to expect. However, according to [21], we may
expect a loss of controllability with respect to the discretization parameter. In this respect,
it is interesting to analyze the influence of the parabolic (resp. hyperbolic) terms of the
system on the approximation of the Dirichlet control v1 (resp. Neumann control v3).
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7 Appendix: On the spectrum of the operator Aε vs. ε

We analyze in this appendix the behavior of the spectrum σ(Aε) and then highlight why
the controllability is not uniform with respect to the thickness ε, even out KerAM . For
simplicity, we perform the computation replacing the operator AF by the operator A??F
defined in (5). This does not change the qualitative properties of σ(Aε). We note ε = ε2/3.
The spectral problem is then the following one, for φ = (φ1, φ3) :{

AMφ+ εAFφ = λεφ in ω,

φ = 0, φ3,1 = 0 on ∂ω,

which reads as follows :

(21)


− φ1,11 − r−1φ3,1 = λεφ1 in ω,

r−1φ1 + r−2φ3 + εφ3,1111 = λεφ3 in ω,

φ = 0, φ3,1 = 0 on ∂ω.

The operator Aε is positive and self-adjoint, so that λε belong to R?+ for all ε > 0: we have
the relation

λε =

∫
ω

[(φ1,1 + r−1φ3)2 + ε(φ3,11)2]dξ∫
ω

(φ2
1 + φ2

3)dξ
=
‖bε(φ,φ)‖L1(ω)

‖φ‖2H
, φ = (φ1, φ3) 6= (0, 0).

Differentiating with respect to the variable ξ in (21), we may separate φ1 from φ3 to
obtain that they both solve the following sixth order ordinary differential equation :

εφ
(6)
i + λεφ

(4)
i − λφ

(2)
i − λ(λ− r−2)φi = 0, i = 1, 3

so that introducing the corresponding characteristic equation εX6 + λεX4 − λX2 − λ(λ −
r−2 − α) = 0, we have to determine the roots of the third order polynomial

(22) p(m) = m3 + λm2 − λ

ε
m− λ

ε
(λ− r−2), m = X2.

In the sequel, we are interested by the eigenvalues λε greater than r−2. This implies that
p(0) < 0 and p′(0) < 0. Therefore, there is one root Rε3(λ) ∈ (0,∞). Moreover, by studying
the polynomial q(m) = p(m) − p(0) = m(m2 + λm − λ/ε), we observe that if ε is small
enough, the two others roots are reals and simple, Rε1(λ), Rε2(λ) ∈]−∞, 0[ so that

λ2 −
√
λ2 + 4λ/ε
2

< Rε1(λ) < Rε2(λ) < 0 < Rε3(λ) <
λ2 +

√
λ2 + 4λ/ε
2

.

Therefore, noting r1(λ) =
√
−Rε1(λ), r2(λ) =

√
−Rε2(λ) and r3(λ) =

√
Rε3(λ), φ1 and φ3

are generated by {cos(r1(λ)ξ), sin(r1(λ)ξ), cos(r2(λ)ξ), sin(r2(λ)ξ), er3(λ)ξ, e−r3(λ)ξ}. There
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exist some constants Ai, Bi ∈ R, i = 1, ..., 6 so that

φ1(ξ) = A1 cos(r1(λ)ξ) +A2 sin(r1(λ)ξ) +A3 cos(r2(λ)ξ) +A4 sin(r2(λ)ξ) +A5e
r3(λ)ξ +A6e

−r3(λ)ξ

φ3(ξ) = B1 cos(r1(λ)ξ) +B2 sin(r1(λ)ξ) +B3 cos(r2(λ)ξ) +B4 sin(r2(λ)ξ) +B5e
r3(λ)ξ +B6e

−r3(λ)ξ.

Reporting these expressions in (21) and noting (ri(λ) 6= 0)

K1 =
r1(λ)2 − λ
Cr1(λ)

, K2 =
r2(λ)2 − λ
Cr2(λ)

, K3 =
r3(λ)2 + λ

Cr3(λ)
,

we then get the relations (B1, B2) = K1(−A2, A1), (B3, B4) = K2(−A4, A3) and (B5, B6) =
K3(−A5, A6) so that(

φ1(ξ)

φ3(ξ)

)
= A1

(
cos(r1(λ)ξ)

K1 sin(r1(λ)ξ)

)
+A2

(
sin(r1(λ)ξ)

−K1 cos(r1(λ)ξ)

)
+A3

(
cos(r2(λ)ξ)

K2 sin(r2(λ)ξ)

)

+A4

(
sin(r2(λ)ξ)

−K2 cos(r2(λ)ξ)

)
+A5

(
er3(λ)ξ)

−K3e
r3(λ)ξ

)
+A6

(
e−r3(λ)ξ

K3e
−r3(λ)ξ

)
.

