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Abstract

The numerical approximation of exact or trajectory controls for the wave equation

is known to be, since the pionnering work of Glowinski-Lions in the nineties, a delicate

issue, because of the anomalous behavior of the high frequency spurious numerical

waves. Various efficient remedies have been developed and analyzed in the last decade to

filter out these high frequency components: Fourier filtering, Tychonoff regularization,

mixed finite element methods, multi-grid strategies, etc. Recently convergence rates

results have also been obtained.

This work is devoted to analyze this issue for the heat equation, which is the op-

posite paradigm because of its strong dissipativity and smoothing properties. The

existing analytical results guarantee that, at least in some simple situations as in the

finite-difference scheme in 1− d, the null or trajectory controls for numerical approxi-

mation schemes converge. This is due to the intrinsic high frequency damping of the

heat equation that is inherited by its numerical approximation schemes. But when de-

veloping numerical simulations the topic appears to be much more subtle and difficult.

In fact, efficiently computing the null control for a numerical approximation scheme of

the heat equation is a difficult problem in itself. The difficulty is strongly related to

the ill-posedness of the backward heat problem.

The controls of minimal L2-norm are characterized as minima of quadratic func-

tionals on the solutions of the adjoint heat equation, or its numerical versions. These

functionals are shown to be coercive in very large spaces of solutions, sufficient to guar-

antee the L2 character of controls, but very far from being identifiable as energy spaces

for the adjoint system. This very weak coercivity of the functionals under considera-

tion makes the approximation problem to be exponentially ill-posed and the functional

framework to be far from being well adapted to standard techniques in numerical anal-

ysis. In practice, the controls of minimal L2-norm exhibit a singular highly oscillatory

behavior near the final controllability time, which can not be captured numerically.

Standard techniques such as Tychonoff regularization or quasi-reversibility methods

allow to slightly smooth the singularities but reduce significantly the quality of the

approximation.

In this article we develop some more involved and less standard approaches which

turn out to be more efficient. We first discuss the advantages of using controls with
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compact support with respect to the time variable or the effect of adding numerical

dissipative singular terms.

But the main contribution of this paper is to develop the numerical version of

the so-called transmutation method that allows writing the control of a heat process

in terms of the corresponding control of the associated wave process, by means of a

”time convolution” with a one-dimensional controlled fundamental heat solution. This

method, although it can be proved to converge, is also subtle in its computational im-

plementation. Indeed, in one hand, it requires using convergent numerical schemes for

the control of the wave equation, a problem that, as mentioned above, is delicate in

itself. But it also needs computing an accurate approximation of a controlled funda-

mental heat solution, an issue that requires its own analysis and significant numerical

and computational new developments.

These methods are thoroughly illustrated and discussed along the paper, accom-

panied by some numerical experiments in one space dimension that show the subtlety

of the issue. These experiments allow comparing the efficiency of the various meth-

ods. This is done in the case where the control is distributed in some subdomain of

the domain where the heat process evolves but similar results and numerical experi-

ments could be derived for other cases such as the one in which the control acts on the

boundary.

The techniques we employ here can also be adapted to the multi-dimensional case.
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1 Introduction - Problem statement

Let Ω be a bounded open subset of RN , N ≥ 1, and ω be a non empty open set strictly
included in Ω.

The heat equation evolving in Ω with controllers supported in ω is well known to be null
or trajectory controllable. To be more precise, for any value of the control time T > 0, initial
state y0 ∈ L2(Ω), and a final state yT which is the value at time t = T of a solution of the
heat equation, there exists a control function v ∈ L2((0, T )×ω) such that the corresponding
solution y ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)) of
y′ − c∆y = vXω in QT = (0, T )× Ω,

y = 0 on ΣT = (0, T )× ∂Ω,

y(0, ·) = y0 in Ω

(1)

satisfies y(T, ·) = yT in Ω.
This problem of trajectory control is in fact equivalent to the null control one in which

the final state yT is assumed to be the trivial one: yT ≡ 0.
Here and in what follows Xω denotes the characteristic function of the subset ω, so that

the control function v is active only in ω.
The constant c > 0 is the diffusivity coefficient which, of course, by a change of variables

in time, can be normalized to c = 1 by changing the length of the control time [0, T ] or the
space domain under consideration. But, in order to better visualize the unstabilities of the
numerical control process under consideration, we often assume c to be small to diminish
the effect of diffusion.

There is an extensive literature in this subject. The reader is referred to [11, 24] and to
the more recent survey article [41].

Similar results hold for the wave equation but under suitable geometric restrictions on the
support of the controls (the so-called Geometric Control Condition (GCC)) and the control
time T > 0 (see [41]). In the case of the wave equation, due to its time-reversibility, both
initial and final states can be taken to be equally smooth, of finite energy. Thus, the problems
of trajectory control, exact control (when the initial datum and target are arbitrary in the
finite energy space) and null control (when the final target is the zero state) are equivalent.
But, of course, this is not the case for the heat equation. Because of the smoothing effect,
the smoothness of the final target is a necessary condition for controllability and therefore
exact controllability does not hold. But, as mentioned above, because of the linearity of
the system, the null and trajectory controllability properties are completely equivalent. We
refer to [13] for a careful analysis of the cost of control in the various situations (by cost
of control we mean the norm of the control needed in terms of the initial and final data to
be controlled). Of course, in the case of the heat equation, the geometric conditions on the
control set and the lower bound of the time of control (which are due to the finite velocity
of propagation for the solutions of the wave equation) do not apply and the null control
property holds for all time T > 0 and any open non-empty subset ω.

In the sequel, we denote by C(T, y0, yT ) the non empty class of controls v which drive the
solution of (1) from y0 at time 0 to yT at time t = T . This set is constituted by infinitely
many controls since they can be taken to be, for example, supported in any time subinterval
of the form [τ, T ] for any 0 < τ < T .

This work is devoted to design and analyze performant numerical schemes allowing to ef-
ficiently compute some distinguished elements of the class of admissible controls C(T, y0, yT ).
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Since the seminal contribution [15], it is well-known and admitted that this is a delicate
issue for the wave equation: this is due to the high frequency spurious numerical modes that
appear at the discrete level and can not be exactly controlled uniformly with respect to the
discretization parameters, typically h and ∆t, the space and time mesh sizes respectively.
Thus, standard convergent finite element based schemes may produce exponentially diver-
gent sequences {vh,∆t}h,∆t of discrete controls: for such schemes, exact controllability and
numerical approximation processes do not commute. This specific question has been inten-
sively studied in the last decade and solved efficiently, at least for the constant coefficient
case, building uniformly controllable schemes leading to bounded and convergent discrete
sequences of controls with respect to h and ∆t. These schemes are built by filtering out the
high frequency spurious components using, among others, Tychonoff regularization, mixed
finite element methods or two-grid filtering. We refer to the review article [39].

The same issue for the heat equation appears to be more subtle, numerically ill-posed
and sensitive, which is at a first glance a bit surprising if we take into consideration the
regularizing effect of the heat operator and the fact that the null controllability property
holds for any T strictly positive and any non-empty open subdomain ω.

To better explain the difficulties we encounter when developing numerical simulations,
let us consider, within C(T, y0, yT ), the control of minimal L2-norm - the so-called HUM
control - solution of :

min
v∈C(T,y0,yT )

J(v) =
∫ T

0

∫
ω

v2(t, x)dxdt. (2)

Through convex duality and following [6], the minimization of J may be replaced by the a
priori simpler minimization problem of the corresponding conjugate function J? defined by

J?(φT ) =
1
2

∫ T

0

∫
ω

φ2(t, x)dxdt−
∫

Ω

yT (x)φT (x)dx+
∫

Ω

y0(x)φ(0, x)dx

with respect to φT (over a suitable Hilbert space H that will be made precise below), value
at time T of the adjoint state φ, solution of

φ′ + c∆φ = 0 in QT ,

φ = 0 on ΣT ,

φ(T, ·) = φT in Ω.

(3)

The minimal L2-norm control is given by v(t, x) = φ(t, x)Xω, where φ is the solution of
(5) corresponding to the minimizer φT of J? within the class H of data φT such that the
corresponding solution of (5) is such that φ ∈ L2((0, T ) × ω). More precisely, H is defined
as the completion of D(Ω) with respect to the norm

‖φT ‖H =
(∫ T

0

∫
ω

φ2(t, x)dxdt
)1/2

.

The coercivity of the convex function J? in this space H (in the simplest case in which
the target yT ≡ 0 is the trivial equilibrium state) is related to the so-called observability
inequality

C(T, ω)‖φ(0, ·)‖2L2(Ω) ≤
∫ T

0

∫
ω

φ(t, x)2dxdt, ∀φT ∈ L2(Ω), (4)

proved in [24] by Fourier decomposition and Carleman inequalities for packets of eigenfunc-
tions and in [14] by parabolic Carleman inequalities.
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Despite of this, the ill-posedness of problem (2), that we shall describe later in detail,
is due to the fact that the space H is very large. In fact, due to the regularizing effect
of the heat equation, any initial (at time t = T ) datum φT of the adjoint heat equation
with finite order singularities away from the control set ω, belongs to H. Therefore, the
minimizer φT of J?, for a given pair (y0, yT ), may be very singular and therefore difficult to
capture/represent numerically with accuracy and robustness: in other terms, the space H
has poor numerical approximation properties.

Although, from a theoretical viewpoint, the existence of the control is due to the observ-
ability inequality (4) and therefore is independent of how large the space H is, its effective
numerical computation is intimately related to solving the adjoint system (5). This explains
why, in practice, the problem is exponentially ill-posed and why it is difficult to determine
numerically with efficiency the control of minimal L2-norm. We emphasize that this phe-
nomenon is intrinsic to the heat equation and has no link with the possible lack of uniform
observability with respect to the discretization parameters as it occurs to the wave equation.
Indeed, this exponential ill-posedness occurs even if the numerical scheme used ensures the
uniform boundeness by below of the discrete observability constant in the discrete counter-
part of (4). This uniform observability inequality is well known to hold, for instance, for the
finite-difference discretizations of the 1− d heat equation, [29], but, as we shall see, despite
of this, the efficient numerical computation of controls is a very delicate issue.

In this paper we analyze some possible numerical remedies to this exponential ill-posedness
of the problem under consideration. We mainly focus in the 1−d case although most of our
methods and results can be extended and adapted to the multidimensional case.

This paper is devoted to the problem of null or trajectory controllability in which the
target yT is assumed to be the value at time t = T of another solution of the heat equation
with a right hand side term localized in ω. As we mentioned above, the most typical example
is the target yT ≡ 0 which corresponds to the trivial trajectory of the heat equation with
null initial data and right hand side. The general case in which yT is non trivial can also
be reduced to the particular one yT ≡ 0, by simply substracting the corresponding solution
leading to yT , to the solution to be controlled. Note that, accordingly, the final targets yT to
be reached exactly are intrinsically smooth because they are final values of solutions of the
heat equation at time t = T . Thus, in some sense, the final targets yT under consideration
inherit the smoothing properties of the heat kernel during the time interval [0, T ].

