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Instituto de Matemática, Universidade Federal do Rio de Janeiro
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Abstract. We consider a dynamical one-dimensional nonlinear Marguerre-

Vlaslov model for an elastic arch depending on one parameter ε > 0 and study
its asymptotic behavior for large time as ε → 0. Introducing appropriate

boundary feedbacks, we prove that the corresponding energy decays exponen-
tially uniformly with respect to ε and the curvature. The analysis highlights
the importance of the damping mechanism - assumed to be proportional to

εα, 0 ≤ α ≤ 1 - on the longitudinal deformation of the arch. The limit as
ε → 0, first exhibits a linear and a nonlinear arch model, for α > 0 and

α = 0 respectively and then, permits to obtain exponential decay properties.
Some numerical experiments confirm the theoretical results, analyze the cases
α /∈ [0, 1] and evaluate the influence of the curvature on the stabilization.

1. Introduction - Problem statement. We are concerned in this work with the
stabilization of a nonlinear shallow arch model by boundary feedbacks. More pre-
cisely, we are devoted to proving how standard arch models may be obtained as
singular limit of a 1-D Marguerre-Vlasov system - with respect to a small param-
eter ε -, so that the exponential decay rate of the energy remains uniform as this
parameter goes to zero. A similar issue was addressed in [14] with internal damp-
ing mechanism and Dirichlet boundary condition. Here, we carry out the control
strategy which is given in [13] to study the model when the dissipation acts on
the boundary, a situation which add important technical difficulties. Our analysis
shows how crucial are the boundary conditions on the nature of the limit system
and on the decay properties.

A widely accepted dynamical model to describe large deflections of an elastic
shallow arch is the so-called Marguerre-Vlasov system (see [1, 2, 19] and the refer-
ences therein). Precisely, for Ω = (0, L) where L designates the length of the arch,
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the following system is considered :
{

εuε
tt − h(uε

x, w
ε)x = 0 x ∈ Ω, t > 0,

wε
tt − wε

xxtt + wε
xxxx − (wε

xh(u
ε
x, w

ε))x + k(x)h(uε
x, w

ε) = 0 x ∈ Ω, t > 0,

(1)
where h denotes the longitudinal strain of the arch

h(uε
x, w

ε) =

(

uε
x +

1

2
(wε

x)2 + k(x)wε

)

. (2)

For simplicity, we put here the physical constants equal to one. The quantities uε =
uε(x, t) and wε = wε(x, t) represent, respectively, the longitudinal and transversal
displacement of the arch at point x ∈ Ω = (0, L) and at time t > 0. k = k(x)
represents the curvature of the arch and is assumed to be small enough. Finally,
ε denotes a real positive parameter, introduced by Berger in [1] in the context of
plates in order to make the link between Von Kármán system (see [4]) for which
ε = 1 and Kirchhoff-Love’s system (see for instance [8]) for which ε = 0. Thus,
the nonlinear model above reflects the effects of stretching on bending, a necessary
consideration for arch that undergoes large deflections from the equilibrium point
u = w = 0.

We assume that the arch is clamped at x = 0

uε(0, t) = wε(0, t) = wε
x(0, t) = 0, ∀t > 0. (3)

On the other edge x = L of the arch, assuming that the velocities uε
t (L, t) and

wε
t (L, t) and the rate of bending wε

xt(L, t) can be measured for all t > 0, we prescribe
the following boundary feedback terms in the form of moments and shears :







h(uε
x, w

ε)(L, t) = −γ uε
t (L, t), t > 0,

(wε
xxx − wε

xtt − h(uε
x, w

ε)wε
x)(L, t) = wε

t (L, t), t > 0,

wε
xx(L, t) = −wε

xt(L, t), t > 0,

(4)

with γ ∈ R. In the sequel, in order to have only one parameter in the model, we
assume that γ may be expressed in term of ε as follows :

γ(ε) = εα, α ∈ R. (5)

At last, the initial condition for (1)-(4) are

(uε(x, 0), uε
t (x, 0), wε(x, 0), wε

t (x, 0)) = (u0, u1, w0, w1), 0 ≤ x ≤ L (6)

with (u0, u1, w0, w1) independent of ε.
Then, the energy associated to (1)-(6) is defined by

Eε(t) =
1

2

∫ L

0

{

ε(uε
t )

2 + (wε
t )

2 + (wε
xt)

2 + (wε
xx)2 + h(uε

x, w
ε)2

}

dx,∀t > 0 (7)

and according to the boundary conditions (4) and (5), it satisfies (formally) the
following dissipation law

dEε(t)

dt
= −εα(uε

t )
2(L, t) − (wε

t )
2(L, t) − (wε

xt)
2(L, t), ∀t > 0. (8)

Therefore, the boundary terms play the role of feedback damping mechanisms and
one can wonder if the energy decays to zero as time goes to infinity. In this paper, we
analyze both theoretical and numerically the following two questions with respect
to the value of α :

1. Uniform stabilization of Eε with respect to ε and the curvature k;
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2. Convergence of the solution {uε, wε} as ε goes to zero.

In a first part, we show that, for α ∈ [0, 1], the energy Eε decays exponentially
in time, uniformly with respect to the parameter ε and the curvature k. In this
way, we make use of multipliers as in [13] to obtain non standard energy identities.
These identities and the assumption on the smallness of the curvature then allow
to construct an appropriate Lyapunov function leading to the decay property.

In a second part, we show that the asymptotic limit of the system (1) permits
to recover two modelizations of the transversal displacement of a beam partially
clamped. For α > 0, we obtain that the limit w of the transversal displacement wε

is solution of the classical linear beam equation of fourth order

wxx − wxxtt + wxxxx = 0 (9)

whereas for α = 0, we obtain the nonlinear equation

wxx − wxxtt + wxxxx − 1

L

[

ζ +

∫

Ω

(
w2

x

2
+ k(x)w

)

dx

]

(wxx − k(x)) = 0 (10)

where ζ = ζ(t) is a time-scalar function, solution of a first order ODE and related to
the limit u of uε via the initial condition ζ(0) = uε(L, 0) = u0(L). In this respect,
results of this paper may also be considered as a contribution in the context of
vibration modelling. The connections between the various models available for a
given mechanical problem are often described by means of singular perturbation
problems. We refer the reader to the monograph of Ciarlet [4] in which various
shell models are derived as singular limits of the 3-D elasticity system and [5] for
an asymptotic analysis of nonlinear beam models.

The outline of the paper is as follows. In section 2, we apply a general result of
Lagnese-Leugering [13] to show the well-posedness of the nonlinear boundary value
problem (1-6) in the space of finite energy. Section 3 is then devoted to the proof of
the uniform exponential decay of Eε. In Section 4, combining energy estimates and
compactness arguments, we derive the two asymptotic limits of (uε, wε) in precise
senses, depending on the positive value of α (see Theorem 4.1 and Theorem 4.2).
The main difficulty is the identification of the nonlinear term. This is done by using
ad’hoc test functions which depend on the boundary conditions in a sensitive way.
We also discuss the cases α < 0 and α > 1. Finally, in Section 5, we numerically
check and specify the theoretical convergence. We conclude with some remarks and
perspectives. Our analysis improves the earlier work [16] and gives a satisfactory
answer to a problem suggested in [14].

