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Within the framework of nonlinear elasticity, we consider the problem of two adherents
joined along their common surface by a thin soft adhesive. Two stored energy functions
are considered: the stored energy function of Saint Venant–Kirchhoff and the stored
energy function of Ciarlet–Geymonat. Using the asymptotic expansion method, the limit
energy associated to each of these stored energy functions is obtained. The aim of this
paper is to give a rigorous mathematical analysis of the formally derived limit problem.
We show that the limit problem associated to the Saint Venant–Kirchhoff case admits
at least one solution and the limit problem associated to the Ciarlet–Geymonat case
admits exactly one solution. An analytical comparison in the one-dimensional case and
a three-dimensional numerical application are also presented.
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1. Introduction

A pioneering paper presented at the Annual Meeting of the American Society of

Mechanical Engineers by Goland and Reissner in 1943, deals with the determination

of the stresses in cemented lap joints. This problem is formulated as one in plane

strain and the authors obtain explicit solutions for two limiting cases. “(a) The case

where the cement layer is so thin that its effects on the flexibility of the joint may
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be neglected; (b) the case in which the joint flexibility is mainly due to the cement

layer. Case (b) is significant for the analysis of cemented metal sheets.” (Ref. 1,

p. A-17). In this case “the role played by the cemented layer is analogous to that of

a system of infinitesimal coil springs positioned between the two plates.” (Ref. 1,

p. A-24). Since that time the modelling of bounded structure has progressed at

least in two directions:

(1) In order to predict the delamination and the propagation of interlaminar cracks,

more sophisticated models (nonlinear elasticity, plasticity, damage, . . .) have

been introduced for the behavior of the adherents and of the adhesive.

(2) Formal asymptotic developments and mathematically assessed convergence

theorems have been used in order to obtain a rational justification of the

assumption on linear displacements and constant stresses in the adhesive.

The present paper aims to contribute mainly to the second direction under the

following fundamental mechanical assumption:

(A) “The thickness of the adhesive, the flexibility of the adhesive and the

external loads are small of the same order (under a natural adimensionalization).”

When all the materials are linearly elastic the assumption (A) corresponds to

the case (B) of Goland and Reissner. For general linearly elastic materials, the

rigorous convergence theorems of Refs. 2 and 3, prove that the most interesting

results are obtained under the assumption (A).

In Sec. 2, we give a precise formulation of assumption (A), in terms of the small

adimensional parameter ε, as far as it is concerned the thinness and the flexibility of

the adhesive. For this, we at first introduce the domain obtained inserting the adhe-

sive of thickness εh between the two adherents and then, we make explicit (see (2.8))

the assumption on the flexibility of the adhesive for two general nonlinear hypere-

lastic models: the Saint Venant–Kirchhoff model and a Ciarlet–Geymonat model.

Both coincide with the usual Hooke law for small displacements (see e.g. Refs. 4

and 5) and then the assumption 2.8 is the most interesting (as has been proved

e.g. in Refs. 2 and 3).

In Sec. 3, in order to complete the formal statement of assumption (A), we define

at first an equivalent problem in a fixed domain and then introduce the assumption

(3.2) on the external loads. Under the previous assumptions we look for a formal

development of the critical points of the mechanical energy I(ε,E(v) and we identify

the first term as a critical point of a suitable energy I0SV, given by (3.7), for the Saint

Venant–Kirchhoff model and I0CG, given by (3.10), for Ciarlet–Geymonat model.

The next sections of the paper are devoted to a mathematical analysis of the

two models. In Sec. 4, we study the Saint Venant–Kirchhoff model. The energy

I0SV is continuous and differentiable for the strong topology of V (defined in (4.3)).

However, the energy is non-convex. In order to prove the existence of at least

one critical point, we introduce the energy Î0SV defined on V̂ (defined by (4.12)),

where the adhesive has been replaced by the surface S and the corresponding part
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of the energy by a surface energy. To a critical point of Î0SV one can associate a

regular critical point of I0SV, i.e. a critical point linear in the thickness variable of the

adhesive. In order to prove that Î0SV has at least one critical point, we remark that

the compact imbedding of H1/2(S) into L2(S) implies the lower semicontinuity for

the weak topology of V̂ . We also prove that, for a suitable choice of the loads, I0SV
may have many (non-regular, i.e. only piecewise linear in the thickness variable of

the adhesive) critical points. We conjecture that only a regular critical point of I0SV
corresponding to a critical point of Î0SV may be a minimum of I0SV. The situation is

completely different for the Ciarlet–Geymonat model I0CG. Indeed, such a functional

is convex and positive on a convex subset U of W (see (5.1) and (5.2)). Following

the approach of J. Ball (Ref. 7), we can prove that there exists a unique minimum

of I0CG. As in Sec. 4 we also introduce a functional Î0CG defined on Û (see (5.14) and

deduce that u is linear in the thickness variable of the adhesive and it is associated

to the unique minimum û of Î0CG .

The last two sections are devoted to the comparison of the models. In Sec. 6 such

a comparison is done in a one-dimensional situation where the structure is composed

of three bars. When the solution is linear in the adhesive one can explicitly compute

the energy in the adhesive as a function of the strain. At last in Sec. 7 we test the

asymptotic models for the single lap joint structure, one of the most studied in the

literature. As in the one-dimensional case, the Ciarlet–Geymonat model is slightly

softer than the Saint Venant–Kirchhoff model. For this last case a comparison is

also done with the complete three-dimensional model. The numerically obtained

rate of convergence is in good agreement with the assumption on the asymptotic

expansion of u(ε).

