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UNIFORM STABILIZATION OF A NUMERICAL APPROXIMATION OF A

LOCALLY DAMPED WAVE EQUATION ∗

Arnaud Münch1 and Ademir Fernando Pazoto2

Abstract. This work is devoted to the analysis of a viscous finite-difference space semi-discretization
of a locally damped wave equation in a regular 2-D domain. The damping term is supported in a
suitable subset of the domain, so that the energy of solutions of the damped continuous wave equation
decays exponentially to zero as time goes to infinity. Using discrete multiplier techniques, we prove
that adding a suitable vanishing numerical viscosity term leads to a uniform (with respect to the
mesh size) exponential decay of the energy for the solutions of the numerical scheme. The numerical
viscosity term damps out the high frequency numerical spurious oscillations while the convergence
of the scheme towards the original damped wave equation is kept, which guarantees that the low
frequencies are damped correctly. Numerical experiments are presented and confirm these theoretical
results. These results extend those by Tcheugoué-Tébou and Zuazua in [23] where the 1-D case was
addressed as well the square domain in 2-D. The methods and results in this paper extend to smooth
domains in any space dimension.

Résumé. Ce travail concerne l’analyse d’un schéma aux différences finies semi-discret en espace
approchant une équation des ondes amorties localement et posée sur un domaine 2-D. Le terme
d’amortissement est défini sur un sous-ensemble du domaine de façon à ce que l’énergie associée au
système continu décroisse exponentiellement vers zéro lorsque le temps tends vers l’infini. En utilisant
une technique des multiplicateurs discrètes, on montre que l’ajout d’un terme de viscosité permet de
guarantir la décroissance exponentielle uniformément (vis à vis de la taille du maillage) de l’énergie
associée au système semi-discret. Le terme de viscosité permet de capter les solutions numériques haute
fréquence tout en préservant la convergence du schéma vers le système continu. Des essais numériques
sont présentés et confirment ces résultats théoriques. Ces résultats étendent ceux de Tcheugoué-Tébou
and Zuazua [23] aux cas de domaines 2-D réguliers quelconques.
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Introduction and setting of the problem

Let us consider the following damped wave equation defined on Ω× [0,∞), Ω being a bounded domain in R
2

of class C2: 



y′′ −∆y + a(x)y′ = 0 in Ω× (0,∞),
y = 0 on Γ ≡ ∂Ω× (0,∞),
y(x, 0) = y0(x) in Ω,

y′(x, 0) = y1(x) in Ω,

(1)

where the symbol ′ designates the partial differentiation with respect to time. The damping potential a = a(x)
is assumed to be a bounded nonnegative function defined on Ω. In addition, we suppose that there exists a
positive constant α0 such that

a(x) ≥ α0 a.e. x ∈ ω where ω is a nonempty open subset of Ω. (2)

System (1) is well-posed in the space H1
0 (Ω) × L2(Ω). Indeed, given {y0, y1} ∈ H1

0 (Ω) × L2(Ω), there exists a
unique solution of (1) with (see [15])

y ∈ C([0,∞);H1
0 (Ω)) ∩ C1([0,∞);L2(Ω)). (3)

The energy of the system (1) is given by

E(t) =
1

2

∫

Ω

{|y′(x, t)|2 + |∇y(x, t)|2}dx, ∀ t ≥ 0. (4)

Moreover, the following dissipation law holds

E′(t) = −
∫

Ω

a(x)|y′(x, t)|2dx, ∀t ≥ 0. (5)

Consequently, E is a non increasing function of the time variable t and therefore a rate of decay is expected.
When a(x) ≥ α0 > 0 a.e. in Ω, it is straightforward to see that the energy decays uniformly exponentially

as t goes to infinity: there exist two positive constants C and α such that

E(t) ≤ Ce−αtE(0), ∀t ≥ 0. (6)