2. Existence and uniqueness for the Marguerre-Vlaslov model. For any
ε > 0 fixed, we first prove the well-posedness of the system (1-6) in the space of
finite energy. Taking the boundary conditions (4) and the energy dissipation law
(8) into account we introduce the following Hilbert space

H = V × L2(Ω) ×W × V (11)

where

V = {v ∈ H1(Ω) : v(0) = 0}, W = {v ∈ H2(Ω) : v(0) = vx(0) = 0}. (12)

The Hilbert space H is endowed with the natural norm

|| (v, y, w, z) ||H=

(

|| v ||2H1(Ω) +ε || y ||2L2(Ω) + || wxx ||2L2(Ω) + || z ||2H1(Ω)

)1/2

.

(13)
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Then, the following result holds.

Theorem 2.1. Let ε > 0, α ∈ R, k ∈ H1(Ω) and (u0, u1, w0, w1) ∈ H. Then,
problem (1)-(6) has a unique global weak solution

(uε, uε
t , w

ε, wε
t ) ∈ C([0,+∞);H) (14)

and the total energy Eε given by (7) satisfies (8) for all t > 0.

Proof. The proof is obtained following closely the arguments developed in [13]. For
the sake of completeness, we sketch the basic arguments. In order to study the
well-posedness, we formulate the system (1)-(6) as an abstract evolution equation
in H. Then, local (in time) existence is obtained using standard semigroup theory.
Global existence is a consequence of the energy dissipation law (8).

First, let us introduce the following variables

zε
0 = h(uε

x, w
ε); zε

1 = uε
t ; wε

0 = wε
t ; wε

1 = wε. (15)

After some integrations by parts using the boundary conditions, we arrive at the
variational system







(zε
0t, ψ0) − (zε

1x, ψ0) = 0, ∀ ψ0 ∈ L2(Ω),

ε(zε
1t, ψ1) + (zε

0, ψ1x) + εαzε
1(L, t)ψ1(L) = 0, ∀ ψ1 ∈ V,

(wε
0t, φ1)V + (wε

1, φ1)W + wε
0(L, t)φ1(L) + wε

0x(L, t)φ1x(L),

= −(zε
0w

ε
1x, φ1x) − (k(x)zε

0, φ1), ∀ φ1 ∈W,

(wε
1t, φ2)W − (wε

0, φ2)W = 0, ∀ φ2 ∈W,

(16)

where (, ) denotes the scalar product in L2(Ω). Then, following the same steps
developed in [13], we can rewrite (16) as a first order differential system in H,
namely







dUε

dt
= AUε + F (Uε), t > 0,

Uε(0) = U0,
(17)

where Uε = (zε
0, z

ε
1, w

ε
0, w

ε
1) and U0 = (u0, u1, w0, w1). The operator A is max-

imal and dissipative and therefore the underlying linear system is governed by a
semigroup of contractions in H (see [13]). To deal with the nonlinear term arising
both on the equation and on the boundary, we can also proceed as in [13] to prove
that F is locally Lipschitz continuous in H. Indeed, the additional difficulty here
could be the presence of the term (k(x)zε

0, φ1) in the structure of F . But this latter
does not affect the result since it defines a Lipschitz function as well. Therefore,
for every (u0, u1, w0, w1) ∈ H, the initial-value problem (17) has a unique local
(in time) weak solution. In order to obtain global existence, we need an a priori
estimate, which in this case, is given by the energy dissipation law. It implies that
||Uε(t)||H is bounded in each time interval where the solution exists, since Eε(t) is
equivalent to ||Uε(t)||H . Uniqueness is proved in the usual way using Gronwall’s
inequality.

3. Exponential decay for Eε. In order to simplify the notations we write in this
section u for uε and w for wε. Moreover, we denote by C a constant that may
change from line to line but is independent of ε.
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For α ∈ [0, 1], we prove the uniform exponential decay of Eε. Using multiplier
techniques and introducing a suitable perturbation Fε of the energy, we show that
the functional Lε ≡ Eε + δFε verifies for δ small enough,

dLε(t)

dt
≤ −C Eε(t),

1

2
Eε(t) ≤ Lε(t) ≤

3

2
Eε(t), t > 0 (18)

This will lead to the following result.

Theorem 3.1. Let {u,w} be the global weak solution of problem (1)-(6) given in
Theorem 2.1. Assume that α ∈ [0, 1] and that the curvature k = k(x) satisfies

||k||∞ + ||kx||∞ is small. (19)

Then, there exist positive constants C and µ, independent of ε, such that

Eε(t) ≤ CEε(0)e
− µ

2+εα(Eε(0)+||k||2∞)
t
, ∀ t > 0. (20)

In order to obtain (18), we first derive a differential inequality for the perturbation
Fε defined in the following lemma.

Lemma 3.2. Let {u,w} be the global weak solution of problem (1)-(6), a, b > 0 and
Fε be given by

Fε(t) =

∫

Ω

[

x(εuxut + wxwt) + (wxt(xwx)x) − b(wwt + wxwxt) − aεuut

]

dx. (21)

Under the conditions of Theorem 3.1, there exist constants C,C1, C2 and η, inde-
pendent of ε, such that

dFε(t)

dt
≤ (C1 + Cεαη)

∫

Ω

h2(ux, w)dx

+

(

2ηC + Cεαη(|| k ||2∞ +Eε(0)) − (3/2 − b− C2)

)∫

Ω

w2
xxdx

− (1/2 + b)

∫

Ω

w2
t dx+ (1/2 − b)

∫

Ω

w2
xtdx− (1/2 + a)

∫

Ω

εu2
tdx

+ (η−1 + L/2)w2
t (L, t) + (Cη−1 + L)w2

xt(L, t)

+

(

Cεα(η−1 + ηεα) + L(ε− ε2α)/2

)

u2
t (L, t), ∀t > 0.

(22)

Proof. The idea of the proof follows the main steps given in [13] which we adapt in
our context. Observe first that the derivative in time of Fε is given by

dFε(t)

dt
=

∫

Ω

x[εuxtut + εuxutt + wxtwt + wxwtt]dx

+

∫

Ω

[wxtt(xwx)x + wxt(xwxt)x]dx− b

∫

Ω

(w2
t + wwtt)dx

− b

∫

Ω

(w2
xt + wxwxtt)dx− a

∫

Ω

ε(u2
t + uutt)dx.

(23)
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Then, integrating by parts over Ω, we can replace the terms εutt and wtt to obtain

dFε(t)

dt
=

∫

Ω

h(ux, w)x(xux − au)dx

+

∫

Ω

(

−wxxxx + (wxh(ux, w))x − k(x)h(ux, w)

)

(xwx − bw)dx

+ε

∫

Ω

xuxtutdx+

∫

Ω

xwxtwtdx+

∫

Ω

wxt(xwxt)xdx

− b

∫

Ω

(w2
t + w2

xt)dx− aε

∫

Ω

u2
tdx+ wxtt(L, t)(Lwx(L, t) − bw(L, t)).

(24)
Using the boundary condition (6), the terms in hx in (24) are transformed respec-
tively as follows :

∫

Ω

h(ux, w)x(xux − au)dx = −εαut(L, t)(Lux(L, t) − au(L, t))

−
∫

Ω

h(ux, w)(xuxx + (1 − a)ux)dx

(25)

and

∫

Ω

(wxh(ux, w))x(xwx − bw)dx =h(ux, w)(L, t)wx(L, t)(Lwx(L, t) − bw(L, t))

−
∫

Ω

h(ux, w)wx(xwxx + (1 − b)wx)dx.