Of course, numerically, the exact condition y(T ) = yT is impossible to be achieved.
This is way, often, in numerical experiments, this condition is relaxed to an approximate
controllability one of the form ‖y(T )−yT ‖L2(Ω) ≤ ε. When ε is not too small the instabilities
above, whose understanding and master are the main goal of this paper, are not detected
since they are mainly due to the control of the high frequency components of the system. We
emphasize however, that they are unavoidable when addressing truly the null or trajectory
control problems since the problem is intrinsically ill-posed. But, to detect this ill-posedness
phenomena, numerical simulations have to be very carefully developed paying attention,
in particular, to taking sufficiently small values of the ε parameter. Since our numerical
experiments are performed using double arithmetic precision, for which the roundoff unit
error is of order ε1 = 10−16, we assume that the numerical control is a relevant approximation
of the continuous one if the corresponding numerical solution yh,∆t satisfies the inequality

‖yh,∆t(T, ·)− yT,h,∆t(·)‖L2(Ω)

‖yT,h,∆t(·)‖L2(Ω)
≤ ε2
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with ε2 of order 10−8, which is the value used in [15]. Here and in the sequel yT,h,∆t stands
for a numerical approximation with mesh sizes h and ∆t of the continuous target yT .

When taking greater values of ε2, which is often done in practice, the problem is much
more easily handled numerically and computationally, but then it rather corresponds to
the problem of approximate controllability and not to the null controllability one we are
considering here.

The paper is organized as follows. In Section 2, we highlight the ill-posedness of problem
(2) with some simple 1−d analytical computations. In particular, we observe that the control
of minimal L2-norm exhibits an infinite order oscillatory behavior near the controllability
time T . This is intimately related to the hugeness of the Hilbert space H. Then, in Section
3, we analyze several perturbed or regularized versions of problem (2). In Section 3.1 we
first introduce regularization methods (commonly used in inverse problem theory) which
consist in augmenting J? with terms like ε‖φT ‖2Hs0 (Ω), ε, s > 0. This functional is intimately
related to relaxing the null controllability problem to the approximate controllability one.
We observe a very low rate of convergence (as ε→ 0) of the family of minimizers {vε}ε>0 of
Jε towards the minimizer of J . In Section 3.2 we analyze two singular perturbations: the
first one consists in adding the hyperbolic term εutt while the second one adds the higher
order vanishing viscosity term −εutxx. Then, in Section 3.3, we observe an improvement in
the stability properties if the functional (2) is replaced by a weighted version so that the
corresponding control vanishes on ω × (T − δ, T ) for some δ > 0. Then, in Section 4, we
consider the null controls obtained by the transmutation method (see [31]). This method
allows expressing the control of parabolic problems in terms of those of the corresponding
hyperbolic one through a convolution with a 1 − d controlled fundamental solution of the
heat equation. The latter one is determined explicitly in terms of a power series expansion,
following [23]. In Section 5 we summarize some of the main conclusions of this paper, and
discuss some open problems and perspectives.

2 Ill-posedness for the L2-norm

In this section, we characterize the control of minimal L2-norm and exhibit, by the way of
simple analytical computations in one space dimension, the ill-posedness of the problem.

2.1 Analytical expression of the control operator

We take Ω = (0, 1). By convex duality, the problem of control to trajectories is reduced to
the minimization of the conjugate function J? defined by

J?(φT ) =
1
2

∫ T

0

∫
ω

φ2(t, x)dxdt−
∫

Ω

yT (x)φT (x)dx

over φT ∈ H solution at time t = T of the adjoint backward system
φ′ + cφxx = 0 in QT ,

φ = 0 on ΣT ,

φ(T, ·) = φT in Ω.

(5)

Here, for simplicity, we have taken the initial datum to be controlled to be y0 ≡ 0. Note
also that the final target yT is assumed to be the value at time t = T of a solution of the
heat equation (controlled or not).
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The optimality condition associated with the minimization of J? ensures that the control
of minimal L2-norm is then given by v = φXω on QT , where φ is the solution of (5) associated
to the minimizer φT of J?.

Let us now compute in Fourier series the map that associates to φT the datum at time
t = T of the adjoint system, the value of the controlled solution y at time t = T . We denote
this operator by Λ : H → L2(Ω), ΛφT := y(T ).

Finding the control of minimal norm amounts to invert the operator Λ. In this section
we describe the intrinsic ill-posedness of this problem.

Given φT , expanded in Fourier series as φT (x) =
∑
k≥1 ak sin(kπx) with {ak}k ∈ l2(N),

the adjoint solution of (5) is of the form (denoting by λk = k2π2 the eigenvalues of the
Dirichlet laplacian in 1− d in the interval (0, 1), for all k > 0)

φ(x, t) =
∑
k≥1

ake
cλk(t−T ) sin(kπx), (t, x) ∈ QT .

The controlled state y is then solution of
y′ − cyxx =

∑
k≥1

ake
cλk(t−T ) sin(kπx)Xω(x) in QT ,

y = 0 on ΣT ,

y(0, ·) = 0 in Ω.

The solution y can also be expanded in Fourier series as y(x, t) =
∑
p≥1 bp(t) sin(pπx), where

bp solves the equation

b′p(t) + cλpbp(t) =
∑
k≥1

ake
cλk(t−T )ck,p(ω), bp(0) = 0, (6)

and is explicitly given by

bp(t) =
∑
k≥1

akck,p(ω)gk,p(t), ∀p ≥ 1

with 1

gk,p(t) = e−c(λkT+λpt)
(ec(λk+λp)t − 1)
c(λp + λk)

,

and
ck,p(ω) = 2

∫
ω

sin(kπx) sin(pπx)dx.

The value of the solution y at time t = T is then given by:

y(T, x) =
∑
k,p≥1

akck,p(ω)gk,p(T ) sin(pπx).

1For ω = (a, b) ⊂ Ω = (0, 1) simple computations lead to

cp,p(ω) = (b− a) +
cos(pπa) sin(pπa)− cos(pπb) sin(pπb)

pπ
, p > 0

and to

ck,p(ω) =
1

π(k2 − p2)


(k−p)

„
sin((k+p)πa)−sin((k+p)πb)

«
+(k+p)

„
sin((k−p)πb)−sin((k−p)πa)

«ff
, p, k > 0, p 6= k.
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Then, the operator Λ mapping the Fourier coefficients {ak}(k≥1) of φT into {bp}(p≥1), those
of yT , is given by

bp =
∑
k≥1

cp,k(ω)gp,k(T )ak, p ≥ 1 (7)

with

gp,k(T ) = e−c(λkT+λpT ) (ec(λk+λp)T − 1)
c(λp + λk)

=
1− e−c(λk+λp)T

c(λk + λp)
. (8)

This yields the Fourier representation of the map Λ in terms of the weights cp,k(ω) and
gp,k(T ). More precisely, Λ can be identified with the infinite matrix (Λk,p)k,p≥1 with

Λk,p = ck,p(ω)gk,p(T ).

Let us now analyze the projection of the map Λ over the first N Fourier modes: ΛN =
PNΛPN , PN being the projection operator over the first N Fourier modes. More pre-
cisely, setting φNT = PN (φT ) =

∑N
k=1 ak sin(kπx), ΛN : L2(Ω) → L2(Ω) is defined by

ΛN (φT ) := PN (yT ) = PNΛPNφT . Then ΛN can be identified with the symmetric matrix
ΛN = (Λk,p)1≤k,p≤N of dimension N ×N with Λp,k as above.

The ill-posedness of the control problem, which is equivalent to the inversion of the
operator Λ, can be illustrated by the behavior of the conditioning number of ΛN with
respect to N . The conditioning number is defined by cond(ΛN ) = ‖ΛN‖2‖ΛN−1‖2 where
‖ · ‖2 denotes the Euclidean norm.

For T = 1 and different choices of ω, some values of cond(ΛN ) are reported on Table
1. We obtain, for any ω 6= Ω, an exponential behavior with respect to N : for instance,
ω = (0.2, 0.8) leads to cond(ΛN ) ≈ e1.95e0.49N . Then, the problem is exponentially ill-posed
(we refer to [20]). We also observe that the variation with respect to ω is important : for
ω = (0.5, 0.8), we have cond(ΛN ) ≈ e1.11e1.15N . On the other hand, the variation with
respect to T remains low (see Table 2) in agreement with the relation (8).

N = 10 N = 20 N = 40 N = 80
ω = (0.2, 0.8) 9.05× 102 1.65× 105 1.66× 109 6.96× 1016

ω = (0.5, 0.8) 3.57× 105 3.81× 1010 7.31× 1018 ≥ 1020

ω = (0.7, 0.8) 1.82× 107 2.40× 1014 ≥ 1020 ≥ 1020

ω = (0, 1) 8.61× 101 3.44× 102 1.33× 103 5.51× 103

Table 1: Conditioning number of ΛN vs. N for various ω ⊂ Ω and ω = Ω = (0, 1): T = 1.

N = 10 N = 20 N = 40 N = 80
T = 1/10 3.42× 102 5.23× 104 4.47× 108 1.73× 1016

T = 1 9.05× 102 1.65× 105 1.66× 109 6.96× 1016

T = 10 1.04× 103 1.90× 105 1.91× 109 7.97× 1016

Table 2: Conditioning number of ΛN vs. N and T for ω = (0.2, 0.8).

Remark 1 The case ω = Ω is very particular: we simply have cp,k(ω) = δpk so that the
matrix ΛN is diagonal and

(ΛN )pk =
1− e−2cλpT

2cλp
δpk, cond(ΛN ) =

λN
λ1

1− e−2cλ1T

1− e−2cλNT
.
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In that case, we obtain that cond(ΛN ) is of order N2. Table 2 confirms this fact. The
control problem is therefore well-posed when the controls act on the whole domain. This
corresponds to the fact that, as it is well known, H = H−1(Ω) in this very case. In other
words, the following observability inequality holds when ω = Ω:

C(T )‖φT ‖2H−1(Ω) ≤
∫ T

0

∫
ω

φ(t, x)2dxdt. (9)

As we have mentioned above, in contrast with (9), as soon as ω is strictly included in Ω,
the space H blows-up to contain many data φT that are very singular away from ω.

Remark 2 If we reproduce these simple computations in the framework of the exact control-
lability of the wave equation, when the GCC is satisfied so that the observability inequalities
hold in the energy space, the corresponding matrices ΛN do not exhibit this exponential
behavior. Thus, in the context of the wave equation, singularities may only appear after a
numerical approximation scheme is applied, in which case the presence of high frequency
spurious numerical solutions may make the corresponding discrete matrix Λh,∆t to be expo-
nentially ill-posed as the mesh-size parameters h and ∆t tend to zero (see [32]). But, in the
context of the heat equation, the ill-posedness holds at the continuous level. We therefore
insist on the fact that the situation is definitely different from that arising in the numerical
approximation of the controls for wave equations and, in some sense, as we shall see, more
profound and complex.

Remark 3 The phenomenon we observe here has strong analogies with those arising in
inverse problems, known to be severely ill-posed, especially when the heat operator is involved.
Among the huge literature on that topic, we refer for instance to [1, 16, 17] and the references
therein.

One of the most classical ones, the so-called backward heat problem, consists in determin-
ing the initial temperature u(x, 0), given the temperature at any time T , u being the solution
of ut −∆u = 0 on R+ ×R: the ill-posedness of this problem is related to the high instability
of the solution u with respect to the data u(T, x). Many approaches have been developed to
address this problem, including the method of quasi-reversibility due to Lattès-Lions [22] (see
also [26, 27]), Tychonoff regularization as well as moment theory. Our control problem is
intimately related to this classical ill-posed problem.