The problem of stabilization when the damping is effective only on a subset of Ω is much more subtle. This
problem has been extensively investigated in the context of wave equations and there is a large literature on
the subject. For instance, Dafermos [6], Haraux [9] and Slemrod [24] used La Salle’s invariance principle to
obtain asymptotic stability properties. More recently, assuming that the dissipation is effective in a suitable
subset of the domain where the equation holds, decay rates have been obtained (see for instance Nakao [18] and
Zuazua [25]). In particular, when ω is a neighborhood of the subset of the boundary ∂Ω as follows

ω is the intersection of Ω and a neighborhood of Γ0, (7)

where

Γ0 = {x ∈ ∂Ω ; x · ν > 0 }, (8)

and ν the unit normal pointing into the exterior of Ω then, the uniform exponential decay (6) holds ( [8], [16],
[22], [25]).
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In view of (5), the problem of the exponential decay of E can be stated in the following equivalent form: is
it possible to find T > 0 and C > 0 such that

E(0) ≤ C

∫ T

0

∫

Ω

a(x)| y′(x, t) |2dxdt (9)

holds for every finite energy solution of (1)? More precisely, (9) combined with (5) and the semigroup prop-
erty, allows to obtain the exponential decay property (6). However, we emphasize that, in the general multi-
dimensional setting, inequalities of the form (9) are valid if and only if the subset ω where the damping is
effective satisfies a suitable Geometric Control Condition (GCC) (see [3]). Roughly speaking, the GCC requires
that every ray of geometric optics reaches the region in which the damping mechanism is effective in a uniform
time, a property that holds in the particular case where ω is given by (7-8).

We address in this work the numerical approximation of this problem which is by now well-know to be
extremely sensitive: for instance, the most classical finite-difference semi-discrete numerical approximation of
the first equation of (1)

y′′j,k(t)−
yj+1,k(t)− 2yj,k(t) + yj−1,k(t)

h21
− yj,k+1(t)− 2yj,k(t) + yj,k−1(t)

h22
+ aj,ky

′
j,k(t) = 0 (10)

leads to a semi-discrete observability equality similar to (9) where the constant Ch1,h2
depending now on the

mesh size h1, h2 (defined in details in section 2) may blows-up as h1, h2 go to zero, depending mainly on the
regularity of the initial conditions. Therefore, the exponential decay rate αh1,h2

of the discretized energy is
not uniform with respect to the discretization parameters. This numerical pathology is independent of the
consistence and stability properties of the scheme. This is due to the fact that the interaction of waves with
a numerical mesh produces dispersion phenomena and spurious high frequency oscillations. Because of this
nonphysical interaction the velocity of propagation of such numerical waves, the so called group velocity may
converge to zero when the wavelength of solutions is of order of the mesh size O(h1, h2) leading to a time of
observability of order 1/O(h1, h2). Such a pathology was suggested by numerical simulations in a preliminary
work in [2]. According to the close links between stabilization and exact controllability [12], same bad behaviors
appear for the numerical schemes devoted to exact controllability problems (we refer the reader to [27] and the
references therein for an extended survey on this issue).

The problem of numerical approximation and stabilization has been addressed in [23] in 1-D and 2-D in the
interval and the unit square domain, respectively. It was shown that an estimate similar to (9) is valid for the
“finite-difference space semi-discretization” of (1), which is uniform with respect to the mesh size, provided a
suitable viscosity term is added. More precisely, the authors replaced the equation (10) by the following one:

y′′j,k(t)−
yj+1,k(t)− 2yj,k(t) + yj−1,k(t)

h21
− yj,k+1(t)− 2yj,k(t) + yj,k−1(t)

h22
+ aj,ky

′
j,k(t)

− h21

(
y′j+1,k(t)− 2y′j,k(t) + y′j−1,k(t)

h21

)
− h22

(
y′j,k+1(t)− 2y′j,k(t) + y′j,k−1(t)

h22

)
= 0

(11)