(26)
We now estimate the integrals in h in (24) as follows:

−
∫

Ω

h(ux, w)

(

xuxx + (1 − a)ux + wx(xwxx + (1 − b)wx) + k(xwx − bw)

)

dx

= −
∫

Ω

h(ux, w)x(uxx + wxwxx + (kw)x)dx

−
∫

Ω

h(ux, w)

(

(1 − a)ux + 2(1 − b)
w2

x

2
− bkw − xkxw

)

dx

= −
∫

Ω

xh(ux, w)h(ux, w)xdx−
∫

Ω

h(ux, w)

(

(1 − a)ux + 2(1 − b)
w2

x

2
+ ckw

)

dx

+

∫

Ω

h(ux, w)((b+ c)kw + xkxw)dx

=
1

2
(1 − d)

∫

Ω

h2(ux, w)dx+

∫

Ω

h(ux, w)((b+ c)kw + xkxw)dx− 1

2
Lh2(ux, w)(L, t)

(27)
where c > 0 and d (precised in the sequel) are such that

(1 − a)ux + 2(1 − b)
w2

x

2
+ ck(x)w =

d

2
h(ux, w). (28)
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Then, for any η1 > 0 (independent of ε), Young inequality leads to
∫

Ω

h(ux, w)((b+ c)kw + xkxw)dx ≤ η1
2

((b+ c)2 + L2)

∫

Ω

h2(ux, w)dx

+
1

2η1
(||k||2∞ + ||kx||2∞)

∫

Ω

w2dx.

(29)
Summarizing, from (27)-(29) and using the boundary condition, we get

−
∫

Ω

h(ux, w)

(

xuxx + (1 − a)ux) + wx(xwxx + (1 − b)wx) + k(xwx − bw)

)

dx

≤ C1

∫

Ω

h2(ux, w)dx+
1

2η1
(||k||2∞ + ||kx||2∞)

∫

Ω

w2dx− 1

2
Lh2(ux, w)(L, t)

≤ C1

∫

Ω

h2(ux, w)dx+ C2

∫

Ω

w2
xxdx− L

2
ε2αu2

t (L, t)

(30)
with C1 and C2 defined by

C1 =
1

2
(1 − d) +

η1
2

((b+ c)2 + L2) and C2 = C
1

2η1
(||k||2∞ + ||kx||2∞). (31)

Thus, returning to (24), we obtain

dFε(t)

dt
≤−

∫

Ω

wxxxx(xwx − bw)dx+ ε

∫

Ω

xuxtutdx+

∫

Ω

xwxtwtdx+

∫

Ω

wxt(xwxt)xdx

− b

∫

Ω

(w2
t + w2

xt)dx− aε

∫

Ω

u2
tdx+ C1

∫

Ω

h2(u,w)dx+ C2

∫

Ω

w2
xxdx

+

(

wxtt(L, t) + h(u,w)(L, t)wx(L, t)

)(

Lwx(L, t) − bw(L, t)

)

− εαut(L, t)

(

Lux(L, t) − au(L, t)

)

− L/2ε2αu2
t (L, t), ∀t > 0.

(32)
Integrations by parts in the first term of the right hand side of (32) give that

−
∫

Ω

wxxxx(xwx − bw)dx = − wxxx(L, t)(Lwx(L, t) − bw(L, t))

+

∫

Ω

wxxx(xwxx + (1 − b)wx)dx

= − wxxx(L, t)(Lwx(L, t) − bw(L, t)) + L/2w2
xt(L, t)

+ (1 − b)(wxxwx)(L, t) − (3/2 − b)

∫

Ω

w2
xxdx.

(33)
Analogously, the other integral terms in (32) are estimated using Young and Poincaré
inequalities :







ε

∫

Ω

xuxtutdx =
ε

2
Lu2

t (L, t) −
1

2

∫

Ω

εu2
tdx,

∫

Ω

xwxtwtdx =
L

2
w2

t (L, t) − 1

2

∫

Ω

w2
t dx,

∫

Ω

wxt(xwxt)xdx =
L

2
w2

xt(L, t) +
1

2

∫

Ω

w2
xtdx.

(34)
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From (32), using (33) and (34), we then deduce the following inequality

dFε(t)

dt
≤− wt(L, t)(Lwx(L, t) − bw(L, t)) + (1 − b)(wxxwx)(L, t)

− εαut(L, t)(Lux(L, t) − au(L, t))

+ C1

∫

Ω

h2(u,w)dx− (3/2 − b− C2)

∫

Ω

w2
xxdx

− (1/2 + a)

∫

Ω

εu2
tdx− (1/2 + b)

∫

Ω

w2
t dx+ (1/2 − b)

∫

Ω

w2
xtdx

+ L/2w2
t (L, t) + L/2u2

t (L, t)(ε− ε2α) + Lw2
xt(L, t).

(35)

Now, using the Sobolev embedding theorem together with Young and Poincaré
inequalities, we can deduce that

| −wt(L, t)(Lwx(L, t) − bw(L, t)) |≤ η−1w2
t (L, t) + ηC

∫

Ω

w2
xxdx,

| (1 − b)(wxxwx)(L, t) |≤ (1 − b)2η−1 | w2
xt(L, t) | +ηC

∫

Ω

w2
xxdx,

and

εαut(L, t)

(

Lux(L, t) − au(L, t)

)

≤ εαC

(

η−1ut(L, t)
2 + ηu2

x(L, t) + η

∫

Ω

u2
xdx

)

,

(36)
for any η > 0 (independent of ε). It remains to estimate the terms u2

x(L, t) and
∫

Ω
u2

xdx in (36) which are not part of dEε/dt and Eε, respectively. In this respect,
we observe that

u2
x(L, t) =(h(ux, w)(L, t) − 1

2
w2

x(L, t) − kw(L, t))2

≤ C(h2(ux, w)(L, t) + w4
x(L, t) + k2w2(L, t))

leading to

u2
x(L, t) ≤ C

(

ε2αu2
t (L, t) + (|| k ||2∞ +Eε(0))

∫

Ω

w2
xxdx

)

.

Analogously, we get
∫

Ω

u2
x(x, t)dx ≤ C

(∫

Ω

h2(ux, w)dx+ (|| k ||2∞ +Eε(0))

∫

Ω

w2
xxdx

)

.

Thus, the above estimates and (35) allow finally to obtain the desired inequality.

Assuming the curvature and its derivative small enough, one may now choose
the constants a, b, c, d and η, η1 in order to bound the derivative of Fε in term of
Eε(t) and dEε(t)/dt.

Lemma 3.3. Under the conditions of Theorem 3.1, there exists a constant β > 0,
independent of ε, such that

dFε(t)

dt
≤− βEε(t) + (η−1 + L/2)w2

t (L, t) + (Cη−1 + L)w2
xt(L, t)

+

(

Cεα(η−1 + ηεα) + L(ε− ε2α)/2

)

u2
t (L, t)

(37)

for any η > 0 sufficiently small.
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Proof. From (22), we need to enforce that






1/2 − b < 0, 1/2 + b > 0, 1/2 + a > 0,

C1 + Cεαη < 0, ηC

(

2 + εα(||k||2∞ + Eε(0))

)

< (3/2 − b− C2),
(38)

C1 = C1(b, c, d, η1) and C2 = C2(η1, ||k||2∞ + ||kx||2∞) being defined by (31). We
first observe that the conditions (38)1 and (28) hold if we take a = 1/4, b = 5/8,
c = 3/4 and d = 3/2. Let us then choose

η1 =
1

2

d− 1

(b+ c)2 + L2
=

1

4

82

112 + 82L2
,

so that C1 = −1/8 < 0. The second condition in (38)2 is then equivalent to

C2 ≤ 7

8
− ηC

(

2 + εα(|| k ||2∞ +Eε(0))

)

. (39)