More closely related to our control problem, we can also consider the following sidewise
Cauchy problem for the heat equation : given f and g, to find u solution of{

ut − uxx = 0 in (0, T )× (−L,L),

u(t, 0) = f(t), ux(t, 0) = g(t) in (0, T ).
(10)

If f and g are real-analytic functions, then, following Cauchy-Kovalesky’s Theorem, the
solution of (10) may be expressed as follows :

u(t, x) =
∑
n≥0

x2n

(2n)!
f (n)(t)−

∑
n≥0

x2n+1

(2n+ 1)!
g(n)(t). (11)

Both series converge uniformly for bounded t, provided that f and g satisfy |f (n)(t)| ≤
ML−1(2n)! and |g(n)(t)| ≤ PL−1(2n)! for all n > 0 and some constants M and P . Unique-
ness follows as well. However, the problems of determining the values of the solution u at
the right-hand side boundary x = 1 or the corresponding initial datum u(x, 0) are ill-posed
problems.
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In this subsection we have illustrated the ill-posedness of the control operator Λ and
its similarities with some other classical ill-posed problems in the theory of heat processes.
However, this fact is compatible with the property of null or trajectory controllability that
is well-known to hold.

This is due to the fact that, in the problem of null or trajectory controllability, the final
target yT is assumed to be the value at time t = T of another solution of the heat equation,
controlled or not. Assume for instance that yT is the value of a solution z = z(t, x) of the
heat equation with initial data in L2(Ω) and Fourier coefficients {dk}k≥1. In that case yT
is of the form

yT (x) =
∑
k≥1

dke
−λkT sin(kπx), x ∈ Ω.

thus, its Fourier coefficients {dke−λkT }k≥1 are affected by a exponentially small weight
factor.

The exponential decay of the Fourier coefficients of yT compensates the ill-posedness of
the inverse of the operator Λ thus making the null and trajectory controllability possible
as the existing theory shows. Note however that the corresponding minima φT of the func-
tional J? do not belong to L2(Ω). This compensation has a unique effect the fact that the
corresponding solution φ of the adjoint heat equation belongs to L2(ω × (0, T )) which, as
we have mentioned above, is compatible with the possible infinity order singularities of φT
away from ω.

2.2 Singular behavior of the minimal L2-norm control: boundary

layer near t = T

From the previous explicit computations, we may compute the HUM control v by inverting
the matrix ΛN . We choose as a target the trajectory yT (x) = e−cλ1T sin(πx). Table 3
depicts the L2-norm of the function φNT and of the control φNXω for increasing values of
N : as expected, the function φNT is not uniformly bounded with respect to N in L2 but in
the larger Hilbert space H. For N = 80, Figure 1 depicts the function φNT on Ω and on the
subset ω. Figure 2 depicts the L2(Ω)-norm of the corresponding control with respect to t.
Due to the dissipative property of the heat equation, the control mainly acts at the end of
the time interval. In agreement with Table 3, the control blows up at the controllability time
T (as N → ∞). We also observe some oscillations (increasing as N → ∞) of the control
near t = T . These oscillations are related to the behavior of the adjoint solution φ near the
boundary of ω (see Figure 3). Figure 4 depicts the evolution of the corresponding adjoint
and controlled solution φNXω and yN in QT and clearly exhibits the contrast of regularity
of these two functions near T . Finally, we give on Figure 5 the distribution of the Fourier
coefficients {ak}1≤k≤N of the function φNT highlighting the high frequency contributions. For
N greater approximatively than 120, ΛN is so badly conditioned that the linear inversion
produces wrong approximations of φNT (with in particular a loss of symmetry in space).

N = 10 N = 20 N = 40 N = 80
‖φNT ‖L2(Ω) 4.27 3.22× 101 1.68× 103 5.38× 106

‖φNXω‖L2(QT ) 4.194× 10−1 4.410× 10−1 4.526× 10−1 4.586× 10−1

Table 3: L2-norm of φNT and of the control vs. N for ω = (0.2, 0.8), T = 1 and c = 1/10.
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Figure 1: T = 1, ω = (0.2, 0.8) : φNT for N = 80 on Ω (Left) and on ω (Right).
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Figure 3: T = 1, ω = (0.2, 0.8) : φN (·, 0.8) for N = 80 on [0, T ] (Left) and on [0.92T, T ]
(Right).
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Remark 4 We emphasize that the null controllability problem in which y0 6= 0 and yT ≡ 0
produces exactly the same qualitative behavior, i.e. exponentially ill-posedness and high
oscillations of the control L2-norm near T . The quantitative difference is a lower L2-norm
of the corresponding null-control, due to the natural dissipation of the system.

Actually, the problem we have considered so far in which y0 ≡ 0 and yT (x) = e−cλ1T sin(πx)
is equivalent to the null controllability one with y0(x) = sin(πx) and yT ≡ 0. This can be
seen by simply truncating to the controlled solution the solution y = e−cλ1t sin(πx) of the
heat equation with initial datum sin(πx) and final datum e−cλ1T sin(πx). In particular the
control is the same. Thus, the ill-posed character of the problem that we have made explicit
in these experiments applies to the problem of null controllability as well.

2.3 Numerical Approximation

We now address the problem of efficiently computing the control. For, we substitute the
heat equation by a semi-discrete numerical approximation scheme on a uniform mesh Ωh,
with mesh-size h, an a finite-dimensional state vector {Yh(t)}(h>0), solution of a system of
differential equations of the form

MhY
′
h(t) +KhYh(t) = Xωvh(t) in (0, T )× Ωh,

Yh = 0 on (0, T )× ∂Ωh,

Yh(0, ·) = Yh0(·) in Ωh,

(12)

where Mh and Kh - the mass and stiffness matrices - denote an approximation of the identity
Id and −c∂2

xx respectively. This can be done, for instance, using a centered finite difference
approximation. Here and in the sequel {vh(t)}h>0 denotes the corresponding control (semi-
discrete) approximation.

The explicit knowledge of the spectrum of Kh and Mh allows, as in Section 2.1, to
compute the discretized control operator in a closed form (see Appendix 6.1). We denote it
by Λh.

The problem of the uniform (as h → 0) null control of semi-discrete approximations of
the 1−d heat equation has been previously addressed in a number of articles. For instance, in
[29] (see [40] for more details) the standard finite difference approximation is considered and
it has been shown that the observability inequalities and the null controllability properties
hold uniformly with respect to the mesh-size parameter h. In particular, there exists a
positive constant C1, independent of h, such that

C1‖φh(0)‖2L2(Ω) ≤
∫ T

0

∫
ω

φ2
h(t, x)dxdt, ∀φTh ∈ L2(Ω) (13)

where φh(t) is the piecewise linear continuous interpolation of the vector {Φh} over Ω, the
solution of the semi-discrete adjoint system:

Mhφ
′
h(t)−Khφh(t) = 0 in (0, T )× Ωh,

φh = 0 on (0, T )× ∂Ωh,

φh(T, ·) = φT (·) in Ωh.

(14)

This property - which does not hold for the wave equation because of the high frequency
spurious oscillations - implies the uniform coercivity of J?h , discrete version of J?, and ensures
the uniform boundedness of the controls obtained through minimization.



2 ILL-POSEDNESS FOR THE L2-NORM 14

Table 4 collects the evolution of the numerical solutions for different values of h, with the
numerical data of Section 2.3. The convergence of the numerical controls is confirmed. The
ratio ‖φh(0, ·)‖L2(Ω)/‖φh(t, ·)Xω‖L2(QT ) is observed to be uniformly bounded from above
with respect to h. This is in contrast with the fact that the upper bound on the ratio
‖φh(T, ·)‖L2(Ω)/‖φh(t, ·)Xω‖L2(QT ) diverges as h→ 0, due to the boundary layer appearing
at t = T .

These controls are computed using a Conjugate Gradient (CG) algorithm, the stop-
ping criterion being that the residue becomes smaller than 10−8. This permits to ensure
‖yh(T, ·) − yTh‖L2(Ω) to be of order 10−9. Figure 6 depicts the adjoint solution φTh on Ω
and the corresponding L2-norm of the control on [0, T ). We also observe that the number
of iterations to reach convergence increases dramatically with 1/h, in spite of the uniform
observability. Of course, this is related to the ill-posedness of the problem, and the difficulty
for a numerical method to capture the singular behavior of the control near T . As discussed
in [6], this number of iterations is necessary to recover the high frequency components of
φTh. The CG algorithm, starting from 0 reconstructs first the low-frequency components of
φTh. This is done in a small number of iterations, explaining the very fast convergence to a
fairly good approximation. The remaining iterations are used to compute the high frequency
components and this takes many iterations since the HUM operator is badly conditioned
and strongly damps the effect of the control on high frequency components.

The evolution of the residue is depicted in Figure 7 for h = 1/80 and clearly highlights
the lack of robustness. If, for any h fixed, we denote by C2h the constant appearing in the
inequality ∫ T

0

∫
ω

φ2
h(t, x)dxdt ≤ C2h‖φh(0, ·)‖2L2(Ω), ∀φTh ∈ L2(Ω), (15)

the conditioning number of the control operator Λh is bounded by

cond(Λh) ≤ C−1
1 C2hh

−2,

C1 being the observability constant that is known to be uniform.
But C−1

1 C2h blows-up exponentially as h → 0. This is due to the fact that C2h blows
up as h → 0. The situation is a fiortiori worst if the scheme under consideration is not
uniformly observable, i.e. if C−1

1h →∞ as h→ 0. But we emphasize that here C−1
1h remains

bounded while C2h blows up exponentially.
We point out that the situation is normally the opposite one for the wave equation: In

the wave context, often, for most numerical schemes, the uniform observability property fails
and C−1

1h → ∞ blows up exponentially but the analogue of the direct inequality (15) holds
uniformly on h.

h 1/20 1/40 1/80 1/160
Number of iterations 36 218 574 1588
‖vh‖L2((0,T )×ω) 4.05× 10−1 4.322× 10−1 4.426× 10−1 4.492× 10−1

‖yh(T, ·)− yTh‖L2(Ω) 2.11× 10−9 1.58× 10−9 2.65× 10−9 2.35× 10−9

‖φh(0,x)‖2
L2(Ω)

‖φhXω‖2
L2(QT )

4.072× 10−1 4.329× 10−1 4.429× 10−1 4.439× 10−1

Table 4: Semi-discrete scheme ω = (0.2, 0.8), Ω = (0, 1) and T = 1.

Remark 5 Here we have discussed the 1−d finite-difference semi-discretization scheme for
which the property of observability is uniform as h → 0. But, in the two-dimensional case,
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Figure 6: Semi-discrete scheme : h = 1/80. Left: Adjoint state φTh at t = T on Ω. Right:
L2- norm of the control vh on [0, T ).
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of iterations of the GC algorithm. Right: Evolution of ‖yh(·, t)− yTh‖L2(Ω) w.r.t time t.
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the observability inequality fails to be uniform even for the 5-point finite-difference semi-
discrete scheme. In fact, as explained in [40], this is due to the fact that there are some
high-frequency numerical eigenmodes (concentrated, for instance, in the diagonal when Ω is a
square) that do not fulfill the classical property of unique continuation. Thus, the numerical
scheme generates high frequency solutions which are insensitive to the action of the controls,
when located away from the diagonal. Note however that the corresponding eigenvalue is of
the order of λ ∼ ch−2 so that the energy at time t = T of these uncontrolled modes is of the
order of exp(−cTh−2).

In [3], by means of discrete Carleman inequalities, the authors obtain weak uniform
observability inequalities which are compatible with this pathology by adding reminder terms
of the form e−ch

−2‖φTh‖2L2(Ω) which vanish asymptotically as h→ 0.
Let us also mention some other closely related articles. In [21] the approximate con-

trollability is derived using semi-group arguments, introducing a vanishing term of the form
hβ‖φTh‖L2(Ω), for some β > 0. We also mention [10, 37] where weak observability inequal-
ities are derived for the time semi-discrete heat equation, using an appropriate filtering of
the data.