In this work, we treat an important case left open in [23]. It is the one in which the model under consid-
eration is posed in a regular 2-D bounded domain. This introduces important additional technical difficulties
related with the analysis near the boundary. In this respect, we introduce a sequence of discretized domains
(Ωh1,h2

)h1,h2
converging to Ω (in a sense that will be made precise later) when the mesh parameters h1 and h2

go to zero (see Figure 1). Then, we associate to the first equation of (1) the finite-difference semi-discretization
equation (11) where yj,k(t) denotes the approximation of y(., t) at the node (jh1, kh2) of Ωh1,h2

. Following the
methodology developed in [23], we show the efficiency of this scheme : we first prove that the energy associated
with this numerical scheme decays exponentially, with a rate independent of the mesh size (see Theorem 2.1,
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section 2). To obtain the result we combine discrete multiplier methods introduced in [11] and compactness-
uniqueness arguments. Let us note that a discrete version of multipliers was also developed in [11,26] to address
the issue of boundary observability in 1-D and the 2-D square domain. Then, we prove that the solution of the
discretized system defined on Ωh1,h2

converges to the solution of (1) defined on Ω (see theorem 3.1, section 3).
Finally, we present some numerical experiments in order to confirm these theoretical results (section 4).

x2

x1

Ω
Ω

Ωh1,h2

Ωh1,h2

Figure 1. General domain Ω and two different discretizations Ωh1,h2
.

1. Discretization of the domain Ω and the finite different scheme

1.1. Discretization of the domain Ω

We introduce in this paragraph a spatial discretization of the domain Ω. Without loss of generality, we assume
that the domain Ω is included in the unit square box: Ω ⊆ B ≡]0, 1[×]0, 1[. For non negatives integer J and
K, we then set

h1 =
1

J + 1
, h2 =

1

K + 1
, (12)

and consider the two following uniform subdivisions of the interval [0, 1]

{
0 = x1,0 < x1,1 < ... < x1,J < x1,J+1 = 1,

0 = x2,0 < x2,1 < ... < x2,K < x2,K+1 = 1,
(13)

where x1,j = jh1 and x2,k = kh2 for j ∈ [0, J +1] and k ∈ [0,K+1]. We associate to the grid G = (x1,j , x2,k)j,k
a discretization Bh1,h2

of B as follow:

Bh1,h2
= ∪j∈[0,J],k∈[0,K]Bj,k,

where

Bj,k =]x1,j , x1,j+1[×]x2,k, x2,k+1[ (14)

represents the cell of area h1h2. Naturally, in the simple case of the unit square, the discretization is exact in
the sense that Bh1,h2

= B. We then define Ωh1,h2
as the union of all the cells Bj,k strictly included in Ω:

Ωh1,h2
= ∪j,kBj,k, ∀j ∈ [0, J ], k ∈ [0,K] such that Bj,k ⊂ Ω (15)

implying in particular the inclusion Ωh1,h2
⊂ Ω for all h1 and h2. More precisely, we can write Ωh1,h2

in the
following way

Ωh1,h2
= ∪j=0,J ∪k∈Ij Bj,k, (16)
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where, for j from 0 to J , Ij designs the subset of [0,K] defined by

Ij =
{
k ∈ [0,K] : Bj,k ⊂ Ωh1,h2

}
, j ∈ [0, J ]. (17)

Therefore, k ∈ Ij ⇐⇒ Bj,k ∈ Ωh1,h2
. Now, in order to state the next definition, we extend Ij to j = −1 and

j = J + 1 putting I−1 = ∅ and IJ+1 = ∅. Then, proceeding as before, we define the approximation ωh1,h2
of

the open subset ω as the union of all the cells Bj,k included in ω.

Let us now describe the boundary of Ωh1,h2
which plays a crucial role in the context of stabilization.