If we now introduce λ ∈ (0, 1) ( small enough but independent of ε and Eε(0)) and
fixe the function η as follows

η =
7

8C

λ

2 + εα(|| k ||2∞ +Eε(0))
(40)

condition (39) becomes C2 < 7/8(1 − λ) and requires a geometrical restriction on
the curvature k and its derivative

C(|| k ||2∞ + || kx ||2∞) ≤ 7

4
η1(1 − λ) <

7

4
η1 (41)

which was assumed in Theorem 3.1. Finally, if α > 0, the first condition C1+Cε
αη =

−1/8 + Cεαη < 0 always holds if ε (devoted to go to zero in the sequel) is small
enough. If α = 0, it suffices to take λ small enough. Consequently, for all t > 0, we
have

dFε(t)

dt
≤(−1/8 + Cεαη)

∫

Ω

h2(ux, w)dx− (7(1 − λ)/8 − C2)

∫

Ω

w2
xxdx

− 9/8

∫

Ω

w2
t dx− 1/8

∫

Ω

w2
xtdx− 3/4

∫

Ω

εu2
tdx

+ (η−1 + L/2)w2
t (L, t) + (Cη−1 + L)w2

xt(L, t)

+

(

Cεα(η−1 + ηεα) + L(ε− ε2α)/2

)

u2
t (L, t)

≤− βEε(t) + (η−1 + L/2)w2
t (L, t) + (Cη−1 + L)w2

xt(L, t)

+

(

Cεα(η−1 + ηεα) + L(ε− ε2α)/2

)

u2
t (L, t)

(42)

with

β = 2min

(

1/8 − Cεαη, 7(1 − λ)/8 − C2

)

. (43)

The term 7(1 − λ)/8 − C2 is independent of ε and strictly positive thanks to the
geometrical assumption on the curvature. The term 1/8−Cεαη is also bounded by
below uniformly with respect to ε, writing that

1

8
− Cεαη =

1

8
− 7λ

8

εα

2 + εα(||k||2∞ + Eε(0))
>

1

8
(1 − 7λ) > 0, (44)

for all ε < 1 and λ small enough. Consequently, Lemma 3.3 is proved.
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We are now in position to prove Theorem 3.1:

Proof. We introduce δ > 0 and set

Lε(t) = Eε(t) + δFε(t), t ≥ 0. (45)

Combining (8) and Lemma 3.3, we obtain for all t > 0

dLε(t)

dt
≤− δβEε(t)

−
(

εα − δ

(

Cεα(η−1 + ηεα) + L(ε− ε2α)/2

))

u2
t (L, t)

−
(

1 − δ

(

η−1 + L/2

))

w2
t (L, t) −

(

1 − δ

(

Cη−1 + L

))

w2
xt(L, t).

(46)

Now, we choose δ > 0 satisfying






1 − δ

(

Cη−1 + L

)

≥ 0, 1 − δ

(

η−1 + L/2

)

≥ 0,

1 − δ

(

C(η−1 + ηεα) + (ε1−α − εα)L/2

)

≥ 0

(47)

in order to obtain
dLε(t)

dt
≤ −δβEε(t). (48)

In view of (40), (47) will be satisfied if we choose δ > 0 of the form

δ =
C

2 + εα(|| k ||2∞ +Eε(0))
. (49)

On the other hand, usual arguments permit to compare Fε and Eε (see for instance
[16]) in the following manner

| Fε(t) |≤ C[Eε(t) + εEε(t)
2] ≤ C[1 + εEε(0)]Eε(t) (50)

leading to
(

1 − δC[1 + εEε(0)]

)

︸ ︷︷ ︸

c1

Eε(t) ≤ Lε(t) ≤
(

1 + δC[1 + εEε(0)]

)

︸ ︷︷ ︸

c2

Eε(t) (51)

and then to

Eε(t) ≤
c2
c1
Eε(0)e−

β
c1

δt, ∀t > 0. (52)

Finally, we take δ small enough and independent of ε so that δC(1 + εEε(0)) < 1/2
(we recall that Eε(0) is bounded in ε); this implies that c1 > 1/2, c2 < 3/2 and
finally the uniform estimation (20) of Theorem 3.1.

4. Singular limit as ε → 0. In this section, we analyze the limit of the solution
(uε, wε) of (1)-(6) as ε→ 0.

The first step is devoted to obtain some uniform bounds in ε. According to (8)
and the fact that the initial energy is bounded by a constant independent of ε, the
following sequences remain bounded in L∞(0,∞;L2(Ω)):

{
√
εuε

t}, {h(uε
x, w

ε)}, {wε
t }, {wε

xt}, {wε
xx}. (53)



BOUNDARY STABILIZATION OF A NONLINEAR SHALLOW BEAM 11

The boundedness of the sequences {uε} and {wε} implies that we can extract sub-
sequences, (still denoted by the same index ε) and functions ζ, η and w such that

√
εuε

t ⇀ ζ weakly − ? in L∞(0,∞;L2(Ω)), (54)

h(uε
x, w

ε) ⇀ η weakly − ? in L∞(0,∞;L2(Ω)), (55)

wε ⇀ w weakly − ? in L∞(0,∞;W ) ∩W 1,∞(0,∞;V ) (56)

as ε→ 0. Moreover, we can use the Aubin-Lions compactness criteria (see e.g. [20])
to deduce that

wε → w strongly in L∞(0, T ;H2−δ(Ω)) (57)

for any δ > 0 and T <∞. Then, it follows from (55) and (57) that

wε
xh(u

ε
x, w

ε) ⇀ wxη weakly in L2(Ω × (0, T )) (58)

for any T <∞.
The above weak convergences suffice to pass the limit in the linear terms of (1).

The difficulty is to identify the weak limit of the nonlinear term (wε
xh(u

ε
x, w

ε))x.
From (53) we can deduce that {uε

x} is bounded in L2(Ω× (0, T )) and, therefore, we
can obtain a subsequence such that

uε
x ⇀ ρ weakly in L2(Ω × (0, T )) (59)

for some ρ = ρ(x, t). Then, combining (57) and (59), we deduce that

h(uε
x, w

ε) ⇀ h(ρ,w) weakly in L2(Ω × (0, T )) (60)

which, together with (54), implies that

η = h(ρ,w). (61)

Now, we claim that η is independent of x. In fact, due to (54), we have that

εuε
tt ⇀ 0 weakly in H−1(0, T ;L2(Ω)) (62)

and from the first equation in (1), (61) and (62) it follows that

ηx = h(ρ,w)x = 0

which implies that the function η is independent of x : η(x, t) = η(t).
In addition, we can also prove that the weak limit w takes the initial data w0

and w1: due to (57) we know that wε → w in C([0, T ];L2(Ω)). Then, wε(x, 0) =
w0(x) → w(x, 0) in L2(Ω). Consequently, w(x, 0) = w0(x). To prove that wε

t (x, 0) =
w1(x), we proceed in a similar way obtaining a bound for {wε

tt} in L2(0, T ;L2(Ω))
as follows:

wε
tt = −

(

I − d2

dt2

)−1(

wε
xxxx − (wε

xh(u
ε
x, w

ε))x + k(x)h(uε
x, w

ε)

)

. (63)

The next steps are devoted to identify the function η analyzing its relation with α
and the boundary conditions.
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4.1. The case α ∈ (0, 1]. Multiplying the first equation in (1) by a(x) ≡ x/L and
integrating over Ω, the following holds

ε
d2

dt2

∫ L

0

uεa(x)dx =

∫

Ω

h(uε
x, w

ε)a(x)dx = −εαuε
t (L, t) −

1

L

∫

Ω

h(uε
x, w

ε)dx. (64)