Finally, taking into account the boundary conditions, we get that λε ≥ r−2 solves the
equation det(M(λε)) = 0 with (we note ri for ri(λ), i = 1, 2, 3)

M(λ) =



1 0 1 0 1 1
cos(r1) sin(r1) cos(r2) sin(r2) er3 e−r3

0 −K1 0 −K2 −K3 K3

K1 sin(r1) −K1 cos(r1) K2 sin(r2) −K2 cos(r2) −K3e
r3 K3e

−r3

K1r1 0 K2r2 0 −K3r3 −K3r3

K1r1 cos(r1) K1r1 sin(r1) K2r2 cos(r2) r2K2 sin(r2) −K3r3e
r3 −K3r3e

−r3


.

Let us analyze the behavior of ri with respect to ε. Using Cardan formulae, the roots
R1, R2, R3 of the third order polynomial p defined in (22) takes the following expression

Rε1(λ), Rε2(λ) =
−(λ+Rε3(λ))∓

√
∆

2
, Rε3(λ) = 2ρ1/3 cos

(
θ

3

)
− λ

3

with 
ρ =

(
−s

3

)3/2

, θ = arccos
(
−q
2ρ

)
, ∆ = (λ+R3(λ))2 +

4p(0)
Rε3(λ)

> 0,

s = −λ
ε
− λ2

3
< 0, q =

λ

27ε
(2λ2ε− 18λ+ 27r−2).

Tedious computations then leads to the following expansion :

Rε1(λ), Rε3(λ) = ∓
√
λ√
ε
− r−2

2
+O(

√
ε), Rε2(λ) = −(λ− r−2) +O(ε).

Kε
1,K

ε
3 =

λ1/4

r−1ε1/4
± λ

4
r−2 − 4λ
r−1λ

ε1/4 +O(ε3/4), Kε
2 = − r−1

√
λ− r−2

+O(
√
ε).
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The negative root Rε2 is bounded with respect to ε and converges to the single roots which
appears in the case ε = 0 (leading to the eigenvalues λ0

k = r−2 + (kπ)2). Precisely, we
compute that for all k ≥ 0

det(M ε(λ0
k)) = O(ε1/4), λ0

k = r−2 + (kπ)2 ∈ σ(AM )

so that, from the continuity of the determinant, there exists, for all k, an element λε,+k ∈
σ(Aε) so that λε,+k → λ0

k as ε → 0. But, as suggested by Figure 7, the spectrum of
Aε densifies, as ε → 0, over the real axis: its appears spurious eigenvalues, say {λε,−k }k
which does not converge toward an element of σ(AM ). Consequently, σ(Aε) does not
converge punctually toward σ(AM ). This is due to the behavior of the roots Rε1 and Rε3 of
order O(1/

√
ε). Therefore, the functions (cos(r1(λε)), sin(r1(λε))) where r1(λε) behaves like

O(1/ε1/4) are very oscillatory. This phenomenon is the consequence of two properties: the
non-empty essential spectrum for the asymptotic operator AM and the degeneracy of the
boundary conditions for φ3 (we refer to [23] chapter 10).

The case λε < r−2 leads also to a densification phenomenon. This densification clearly
prevents from any uniform spectral gap with respect to ε and explain the loss of controlla-
bility, even far away from the value 0, element of σess(AM ), as ε → 0. As a summary, the
uniform controllability of system (1) w.r.t. ε is expected if and only if the initial data are
generated by the eigenfunctions, says {φ+,ε

k }(k>0), associated with λε,+k , weakly converging
in H toward the eigenfunctions of AM .

Figure 6: Evolution of λε → det(M(λε)) and λε → sin(r2(λε)) in [r−2, 100) for ε =
10−1, 10−2, 10−3, 10−4 and r−1 = 1.
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mince. C.R.Acad.Sci Série I, 313, (1991), 81-86.

[10] G. Geymonat, P. Loreti and V. Valente, Exact controllability of thin elastic hemispher-
ical shell via harmonic analysis. Boundary value problems for partial differential equa-
tions and applications, Masson, (1993).

[11] G. Geymonat, P. Loreti and V. Valente, Spectral problems for thin shells and exact
controllability. Spectral Analysis of Complex structures, Travaux en cours, 49, Hermann,
Paris, 1995, 35-57.

[12] G. Geymonat and V. Valente, A noncontrollability result for systems of mixed order.
SIAM J. Control Optim ,39(3), 661-672 (2000).

[13] R. Glowinski, W. Kinton and M.F. Wheeler, A mixed finite element formulation for
the boundary controllability of the wave equation. Int. J. Numer. Methods. Eng., 27(3),
623-636 (1989).

[14] I. Lasiecka, R. Triggiani and V. Valente, Uniform stabilization of spherical shells by
boundary dissipation. Advances in differential equations, 4, 635-674, (1996).

[15] C. Lebiedzik, Exact boundary controllability of a shallow intrinsic shell model. J. Math.
Anal. Appl., 335, 584-614, (2007).



29

[16] P. Loreti and V. Valente, Partial exact controllability for spherical membranes. SIAM
J. Control Optim, 35(2), 641-653, (1997).

[17] J.E. Lagnese and J.L. Lions, Modelling analysis and control of thin plates. Masson,
RMA 6, Paris (1988).
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