According to (16), the boundary is composed of segments Ĩ(j, k) and Î(j, k) parallel to the axis Ox1 or to Ox2,
respectively:

Ĩ(j, k) = {j} × [k, k + 1] and Î(j, k) = [j, j + 1]× {k}, (18)

for j ∈ [0, J ] and k ∈ [0,K]. Thus,

Ĩ(j, k) ⊂ ∂Ωh1,h2
if (k ∈ Ij and k 6∈ Ij−1) or (k 6∈ Ij and k ∈ Ij−1) (19)

and
Î(j, k) ⊂ ∂Ωh1,h2

if (k ∈ Ij and k − 1 6∈ Ij) or (k 6∈ Ij and k − 1 ∈ Ij). (20)

In the sequel, we will need a finer distinction of the elements of the boundary of Ωh1,h2
:

Definition 1.1 (Boundary of Ωh1,h2
). We introduce the following subsets of N× N:

• Ĩ+ = {(j, k) such that k ∈ Ij−1, k 6∈ Ij , j ∈ [1, J + 1]};
• Ĩ− = {(j, k) such that k ∈ Ij , k 6∈ Ij−1, j ∈ [0, J ]};
• Î+ = {(j, k) such that k − 1 ∈ Ij , k 6∈ Ij , j ∈ [0, J ]};
• Î− = {(j, k) such that k − 1 6∈ Ij , k ∈ Ij , j ∈ [0, J ]}

describing the nodes of ∂Ωh1,h2
.

One element of each of these four subsets is described in Figure 2.

Remark 1.2. In the sequel, in order to simplify the notation, we will identify each of these four subsets by the
corresponding union of segments of the boundary: for instance, we identify Ĩ+ with {x ∈ Ĩ(j, k),∀(j, k) ∈ Ĩ+}.
To illustrate the parametrization above we write it explicitly for the simple polygonal domain Ωh1,h2

de-
scribed in the Figure 3 where J = 8 and K = 5. The objects corresponding to this example are summarized on

the table 1 for which the subsets Ĩ+ and Î+ are

{
Ĩ+ = {(3, 0), (3, 1), (3, 5), (7, 3), (9, 0), (9, 1), (9, 2), (9, 4), (9, 5)},
Î+ = {(0, 4), (3, 5), (4, 5), (7, 3), (8, 3), (9, 3), (1, 6), (2, 6), (5, 6), (6, 6), (7, 6), (8, 6)}.
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x1

x2

Î+(j, k) Î−(j, k)

Bj,k−1

Bj−1,k

Ĩ−(j, k)

j

Ĩ+(j, k)

Bj,k

k

h2

h1

Bj,k

k

jj

j

Bj−1,k ⊂ Ωh1,h2
Bj,k ⊂ Ωh1,h2

Bj,k ⊂ Ωh1,h2

Bj,k−1 ⊂ Ωh1,h2

ν

ν ν

ν

k k

Figure 2. Description of the four types of segments of the boundary: Ĩ+(j, k) (left up), Ĩ−(j, k)

(right up), Î+(j, k) (left down) and Î−(j, k) (right down).

j n(j) Ij
0 1 {1, 2, 3}
1 1 {0, 1, 2, 3, 4, 5}
2 1 {0, 1, 2, 3, 4, 5}
3 1 {2, 3, 4}
4 1 {2, 3, 4}
5 1 {0, 1, 2, 3, 4, 5}
6 1 {0, 1, 2, 3, 4, 5}
7 2 {0, 1, 2} ∪ {4, 5}
8 2 {0, 1, 2} ∪ {4, 5}

Table 1. Indexes corresponding to the parametrization of Ωh1,h2
in Figure 3.