As ε→ 0, the left-hand side tends to zero in D′(0, T ). On the other hand, the right-
hand side converges to −η(t) because the boundary term tends to zero. Indeed,
thanks to the energy dissipation, we have

εα

∫ T

0

| uε
t |2 dt ≤ Eε(0), ∀T > 0 (65)

and therefore

εα/2uε
t (L, t) is bounded in L2(0, T ). (66)

Consequently,

εαuε
t (L, t) → 0 in D′(0, T ) as ε→ 0, (67)

since α ∈ (0, 1]. Thus, combining (61), (64) and (67), we deduce that η = 0.
Summarizing, we have proved the following result

Theorem 4.1. Let (u0, u1, w0, w1) ∈ H, α > 0 and k ∈ H1(Ω). Consider the
global solution (uε, wε) of system (1)-(6) obtained in Theorem 2.1. Then, as ε→ 0,

wε ⇀ w weakly in L∞([0,∞;W ) ∩W 1,∞([0,∞);V ),

where w is the weak solution of






wtt − wxxtt + wxxxx = 0 x ∈ Ω, t > 0

w(0, t) = wx(0, t) = 0, t > 0

(wxxx − wxtt)(L, t) = wt(L, t), wxx(L, t) = −wxt(L, t), t > 0

(w(x, 0), wt(x, 0)) = (w0, w1), x ∈ Ω.

(68)

Remark 1. We observe that the curvature k = k(x) does not appear anymore in
the limit system and therefore, (68) is the system obtained in [16] where the 1-D
version of the nonlinear von Kármán system is considered. We also remark that
this property does not hold in the internal stabilization case studied in [15] where
the curvature remains for α > 0. Moreover, as discussed in [16], system (68) has
a unique global weak solution in C([0,∞);W ) ∩ C1([0,∞);V ). As last, the total
energy associated to (68) is given by

E(t) =
1

2

∫

Ω

(w2
t + w2

xt + w2
xx)dx (69)

and obeys the energy dissipation law

dE(t)

dt
= −w2

t (L, t) − w2
xt(L, t). (70)

It is well-known that E(t) tends exponentially uniformly to zero as t goes to infinity
(we refer for instance to [12]). Indeed, according to Theorem 3.1, this property may
be recovered by the limiting process, writing that

E(t) ≤ 1

2

∫

Ω

ζ2dx+ E(t) ≤ liminfε→0Eε(t) ≤ CE(0)e−
µ
2 t, ∀t > 0. (71)
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4.2. The case α = 0. As previously, the difficulty is to identify the weak limit of
the nonlinear term wε

xh(u
ε, wε). Once again, multiplying the first equation in (1)

by a(x) = x/L, and integrating by parts, we obtain

ε
d2

dt2

∫

Ω

uεa(x)dx =

∫

Ω

h(uε, wε)xa(x)dx

= −uε
t (L, t) −

1

L

∫

Ω

h(uε, wε)dx

= −uε
t (L, t) −

1

L
uε(L, t) − 1

2L

∫ L

0

(wε
x)2dx− 1

L

∫

Ω

k(x)wεdx.

(72)
According to the energy dissipation (see also the previous subsection), the sequence

{uε(L, t)} is bounded in H1(0, T ), ∀ T > 0.

Therefore, we can extract a subsequence of {uε(L, t)}, such that

uε(L, t) ⇀ ζ = ζ(t) weakly in H1(0, T ) (73)

and
uε(L, t) → ζ = ζ(t) in C([0, T ]), (74)

for all T > 0, as ε → 0. Now, passing (72) to the limit and taking (56), (62) and
(73) into account, we conclude that ζ satisfies the first order ordinary differential
equation

ζt +
1

L

[

ζ +

∫

Ω

(
w2

x

2
+ k(x)w

)

dx

]

= 0, ∀t > 0. (75)

Moreover, due to (74), we have

ζ(0) = u0(L). (76)

It remains to identify η = η(t). Integrating the relation (61) over Ω = (0, L) and
writing that

∫ L

0

ρ(x, t)dx =limε→0

∫ L

0

h(uε
x, w

ε)dx

=limε→0(u
ε(L, t) − uε(0, t)) +

∫

Ω

(
w2

x

2
+ k(x)w

)

dx

=ζ(t) +

∫

Ω

(
w2

x

2
+ k(x)w

)

dx,

(77)

we get

Lη(t) = ζ(t) +

∫

Ω

(
w2

x

2
+ k(x)w

)

dx. (78)

Summarizing, we have the following result :

Theorem 4.2. Let (u0, u1, w0, w1) ∈ H, α = 0 and k ∈ H1(Ω). Consider the global
solution (uε, wε) of system (1)-(6) obtained in Theorem 2.1. Then, as ε→ 0+, the
solution wε converges to w solution of






ζt +
1

L

[

ζ +

∫

Ω

(
w2

x

2
+ k(x)w

)

dx

]

= 0, t > 0,

wtt + wxxxx − wxxtt −
1

L

[

ζ +

∫

Ω

(
w2

x

2
+ k(x)w

)

dx

]

(wxx − k(x)) = 0, in Ω × (0, T ),

(79)
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with boundary conditions






w(0, t) = wx(0, t) = 0, wxx(L, t) = −wxt(L, t), t > 0,
[

wxxx − wxtt −
1

L

[

ζ(t) +

∫

Ω

(
1

2
w2

x + k(x)w

)]

wx

]

(L, t) = wt(L, t),
(80)

and initial conditions

ζ(0) = u0(L), w(x, 0) = w0(x), wt(x, 0) = w1(x), x ∈ Ω. (81)

Remark 2. Contrary to the previous case, the curvature and the nonlinearity still
occur in the limit system (79)-(81). On the other hand, integrating the first equation
in (79), we can deduce that

ζ(t) = u0(L) e−
t
L − 1

L

∫ t

0

e
(s−t)

L

∫

Ω

(
w2

x

2
+ k(x)w

)

dxds.

Substituting the above expression in the second equation of (79) we conclude that
w = w(x, t) satisfies

wtt + wxxxx − wxxtt −M(t, w,wx)(wxx − k(x)) = 0

where

M(t, w,wx) =
1

L

[

u0(L) e−
t
L − 1

L

∫ t

0

e
(s−t)

L

∫

Ω

(
w2

x

2
+k(x)w

)

dxds+

∫

Ω

(
w2

x

2
+k(x)w

)

dx

]

.

Thus, the limit system (79)-(81) can be viewed as a linear arch model ”perturbed”
by the nonlinear termM(t, w,wx)(wxx−k(x)). Performing as [13] (see also Theorem
2.1), we can prove the existence and uniqueness of global weak solution. Moreover,
the energy of the limit system is given by

E(t) =
1

2

∫

Ω

(w2
t + w2

xt + w2
xx)dx+

1

2L

[

ζ +

∫

Ω

(
1

2
w2

x + k(x)w

)

dx

]2

, (82)

which is the natural limit of the ε-system energy. From the following relation

dE(t)

dt
= −w2

t (L, t) − w2
xt(L, t) − ζ2

t (L), (83)

we observe that the limit system is dissipative and a rate of decay is expected.
Indeed, once again the exponential decay in time for E defined by (82) is a conse-
quence of the uniform (w.r.t. to ε) exponential decay of Eε, obtained in the previous
section (see also Remark 1). As far as we know, the proof of the exponential decay
by direct methods, i.e., without introducing a limiting process in ε, remains open.