Despite of this, the search of uniform controllable schemes for the 2-D null controllability
of the heat equation remains an open topic, to a large extent.

3 Perturbations of the control problem

As described in the previous section, the very weak coercivity of the functional J? (in the
L2-sense) renders ill-posed the control problem and the corresponding trajectory control
exhibits a singular behavior that is difficult to capture numerically. This is intimately
related to the very bad conditioning of the functionals to be minimized.

In order to overcome this intrinsic ill-posedness phenomenon, several approaches may be
introduced. The first one consist in introducing a well-posed regularizing perturbation at
the continuous level, either in the state equation or in the functional to be minimized, easier
to solve, and whose solution is expected to be close to the original one. A second approach
consists on doing that directly at the discretized level, defining other numerical schemes or
functionals, leading to a lower conditioning number of the discrete control operator. We
analyze now how these two approaches perform.

3.1 Regularization method

A simple way to improve the regularity of the minimizer φT of J? consists in augmenting
the cost J? as follows

J?ε (φT ) = J?(φT ) +
ε

2
‖φT ‖2Hs0 (Ω)

for any prescribed ε > 0 and well-chosen s ∈ N .
The corresponding dual function is simply Jε(v) = J(v) + ε/2‖y(T, ·)− yT ‖2H−s(Ω).
The minimizer φT,ε of J?ε satisfies (Λ + εId)φT,ε = yT for s = 0 and (Λ− ε∆)φT,ε = yT

for s = 1 respectively, so that the relation between the Fourier coefficients {ak,ε}(k≥1) and
{bp}(p≥1) of φT,ε and yT respectively is then

bp =
∑
k≥1

(
cp,k(ω)gp,k(T ) + ε(kπ)2sδp,k

)
ak,ε, s = 0, 1. (16)
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The regularization term is reflected in the Fourier representation (16) by the weights ε(kπ)2sδp,k
that make ak,ε to decay faster as k →∞.

The case s = 1 corresponds to the Tychonoff regularization (see [20] for the proof of
the equivalence) widely used for ill-posed problems and analyzed in the context of the
controllability of the heat equation in [20].

Although this regularization has been introduced at the continuous level, the same can be
done for finite-dimensional projections and numerical approximation schemes. In particular,
when considering finite-dimensional projections to the first N Fourier modes, in the same
manner that we replaced J? by J?N , we can substitute J?ε by J?N,ε.

Tables 5 and 6 provide some numerical values of the evolution with respect to ε ob-
tained with N = 80. In particular they give the values of the gap ‖vN − vNε ‖L2((0,T )×ω)

and the conditioning number of the corresponding operator. The added terms ensure a
regularization of the control and the well-posedness of the problem but a very slow rate of
convergence towards the heat control. For s = 1 and N = 80, we observe the behavior
‖vN − vNε ‖L2((0,T )×ω) ≈ O(ε0.259) but for large values of N , we expect a logarithmic conver-
gence with respect to ε, which is the typical behavior for exponentially ill-posed problems
(see [9]). The case s = 0, corresponding to a weaker regularization gives a slightly better
rate (‖vN − vNε ‖L2((0,T )×ω) ≈ O(ε0.295)) but a slightly worst conditioning number.

We also refer to the section 7 of [13] where logarithmic estimates are proved when using
a penalization method to impose the final condition y(T ) = yT . As the penalty parameter
tends to infinity the corresponding controls yield approximate ones, but convergence is
logarithmically slow. The approximate controllability approach consists in minimizing the
functional J over the class of controls which drive the solution of the heat equation to an δ

neighborhood of the target:
‖y(T, ·)− yT ‖L2(Ω) ≤ δ.

This approximate problem is solved in [6] (see also [15]) using an iterative splitting method:
as expected, when δ goes to zero, so that the problem approximates the null or trajectory
controllability one, the solution exhibits an oscillatory behavior.

ε 10−1 10−3 10−5 10−7 10−9

‖vN − vNε ‖2L2((0,T )×ω) 1.15× 10−1 4.72× 10−2 2.15× 10−2 1.17× 10−2 6.89× 10−3

‖φNT,ε‖L2(Ω) 5.47× 10−1 2.52× 100 1.42× 101 9.20× 101 6.66× 102

‖vNε ‖L2((0,T )×ω) 2.23× 10−1 3.85× 10−1 4.28× 10−1 4.43× 10−1 4.49× 10−1

cond(ΛN,ε) 5.44× 100 5.87× 102 7.46× 104 7.45× 106 7.18× 108

Table 5: N = 80, ω = (0.2, 0.8), s = 0 : ‖vN − vNε ‖L2((0,T )×ω) ≈ O(ε0.295).

ε 10−1 10−3 10−5 10−7 10−9

‖vN − vNε ‖2L2((0,T )×ω) 2.86× 10−1 9.97× 10−2 5.83× 10−2 2.99× 10−2 1.70× 10−2

‖φNT,ε‖L2(Ω) 1.90× 10−1 6.70× 10−1 1.74× 100 6.50× 100 2.79× 101

‖vNε ‖L2((0,T )×ω) 2.86× 10−2 3.36× 10−1 3.78× 10−1 4.19× 10−1 4.37× 10−1

cond(ΛN,ε) 4.58× 103 5.93× 102 1.50× 102 3.88× 103 2.01× 105

Table 6: N = 80, ω = (0.2, 0.8), s = 1 : ‖vN − vNε ‖L2((0,T )×ω) ≈ O(ε0.259).

In practice, when trying to obtain the minimizer of J?, ε is taken as being a decreasing
parameter of N , so that as N → ∞, ε → 0. In this way the control of the perturbed
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Figure 8: L2 regularization (s = 0) for ε = 10−7 and N = 80, T = 1 and ω = (0.2, 0.8).
Left: Adjoint state φT,ε at time t = T . Right: L2-norm of the control vs. time t.
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Figure 9: Tychonoff regularization (s = 1) for ε = 10−7 and N = 80, T = 1, ω = (0.2, 0.8).
Left: Adjoint state φNT,ε at t = T . Right: L2-norm of the control vs. time t.
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regularized system is close to the control v of system (1): in other terms, the perturbation
vanishes when N → ∞. At the level of numerical discretization schemes the role of N
is played by 1/h, h being the mesh-size parameter. For the case s = 1, the choice ε =
N−4 provides a good compromise between the value of the conditioning number of the
corresponding perturbed matrix ΛN,ε and the rate of convergence of the control: we obtain
cond(ΛN,ε) ≈ e−5.97N3.5 and ‖v − vNε ‖L2(0,T )×ω) ≈ O(N−0.305).

N 20 40 80 160 320
cond(ΛN,ε) 1.38× 102 1.26× 103 1.27× 104 1.40× 105 1.58× 106

‖φNT,ε‖2L2(Ω) 4.15× 100 1.87× 101 9.94× 101 5.90× 102 4.01× 103

‖vNε ‖L2((0,T )×ω) 3.942× 10−1 4.166× 10−1 4.298× 10−1 4.382× 10−1 4.438× 10−1

Table 7: Tychonoff regularization (s = 1) for ε = N−4, ω = (0.2, 0.8) and Ω = (0, 1).

3.2 Singular perturbations

Regularization can also be performed without changing the functionals J and J? but by
modifying the heat equation with the aim to restore the stability of the corresponding
backward system. This approach is considered in detail in [22] in the framework of optimal
control theory by introducing the so-called quasi-reversibility methods and in [26, 27] in the
context of controllability.

For instance, the regular perturbation ∂t − ∂2
xx − ε∂4

xxxx of the heat operator, for any
ε > 0 may be considered. But there are some variants. For instance, in [30], the null
controllability of the following damped, singularly perturbed wave equation is considered:

εyε,tt + yε,t − cyε,xx = vεXω, in QT ,

yε = 0, on ΣT ,

(yε(0, ·), y′ε(0, ·)) = (y0, y1), in Ω

(17)

for any ε > 0 (the elliptic situation where ε is replaced by −ε is studied in [22], Chapter 3).
In [30] it is proved that, for any (y0, y1) ∈ H1

0 (Ω)× L2(ω) and T > 2
√
c−1ε, system (17) is

uniformly controllable with respect to ε with vε ∈ L2(QT ) and that the control of minimal
L2-norm for (17) converges in L2((0, T ) × ω) as ε → 0, towards the control v of minimal
L2-norm for the heat equation (1).

The functional J?ε : L2(Ω)×H−1(Ω)→ R to be minimized for the control of (17) is

J?ε (φTε, φ′Tε) =
1
2

∫ T

0

∫
ω

φ2
ε(t, x)dxdt+

∫
Ω

(y0 + εy1)φε(0)dx− ε < y0, φ
′
ε(0) >H1

0 (Ω),H−1(Ω)

where φε is solution of 
εφε,tt − φε,t − cφε,xx = 0 in QT ,

φε = 0 on ΣT ,

(φ(T, ·), φ′(T, ·)) = (φTε, φ′Tε) in Ω.

In this case the functionals J?ε are uniformly coercive since the following observability in-
equality

ε‖φε(0)‖2L2(Ω) + ‖εφε,t(0)− φε(0)‖2H−1(Ω) ≤ C(T )
∫ T

0

∫
ω

|φε|2dxdt,
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holds for some constant C(T ), independent of ε and any T > 2
√
εc−1 (see Theorem 1.3 in

[30]).
Although, at a theoretical level, the functionals J?ε are uniformly coercive, we found that,

for ε small enough, the minimization of J?ε using a CG algorithm is particularly sensitive to
the numerical approximation of (17) and to the choice of the norms for the descent direction.

Following section (2.1), we can also compute the finite-dimensional approximation Λ2N,ε

of the control application Λε expanding the solution φε in Fourier series. We have

φε(t, x) =
∑
k≥1

(
ck1e
− 1+µk

2ε (T−t) + ck2e
− 1−µk

2ε (T−t)
)

sin(kπx), µk =
√

1− 4c(kπ)2ε.

We then truncate the series to the first N terms and take ε < (4c(Nπ)2)−1 so that
µk ∈ R for all k ≥ 1. The tedious computation of the 2N order matrix Λ2N,ε is de-
veloped in Appendix 6.2. For N = 80 (which requires ε < 3.96 × 10−5 to ensure that
the eigenvalues under consideration are real), ε = 10−6, (y0, y1) = (0, 0) and the target
(yT , y′T ) = (1,−cπ2)e−cπ

2T sin(πx), Figure 10 depicts the minimizer (φNTε, φ
N ′
Tε) in Ω of J?ε .

The corresponding function t→ ‖vNε ‖L2(ω) is illustrated in Figure 11, to be compared with
Figure 2-Left. Note that the addition of the hyperbolic term has the effect of increasing
slightly the value of ‖vε(t, ·)‖L2(ω) for t small. From Table 8, we check the convergence of
the control vNε as ε→ 0. The convergence is faster than for the Tychonoff type regularization
in Section 3.1: in particular, we observe that the addition of the hyperbolic term εytt does
not modify the regularity of vNε near T , nor the high conditioning number cond(Λ2N,ε).
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Figure 10: Singular hyperbolic perturbation: N = 80, ε = 10−6, initial condition φNTε (Left)
and φN ′Tε) (Right) of φε in Ω.

ε 10−6 10−7 10−8

‖vN − vNε ‖L2((0,T )×ω) 2.02× 10−2 1.94× 10−2 1.74× 10−2

‖vNε ‖L2((0,T )×ω) 4.77× 10−1 4.65× 10−1 4.61× 10−1

cond(Λ2N,ε) 2.68× 1018 3.98× 1019 7.48× 1020

Table 8: Singular hyperbolic perturbation: N = 80, ω = (0.2, 0.8). Behavior of the control
vε and of the conditioning number to be compared with cond(ΛN ) = 6.96× 1016, see Table
1.
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Figure 11: Singular hyperbolic perturbation: N = 80, ε = 10−6. L2(Ω)-norm of the control
vNε vs. t ∈ [0, T ].