1.2. Finite difference scheme

Thanks to the parametrization described above, we are now in the position to introduce and study a dis-
cretized version of the system (1). We consider the following semi-discrete finite difference scheme resulting
from the usual 5-points approximation (of order 2) in space of the laplacian:
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B4,3

h1

h2

1

2

3

4

5

6

k

1 2 3 4 5 6 9870

0

j

x2

x1

Ĩ+ ∪ Î+

Ĩ− ∪ Î−

Figure 3. Polygonal domain Ωh1,h2
with J = 8 and K = 5.





y′′j,k −
yj+1,k − 2yj,k + yj−1,k

h21
− yj,k+1 − 2yj,k + yj,k−1

h22
+ aj,ky

′
j,k

− h21

(
y′j+1,k − 2y′j,k + y′j−1,k

h21

)
− h22

(
y′j,k+1 − 2y′j,k + y′j,k−1

h22

)
= 0

for (j, k) ∈ Ωh1,h2
and t ∈ (0,∞),

yj,k(t) = 0 for (j, k) ∈ ∂Ωh1,h2
and t ∈ (0,∞),

yj,k(t) = (y0)j,k, y′j,k(t) = (y1)j,k for (j, k) ∈ Ωh1,h2
and t = 0.

(21)

which differs from the most classical finite-difference scheme by the addition of viscous terms. We shall see
below that this numerical approximation scheme converges in the energy space to the continuous damped wave
equation (1).

Here, yj,k stands for the approximation of the solution y at the mesh point (x1,j , x2,k) and at time t ∈ (0,∞)
and (y0)j,k and (y1)j,k the approximations of the initial data y0(x) and y1(x) at time t = 0. Furthermore,
the notation for (j, k) ∈ Ωh1,h2

means for j ∈ [0, J ], k ∈ Ij , i.e. for the indexes (j, k) such that the nodes
(x1,j , x2,k) are in Ωh1,h2

. In the same manner, the notation for (j, k) ∈ ∂Ωh1,h2
means for (j, k) ∈ Ĩ+ ∪ Ĩ− ∪

Î+∪ Î−. aj,k denotes the approximation of the damping at the mesh point (x1,j , x2,k) and we assume that there
exists a positive constant α0 such that

aj,k ≥ α0 ∀ (j, k) ∈ ωh1,h2
. (22)

According to (7), ωh1,h2
defined in the section 1 is as follow

ωh1,h2
is the intersection of Ωh1,h2

and a neighborhood of Ĩ+ ∪ Î+. (23)
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We can associate to this scheme the following energy:

Eh1,h2
(t) =

h1h2
2

J∑

j=0

∑

k∈Ij

{
(y′j,k)

2 +

(
yj+1,k − yj,k

h1

)2
+

(
yj,k+1 − yj,k

h2

)2}
, (24)

which appears to be the semi-discrete version of the energy E in (4) of the solutions of the continuous wave
equation. Moreover, multiplying the first equation in (21) by y′j,k and summing over j and k, one can show that
the discretized energy Eh1,h2

is a non increasing function of time. More precisely,

E′h1,h2
(t) = −h1h2

J∑

j=0

∑

k∈Ij

aj,k(y
′
j,k)

2

−h1h2
J∑

j=0

∑

k∈Ij

{
h21

(
y′j+1,k − y′j,k

h1

)2
+ h22

(
y′j,k+1 − y′j,k

h2

)2}
.

(25)

which is a semi-discrete version of the energy dissipation law (5).

Furthermore, in order to obtain the exponential decay of solutions of the damped semi-discrete system (21)
it is necessary and sufficient to prove the existence of a time T > 0 and a constant C > 0 independent of h1
and h2 such that the following Observability Inequality holds

Eh1,h2
(0) ≤ Ch1h2

J∑

j=0

∑

k∈Ij

∫ T

0

aj,k(y
′
j,k)

2dt, (26)

for every solution of (21). In the next section, we will proved this inequality using a discrete multiplier method.

We highlight the fact that the constant C in (26) may be not independent of h1, h2 for some solutions
of the usual scheme without extra viscous terms. More precisely, the usual scheme creates high frequency
spurious solutions that propagate very slowly (with group velocity of the order of the step size h1 and h2)
making the observability property (26) impossible to hold uniformly in h1 and h2. The purpose of the viscous
terms is to precisely absorb these high frequency solutions for which the quantities y ′j+1,k − 2y′j,k + y′j−1,k and

y′j,k+1 − 2y′j,k + y′j,k−1 are not negligible.