4.3. Cases α < 0 and α > 1. The analysis developed here allows us to address
partially the remaining cases α > 1 and α < 0. Following the proof of Theorem 3.1,
it is possible to obtain that Eε decays exponentially in both cases, but any informa-
tion on how the decay rate depends on ε is provided. The numerical experiments
detailed in Section 5 will suggest that in these cases, the decay rate is not bounded
by below uniformly with respect to ε.

Concerning the limit as ε→ 0, we have two situations :

• for α > 1, we may proceed as in the case 0 < α ≤ 1 to prove that the limit
model is the linear model (68) of Theorem 4.1 (case α ∈ (0, 1]).
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• In the case α < 0, we multiply the first equation in (1) by a(x) = x/L to get

ε−α/2+1 d
2

dt2

∫

Ω

uεa(x)dx = −εα/2uε
t (L, t) −

ε−α/2

L

∫

Ω

h(uε
x, w

ε)dx. (84)

According to the dissipation law, we know that {εα/2uε
t (L, t)} is bounded in

L2(0, T ). Therefore, we can extract a subsequence such that εα/2uε
t (L, t) ⇀

ζ in L2(0, T ). Then, passing to the limit in (84) and taking the previous
convergence into account, we obtain ζ(t) = 0, for all t ≥ 0. Once again,
it remains to identify the function η = η(t). Due to (59) and the Sobolev
embedding, the sequence {uε(L, t)} is bounded in L2(0, T )

∫ T

0

| uε(L, t) |2 dt ≤ C

∫ T

0

|| uε ||2V dt ≤ C. (85)

Consequently, we extract a subsequence satisfying uε(L, t) ⇀ β in L2(0, T ).
Now, integrating (61) and writing that

Lη(t) =

∫

Ω

ρ(x, t)dx = limε→0

∫

Ω

h(uε
x, w

ε)dx = β(t)+

∫

Ω

(
1

2
w2

x +k(x)w

)

dx (86)

we express the function η in term of β and w. Summarizing, as ε → 0, the
limit w of wε is solution the nonlinear system (similarly to the case α = 0)







wtt + wxxxx − wxxtt −
1

L

[

β(t) +

∫

Ω

(
w2

x

2
+ k(x)w

)

dx

]

(wxx − k(x)) = 0, Ω × (0, T ),

w(0, t) = wx(0, t) = 0, wxx(L, t) = −wxt(L, t), t > 0
[

wxxx − wxtt −
1

L

[

ζ(t) +

∫

Ω

(
1

2
w2

x + k(x)w

)]

wx

]

(L, t) = wt(L, t), t > 0

w(x, 0) = w0(x), wt(x, 0) = w1(x), x ∈ Ω

(87)
where β is a non explicit function of L2(0, T ).

In the next section, we study numerically the behavior of (uε, wε) and the cor-
responding decay of energy for the various cases w.r.t. α discussed above.

5. Numerical experiments. In this section, we check numerically the asymptotic
results as ε goes to zero for several values of α and k(x). For simplicity, we consider
the case of a cylindrical arch for which the curvature is constant : k(x) = k > 0 for
all x ∈ Ω.

The initial system (1) and the limit ones (68) and (79) are solved in space using
a C0 − C1-finite element method with mass lumping and Newmark scheme (we
refer to [6, 18]). Precisely, introducing a triangulation Th of Ω (h = maxT∈Th

|T |),
we approximate L2(Ω) and H1(Ω) by the finite-dimensional space Vh = {uh|uh ∈
C0(Ω), uh|T ∈ P1,∀T ∈ Th} and H2(Ω) by the finite-dimensional space Wh =

{wh|wh ∈ C1(Ω), wh|T ∈ P3,∀T ∈ Th}. Pk, k ∈ N, designates the space of the
polynomials of degree ≤ k. The time discretization is performed in a standard way
using implicit centered finite difference schemes of order two. Moreover, due to
the term ε in front of uε

tt, we take a small ratio dt/h = 1/100 between the time
and space parameter, in order to capture precisely the variation of uε. Finally, the
ordinary differential equation (75) in ζ is solved using the implicit Euler scheme.

We consider the following initial condition (u0, u1, w0, w1) ∈ H

(u0(x), u1(x), w0(x), w1(x)) = (sin(πx), 0, sin2(πx), 0), x ∈ Ω (88)
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and take T = 2.

5.1. Case α ∈ (0, 1]. We first comment the results we observe in the case α = 1.
Tables 1 and 2 collect the numerical results for k = 1/5 and k = 4 respectively. In
agreement with the theoretical part, we first check the strong convergence of wε in
L2(Ω) and H1(Ω) toward w, solution of the limit system (68). For k = 1/5, we
obtain

|| wε − w ||L2(Ω×(0,T ))

|| w ||L2(Ω×(0,T ))
≈ e−2.98ε0.76,

|| wε
x − wx ||L2(Ω×(0,T ))

|| wx ||L2(Ω×(0,T ))
≈ e−4.16ε0.55 (89)

whereas for k = 4, we observe

|| wε − w ||L2(Ω×(0,T ))

|| w ||L2(Ω×(0,T ))
≈ e−0.28ε0.51,

|| wε
x − wx ||L2(Ω×(0,T ))

|| wx ||L2(Ω×(0,T ))
≈ e−0.93ε0.38 (90)

highlighting the influence of the curvature on the rate of convergence. Similarly, we
verify the weak convergence of h(uε

x, w
ε) − η as ε goes to zero. Furthermore, we

observe the exponential decay of the energies (7) and (69) uniformly with respect to
ε. We remark however that the energy Eε does not converge toward E (for instance

in the L2(0, T )-norm), because the part of the energy Eε,uε ≡ 1/2
∫ T

0

∫

Ω
ε(uε

t )
2dx,

which is bounded uniformly with respect to ε, does not converge toward zero. We
obtain that only the part Eε,wε of Eε defined by

Eε,wε(t) ≡ 1

2

∫ L

0

{

(wε
t )

2 + (wε
xt)

2 + (wε
xx)2 + h(uε

x, w
ε)2

}

dx (91)

converges toward the limit energy E : for k = 1/5, we observe that

|| Eε,wε − E ||L2(0,T )

|| E ||L2(0,T )
≈ e−6.21ε0.203. (92)

As a consequence, we observe that only the exponential decay rate associated to
Eε,wε converges to the exponential decay associated to E, approximatively equal to
−4.037. Of course, this is not in contradiction with the uniform exponential decay
in time of Eε.

ε = 10−1 ε = 10−2 ε = 10−3

||wε−w||L2(Ω×(0,T ))

||w||L2(Ω×(0,T ))
9.33 × 10−3 1.31 × 10−3 2.76 × 10−4

||wε
x−wx||L2(Ω×(0,T ))

||wx||L2(Ω×(0,T ))
4.76 × 10−3 1.05 × 10−3 3.77 × 10−4

|
∫ T

0

∫

Ω
(h(uε

x, w
ε) − η)dxdt | 6.55 × 10−3 6.56 × 10−4 1.86 × 10−3

|| uε
t (L, ·) ||L2(0,T ) 4.762 15.392 49.66

|| εα/2uε
t (L, ·) ||L2(0,T ) 1.505 1.539 1.570

||Eε−E||L2(0,T )

||E||L2(0,T )
3.72 × 10−2 3.43 × 10−2 3.43 × 10−2

||Eε,w−E||L2(0,T )

||E||L2(0,T )
1.31 × 10−3 7.23 × 10−4 5.13 × 10−4

1
2

∫ T

0

∫

Ω
ε(uε

t )
2dtdx 1.255 1.1822 1.2225

Decay rate for Eε −3.6691 −3.5705 −3.6469
Decay rate for Eε,wε −4.0304 −4.0368 −4.0367
Decay rate for Eε,uε −2.1100 −2.0261 −2.0181