2. Problem Statement

In the three-dimensional Euclidean space E3 referred to the orthonormal frame

(0; e1, e2, e3), let Ω
− and Ω+ be two disjoint domains with piecewise-C2 boundaries

∂Ω+ and ∂Ω−. Let S = ∂Ω+ ∩ ∂Ω− be the common part of the external surfaces

which is assumed to have a positive 2D measure and which is assumed to be pro-

jectable onto the plane {x3 = 0}. To “insert the adhesive”, let Ω+ (resp. Ω−) be

moved in the e3 (resp. −e3) direction of an amount equal to the half-thickness, εh/2
of the joint. ε is a small dimensionless parameter and h is a global characteristic

length (for example the diameter of Ω). Then, let Ω±ε = {xε := x±εh/2e3,x ∈ Ω±},
Ωmε = {xε := x + εz/2e3,−h < z < h,x ∈ S}, S±ε = {xε := x ± εh/2e3,x ∈ S}
and Ωε = Ω+ε ∪ Ω−ε ∪ Ωmε ∪ S+ε ∪ S−ε be the physical reference configuration of

the assembly (see Fig. 1(a)). Following the usual terminology, Ω+ε and Ω−ε are

filled by the adherents, while Ωmε is filled by the adhesive. The structure is fixed

on the parts Γ+u ⊂ ∂Ω+ε , resp. Γ
−
u ⊂ ∂Ω−ε . The external boundary of the adhe-

sive is traction-free. The complementary part of the boundary Γf is submitted to

surface loads fdε . Obviously, one can consider other types of boundary conditions
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Fig. 1. Bonded assembly: (a) the physical problem (Ωε), (b) the rescaled problem (Ωtr ≡ Ω).

(e.g. a complementary combination of components of the stress vector and of the

displacement as in the numerical example of Sec. 7).

The study is within the framework of nonlinear elasticity and we consider that

each body is made of an isotropic hyperelastic material. A Lagrangian descrip-

tion is used to describe the deformation of the structure: we design by E the

Green–Lagrange strain tensor defined by

E(u) =
1

2
(Ft(u)F(u) − I3) ; F(u) = ∇u+ I3 , (2.1)

where F is the gradient of the mapping xε → xε + uε(xε), uε the displacement

field, I3 is the identity tensor of E
3 and ∇uε = (∂u

ε

∂xε ). Finally, we denote by σ
ε(xε)

the second Piola–Kirchhoff stress, a symmetric tensor-valued field. The hyperelastic

behavior is given by the relation

σε(xε) =
∂W̆ ε

∂E
(xε,E(uε(xε))) , (2.2)

where W̆ ε designs the stored energy function. In this work, we are concerned with

two stored energy functions. These are

• the stored energy function of Saint Venant–Kirchhoff (Ref. 4):

Ŵ ε
SV(F) = W̆ ε

SV(E) =
λε

2
(TrE)2 + µεTrE2

= −3λ
ε + 2µε

4
‖F‖2 + λε + 2µε

8
Tr((FtF)2)

+
λε

4
‖cof F‖2 + 6µε + 9λε

8
, (2.3)
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(‖F‖2 = Tr(FtF), ‖cof F‖2 = 1
2 (‖F‖4 − Tr(FtF)2) where Tr designs the trace

operator), which is the simplest hyperelastic stored energy function valid for

small strains;

• the stored energy function of Ciarlet–Geymonat (Ref. 5):

Ŵ ε
CG(F) = a‖F‖2 + b‖cof F‖2 + Γ(detF) + e , (2.4)

with Γ(δ) = cδ2 − d log(δ) (δ > 0) and with the coefficients a, b, c, d ∈ R∗+ and

e ∈ R satisfying the relations

3a+ 3b+ Γ(1) + e = 0 , 2a+ 4b+ Γ′(1) = 0 ,

2b+
1

2
Γ′(1) +

1

2
Γ′′(1) =

λε

2
, −2b− Γ′(1) = µε ,

(2.5)

leading to:

W̆ ε
CG(E) =

(
λε

2
+ µε

)
TrE+

λε

2
[(TrE)2 − TrE2]

+λεdetE− λε + 2µε

4
log(det(I + 2E)) . (2.6)

Remark 1. For small strains, the stored energy function of Ciarlet–Geymonat

W̆ ε
CG coincides, for a suitable choice of the coefficients as in (2.5), with the stored

energy function W̆ ε
SV (see Ref. 5):

W̆ ε
CG(E) = W̆ ε

SV(E) + o(‖E‖) . (2.7)

Remark 2. The stored energy function of Ciarlet–Geymonat is defined for det

F > 0, which corresponds to the local orientation-preserving condition.

As in Ref. 6, the adhesive is assumed to be soft, i.e. its elastic stiffness is small

with respect to the ones of the adherents. This is stressed by introducing λm, λ+, λ−

(resp. µm, µ+, µ−) independent of ε and of same order, such that:{
λε = λ± , µε = µ± in Ω±ε ,

λε = ελm , µε = εµm in Ωmε .
(2.8)

Finally, the mechanical energy is defined as

Iε(E(v)) =

∫
Ωε

W̆ ε(xε,E(v)) dxε − Lε(v) , (2.9)

Lε being a linear form associated to the surface load:

Lε(v) =

∫
Γf

fdε · v dΓ . (2.10)

In the case of W̆ ε
SV, the corresponding energy, seen as a function of the displacement

field uε, is defined on the functional space

VSV(Ω
ε) = {v ∈ (W 1,4(Ωε))3,v = 0 on Γ±u } , (2.11)
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whereas in the case of W̆CG, the corresponding space is:

VCG(Ω
ε) = {v ∈ (W 1,6(Ωε))3,detF(v) > 0,v = 0 on Γ±u } . (2.12)

Remark 3. The parameter ε being fixed, the solution uε is, at least formally, a

critical point of the mechanical energy. In the case of the stored energy function of

Ciarlet–Geymonat, thanks to J. Ball’s results, we know that there exists a minimum

(Ref. 9). This point is still an open question for the energy associated to W̆ ε
SV

(Ref. 2).

The aim of this paper is to give a rigorous mathematical analysis of the limit

problem obtained formally in Refs. 6 and 8. In the text, the repeated summation

convention is used: Latin i, j, k, . . . (resp. Greek α, β, . . .) indices take their values

in the set {1, 2, 3} (resp. {1, 2}).