This method has been used before in the context of ill-posed parabolic problems. Indeed,
in [36] a similar idea is used to approximate numerically an ill-posed inverse heat problem.
There the author first introduces a regularizing second time derivative term and then reverses
the space and time variables. This leads to a well-posed hyperbolic problem whose solution
is close to the desired one.

Another, a priori simpler (at the computational level), perturbation of the heat equation
is the following one

yε,t − εyε,txx − cyε,xx = vεXω in QT . (18)

At the continuous level, the corresponding spectrum is{
c(kπ)2

1 + ε(kπ)2

}
k>0

that possesses the accumulation point cε−1 (as k → ∞). This is due to the fact that the
generator of the corresponding semigroup is bounded as can be easily seen by writing the
operator ∂t− ε∂3

txx− c∂2
xx in the form (I − ε∂2

xx)∂t−−c∂2
xx. Therefore, the generator of the

semigroup is given by c(I − ε∂2
xx)−1∂2

xx. As a consequence of this spectral accumulation,
(18) is not null controllable when ε > 0.

However, at the numerical level, when performing a finite-difference discretization with
mesh-size h, and by letting ε to go to zero with h = 1/N , one can avoid the spectral
concentration phenomenon above to get a uniform controllable scheme. More precisely,
it suffices to take ε < h. A value of ε smaller than h2 would have no influence on the
corresponding discrete spectrum. Therefore, we take ε = hα with α ∈ (1, 2]. We observe in
practice that the resulting scheme, consistent with the initial heat equation, allows a faster
convergence of the CG algorithm.

Figure 12 depicts the evolution of the residue for h = 1/80 and ε = hα with α = 1.75, 2, 0.
System (17) is here fully-discretized with an implicit Euler scheme and ∆t = h/2. For
ε = h1.75 the convergence is obtained after only 172 iterations to be compared with the 622
iterations corresponding to ε = 0. On the other hand, the perturbation slightly reduces the
convergence rate of the control with respect to h (see Table 9).

The full-discretization also permits us to appreciate the influence of the time discretiza-
tion on the CG algorithm. Similarly to the wave equation (see [2]), we observe that this
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additional approximation slightly increases the number of iterations. For instance, in the
previous example, for h = 1/80 and ∆t = h/2, we obtain 622 iterations to be compared
with the 574 iterations of the semi-discrete case (see Table 4).

We have also observed that the use of the perturbed operator (∂t − c∂xx − ε∂4
x) -as

discussed in [22] and [26, 27]- has no influence on the number of iterations. The interest at
the numerical level of (18) is to provide a new scheme, convergent towards the continuous
heat equation and for which, the CG algorithm is better behaved. In view of the oscillations
in the residue observed Figure 12, the conditioning number has still an exponential behavior,
but with a smaller rate.

Finally, we underline that the perturbation methods considered here are more involved
but provide, for any ε, a trajectory control for the heat equation. This is in contrast with
the regularization approach of Section 3.1 which leads to approximate controllability.

In the context of the wave equation the use of singular vanishing terms to derive uniformly
controllable schemes has been discussed in [2, 32, 39].
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Figure 12: Evolution of the residue for ε = hα with α = 1.75, 2 and 0, h = 1/80, ∆t = h/2,
T = 1 and ω = (0.2, 0.8).

h 1/20 1/40 1/80 1/160
ε = 0 4.286× 10−1(19) 4.822× 10−1(129) 4.828× 10−1(622) 4.720× 10−1(1456)
ε = h2 5.614× 10−1(13) 5.658× 10−1(77) 5.094× 10−1(274) 4.788× 10−1(496)
ε = h1.75 7.696× 10−1(13) 7.304× 10−1(82) 5.46× 10−1(112) 4.894× 10−1 (209)

Table 9: Evolution of the L2((0, T )×ω)-norm of the control vs. h for ε = hα with α = 1.75, 2
and 0, h = 1/80, ∆t = h/2, T = 1 and ω = (0.2, 0.8), and, in parenthesis, the number of
CG iterations.
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3.3 Controls with compact support in time

As observed in Section 2.1, the control of minimal L2-norm for the heat equation exhibits a
highly oscillatory behavior near the controllability time T , and therefore it is very difficult
to capture with robustness by numerical means.

In this section we discuss the efficiency of using time-dependent weights to smooth out
the behavior of the control near t = T . We thus perturb the L2-norm and consider the new
problem

minv∈C(T,y0,yT )J1(v) =
∫ T

0

∫
ω

ρ−1(t)v2(t, x)dxdt (19)

for some strictly positive and smooth function ρ−1. When ρ−1 is close to one, this new
problem may be seen as a (regular) perturbation of the original problem (2). Moreover,
convex duality leads to the following expression of the conjugate function

J?1 (φT ) =
1
2

∫ T

0

∫
ω

ρ(t)φ2(t, x)dxdt−
∫

Ω

yT (x)φT (x)dx+
∫

Ω

y0(x)φ(0, x)dx

where φ solves (5). At last, the unique control which minimizes J1 is then given by

v(t, x) = ρ(t)φ(t, x)Xω(x), (t, x) ∈ QT ,

where φ solves (5) with φT the minimizer of J?1 .
An a priori simple way to eliminate oscillations near the controllability time is to impose

ρ to vanish in the interval [T − δ, T ] for any δ > 0 small enough. A C1([0, T ]) example of
function fulfilling these conditions is given by

ρ(t) = X0≤t≤t1 +
(t− t2)2(2t− 3t1 + t2)

(t2 − t1)3
Xt1≤t≤t2 , t ∈ [0, T ] (20)

for 0 < t1 < t2 = T − δ < T . Minimizing J?1 one obtains controls that vanish in the time
interval [T − δ, T ].

Approximations of these minimizers and controls can be computed using a Fourier anal-
ysis or a numerical approximation scheme. In particular, the analogue of relation (7) is
now

bp =
∑
k≥1

akcp,k(ω)
∫ T

0

ρ(s)e−c(λp+λk)(T−s)ds, p ≥ 1. (21)

This allows us to construct the corresponding matrix ΛN,ρ of order N . For any N fixed,
the conditioning number of ΛN,ρ is larger than the conditioning number cond(ΛN ). The
introduction of the ρ function increases the amplitude of the coefficients on the diagonal.
However, when we use a CG algorithm - which never requires the explicit computation
of any matrix - we observe a much better behavior with respect to finite-difference space
semi-discretizations. This is a not a contradiction, the conditioning number being simply
an upper measure of the efficiency of the CG algorithm.

Tables 10 and 11 collect some numerical values obtained with the semi-discrete finite
difference scheme for (t1, t2) = (0.98, 0.99) and (t1, t2) = (0.8, 0.9) respectively. We observe
that the number of iterations remains bounded with respect to h, with a significant reduction
for (t1, t2) = (0.8, 0.9). On the other hand, we check that the corresponding control which
drives the state to ecλ1δyT at time t = t2 = T − δ has a greater L2-norm. From t = T − δ
to t = T , the control vanishes, so that the state passes, by diffusion, from ecλ1δyT to yT .
We recall that yT (x) = e−cλ1T sin(πx) involves only the first mode. Tables 10 and 11 also
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indicate that the adjoint solution φh(T, ·) is uniformly bounded in L2(Ω). Figures 13 and
14 depict the corresponding adjoint solution φTh, minimum of J?1 and the control vh which
presents much less oscillations in time.

The weight function has the effect to filter out the high frequency components: Figure
16 depicts the distribution of the Fourier coefficients of φT for these two choices of ρ, to
be compared with Figure 5. We refer to [12] where compact support controls (in time)
are obtained numerically writing the optimality condition of a cost function defined by
J2(v) = ‖ρ0y‖2L2(QT ) + ‖ρv‖2L2((0,T )×ω) for some suitable weight functions ρ0 and ρ.

h 1/20 1/40 1/80 1/160
Number of iterations 54 805 478 306
‖vh‖L2((0,T )×ω) 4.172× 10−1 4.412× 10−1 4.472× 10−1 4.532× 10−1

‖yh(·, T )− yTh‖L2(Ω) 1.25× 10−9 1.48× 10−9 1.77× 10−9 1.61× 10−9

‖φh(0,x)‖2
L2(Ω)

‖ρ(t)φh(t,x)‖2
L2((0,T )×ω)

4.19× 10−1 4.42× 10−1 4.48× 10−1 4.54× 10−1

‖φ(T,x)‖2
L2(Ω)

‖ρ(t)φh(t,x)‖2
L2((0,T )×ω)

7.15× 105 5.60× 1012 1.17× 1011 4.75× 1010

Table 10: Semi-discrete scheme: ω = (0.2, 0.8), Ω = (0, 1), T = 1 and (t1, t2) = (0.98, 0.99).
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Figure 13: Semi-discrete scheme: h = 1/80 and (r1, r2) = (0.98, 0.99). Left: Adjoint state
φTh at time t = T . Right: L2-norm of the control vh vs. time t.

Remark 6 One may replace the function ρ given by (20) by the exponential ρ(t) = e−
a

T−t ,
for any real a > 0, which is smooth and vanishes at time T . In [13], the following global
estimate, using Carleman techniques, is proved∫

QT

e−
A(1+T )
T−t φ2(t, x)dxdt ≤ eC(1+1/T )

∫ T

0

∫
ω

φ2(t, x)dxdt

for any solution φ of (5) and some constant A and C that depend only on Ω and ω. This
observability inequality, stronger than (4), is certainly related to the fact that the compact
function ρ improves the stability of the control problem. But this issue needs further analysis.
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h 1/20 1/40 1/80 1/160
Number of iterations 56 25 22 19
‖vh‖L2((0,T )×ω) 5.158× 10−1 5.236× 10−1 5.47× 10−1 5.546× 10−1

‖yh(·, T )− yTh‖L2(Ω) 1.54× 10−9 2.40× 10−9 2.05× 10−9 1.37× 10−9

‖φh(0,x)‖2
L2(Ω)

‖ρ(t)φh(t,x)‖2
L2((0,T )×ω)

5.295× 10−1 5.459× 10−1 5.558× 10−1 5.663× 10−1

‖φh(T,x)‖2
L2(Ω)

‖ρ(t)φh(t,x)‖2
L2((0,T )×ω)

2.48× 1010 7.20× 108 1.49× 109 1.89× 109

Table 11: Semi-discrete scheme: ω = (0.2, 0.8), Ω = (0, 1), T = 1 and (t1, t2) = (0.8, 0.9).
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Figure 14: Semi-discrete scheme with h = 1/80 and (t1, t2) = (0.8, 0.9) - Left: Adjoint state
φTh at time t = T . Right: L2-norm of the control vh vs. time t.
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Figure 15: Semi-discrete scheme with h = 1/80. Evolution of the residue vs. the number of
iterations for (t1, t2) = (0.98, 0.99) (Left) and (t1, t2) = (0.8, 0.9) (Right).
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Figure 16: T = 1, ω = (0.2, 0.8), N = 80. Distribution of the Fourier coefficients ak of φNT ,
k ∈ [1, N ] for (t1, t2) = (0.98, 099) (Left) and (t1, t2) = (0.8, 09) (Right).

Remark 7 Many other perturbation and regularization mechanisms, at the continuous or
numerical level, can be implemented. For instance, we may replace the L2-norm by the
H1

0 -one in the definition of J . The corresponding control solves then the following equation{
v − v′′ = φXω in QT ,

v(·, 0) = v(·, T ) = 0 in Ω.