Table 1. Estimations in the case α = 1 and k = 1/5 - dt = h/100.
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ε = 10−1 ε = 10−2 ε = 10−3

||wε−w||L2(Ω×(0,T ))

||w||L2(Ω×(0,T ))
2.51 × 10−1 5.98 × 10−2 2.38 × 10−2

||wε
x−wx||L2(Ω×(0,T ))

||wx||L2(Ω×(0,T ))
1.81 × 10−1 5.40 × 10−2 3.08 × 10−2

|
∫ T

0

∫

Ω
(h(uε

x, w
ε) − η)dxdt | 4.69 × 10−3 1.81 × 10−2 7.77 × 10−2

|| uε
t (L, ·) ||L2(0,T ) 5.861 17.768 88.89

|| εα/2uε
t (L, ·) ||L2(0,T ) 1.8533 1.7768 2.811

||Eε−E||L2(0,T )

||E||L2(0,T )
9.65 × 10−2 7.20 × 10−2 8.60 × 10−2

||Eε,w−E||L2(0,T )

||E||L2(0,T )
4.23 × 10−2 3.98 × 10−2 3.20 × 10−2

1
2

∫ T

0

∫

Ω
ε(uε

t )
2dtdx 3.157 1.735 4.421

Decay rate for Eε −3.33 −3.64 −3.22
Decay rate for Eε,wε −3.65 −3.98 −4.01

Table 2. Estimations in the case α = 1 and k = 4 - dt = h/100.

On the other hand, for α ∈ (0, 1) the term
√
εuε

t (L, t) converges toward zero in
L2(0, T ) (writing that

√
εuε

t = ε(1−α)/2(εα/2uε
t ) and using (64)). Numerical results

are collected in Tables 3 and 4 for α = 1/2. We have

|| ε1/2uε
t (L, t) ||L2(0,T )≈ e0.40ε0.2471 ≈ e0.40ε

1
2 (1−α) (93)

and we observe now that the full energy Eε defined by (7) converges to the limit
energy defined by (69)

|| Eε − E ||L2(0,T )

|| E ||L2(0,T )
≈ e−2.89ε0.2494 ≈ e−2.89ε

1
2 (1−α). (94)

This highlights the influence of the boundary term on the convergence toward zero
(w.r.t. ε) of the term Eε,uε . In this case, the exponential decay rate associated
to the full energy Eε converges toward the exponential decay rate value −4.037.
We remark that this value is the same for k = 1/5 and k = 4 which confirms
the independence of the limit system with respect to the curvature in the case
α > 0. Finally, in agreement with the analytical expression (20), the decay rate for
Eε, ε > 0 is decreasing with the curvature : as expected, the curvature acts as a
limiting factor for the stabilization of the beam.

Figures 1 depict the function t → uε(L, t), t ∈ [0, T ] for α = 1 (Left) and
α = 1/2 (Right). In both case, due to exponential decay of Eε, the displacement
uε is damped in time. The case α = 1 highlights an oscillating phenomenon in time
while the case α = 1/2 exhibits a faster decay of the displacement in time, as ε
tends toward zero.

5.2. Case α = 0. Let us know comment the result we obtain in the case α = 0
which exhibits at the limit a nonlinear behavior and a dependence with respect to
the curvature. Results, for k = 1/5 and k = 4, are collected in Tables 5 and 6,
respectively. Once again, we recover the theoretical convergence of wε toward w
in H1

0 and also of uε(L) toward the function ζ solution of the ODE (75)-(76). For
k = 1/5, we observe that

||uε(L, ·) − ζ||L∞(0,T )

||ζ||L∞(0,T )
≈ e4.40ε0.43. (95)
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ε = 10−1 ε = 10−2 ε = 10−3

||wε−w||L2(Ω×(0,T ))

||w||L2(Ω×(0,T ))
6.83 × 10−3 1.02 × 10−3 1.83 × 10−4

||wε
x−wx||L2(Ω×(0,T ))

||wx||L2(Ω×(0,T ))
3.46 × 10−3 9.60 × 10−4 1.79 × 10−4

|
∫ T

0

∫

Ω
(h(uε

x, w
ε) − η)dxdt | 2.48 × 10−4 7.24 × 10−4 7.46 × 10−4

|| uε
t (L, t) ||L2(0,T ) 2.705 4.934 8.885

|| εα/2uε
t (L, ·) ||L2(0,T ) 1.521 1.560 1.579

|| ε1/2uε
t (L, ·) ||L2(0,T ) 8.55 × 10−1 4.93 × 10−1 2.80 × 10−1

||Eε−E||L2(0,T )

||E||L2(0,T )
3.12 × 10−2 1.76 × 10−2 9.89 × 10−3

||Eε,w−E||L2(0,T )

||E||L2(0,T )
1.20 × 10−3 2.85 × 10−4 1.56 × 10−4

1
2

∫ T

0

∫

Ω
ε(uε

t )
2dtdx 7.53 × 10−1 2.43 × 10−1 7.92 × 10−2

Decay rate for Eε −4.056 −4.042 −4.038
Decay rate for Eε,wε −4.0359 −4.0377 −4.0372

Table 3. Estimations in the case α = 1/2 and k = 1/5 - dt = h/100.

ε = 10−1 ε = 10−2 ε = 10−3

||wε−w||L2(Ω×(0,T ))

||w||L2(Ω×(0,T ))
2.19 × 10−1 1.24 × 10−1 4.40 × 10−2

||wε
x−wx||L2(Ω×(0,T ))

||wx||L2(Ω×(0,T ))
1.66 × 10−1 7.55 × 10−2 2.48 × 10−2

|
∫ T

0

∫

Ω
(h(uε

x, w
ε) − η)dxdt | 2.11 × 10−2 1.81 × 10−2 1.63 × 10−2

|| uε
t (L, ·) ||L2(0,T ) 3.0986 8.959 15.656

|| εα/2uε
t (L, ·) ||L2(0,T ) 1.742 2.801 2.784

|| ε1/2uε
t (L, ·) ||L2(0,T ) 9.79 × 10−1 8.85 × 10−1 4.95 × 10−1

||Eε−E||L2(0,T )

||E||L2(0,T )
7.63 × 10−2 4.75 × 10−2 2.59 × 10−2

||Eε,w−E||L2(0,T )

||E||L2(0,T )
4.04 × 10−2 3.12 × 10−2 1.75 × 10−2

1
2

∫ T

0

∫

Ω
ε(uε

t )
2dtdx 1.853 0.815 0.549

Decay rate for Eε −3.70 −4.29 −4.11
Decay rate for Eε,wε −3.76 −4.29 −4.10
Decay rate for Eε,uε −6.23 −4.88 −4.14

Table 4. Estimations in the case α = 1/2 and k = 4 - dt = h/100.

Figure 2 depicts the function uε(L, ·) with respect to t ∈ [0, T ] for ε = 10−2 and
ε = 10−3. The figure exhibits the oscillating behavior of uε and the convergence
toward ζ as ε goes to zero: in this respect, the contrast between the smoothness of
the limit ζ and the oscillations of uε illustrates the singular character of the term
εuε

tt in (1). Moreover, with respect to the convergence of the energy and exponential
decay, we observe for α = 0 the same phenomenon than for α = 1: only the energy
Eε,wε converges to the limit energy E defined by (82), which does not contradict the
uniform exponential decay. Finally, the exponential decay rates we obtain confirm
the dependence in the case α = 0 of the limit system with respect to the curvature
: for k = 1/5, the decay associated with Eε converges as ε toward approximatively
−3.3471 whereas for k = 4, the decay converges toward approximatively −3.1302.