3. Rescaling and Asymptotic Expansion

(i) In order to make apparent the dependence on ε of the problem, we define,

following the approach of Ciarlet and Destuynder (Ref. 9), an equivalent problem in

the fixed domain Ωtr (see Fig. 1(b)). For this purpose, we set π
ε : x = (x1, x2, x3) ∈

Ωtr → xε = (xε1, x
ε
2, x

ε
3) ∈ Ωε defined by:



πε(x1, x2, x3) =

(
x1, x2, x3 −

h

2
(1− ε)

)
∈ Ω+ε , for x ∈ Ω+tr ,

πε(x1, x2, x3) = (x1, x2, εx3) ∈ Ωmε , for x ∈ Ωm ,

πε(x1, x2, x3) =

(
x1, x2, x3 +

h

2
(1− ε)

)
∈ Ω−ε , for x ∈ Ω−tr ,

(3.1)

with Ω±tr = {x ± h
2e3,x ∈ Ω±}, Ωm = {x + z

2e3,−h < z < h,x ∈ S}, S± =

{x ± h
2e3,x ∈ S}. In order to simplify the notations, we identify Ω+tr with Ω+

and Ω−tr with Ω−. At last, we set Ω̄ = Ω̄+ ∪ Ω̄− ∪ Ω̄m. The displacement field and

the elastic properties of the bodies are then defined without rescaling: u(ε,x) =

uε(xε) = uε ◦ πε(x), λ(ε,x) = λε(xε) and µ(ε,x) = µε(xε) whereas the following

rescaling of the load is performed:

fdε (x
ε) = εfd(x) . (3.2)

Let us also recall the usual relations ∂
∂xεα

(φε(xε)) = ∂
∂xα

(φ(x)), ∂
∂xε3

(φε(xε)) =

ε−1 ∂
∂x3

(φ(x)) and
∫
Ωmε

φε(xε) dxε = ε
∫
Ωm

φε ◦ πε(x) dx ≡ ε
∫
Ωm

φ(x) dx for any

differentiable function φε defined in Ωmε . Then the equivalent problem is to look for

a critical point of the following energy defined in Ω:

I(ε,E(v)) =

∫
Ω

W̆ (ε,x,E(v)) dx− L(ε,v) , (3.3)

where L(ε,v) = ε
∫
Γf
fd · v dΓ.
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(ii) In the Saint Venant–Kirchhoff case, we obtain∫
Ω

W̆SV(ε,x,E(v)) dx =

∫
Ω±

(
λ±

2
(TrE(v))2 + µ±Tr(E(v))2

)
dΩ

+

∫
Ωm

(ε−2W−2(v) + ε−1W−1(v) +W 0(v)

+ ε1W 1(v) + ε2W 2(v)) dΩ , (3.4)

with

W−2(v) =
1

8
(λm + 2µm)(vk,3vk,3)

2 ,

W−1(v) =
1

2
(λm + 2µm)vk,3vk,3v3,3 ,

W 0(v) =
1

2
(λm + 2µm)v23,3 +

λm

2
vk,3vk,3

(
vα,α +

1

2
vp,αvp,α

)

+
µm

2
(vα,3 + vk,αvk,3)

2 ,

W 1(v) = λm
(
vα,α +

1

2
vk,αvk,α

)
v3,3 + µmv3,α(vα,3 + vk,αvk,3) ,

W 2(v) =
λm

2

(
vα,α +

1

2
vk,αvk,α

)2
+
µm

2
v3,αv3,α

+
µm

4
(vα,β + vβ,α + vk,αvk,β)(vα,β + vβ,α + vl,αvl,β) .

This suggests to look formally for a solution u(ε,x) such that:

u(ε,x) = u0(x) + εu1(x) + · · · . (3.5)

One can easily show that, thanks to (3.2), u0 ≡ 0 in Ω leading to the expansion

ISV(ε,E(u(ε))) = ε2I0SV(u
1) +O(ε3) . (3.6)

As a consequence, the initial problem is, for the leading term, formally reduced to

the search of the critical points of the following energy:

I0SV(v) =

∫
Ω

W̆ 0(x,E(v)) dx − L0(v) , (3.7)

with∫
Ω

W̆ 0(x,E(v)) dx

=

∫
Ω±

(
λ±

2
(Tr e(v))2 + µ±Tr(e(v))2

)
dΩ

+

∫
Ωm

(
W−2(v) +W−1(v) +

1

2
(λm + 2µm)v23,3 +

µm

2
vα,3vα,3

)
dΩ , (3.8)
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where L0(v) =
∫
Γf
fd ·v dΓ and e(v) = 1

2 (∇v+(∇v)t) the linear part of the strain
tensor E.

(iii) In a similar way for the Ciarlet–Geymonat case, we assume u(ε,x) =

εu1(x) + · · · and we obtain

ICG(ε,E(u(ε))) = ε2I0CG(u
1) +O(ε3) , (3.9)

with

I0CG(v) =

∫
Ω±

(
λ±

2
(Tr e(v))2 + µ±Tr(e(v))2

)
dΩ

+

∫
Ωm

(
µm +

λm

2

)(
1

2
v23,3 + v3,3 − log(1 + v3,3)

)
dΩ

+

∫
Ωm

µm

2
vα,3vα,3dΩ−

∫
Γf

fd · v dΓ . (3.10)

In the following, the quantity u1 will be simply noted as u.