Remark 1.3. The first equation in (21) can be seen as a semi-discrete version of the following viscous wave
equation defined on Ω :

y′′ −∆y + a(x)y′ − h21
∂2

∂x21
y′ − h22

∂2

∂x22
y′ = 0. (27)

Therefore, the extra viscous terms introduced are closely connected to the Tychonoff regularization technique [7]
and also to the techniques introduced in [13, 17] which consist to add extra corrected terms proportionnal to
h21, h

2
2 in order to restore uniform observability property.

In the following, we denote by C a positive constant that may vary from line to line but is independent on
h1 and h2.

2. Uniform stabilization of the energy

This section is devoted to show that the energy associated to (21) decays exponentially, the rate being uniform
with respect to the mesh size. Our main result reads as follows:
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Theorem 2.1 (Uniform exponential decay). Let (aj,k) and ωh1,h2
be given as in (22) and (23), respectively.

Then, there exist two positive constants C and α independent of (h1, h2) such that the energy of the system (21)
satisfies

Eh1,h2
(t) ≤ CEh1,h2

(0)e−αt, ∀ t ≥ 0, ∀ h1, h2 ∈ (0, 1), (28)

for every solution of (21).

Theorem 2.1 shows that the numerical viscosity term added in system (21) is enough to restore the uniform
(with respect to (h1, h2) → 0) exponential decay. This was already proved in [23] in 1-D and 2-D in the
particular case of a square domain. Lately, this approach was used in [21] to construct uniformly exponentially
stable approximations for an abstract class of second order evolution equations with bounded feedback controls.
The proof of Theorem 2.1 is divided in six steps: in step 1, we first reduce the problem to obtaining a suitable

uniform Observability Inequality for the undamped system (see (30) below). In step 2, we establish a discrete
boundary observability estimate (see (41)) leading in step 3 to the discrete boundary observability (46). Step
4 is devoted to the absorption of the boundary terms leading in step 5 to an internal observability inequality
(56). Finally, in step 6, using a compactness-uniqueness argument, we obtain the desired inequality (28).

Proof of Theorem 2.1

Step 1: Reduction of the problem

To prove the exponential decay of solutions of the damped semi-discrete system (21) it is necessary and
sufficient to prove the existence of a time T > 0 and a constant C > 0 independent of h1 and h2 such that the
following observability inequality holds

Eh1,h2
(0) ≤ Ch1h2

J∑

j=0

∑

k∈Ij

∫ T

0

[
aj,k(u

′
j,k)

2 + h21

(
u′j+1,k − u′j,k

h1

)2
+ h22

(
u′j,k+1 − u′j,k

h2

)2]
dt (29)

for every solution uh1,h2
of the conservative system





u
′′

j,k −
uj+1,k − 2uj,k + uj−1,k

h21
− uj,k+1 − 2uj,k + uj,k−1

h22
= 0

for (j, k) ∈ Ωh1,h2
and t ∈ (0,∞),

uj,k(t) = 0 for (j, k) ∈ ∂Ωh1,h2
and t ∈ (0,∞),

uj,k(0) = (y0)j,k, u′j,k(0) = (y1)j,k for (j, k) ∈ Ωh1,h2

(30)

and all 0 < h1, h2 < 1.
Indeed, we argue as in [23]. Let us assume that (29) holds. We decompose the solution yh1,h2

of (21) as
yh1,h2

= uh1,h2
+ zh1,h2

where uh1,h2
solves (30) and zh1,h2

is the solution of





z
′′

j,k −
zj+1,k − 2zj,k + zj−1,k

h21
− zj,k+1 − 2zj,k + zj,k−1

h22
= (y′j+1,k − 2y′j,k + y′j−1,k) + (y

′
j,k+1 − 2y′j,k + y′j,k−1)− aj,ky

′
j,k

for (j, k) ∈ Ωh1,h2
and t ∈ (0,∞),

zj,k(t) = 0 for (j, k) ∈ ∂Ωh1,h2
and t ∈ (0,∞),

zj,k(0) = 0, z′j,k(0) = 0 for (j, k) ∈ Ωh1,h2
.