This has the effect of smoothing the control near t = T but does not reduce the instability of
the problem.

One could also use different approximations such as the C1-finite elements, which permit
to better reproduce the smoothness of solutions of the heat and the bi-grid strategy (efficient
for the wave equation, see [18]) which consists in projecting the descent direction on a coarser
spatial grid, at each iteration of the CG algorithm. But we did not observe any essential
improvement on the behavior of the algorithms.

4 The control transmutation method

In this section, we search for a control function in C(T, y0, 0) for (1) driving an initial datum
y0 in L2(Ω) to rest at time t = T . As mentioned above, this problem is completely equivalent
to that of driving an initial datum in L2(Ω) to a final target yT which is the value at time
t = T of a solution of the heat equation (controlled or not).

Here we do not consider the control of minimal L2-norm since, as we have seen in
previous sections, it oscillates tremendously at t = T thus making its efficient computation
very difficult. We rather use the so-called control transmutation method ([31]) which permits
to obtain efficiently a null control for the heat equation, through a time-convolution with
the control of the corresponding wave equation. This method, originally introduced in the
context of PDE, can also be applied to time semi-discrete systems. Actually it can be easily
extended to an abstract semigroup setting.

With this in mind, in this section we develop the transmutation method at the com-
putational level. More precisely, we use it to give an explicit representation formula for
the controls of the 1 − d heat equation and its finite-difference space discretizations, and
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to develop an efficient method to compute numerical approximations of controls. At this
level, the rich literature on efficient numerical methods for computing controls of the wave
equation plays a key role.

To fix ideas, we perform the change of variables (t̃, x̃) = (ct, x) so that the system (1)
becomes 

ỹ′ −∆ỹ = c−1ṽXω, in QT̃ ,

ỹ = 0, on ΣT̃ ,

ỹ(0, ·) = y0, in Ω

with ỹ(t̃, x̃) = y(t, x), ṽ(t̃, x̃) = v(t, x) and T̃ = cT . This normalizes the diffusivity constant
c to be c = 1 but, its influence is seen in the length of the time interval. In the next section,
we drop the tilde for notational simplicity.

4.1 Principle of the method

The goal being to write the control for the heat equation, driving an initial datum y0 to the
zero state at time t = T , we first address the control problem for the wave equation: To find
a control f ∈ L2([0, L]× Ω) such that the solution w of the wave equation

wss −∆w = fXω (s, x) ∈ (0, L)× Ω,

w = 0 (s, x) ∈ (0, L)× ∂Ω,

(w(0, ·), w′(0, ·)) = (y0, 0) x ∈ Ω

(22)

be driven at time s = L to zero: (w(L), w′(L)) = (0, 0) in Ω.
Note that s plays the role of time in this wave equation. But in the application we have

in mind it is a pseudo-time parameter, that will be integrated on, to get the dynamics of
the controlled heat equation in the real time t.

When the GCC is satisfied, such a control exists for all initial data of final energy in
H1

0 (Ω)× L2(Ω).
In the one-dimensional case, this condition holds if L ≥ L(ω) is large enough, the minimal

time of control L(ω) being twice the length of the maximal segment included in Ω\ω.
We then extend the solution (w, f) to (−L,L)× (0, T ) as follows:

w(s, x) = w(s, x) = w(−s, x), (s, x) ∈ (0, L)× Ω,

and similarly
f(s, x) = f(s, x) = f(−s, x), (s, x) ∈ (0, L)× Ω

so that the support of w is included in −L ≤ t ≤ L. Then w ∈ C([−L,L];H1
0 (Ω)) ∩

C1([−L,L];L2(Ω)) and f ∈ L2((−L,L)× Ω).
Secondly, consider the fundamental controlled solution H ∈ C0([0, T ],M(−L,L)) of the

one-dimensional heat equation, satisfying{
∂tH − ∂2

sH = 0 in D′((0, T )× (−L,L)),

H(t = 0) = δ, H(t = T ) = 0.
(23)

Here and in what follows M(−L,L) denotes the space of Radon measures on (−L,L). The
kernel H ∈ L2(]0, T [×]−L,L[) is extended to H ∈ L2(R2) by H = H in ]0, T [×]−L,L[ and
H = 0 elsewhere.
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Then, the transmutation formulas

y(t, x) =
∫

R
H(t, s)w(s, x)ds, v(t, x) = Xω(x)

∫
R
H(t, s)f(s, x)ds,

which can be regarded as the analogue of Kannai’s formula for the heat kernel at a control
theoretical level, define the functions y ∈ L2(R;H1

0 (Ω)) and v ∈ L2(R× Ω) such that
yt −∆y = vXω (t, x) ∈ (0, T )× Ω,

y = 0 (t, x) ∈ (0, T )× ∂Ω,

y(0, ·) = y0, y(T, ·) = 0 x ∈ Ω.

Therefore, vXω is a null control for y, solution of the heat equation in Ω with the initial
state y0, so that v belongs to C(T, y0, 0).

Note that this construction requires the initial datum y0 to be controlled to belong to
H1

0 (Ω) but this is not a restriction since, because of the regularizing effect of the heat equa-
tion, by simply letting it evolve freely, solutions starting from L2(Ω) enter instantaneously
in H1

0 (Ω).
Observe that the formulas above transform the pseudo-time s for the wave equation into

the true time t for the heat equation, the controlled heat kernel H playing the role of a
convolution kernel. Note also that the time variable s in (22) plays the role of the space
variable in (23), explaining the term transmutation.

Using the symmetries, we have for all (t, x) ∈ (0, T )× Ω

y(t, x) = 2
∫ L

0

H(t, s)w(s, x)ds, v(t, x) = 2Xω(x)
∫ L

0

H(t, s)f(s, x)ds. (24)

Summarizing, the control transmutation method reduces the null controllability for (1) to
the determination of a control for the corresponding linear wave equation plus a fundamental
controlled solution for the heat equation. The first point, although sensitive in practice, is
now well-understood and efficiently solved numerically, at least for linear homogeneous wave
equations on simple geometries (see [39]). In the next section, we discuss how a solution of
system (23) can be efficiently computed.

Note also that the transmutation method not only applies to the heat equation but that
can be extended to a general class of parabolic like problems and, in particular, to the semi-
discrete heat equation in which case the problem of null controllability is reduced to that of
the controllability of the corresponding semi-discrete wave equation.

It is important to observe that this method yields controls that differ significantly from
those obtained by minimizing functionals of the form J?, which are solutions of the adjoint
heat equation. Here, the controls of the wave equation of minimal L2-norm are solutions of
the wave equation in the variables (x, s), since the wave operator is self-adjoint. Thus, the
controls v that this transmutation method provides are restrictions to ω of solutions of the
heat equation and, therefore, do not coincide with those obtained minimizing functionals of
the form J?.

4.2 Determination of a fundamental controlled solution for the heat

equation

This section is devoted to derive explicitly a solution H of (23) following [19] (we also refer
to [23] and [8], section 2.5.3) in the one dimensional case.
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Let δ be any parameter in (0, T ). In the time interval (0, δ), the function H is taken to
be the Gaussian, fundamental solution of the heat equation:

H(t, x) =
1√
4πt

e−
x2
4t , (t, x) ∈ (0, δ)× R.

Therefore, it remains to join H(δ, x) to the 0 state at time T .
For any a > 0 and any α ≥ 1, we consider the bump function

h(s) = exp
(
− a

((s− δ)(T − s))α

)
, s ∈ (δ, T ) (25)

and then the function

p(t) =
1√
4πt


1 t ∈ (0, δ)∫ T
t
h(s)ds∫ T

δ
h(s)ds

t ∈ (δ, T )
(26)

so that p(T ) = 0. Note that h ∈ C∞c ([δ, T ]) and p ∈ C∞([0, T ]). Functions h and p are both
Gevrey functions of order 1 + 1/α ∈ (1, 2] 2: this property implies that the series

H(t, x) =
∑
k≥0

p(k)(t)
x2k

(2k)!
(27)

converges.
Moreover, (27) defines a solution of the heat equation and satisfies, by definition of p,

the null-controllability condition H(T, x) = 0 for all x ∈ R and limt→0+ H(t, x) = δx=0.
In other terms, the restriction to (0, T ) × (−L,L) of H given by (27) is a solution of the
controlled problem (23). Remark that, by construction, the function x→ H(t, x) is odd so
that ∂xH(t, x) = 0 at x = 0. From this parametrization, the control v for the system (1)
takes the following expression

v(t, x) =2
∫ L

0

∑
k≥0

p(k)(t)Xω(x)
s2k

(2k)!
f(s, x)ds

=2Xω(x)
∑
k≥0

p(k)(t)
∫ L

0

s2k

(2k)!
f(s, x)ds

with f ∈ L2((0, L)× Ω) a control for (22).
On (0, δ), the control v and the controlled solution y are simply

(y(t, x), v(t, x)) =
2√
4πt

∫ L

0

e−
s2
4t

(
w(s, x), f(s, x)Xω(x)

)
ds (t, x) ∈ (0, δ)× Ω.

The function H is not unique and depends on the choice of the function h and on the
parameters δ, a and α.

Note that the value L is constrained by the size of the set Ω\ω, due to the finite velocity
of propagation of the wave equation and to the GCC.

This explicit representation formulas for the solutions of the heat equation has been used
in [23] in the context of approximate controllability.

2A function z ∈ C∞([0, T ]; R) is Gevrey of order s ∈ [1,∞[ if there exist M > 0 and R > 0 such that

|z(m)(t)| ≤M(m!)sR−m, for all t ∈ [0, T ] and m ∈ N (see [8], p. 86 and [23]).



4 THE CONTROL TRANSMUTATION METHOD 30

Numerically, the difficulty is to perform a robust evaluation of the series (27), and,
in particular, a correct evaluation of the (highly oscillating) derivatives of the function p.
Figure 17 depicts the fundamental solution for two values of δ obtained with the series (27)
truncated to the first forty terms and illustrates the influence of the parameter δ. In view
of the definition of p given by (26), we observe that the L2-norm of H increases with δ.
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Figure 17: L = 0.5, T = 0.1. Fundamental solution H on (0, T ) × (0, L) for (a, α, δ) =
(10−2, 1, T/5) (Left) and (a, α, δ) = (10−2, 1, T/2) (Right) .

4.3 Numerical experiments

Once the controlled fundamental heat solution above is computed, we simply have to control
the wave system (22) and then to apply the transmutation representation to get the control
of the heat equation.

We consider once again ω = (0.2, 0.8), T = 1 and c = 0.1 and assume that the initial
condition to be controlled is y0 = sin(πx). In this case (ω,Ω, L) satisfy the GCC if and
only if L ≥ 0.4. We take L = 0.5 and H given by Figures 17. Figure 18 first depicts the
controlled wave solution w of (22) and its control of minimal L2-norm fXω on (0, L) × Ω.
The corresponding controlled heat solution y and its control v are given on Figure 19. From
the choice of the function p which defines H, the control v vanishes at time T (the support
in time of H and y coincide).

As a consequence, the control we obtain is not of minimal L2-norm. The function
t→ ‖v(t, ·)‖L2(ω) is given Figure 20-Left and ‖v‖L2((0,T )×ω) ≈ 8.74× 10−1 which is greater
than the minimal L2-norm control which is approximately 2.43× 10−1. But, as mentioned
above, this is in agreement with the structure of the control itself, which is the restriction
to ω of a solution of the heat equation, while the controls of minimal norm are obtained as
solutions of the adjoint heat equation.