4. Study of the Limit Problem: The Saint Venant Kirchhoff Case

(i) From the relation

W−2(v) +W−1(v) +
1

2
(λm + 2µm)v23,3 +

µm

2
vα,3vα,3

=
1

8
(λm + 2µm)((v21,3 + v22,3) + (v3,3 + 1)2 − 1)2 +

µm

2
(v21,3 + v22,3) , (4.1)

the limit energy becomes simply:

I0SV(v) =

∫
Ω±

(
λ±

2
(Tr e(v))2 + µ±Tr(e(v))2

)
dΩ

+
1

8

∫
Ωm

(λm + 2µm)((v21,3 + v22,3) + (v3,3 + 1)2 − 1)2dΩ

+
1

2

∫
Ωm

µm(v21,3 + v22,3) dΩ− L0(v) . (4.2)

Then, assuming fd ∈ (L2(Γf ))
3, the functional I0SV is defined and continuous on

the space:

V = {v− ∈ (H1(Ω−))3,v+ ∈ (H1(Ω+))3,vm ∈ (L4(Ωm))3, vmk,3 ∈ L4(Ωm) ,

v+|S+ = vm|S+ ;v
−
|S− = vm|S− ,v

± = 0 on Γ±u } , (4.3)

where v+, v− and vm are the restrictions of v to Ω+, Ω+ and Ωm, respectively. V

is endowed with the natural norm ‖v‖V such that:

‖v‖2V = ‖v+‖2(H1(Ω+))3 + ‖v−‖2(H1(Ω−))3 + ‖vm‖2(L4(Ωm))3 + ‖vm,3‖2(L4(Ωm))3 . (4.4)
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Proposition 1. I0SV is continuous for the strong topology of V and we have, for

all w ∈ V :

DI0SV(u)(w) =

∫
Ω±

(λ±ekk(u)ekk(w) + 2µ±eij(u)eij(w)) dΩ

+
1

2

∫
Ωm

(λm + 2µm)((u21,3 + u22,3) + (u3,3 + 1)2 − 1)

× (u1,3w1,3 + u2,3w2,3 + (u3,3 + 1)w3,3) dΩ

+

∫
Ωm

µm(u1,3w1,3 + u2,3w2,3) dΩ−
∫
Γf

fd ·w dΓ . (4.5)

Remark 4. The functional I0SV is not convex; as a consequence, the continuity for

the strong topology does not imply the lower semi-continuity for the weak topology.

(ii) Thanks to Proposition 1, the critical points u ∈ V of I0SV are solutions of the

following variational problem: ∀w ∈ V ,

(P)




∫
Ω±

(λ±ekk(u)ekk(w) + 2µ±eij(u)eij(w)) dΩ

+
1

2

∫
Ωm

(λm + 2µm)((u21,3 + u22,3) + (u3,3 + 1)2 − 1)

× (u1,3w1,3 + u2,3w2,3 + (u3,3 + 1)w3,3) dΩ

+

∫
Ωm

µm(u1,3w1,3 + u2,3w2,3) dΩ =

∫
Γf

fd ·w dΓ .

(4.6)

The corresponding local equations are:

σ±ij = λ±ekk(u

±)δij + 2µ±eij(u
±) in Ω± ,

σ±ij,j = 0 in Ω± ,
(4.7)



σmα3 = µmumα,3 in Ωm ,

σm33 =
1

2
(λm + 2µm)[(um1,3)

2 + (um2,3)
2 + (um3,3 + 1)2 − 1] in Ωm ,

(σmi3 + σm33u
m
i,3),3 = 0 in Ωm ,

(4.8)

{
u± = um on S± ,

σ±i3 = σmi3 + σm33u
m
i,3 on S± ,

(4.9)

{
u± = 0 on Γ±u ,

σ± · n = fd on Γf .
(4.10)

It appears that, at the first order, the behavior in the adherents is that of linear elas-

ticity whereas it remains nonlinear in the adhesive. In order to prove the existence
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of at least one solution to problem (P), we introduce the following functional

Î0SV(v) =
1

2

∫
Ω±

(λ+(ekk(v
±))2 + 2µ±eij(v

±)eij(v
±)) dΩ

+
1

2h

∫
S

λm + 2µm

4h2
([v1]

2 + [v2]
2 + ([v3] + h)2 − h2)2dΩ

+
1

2h

∫
S

µm([v1]
2 + [v2]

2) dΩ−
∫
Γf

fd · v dΓ , (4.11)

where [v](x1, x2) = v+(x1, x2,
h
2 )−v−(x1, x2,−

h
2 ) defined on S, is the jump of the

displacement field across Ωm. Î0SV is defined on the space

V̂ = {v− ∈ (H1(Ω−))3,v+ ∈ (H1(Ω+))3;v± = 0 on Γ±u } , (4.12)

endowed with the norm ‖v‖V̂ such that ‖v‖2
V̂
= ‖v+‖2(H1(Ω+))3 + ‖v−‖2(H1(Ω−))3 .

Proposition 2. If û ∈ V̂ is a critical point of Î0SV, then

u =



û in Ω± ,

û+

h

(
h

2
+ x3

)
+
û−

h

(
h

2
− x3

)
in Ωm ,

(4.13)

is a regular solution of problem (P).

Proof. Thanks to the continuous imbedding (H1/2(S))3 ⊂ (L4(S))3, we verify

that u defined by (4.13) belongs to V . Furthermore, if û is a critical point of Î0SV,

then for all ŵ ∈ V̂ ,∫
Ω±

(λ±ekk(û)ekk(ŵ) + 2µ±eij(û)eij(ŵ)) dΩ

+
1

h

∫
S

λm + 2µm

2h2
([û1]

2 + [û2]
2 + ([û3] + h)2 − h2)

× ([û1][ŵ1] + [û2][ŵ2] + ([û3] + h)[ŵ3]) dS

+
1

h

∫
S

µm([û1][ŵ1] + [û2][ŵ2]) dS =

∫
Γf

fd ·w dΓ . (4.14)

Using (4.5) and (4.13), we have for w ∈ V ,

DI0SV(u)(w) =

∫
Ω±

(λ±ekk(û)ekk(ŵ) + 2µ±eij(û)eij(ŵ)) dΩ

+
1

2

∫
Ωm

(λm + 2µm)

(
1

h2
([û1]

2 + [û2]
2) +

(
[û3]

h
+ 1

)2
− 1

)

×
(
[û1]

h
w1,3 +

[û2]

h
w2,3 +

(
[û3]

h
+ 1

)
w3,3

)
dΩ

+

∫
Ωm

µm
(
[û1]

h
w1,3 +

[û2]

h
w2,3

)
dΩ−

∫
Γf

fd ·w dΓ . (4.15)
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Then, since w ∈ V implies ŵ ≡ w|Ω+∪Ω− ∈ V̂ , we deduce, identifying S+ and S−

with S, and thanks to (4.14) and to the Fubini’s theorem that DI0SV(u)(w) = 0 for

all w ∈ V .