BOUNDARY STABILIZATION OF A NONLINEAR SHALLOW BEAM 19

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

1/10
1/100
1/1000

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

t

1/10
1/100
1/1000

Figure 1. T = 2 - k = 1/5 - uε(L, ·) for ε = 10−1 (solid line),
ε = 10−2 (dashed line) and ε = 10−3 (dotted line) vs. t ∈ [0, T ]:
α = 1 (Left) and α = 1/2 (Right).

ε = 10−1 ε = 10−2 ε = 10−3

||wε−w||L2(Ω×(0,T ))

||w||L2(Ω×(0,T ))
8.53 × 10−3 3.75 × 10−3 1.20 × 10−3

||wε
x−wx||L2(Ω×(0,T ))

||wx||L2(Ω×(0,T ))
4.05 × 10−3 1.93 × 10−3 6.39 × 10−4

|
∫ T

0

∫

Ω
(h(uε

x, w
ε) − η)dxdt| 1.60 × 10−3 5.67 × 10−4 9.40 × 10−5

||uε
t (L, ·)||L2(0,T ) 1.5109 1.6031 1.5581

||ε1/2uε
t (L, ·)||L2(0,T ) 4.77 × 10−1 1.60 × 10−1 4.97 × 10−2

||uε(L,·)−ζ||L∞(0,T )

||ζ||L∞(0,T )
29.203 11.195 3.861

||Eε−E||L2(0,T )

||E||L2(0,T )
3.71 × 10−2 3.47 × 10−2 3.44 × 10−2

||Eε,w−E||L2(0,T )

||E||L2(0,T )
1.21 × 10−3 8.21 × 10−4 2.83 × 10−4

1
2

∫ T

0

∫

Ω
ε(uε

t )
2dxdt 2.5583 2.5949 2.4323

Decay rate for Eε −3.21 −3.31 −3.33
Decay rate for Eε,wε −3.67 −3.74 −3.76

Table 5. Estimations in the case α = 0 and k = 1/5 - dt = h/100.
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ε = 10−1 ε = 10−2 ε = 10−3

||wε−w||L2(Ω×(0,T ))

||w||L2(Ω×(0,T ))
4.12 × 10−2 2.10 × 10−2 1.01 × 10−2

||wε
x−wx||L2(Ω×(0,T ))

||wx||L2(Ω×(0,T ))
3.48 × 10−2 1.39 × 10−2 5.42 × 10−3

|
∫ T

0

∫

Ω
(h(uε

x, w
ε) − η)dxdt| 4.21 × 10−2 8.21 × 10−3 4.71 × 10−3

||uε
t (L, ·)||L2(0,T ) 4.9237 3.0321 5.4012

||ε1/2uε
t (L, ·)||L2(0,T ) 8.41 × 10−1 3.97 × 10−1 8.12 × 10−2

||uε(L,·)−ζ||L∞(0,T )

||ζ||L∞(0,T )
47.11 33.12 12.11

||Eε−E||L2(0,T )

||E||L2(0,T )
8.64 × 10−2 4.81 × 10−2 2.01 × 10−2

||Eε,wε−E||L2(0,T )

||E||L2(0,T )
3.12 × 10−2 6.51 × 10−3 1.91 × 10−3

1
2

∫ T

0

∫

Ω
ε(uε

t )
2dxdt 3.1991 5.0712 4.8021

Decay rate for Eε −2.9711 −3.0310 −3.1146
Decay rate for Eε,wε −3.2930 −3.3701 −3.4100

Table 6. Estimations in the case α = 0 and k = 4 - dt = h/100.
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Figure 2. T = 2, k = 1/5, α = 0, uε(L, ·) for ε = 10−2 (solid
line), ε = 10−3 (dashed line) and the limit ζ (dotted line) vs.
t ∈ [0, T ].

5.3. Cases α < 0 and α > 1. To end this section, we give the decay rates obtained
for α = −1 and α = 2. As briefly discussed in Section 4.3, the limit solution w
associated to these cases is respectively solution of a linear and a nonlinear system.
However, Theorem 3.1 does not apply here and does not provide information on the
decay rate. To our knowledge, this question is open in the literature. Tables 7 and
8 collect the decay rates for Eε,uε and Eε,wε for α = −1 and α = 2 respectively.
In both case, it appears that the decay rate for Eε,uε (and therefore for Eε) is
not bounded by below uniformly with respect to ε. At the limit in ε, only the
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transversal displacement of the beam is stabilized in time. Figure 3 illustrates the
non-dissipation in time of uε(L) in these cases. These observations also highlight
the nonlinearity (see Figure 4) of the response of the beam with respect to the
amplitude of the boundary dissipation. The case α < 0 highlights the over-damping
phenomenon, well-known for instance for the wave equation. The case α > 1
highlights the lack of boundary dissipation for the longitudinal displacement uε.
We therefore conjecture that Theorem 3.1 does not hold in these cases, whatever
the value of the curvature.

ε = 10−1 ε = 10−2 ε = 10−3

Decay rate for Eε,uε −2.15 × 10−1 −6.76 × 10−2 −2.19 × 10−3

Decay rate for Eε,wε −3.6219 −3.6821 −3.6902
Table 7. Exponential decay rate in the case α = −1 and k = 1/5
- dt = h/100.

ε = 10−1 ε = 10−2 ε = 10−3

Decay rate for Eε,uε −2.17 × 10−1 −2.38 × 10−2 −2.27 × 10−3

Decay rate for Eε,wε −4.0405 −4.2187 −4.0367
Table 8. Exponential decay rate in the case α = 2 and k = 1/5
- dt = h/100.

6. Concluding remarks. The analysis performed in this work highlights the sen-
sibility of the value of the longitudinal deformation h(uε

x, w
ε)(L, t) = −εαuε

t (L, t)
imposed at one extremity of a nonlinear elastic beam on its stabilization in time.
The different behavior as ε goes to zero are summarized in Table 9. We observe that
α = 0 is the only value for which the decay rate is uniformly bounded and leading
to nonlinear asymptotic system, dependent on the curvature. In this respect, the
corresponding boundary condition is less rigid, from a mechanical viewpoint, than
the one obtained for α > 0, a case which do not retain the nonlinear terms, as ε goes
to zero. We also observe that the curvature of the beam is a limiting factor of the
stabilization process in time. Moreover, the restriction on the curvature imposed
for the proof of the uniform decay is only a weak mechanical assumption.

Adapting some technics used in [14], it seems interesting to extend this analysis
to the two dimensional case. It is also worth to investigate similar commuting
property in the context of exact controllability (see [7, 17]).

α < 0 α = 0 α ∈ (0, 1) α = 1 α > 1
Non Linear Non Linear Linear Linear Linear
µε → 0 (∗) µε ≥ µ > 0 µε ≥ µ > 0 µε ≥ µ > 0 µε → 0 (∗)

Eε,wε → E (∗) Eε,wε → E (∗) Eε → E (∗) Eε,wε → E (∗) Eε,wε → E (∗)
Table 9. Summary of the behavior of the system with respect to
ε in function of α (∗ : Numerical observation) - µε designates the
exponential decay rate.
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Figure 3. T = 2 - k = 1/5 - uε(L, ·) for ε = 10−2 (solid line),
ε = 10−3 (dashed line) for α = −1 (Left) and α = 2 (Right).
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