To validate the numerical efficiency of the method we evaluate the solution y associated
with this control v corresponding to several initial data y0. We first consider the case
y0(x) = sin(πx). We do it with h = ∆t = 1/100 and the scheme (of order one in time
and two in space) used in Section 2.3. We obtained ‖yh(T, ·)‖L2(Ω) ≈ 4.17 × 10−7. This
value is small enough and shows that the transmutation method is indeed an efficient way
of computing the null controls for the heat equation.
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Figure 18: Wave equation: y0(x) = sin(πx), L = 0.5, ω = (0.2, 0.8). Controlled wave
solution w (Left) and the corresponding control f on (0, L)× Ω (Right).
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Figure 19: y0(x) = sin(πx), T = 1, c = 1/10 and (δ, α) = (T/5, 1). Controlled heat solution
y (Left) and corresponding transmuted control v on (0, T )× Ω (Right).
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Figure 21: y0(x) = sin(3πx) and L = 1.2 - ω = (0.3, 0.4). Controlled wave solution w on
(0, L) × Ω (Left) and corresponding HUM control f on (0, L) × (0.25, 0.45) ⊂ (0, L) × Ω
(Right).
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Figure 22: (y0(x), T, c, δ, α) = (sin(3πx), 1, 1/20, T/5, 1) and ω = (0.3, 0.4). Controlled
heat solution y on (0, T ) × Ω (Left) and corresponding transmuted control v on (0, T ) ×
(0.25, 0.45) ⊂ (0, T )× Ω (Right).
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We now take ω = (0.3, 0.4), y0(x) = sin(3πx) and T = 1. In order to compensate
the faster dissipation of sin(3πx) (with respect to sin(πx)), we take a smaller diffusivity
coefficient c equal to 1/20. The choice of ω requires L ≥ 1.2. Due to the smaller size
of ω, this second example is much more singular: the conditioning number of the control
operator is so large that the CG algorithm fails to converge to the minimum of J?, as soon
as the discretization parameters h and ∆t are small enough. Thus, the control of minimal
L2-norm can not even be computed. Figure 21, on the right, depicts the wave control f
on (0, L) × (0.26, 0.44) and on the left the corresponding wave solution w on (0, L) × Ω.
The computation of the fundamental heat solution H, taking once again δ = T/5, leads to
the controlled heat solution y given on Figure 22-Left. The control has a very oscillatory
nature (see Figure 22 (Right)) in the region (0.2, 0.8) ⊂ (0, T ) and its size is of the order of
‖v‖L2((0,T )×ω) ≈ 1.41×102. These oscillations are related to the structure of the fundamental
solution H. Finally, this control used with a finite element approximation of (1) provides the
following estimation for the solution at time T : ‖yh(T, ·)‖L2(Ω) ≈ 1.07 × 10−6. According
to the singularity of the problem (due to the smallness of the control set ω) and to the
numerical errors in the integration of Kannai type formula (24), this value appears to be
very acceptable and one can consider the control as being a very accurate approximation of
an actual null control.

Remark 8 In view of the formula,

v(t, x) =
2√
4πt

∫ L

0

e−
s2
4t f(s, x)Xω(x)ds, (t, x) ∈ (0, δ)× Ω

we could ensure that v(0, ·) = 0 in Ω, by choosing a compact support wave control f for w.
More precisely, let A ∈ (0, L) and assume that f(s, x) = 0 in (0, A)× Ω. Then,

v(t, x) =
2√
4πt

∫ L

A

e−
s2
4t f(s, x)Xω(x)ds→ 0 as t→ 0, a.e. x ∈ Ω.

The control obtained through the transmutation method is not unique since the funda-
mental solution H is not unique. It may be interesting to minimize the norm ‖v‖L2(QT ) of
the control with respect to the parameters (α, δ) ∈ [1,∞) × (0, T ). Kannai’s formula (24)
implies that ‖v‖L2(QT ) ≤ 2‖f‖L2((0,L)×Ω)‖H‖L2((0,T )×(0,L) so that, in a first approximation,
the minimization can be performed on the 1 − d controlled heat kernel H. As observed
on Figure 17, a smaller value of δ leads to a smoother function H : this reduces the time
period on which the dynamics is governed by the Gaussian. Thus, for the first example
with y0(x) = sin(πx), δ = T/5 leads to ‖v‖L2(QT ) ≈ 8.7 × 10−1 while δ = T/10 gives
‖v‖L2(QT ) ≈ 7.9× 10−1. On the other hand, a large value of α has the effect of concentrat-
ing the support of the function t→ H(t, ·) on the center of the time interval and increasing
the amplitude of the control. However, we can replace, at least in a formal way (see [23]
where the authors compute boundary controls using divergent series and Gevrey functions
of order greater than two), the function h defined in (25) by

h(s) = exp
(
− a

(s− δ)α1(T − s)α2

)
. (28)

Then, first, take α1 greater than one, which reduces the values of H near t = 0 (as just
mentioned) but permits to take a small value of δ and, secondly, take α2 smaller than one
which will allow an active control v near t = T . Figure 23-Left depicts the fundamental heat
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solution at s = L = 0.5 obtained with δ = T/10 and (α1, α2) = (1.1, 0.7). The L2(Ω)-norm
of the corresponding control is given on Figure 23-Right and, as expected, we observe a
reduction of the cost: ‖v‖L2(QT ) ≈ 5.67 × 10−1. Remark that the oscillations near T , due
to the ones in H, are reminiscent of those obtained for the minimal L2-norm control (see
Figure 2).

As mentioned above, however, and as it is clear in the plots of the controls obtained
through the transmutation method, their shape differs significantly from that of the controls
of minimal norm obtained by minimizing functionals of the form J?. This is particularly
true when t approaches the final time t = T .
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Figure 23: Data: (y0(x), c) = (sin(πx), 1/10). The heat fundamental solution H(t, L) vs.
time t ∈ [0, T ] (Left) and L2(Ω)-norm of corresponding control v (Right).

5 Concluding remarks and perspectives

In this work, we have developed and discussed some numerical methods and experiments
related to the distributed null or trajectory controllability of the one dimensional heat equa-
tion. This paper is, to our best knowledge, the very first one addressing these issues. Up to
now, the existing literature was mainly devoted to the approximate controllability problem.

The high frequency oscillations of the L2-controls of minimal norm with respect to the
time variable illustrate how rich and complex the control theory for parabolic system may be.
It provides a fascinating example of the so-called severally ill-posed problems that render
ineffective standard numerical methods. In particular we have illustrated the failure of
gradient type methods -widely used for the control of wave processes - even in the framework
of convergent and uniformly controllable finite difference schemes.

Figure 7-Left highlights clearly the lack of robustness of the approximation. In order to
improve the robustness, similarly as when dealing with PDE’s with singularities, it would
be very interesting and useful to exhibit singular basis functions for the heat equation that,
added to the usual finite polynomial element basis, would allow us to represent better the
singularities of the adjoint solutions near T (we refer to Figure 3). As we stressed in Section
4, the functions used to construct the fundamental heat solution H (see (26)) could help on
doing this.

We have also seen that, as the consequence of the exponential ill-posedness, the standard
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regularization based methods - such as the Tychonoff approach - reduce significantly the
quality of the approximation. However, it would be interesting to develop a systematic
analysis of the method yielding the best compromise between rate of convergence of the
approximation and computational cost. There could be useful elements in the existing
extensive literature on ill-posed problems for parabolic equation.

At last, we have seen that the transmutation controlled method provides a quite simple
and effective way to approximate a null control for the heat equation, smooth and vanishing
near T . Based on the use of controls for a wave equation and Kannai formula, this method
offers many advantages. In particular, it may also be applied in the context of fully discrete
schemes. Moreover, if the support of the control satisfies the GCC, the transmutation control
method may be applied in any dimension. The question is more subtle when the control
domain does not fulfill the GCC which, on the other hand, is unnecessary in the context of
the heat equation. Despite of this, one expects the transmutation method to be useful for
building the null control of the heat equation even when GCC is not fulfilled, because its
failure may be compensated by the analyticity of the data to be controlled (see [25])).

Many efforts remain to be done to better understand the numerical approximation of
controls for parabolic type equations. We close this section with a list of open problems and
future research lines. The list is not exhaustive but collects some of the main issues that
arised along the paper:

• Preconditioners for the CG method. We have shown the inefficiency of the
CG algorithm to derive the optimal control because of the very ill-posedness of the
problem. It would be interesting to find efficient preconditioners for the CG algorithm
to compensate (to some extent) this ill-posedness.

• Time-depending weights. As we have seen, the use of time-depending weights
allows to derive more efficient numerical algorithms since they allow to reduce the
oscillations of the adjoint state near t = T . From a theoretical viewpoint their use
is fully justified since the null controllability property is guaranteed by the existing
observability inequalities. Note however that the space Hρ where the corresponding
functional J?ρ can be minimized depends on this weight ρ. It would be interesting
to analyze what are the optimal weights in various respects: Size of the space Hρ,
conditioning of the functional J?ρ , number of iterations of CG algorithms, etc.

• Choice of the 1− d controlled heat fundamental solution in transmutation.
As we have seen, the tranmutation method can be applied with a whole family of fun-
damental controlled 1−d kernels H. It would be interesting to analyze the dependence
of the controls this leads to, depending on the parameters entering in the definition of
H.

Note however that the control of minimal L2-norm derived by minimizing functionals
of the form J? can not be obtained within the family of controls obtained through
the method of transmutation. Indeed, while the first one is the restriction to ω of a
solution of the adjoint heat equation, the second one is a solution of the forward heat
problem, two facts that can only arise simultaneously in the trivial null function.

• Transmutation for fully discrete schemes. As we have seen, following [31],
transmutation can be used to represent controls for heat equations in terms of the
controls of wave equations both in the continuous and semi-discrete (time-continuous)
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case. A complete analysis of the possible use of this method to build convergent
controls for fully discrete approximations of the heat equation is still to be done.

• Convergence rates for the Tychonoff regularization. As we have seen, Ty-
chonoff regularization provides a way of approximation the controls, regularizing its
highly oscillating behavior at t = T . However, as our numerical simulations show, its
efficiency is low. It would be interesting to make a systematic analysis of the con-
vergence rates one can get. Following the analysis in [34], one can easily show that,
whenever the minimizer φT of J? that, in principle, belongs to the huge space H,
belongs to L2(Ω), then the minima of the functional regularized by means of the Ty-
chonoff method converge with a polynomial rate. However, the a priori assumption
that φT belongs to L2(Ω) is of very little practical use since it can not be written in
terms of the regularity of the data to be controlled. It would be interesting to see if,
using the very properties of H, that make solutions of the adjoint system with data in
H to belong to L2(Ω) for all t < T , one can get logarithmic convergence rates without
the a priori assumption that φT belongs to L2(Ω).

The difficulty of the problem of the regularity of the minimizer φT of J? can be easily
observed. Let us try to see, for instance, if φT = sin(πx) can be the minimizer of
the functional J? associated to the adjoint system (5) so that it yields the control of
minimal L2-norm for some y0 ∈ L2(0, 1). If that holds, taking into account that the
corresponding solution φ is of the form φ(x, t) = exp (−cπ2(T − t)) sin(πx), then∫ T

0

∫
ω

exp (−cπ2(T − t)) sin(πx)ψ(x, t)dxdt+
∫

Ω

y0(x)ψ(x, 0)dx = 0,

for all solution ψ of the adjoint system (5). Thus, if y0 is written in Fourier series as

y0(x) =
∑
j≥1

y0,j sin(jπx),

this is equivalent to the fact that the Fourier coefficients of y0, {y0,j}, satisfy

c1,j(ω)
∫ T

0
exp (−cπ2(1 + j2)(T − t))dt

2
+ exp (−cπ2j2T )

y0,j

2
= 0,

where c1,j(ω), as above, denotes c1,j(ω) = 2
∫
ω

sin(πx) sin(πjx)dx. This means that

y0,j = − exp (cπ2j2T )c1,j(ω)
1− exp (−cπ2(1 + j2)T )

cπ2(1 + j2)
.