(iii) Theorem 1. The functional Î0SV defined on the space V̂ has at least one

critical point.

Proof. To obtain the result, we show that Î0SV is lower bounded on V̂ and reaches

its infimum. Thanks to the Korn’s inequality, there exist two reals α > 0, β > 0

such that

Î0SV(v) ≥ α‖v‖2
V̂
− β‖fd‖(L2(Γf ))3‖v‖V̂ . (4.16)

As a consequence, we have to show only the lower semi-continuity for the weak

topology. From the relation:

([v1]
2 + [v2]

2 + [v3 + h]2 − h2)2

= ([v1]
2 + [v2]

2 + [v3 + h]2)2 + h4 − 2h2([v1]
2 + [v2]

2 + [v3 + h]2) , (4.17)

Î0SV appears to be the sum of a convex and continuous terms for the strong topology,

a continuous linear form and an additional term: − 1
4h

∫
S
(λm+2µm)([v1]

2+ [v2]
2+

[v3 + h]2) dS. The compactness of the injection H1/2(S) ⊂ L2(S) implies that this

additional term is weakly continuous. Since a convex and continuous function is also

weakly lower semi-continuous, Î0SV is lower semi-continuous. The minimum is then

reached.

(iv) Identifying S+ and S− with S, the transmission conditions on S become, for

any critical point of Î0SV:

σ+α3 = σ−α3 =

µm

h
[uα] +

λm + 2µm

2h3
([u1]

2 + [u2]
2 + ([u3] + h)2 − h2)[uα] ,

σ+33 = σ−33 =
λm + 2µm

2h3
([u1]

2 + [u2]
2 + ([u3] + h)2 − h2)([u3] + h) .

(4.18)

From (4.13) and (4.18) it follows that any critical point of Î0SV gives rise to a solution

of the problem with linear displacements and constant stresses in the adhesive.

The structure of the system (4.18) suggests that, for some choice of fd, the

functional Î0SV could have many critical points. For fd ≡ 0, v̂ = 0 is the unique

minimum. Furthermore, we have:

D2Î0SV(v)(w, ŵ) =

∫
Ω±

(λ±ekk(w)ekk(ŵ) + 2µ±eij(w)eij(ŵ)) dΩ

+
1

h

∫
S

µm([w1][ŵ1] + [w2][ŵ2]) dS

+
1

2h3

∫
S

(λm + 2µm)([v1]
2 + [v2]

2 + ([v3] + h)2 − h2)
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× ([w1][ŵ1] + [w2][ŵ2] + [w3][ŵ3]) dS

+
1

h3

∫
S

(λm + 2µm)([v1][ŵ1] + [v2][ŵ2] + ([v3] + h)[ŵ3])

× ([v1][w1] + [v2][w2] + ([v3] + h)[w3]) dS , (4.19)

leading to

D2Î0SV(0)(w, ŵ) =

∫
Ω±

(λ±ekk(w)ekk(ŵ) + 2µ±eij(w)eij(ŵ)) dΩ

+
1

h

∫
S

µm([w1][ŵ1] + [w2][ŵ2]) dS

+
1

h

∫
S

(λm + 2µm)[w3][ŵ3] dS , (4.20)

which is a definite positive isomorphism. This implies that Î0SV is strictly convex at

0 and so, for ‖fd‖(L2(Γf ))3 small enough, the functional Î0SV has a unique absolute

minimum. Similar arguments can be used on the functional I0SV to prove

Proposition 3. There exists δ > 0 such that for ‖fd‖(L2(Γf ))3 < δ, the problem

(P) has a unique solution, which is the absolute minimum of I0SV on V.

(v) In order to study the non-uniqueness of the solution of (P), let us consider the
application G : R3 → R3; (x1, x2, x3)→ (G1, G2, G3) defined by:



G1(x1, x2, x3) = µmx1 +
λm + 2µm

2
x1(x

2
1 + x22 + (x3 + 1)2 − 1) ,

G2(x1, x2, x3) = µmx2 +
λm + 2µm

2
x2(x

2
1 + x22 + (x3 + 1)2 − 1) ,

G3(x1, x2, x3) =
λm + 2µm

2
(x21 + x22 + (x3 + 1)2 − 1)(1 + x3) .

(4.21)

Then, Eqs. (4.8) and (4.9) become simply:{
u± = um on S± ,

G(um,3 ) = σ
+ · e3 = σ− · e3 in Ωm .

(4.22)

If, fd being fixed, this system determine um,3 in a unique way, then um is linear

with respect to x3 in Ωm and it is so completely determined by [u]. This solution

corresponds to the regular one obtained from Proposition 2. If, on the contrary,

the system (4.22) possesses several solutions, then, we can take um piecewise linear

with respect to the variable x3 on arbitrary subintervals of ]− h2 ,
h
2 [. These solutions

do not correspond to critical points of Î0SV. An example of this situation is given

by the case σ+ · e3 = 0. In this case, the system (4.22) has the solutions
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umi,3 = 0 , (4.23)

umα,3 = 0 , um3,3 = −1 , (4.24)

(um1,3)
2 + (u2,3)

2 =
λm

λm + 2µm
, um3,3 = −1 . (4.25)

If fd ≡ 0, the unique solution is umi,3 = 0, which corresponds to the regular solution

of Proposition 2, and so I0SV has a strict minimum. Besides, thanks to a straight-

forward computation of the second derivative, we can easily show that the other

solutions do not correspond to a strict minimum of I0SV. We conjecture that this

situation is general: the minima of I0SV are (regular) critical points associated to

the minima of Î0SV.

5. Study of the Limit Problem: The Ciarlet Geymonat Case

(i) The functional I0CG (3.10) is defined on the set:

U = {v = (v−,vm,v+);v ∈ (L2(Ω))3,v− ∈ (H1(Ω−))3,v+ ∈ (H1(Ω+))3 ,

vmk,3 ∈ L2(Ωm), (1 + vm3,3) > 0 p.p. in Ωm, log(1 + vm3,3) ∈ L1(Ωm) ,

v+|S+ = vm|S+ ,v
−
|S− = vm|S− ,v = 0 on Γ±u } . (5.1)

By virtue of the convexity of the function x → x − log(1 + x), U is a non-empty

(0 ∈ U) convex set of the Hilbert’s space:

W = {v = (v−,vm,v+);v ∈ (L2(Ω))3,v− ∈ (H1(Ω−))3,v+ ∈ (H1(Ω+))3 ,

vmk,3 ∈ L2(Ωm),v+|S+ = vm|S+ ,v
−
|S− = vm|S− ,v = 0 on Γ±u } , (5.2)

endowed with the natural norm ‖v‖W such that

‖v‖2W = ‖v+‖2(H1(Ω+))3 + ‖v−‖2(H1(Ω−))3 + ‖vm‖2(L2(Ωm))3 + ‖vm,3‖2(L2(Ωm))3 . (5.3)

Following the approach of J. Ball (see Ref. 7), we extend the domain of definition

of I0CG to W . To this end, let us define the function g : R→ R̄ ≡ R ∪ {±∞}:

g(ζ) =


 (λm + 2µm)

(
1

2
ζ2 + ζ − log(1 + ζ)

)
if 1 + ζ > 0 ,

+∞ if 1 + ζ ≤ 0 .
(5.4)

Remark 5. g is a Carathéodory’s function.

Lemma 1. The functional

v→ F (v) =

∫
Ωm

g(v(x)) dx , (5.5)

is convex, positive and weakly lower semi-continuous from L2(Ωm) to R̄.



February 8, 2004 10:8 WSPC/103-M3AS 00334

14 F. Krasucki, A. Münch & Y. Ousset

Proof. Since g(ζ) ≥ 0 and is a Carathéodory’s function, the functional F is positive

and lower semi-continuous from L2(Ωm) to R̄ (see Ref. 10). Furthermore, ζ → g(ζ)

is convex and so v→ F (v) is convex.

(ii) Theorem 2. There exists at least an element u ∈ U such that :

I0CG(u) = Inf
v∈U

I0CG(v) . (5.6)

Proof. From 0 ∈ U and I0CG(0) = 0, we deduce that:

Inf
v∈U

I0CG(v) ≤ 0 . (5.7)

We then extend the definition of the functional I0CG to the space W by defining:

Ī0CG(v) =

∫
Ω±

(
λ±

2
(ekk(v

±))2 + µ±eij(v
±)eij(v

±)

)
dΩ+

1

2
F (vm3,3)

+
1

2

∫
Ωm

µm((vm1,3)
2 + (vm2,3)

2) dΩ−
∫
Γf

fd · v dΓ . (5.8)

We remark that Ī0CG(v) < ∞ ⇒ v ∈ U . Indeed, if Ī0CG(v) < ∞, then F (vm3,3) =∫
Ωm g(vm3,3(x)) dx <∞ and so 1 + vm3,3 > 0 p.p. in Ωm. Besides,

log(1 + vm3,3) =
1

2
(vm3,3)

2 + vm3,3 −
1

λm + 2µm
g(vm3,3(x)) ∈ L1(Ωm) , (5.9)

thanks to vm3,3 ∈ L2(Ωm), g(vm3,3) ∈ L1(Ωm) and 1
λm+2µm ∈ L∞(Ωm). We deduce

then

Ī0CG(v) = I0CG(v) <∞⇐⇒ v ∈ U . (5.10)

Then, thanks to Lemma 1, Ī0CG is convex, weakly lower semi-continuous on W in

R̄. Since g(ζ) ≥ 1
2 (λ

m + 2µm)ζ2, for ζ > −1, we deduce, like in Ref. 2, that there

exist two reals α > 0, β > 0 such that:

Ī0CG(v) ≥ α‖v‖2W − β‖fd‖L2(Γf )‖v±‖(H1(Ω±))3 . (5.11)

Hence, there exists u ∈ W such that Ī0CG(u) = Infv∈W Ī0CG(v) ≤ 0. From (5.10),

u ∈ U showing that Ī0CG reaches (and so I0CG) its minimum on u ∈ U :
I0CG(u) = inf

v∈U
I0CG(v) = inf

v∈W
Ī0CG(v) . (5.12)

Proposition 4. The minimum u of I0CG is unique.

Proof. The result is a direct consequence of the strict convexity of the application

ζ → g(ζ) for 1 + ζ > 0.

When the solution u satisfies the regularity condition (1 + um3,3)
−1 ∈ L∞(Ωm),

then Ī0CG admits a directional derivative for all v ∈ W∞ = {v ∈ W ; vm3,3 ∈
L∞(Ωm)}. Moreover the minimum u satisfies the following variational equation

for all v ∈W∞:
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(Q)




∫
Ω±

(λ±ekk(u
±)ekk(v

±) + 2µ±eij(u
±)eij(v

±)) dΩ

+
1

2

∫
Ωm

(λm + 2µm)

(
1 + um3,3 −

1

1 + um3,3

)
vm3,3dΩ

+

∫
Ωm

µm(um1,3v
m
1,3 + um2,3v

m
2,3) dΩ−

∫
Γf

fd · v dΓ = 0 .