This Fourier coefficients grow exponentially as j →∞. Thus, clearly, the correspond-
ing datum y0 that it corresponds to does not belong to any Sobolev space of negative
order.

This shows how complex is the link between the data to be controlled and the minimiz-
ers of the corresponding functionals J?. This question is also related to the following
one.

• Regularity of the adjoint state. Above we have discussed the convergence rates of
the Tychonoff method under the assumption that φT belongs to L2(Ω). As far as we
know there is no example of data to be controlled in the literature for which the datum
at time t = T of the adjoint state, φT , belongs to L2(Ω). It would be interesting to



6 APPENDIX 37

exhibit such examples or, by the contrary, show that the optimal controls are such
that φT develops singularities away from ω as soon as ω is strictly included and does
not coincide with Ω. This problem is also related to that of identifying classes of data
for which the existing numerical methods are better behaved or, more generally, to
develop ad’hoc methods for specific classes of data to be controlled.

• The multi-dimensional case. This paper is devoted to the 1 − d case but most
of our methods can be extended to the multidimensional one. Note however that,
in principle, the application of the transmutation method requires the GCC to be
satisfied, which imposes restrictions on the geometry of the support of the control. In
that sense, in the multi-dimensional setting, an interesting new open problem arises:
That of developing efficient numerical methods for the control of multi-dimensional
heat processes in the absence of GCC. See the next item.

• Transmutation in the absence of GCC. As we have mentioned above, it would
be interesting to study analytically and also numerically the possible use of the trans-
mutation method to build controls for the heat equation in the absence of the GCC
for the wave equation.

• Optimal support of the control. It appears also interesting to analyze deeper
the ill-posedness of the problem with respect to the distribution of the support of the
control (we refer to [33] in that direction). We also mention the unstudied situation
where the support depends on the time variable.

• Boundary control. It would also be worth to investigate the boundary control prob-
lem developing the methods we have presented in this paper. This problem could even
be more unstable numerically than the internal control problem we have considered
here.

• More general parabolic problems. It would be also interesting to address variable
coefficients heat equations and parabolic systems.

Acknowledgments: This work was partially done while the first author was visiting the
Basque Center for Applied Mathematics (BCAM - Bilbao). He wishes to thank the members
of the Center for their kind hospitality.

6 Appendix

6.1 Semi-discrete approximation of Λh

In this appendix, we derive the spatial approximation Λh of the control operator Λ associated
with a semi-discrete approximation of (1). We use the centered finite approximation on a
uniform mesh which produces uniform observability properties. The adjoint system (5) is
discretized as follows

Φ′h(t)−KhΦh(t) = 0 in QTh ≡ (0, T )× Ωh,

Φh = 0 on ΣTh ≡ (0, T )× ∂Ωh,

Φh(T, ·) = ΦhT (·) in Ωh,
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where {Φh}h>0 denotes a vector of dimension n = dim(Ωh) and Kh ∈ Rn×n is the stiffness
matrix of order n, discretization of −c∂2

xx. Using the spectral decomposition of Kh so that
Vh, Dh ∈ Rn×n so that Kh = VhDhV

−1
h , we get that Φh = VhQh with

Qh = {qj}1≤j≤n, qj(t) = qj(T ) exp(−λj(T − t)), 1 ≤ j ≤ n.

Similarly, if we denote by Ch ∈ Rn×n the diagonal matrix associated with Xω (Ch = Idn if
ω = Ω), the vectorial approximation Yh of y is solution of

Y ′h(t) +KhYh(t) = ChΦh(t) in QTh,

Yh = 0 on ΣTh,

Yh(0, ·) = 0 in Ωh.

From the spectral decomposition of Kh, the vector Zh(t) = V −1
h Yh(t) is solution of

Z ′h(t) +DhZh(t) = V −1
h ChVhΦh(t) in QTh,

Zh = 0 on ΣTh,

zh(0, ·) = 0 in Ωh,

so that each component zj of Zh solves the ordinary differential equation :

z′j(t) + λjzj(t) =
∑
k

Bjkqk(T ) exp(−λkT ) exp(λkt),

where Bh = {Bjk}1≤j,k≤n by Bh = V −1
h ChVh ∈ Rn×n and {λj}1≤j≤n are the eigenvalues of

Kh. We then get

zj(t) = Cj exp(−λjt) +
n∑
k=1

Bjkqk(T ) exp(−λkT ) exp(λkt)
λk + λj

, 1 ≤ j ≤ n.

The constant Cj is fixed from the initial condition at time t = 0:

0 = zj(0) = Cj +
∑
k

Bjkqk(T ) exp(−λkT )
λk + λj

, 1 ≤ j ≤ n.

so that

zj(T ) =
n∑
k=1

Bjk
1− exp(−(λj + λk)T )

λj + λk
qk(T ) 1 ≤ j ≤ n.

At last, introducing the matrix Mh ∈ Rn×n so that Zh(T ) = MhQh(T ), we obtain the
vectorial equality Yh(T ) = VhMhV

−1
h Φh(T ). The approximation Λh of Λ is then

Λh = VhMhV
−1
h , h > 0.

Remark that the matrix Vh is orthogonal so that the computation of V −1
h is straightforward.

The final structure of Λh is similar to the spectral projection ΛN of Λ with N ∼ 1/h but
with the spectrum associated to the finite-difference laplacian.
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6.2 Approximation of the control operator Λε associated to the sin-

gular damped wave equation yε,t − cyε,xx + εyε,tt = 0

We give in this appendix the expression of the matrix of order 2N , approximation to the
first N modes of the control application Λε : L2(Ω)×H−1(Ω)→ H1

0 (Ω)×L2(Ω) associated
with system (17) and defined by Λε(φTε, φ′Tε) := (yTε, y′Tε). As in Section 2.1, we use Fourier
decomposition. First, we expand in Fourier series the solution φ of the adjoint system

− φε,t − cφε,xx + εφε,tt = 0, in QT ,

φε = 0 on ΣT ,

(φε(T, ·), φ′ε(T, ·)) = (φTε, φ′Tε) in Ω.

We get φε(t, x) =
∑
k≥1 a

ε
k(t) sin(kπx) with

aεk(t) =
(
f1(µk)a0

k + f2(µk)a1
k

)
e−

(1+µk)
2ε (T−t) +

(
f1(−µk)a0

k + f2(−µk)a1
k

)
e−

(1−µk)
2ε (T−t)

and f1(s) = (s− 1)/(2s), f2(s) = ε/s and

µk =
√

1− 4ck2π2ε, k ≥ 1 (29)

so that (φT0(x), φT1(x)) =
∑
k≥1(a0

k, a
1
k) sin(kπx). Then, we solve the system

yε,t − cyε,xx + εyε,tt = φεXω in QT ,

yε = 0 on ΣT ,

(yε(0, ·), y′ε(0, ·)) = (0, 0) in Ω

(30)

assuming that yε(t, x) =
∑
p≥1 b

ε
p(t) sin(pπx) and obtain

bεp(t) = K1
pe

1
2ε (−1+µp)t +K2

pe
− 1

2ε (1+µp)t +
∑
k≥1

cp,k(ω)gk,p(t), p ≥ 1

for some constants {K1
p ,K

2
p}(p≥1) and

gk,p(t) =
2ε(2a1

kε− a0
k + µka

0
k)

µk(4µk + 3 + µ2
k + 4cp2π2ε)

e−
1
2ε (1+µk)(T−t)

− 2ε(2a1
kε− a0

k − µka0
k)

µk(−4µk + 3 + µ2
k + 4cp2π2ε)

e−
1
2ε (1−µk)(T−t), ∀k, p ≥ 1.

The coefficients cp,k(ω) are defined in (6). Then, after simple but tedious computations
taking into account the initial condition in (30), we obtain that the matrices of order 2N
which link the coefficients {a0

k, a
1
k}1≤k≤N to the coefficients {bεp(T ), bε′p (T )}1≤p≤N are given

by (
{bεp(T )}1≤p≤N
{bε′p (T )}1≤p≤N

)
2N×1

=

(
A11 A12

A21 A22

)
2N×2N

(
{a0
k}1≤k≤N

{a1
k}1≤k≤N

)
2N×1

(31)

where the matrix Aij ∈ RN×N , 1 ≤ i, j ≤ 2 are defined as follows, for all 1 ≤ k, p ≤ N :

A11
pk =f1(µk)

(
B11
kpe

−2+µp−µk
2ε T +B21

kpe
−2−µp−µk

2ε T + cp,k(ω)A1
kp

)
+ f1(−µk)

(
B12
kpe

−2+µp+µk
2ε T +B22

kpe
−2−µp+µk

2ε T + cp,k(ω)A2
kp

)
,
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A12
pk =f2(µk)

(
B11
kpe

−2+µp−µk
2ε T +B21

kpe
−2−µp−µk

2ε T + cp,k(ω)A1
kp

)
+ f2(−µk)

(
B12
kpe

−2+µp+µk
2ε T +B22

kpe
−2−µp+µk

2ε T + cp,k(ω)A2
kp

)
,

A21
pk =f1(µk)

(
(−1 + µp)

2ε
B11
kpe

−2+µp−µk
2ε T − (1 + µp)

2ε
B21
kpe

−2−µp−µk
2ε T +

(1 + µk)
2ε

cp,k(ω)A1
kp

)
+ f1(−µk)

(
(−1 + µp)

2ε
B12
kpe

−2+µp+µk
2ε T − (1 + µp)

2ε
B22
kpe

−2−µp+µk
2ε T + cp,k(ω)

(1− µk)
2ε

A2
kp

)
,

A22
pk =f2(µk)

(
(−1 + µp)

2ε
B11
kpe

−2+µp−µk
2ε T − (1 + µp)

2ε
B21
kpe

−2−µp−µk
2ε T +

(1 + µk)
2ε

cp,k(ω)A1
kp

)
+ f2(−µk)

(
(−1 + µp)

2ε
B12
kpe

−2+µp+µk
2ε T − (1 + µp)

2ε
B22
kpe

−2−µp+µk
2ε T + cp,k(ω)

(1− µk)
2ε

A2
kp

)
,

with 

f1(µk) =
µk − 1

2µk
, f2(µk) =

ε

µk
,

B11
kp = − 1

2µp
cp,k(ω)A1

kp(2 + µk + µp), B12
kp = − 1

2µp
cp,k(ω)A2

kp(2 + µp − µk),

B21
kp =

1
2µp

cp,k(ω)A1
kp(2 + µk − µp), B22

kp =
1

2µp
cp,k(ω)A2

kp(2− µk − µp),

A1
kp =

4ε
4µk + 3 + µ2

k + 4cp2π2ε
, A2

kp =
4ε

−4µk + 3 + µ2
k + 4cp2π2ε

.

For simplicity, we have assumed that y′ε(0) = 0 in (30) but any other choices are possible.
The square matrix of order 2N defined in (31) is an approximation of the operator Λε. In
practice, for any N fixed, we take ε small enough so that 1− 4c(Nπ)2ε ≥ 0 and then µk ∈ R
for all 1 ≤ k ≤ N .
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