(iii) As in the Saint Venant–Kirchhoff case, it is possible to define the functional

Î0CG(v) =
1

2

∫
Ω±

(λ±(ekk(v
±))2 + 2µ±eij(v

±)eij(v
±)) dΩ

+
1

2h

∫
S

(λm + 2µm)

(
1

2
[v3]

2 + h[v3]− h2 log

(
1 +

[v3]

h

))
dS

+
1

2h

∫
S

µm([v1]
2 + [v2]

2) dS −
∫
Γf

fd · v dΓ , (5.13)

on the set

Û =

{
v− ∈ (H1(Ω−))3,v+ ∈ (H1(Ω+))3, 1 +

[v3]

h
> 0 p.p. on S ,

log

(
1 +

[v3]

h

)
∈ L1(S),v± = 0 on Γ±u

}
, (5.14)

which is a nonempty convex subset of the Hilbert space:

Ŵ = {v− ∈ (H1(Ω−))3,v+ ∈ (H1(Ω+))3;v± = 0 on Γ±u } ,

endowed with the natural norm ‖v‖2
Ŵ

= ‖v+‖2(H1(Ω+))3 + ‖v−‖2(H1(Ω−))3 . Then, in
a similar way to Lemma 1, we have:

Lemma 2. Let ĝ be the Carathéodory’s function defined as:

ĝ(ζ) =



(λm + 2µm)

(
1

2
ζ2 + hζ − h2 log

(
1 +

ζ

h

))
if 1 +

ζ

h
> 0 ,

+∞ if 1 +
ζ

h
≤ 0 .

(5.15)

Then, the functional v→ F̂ (v) =
∫
S
ĝ(v(x)) dS is convex positive and weakly lower

semi-continuous from L2(S) to R̄.

As in the proof of Theorem 2, we extend the definition of Î0CG(v) to the space

Ŵ with:

Ĩ0CG(v) =
1

2

∫
Ω±

(λ±(ekk(v
±))2 + 2µ±eij(v

±)eij(v
±)) dΩ

+
1

2h

∫
S

µm([v1]
2 + [v2]

2) dS +
1

2h
F̂ ([v3])−

∫
Γf

fd · v dΓ . (5.16)

Then, in a similar approach to Theorem 2 and Proposition 4, we obtain
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Theorem 3. There exists a unique element û ∈ Û such that :

Î0CG(û) = inf
v∈Û

Î0CG(u) = inf
v∈Ŵ

Ĩ0CG(v) . (5.17)

When the solution û satisfies the regularity condition (h+ [û3])
−1 ∈ L4/3(S), then

Î0CG is Gâteaux-differentiable at û. Moreover, the minimum û can be characterized

by the following variational equation ∀v ∈ Ŵ :

(Q̂)




∫
Ω±

(λ±ekk(û
±)ekk(v

±) + 2µ±eij(û
±)eij(v

±)) dΩ

+
1

2h

∫
S

(λm + 2µm)

(
h+ [û3]−

1

h+ [û3]

)
[v3] dS

+
1

h

∫
S

µm([û1][v1] + [û2][v2]) dS −
∫
Γf

fdv dΓ = 0 .

(iv) Proposition 5. If û ∈ Û verifies (5.17) then

ũ =



û in Ω± ,

û+

h

(
h

2
+ x3

)
+
û−

h

(
h

2
− x3

)
in Ωm ,

(5.18)

is the minimum of I0CG.

Proof. (i) Let us verify that ũ ∈ U . Indeed, if ũ ∈ Û , then ũ defined by (5.18)

verifies ũm = û+

h (h2+x3)+
û−

h (h2 −x3) ∈ L2(Ωm), ũm,3 =
[û]
h ∈ (L2(Ωm))3, 1+ ũm3,3 =

1 + [û3]
h

> 0 p.p. in Ωm and
∫
Ωm log(1 + ũm3,3) dΩ

m = h
∫
S
log(1 + [û3]

h
) dS <∞.

(ii) Finally, let us show that

Ĩ0CG(ũ) ≤ Ĩ0CG(v) ∀v ∈ U . (5.19)

We associate to v the function ṽ as follows:

ṽ =



ṽ± = v± in Ω± ,

ṽm =
v+

h

(
h

2
+ x3

)
+
v−

h

(
h

2
− x3

)
in Ωm .

(5.20)

Then, using the equality ṽm,3 =
[v]
h
= 1
h

∫ h
2

−h2
v,3dx3 and the convexity of ζ → g(ζ),

we write

g(ṽm3,3) ≤
1

h

∫ h
2

−h2
g(vm3,3) dx3 . (5.21)

For v ∈ W , we note v̂ ∈ Ŵ the restriction of v to Ω+ and Ω−. An explicit

computation leads, with (5.20) and (5.21), to Ĩ0CG(v̂) ≤ Ĩ0CG(ṽ) ≤ Ĩ0CG(v) and so,

thanks to (5.17), we get for any v ∈W :

Î0CG(û) = I0CG(ũ) ≤ Ĩ0CG(v̂) ≤ Ĩ0CG(v) . (5.22)
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Fig. 2. Strain energies I0Ωm associated to W̆SV(E) [(SV )], to W̆CG(E) [(CG)] and to W̆SV(e)
[Hooke].

6. Comparison in the One-Dimensional Case

In the one-dimensional case, we consider a structure composed of three bars. The

adherents have a length h and the adhesive bar has a length εh. We consider only

the most significant case when the solution is linear in the adhesive. In the Saint

Venant–Kirchhoff case, thanks to Proposition 2, the energy of the solution in the

adhesive is:

I0Ωm(u3) =
h

2
(λm + 2µm)

(
[u3]

h
+

1

2

(
[u3]

h

)2)2
. (6.1)

The transmission conditions (4.9) become simply

σ±33 = (λm + 2µm)

(
[u3]

h
+

1

2

(
[u3]

h

)2)(
1 +

[u3]

h

)
. (6.2)

In the Ciarlet–Geymonat case, we obtain in a similar way, by virtue of Proposition 5

I0Ωm(u3) =
h

2
(λm + 2µm)

(
[u3]

h
+

1

2

(
[u3]

h

)2
− log

(
1 +

[v3]

h

))
. (6.3)

The transmission conditions can be written as:

σ±33 =

(
λm

2
+ µm

)(
1 +

[u3]

h
− 1

1 + [u3]
h

)
. (6.4)
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Fig. 3. Stress σ±33 associated to W̆SV(E) [(SV )], to W̆CG(E) [(CG)] and to W̆SV(e) [Hooke].

Figure 2 represents the limit strain energy associated to the adhesive, up to the

constant 2
h(λm+2µm) as a function of the dimensionless quantity [u3]

h
, for the two

stored energy functions. The figure depicts also the limit energy obtained with

the stored energy function W̆SV(e) = λ
2 (Tr e)

2 + µTr(e2): I0Ωm(u3) = h
2 (λ

m +

2µm)( [u3]
h
)2. As expected with the relation (2.7), the three energies coincide for

small strains [u3]h . Furthermore, the graphs clearly show that the strain energy

associated to W̆SV is not convex (Remark 4) and that the strain energy associated

to W̆CG has a vertical asymptote: the flattening of the adhesive ([u3] = −h) would
require an infinite strain energy.

Similar conclusions can be obtained from the evolution of σ±33 (up to the constant
1

λm+2µm ) as a function of the strain [u3]
h

described in Fig. 3. The stress associated

to W̆CG is an increasing function of [u3]
h

for [u3] > −h. At last, the behavior of the
material of Ciarlet–Geymonat appears softer, for a traction load ( [u3]

h
> 0) than

Saint Venant–Kirchhoff materials, and conversely stiffer for a compressive load

( [u3]
h

< 0).

7. A Numerical Example: The Single-Lap Joint

In this paragraph, the limit models are tested on the single-lap joint structure, often

used as a typical example (see e.g. Ref. 11). As shown in Fig. 4, the structure consists

of two aluminum plates and of a thin adhesive layer of epoxy type. The material
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Fig. 4. The single-lap joint: h = 3 mm, l1 = 60 mm, l2 = 120 mm, l3 = 30 mm, adhesive
thickness εh = 0.3 mm.

Table 1. Material characteristics.

E (MPa) ν

Adherents 70, 000 0.3
Adhesive 3, 000 0.36

characteristics are reported in Table 1. The structure is fixed on Γ−u ⊂ ∂Ω−ε . On Γ+f
the component u3 is equal to zero, the normal load component f1 is given equal to

8 MPa and the tangential load component in the direction e2 is equal to zero.

A finite element method is used to determine critical points of Î0SV and Î0CG in

the space V̂ and Û respectively (a numerical resolution of the problem associated

to IεCG is presented in Ref. 12). More precisely, a finite element with 16 degrees

of freedom is used: the shape functions are quadratic with respect to the in-plane

variables (x1, x2) and linear with respect to the out-of-plane variable x3. When

the limit models are used, the joint Ωmε is substituted by its mid-surface S, where

all the nodes are merged in the reference configuration. At last, the numerical

algorithm is based on a Newton’s method and is displacement controlled.

For the single-lap joint structure, a mesh of 3, 246 nodes is considered. Figures 5

and 6 depict the jumps [u1] and [u3] respectively, along the line γ = {(x1 = 60, x2 ∈
[0, l3], x3 = 0)} ⊂ ∂S∩∂Ω−∩∂Ω+ (see Fig. 4), obtained for the limit models (noted

(SV) for the Saint Venant–Kirchhoff case (Î0SV) and noted (CG) for the Ciarlet–

Geymonat case (Î0CG)). The two limit problems give close results: the limit model

associated to W̆ εCG is slightly softer than the model associated to W̆ εSV. The figures

depict also the jumps, obtained from the initial problem associated to W̆ εSV. In this

case, the joint was meshed using one element in the thickness. The difference, which

remains small, is more important for the first component (about an error of 8%)

than for the third one (less than 1%). This result can be explained by the fact that

the nonlinear terms of the plane strains Eαβ and the transverse shear strains Eα3,

predominant here, are neglected in the limit models. The predominant strain is E13
and reaches approximately the value 0.035 on the line γ. The differences for the

second components [u2] are very small and are not presented. The results obtained

with more than one element in the thickness of the adhesive are very closed.

At last, the aim of Fig. 7 is to compare more precisely the results of the limit

model with the results of the initial model. Only the Saint Venant–Kirchhoff case is
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Fig. 5. Jump [u1] along the line γ = (60, x2, 0).
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Fig. 6. Jump [u3] along the line γ = (60, x2, 0).
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Fig. 7. Comparisons between the limit and complete model (Saint Venant–Kirchhoff case).
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Fig. 8. Configuration of the single lap joint at equilibrium (isovalues represent the strain E11).
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discussed. The figure depicts, as a function of the parameter ε, the gap on the jump

[u1] (60, 15, 0) between the limit and the initial model. This gap is noted C[u1] on

Fig. 7. The figure depicts also the quantities C(u1S) and C(u1I) (u1S designs u+1 ,

u1I designs u−1 and let us recall that [u1] = u
+
1 − u−1 ). As expected, the three gaps

converge toward zero when the parameter ε tends to zero. The rates of convergence

can be evaluated. We obtain:

C([u1]) = O(ε1.072) , C(u1S) = O(ε1.026) , C(u1I) = O(ε1.202) . (7.1)

These rates of convergence are in complete agreement with the formal expansion

(3.5) and suggest that the limit model is an approximation of order ε of the initial

model. Finally, Fig. 8 represents the configuration of the structure at equilibrium.
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