(31)
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According to (29) we have

Eh1,h2
(0) ≤Ch1h2

J∑

j=0

∑

k∈Ij

∫ T

0

[
aj,k(y

′
j,k)

2 + h21

(
y′j+1,k − y′j,k

h1

)2
+ h22

(
y′j,k+1 − y′j,k

h2

)2

+ aj,k(z
′
j,k)

2 + h21

(
z′j+1,k − z′j,k

h1

)2
+ h22

(
z′j,k+1 − z′j,k

h2

)2]
dt.

(32)

Let us now assume for the moment that the following inequality holds:

J∑

j=0

∑

k∈Ij

∫ T

0

[
aj,k(z

′
j,k)

2 + h21

(
z′j+1,k − z′j,k

h1

)2
+ h22

(
z′j,k+1 − z′j,k

h2

)2]
dt

≤ C

J∑

j=0

∑

k∈Ij

∫ T

0

[
aj,k(y

′
j,k)

2 + h21

(
y′j+1,k − y′j,k

h1

)2
+ h22

(
y′j,k+1 − y′j,k

h2

)2]
dt.

(33)

Combining (32) and (33), it follows that

Eh1,h2
(T ) ≤ Eh1,h2

(0)

≤ Ch1h2

J∑

j=0

∑

k∈Ij

∫ T

0

[
aj,k(y

′
j,k)

2 + h21

(
y′j+1,k − y′j,k

h1

)2
+ h22

(
y′j,k+1 − y′j,k

h2

)2]
dt.

(34)

Now, integrating in (0, T ) the energy dissipation law (25) for solutions of (21), it follows that

Eh1,h2
(T )− Eh1,h2

(0)

= − h1h2

J∑

j=0

∑

k∈Ij

∫ T

0

[
aj,k(y

′
j,k)

2 + h21

(
y′j+1,k − y′j,k

h1

)2
+ h22

(
y′j,k+1 − y′j,k

h2

)2]
dt.

(35)

Combining (34) and (35), we deduce that

Eh1,h2
(T ) ≤ γ Eh1,h2

(0) (36)

with γ =
C

C + 1
. Inequality (36) together with the semigroup property imply that

Eh1,h2
(t) ≤ 1

γ
exp

−| log(γ)|
T

tEh1,h2
(0), ∀ t > 0, and 0 < h1, h2 < 1. (37)

This yields the desired exponential decay.
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To conclude, let us now check (33). Multiplying the equation satisfied by zh1,h2
by z′j,k, we get

F ′h1,h2
(t) = h1h2

J∑

j=0

∑

k∈Ij

(
h1

(
y′j+1,k − y′j,k

h1

)
+ h2

(
y′j,k+1 − y′j,k

h2

))
z′j,k

− h1h2

J∑

j=0

∑

k∈Ij

(
h1

(
y′j+1,k − y′j,k

h1

)
z′j+1,k + h2

(
y′j,k+1 − y′j,k

h2

)
z′j,k+1

)

− h1h2

J∑

j=0

∑

k∈Ij

aj,ky
′
j,kz
′
j,k

≤ Fh1,h2
(t) + C h1h2

J∑

j=0

∑

k∈Ij

(
h21

(
y′j+1,k − y′j,k

h1

)2
+ h22

(
y′j,k+1 − y′j,k

h2

)2
+ aj,k(y

′
j,k)

2

)
,

(38)

where Fh1,h2
denotes the energy of the solution of system (31).

Integrating (38) in [0, T ], taking into account that Fh1,h2
(0) = 0, using the Gronwall lemma and the fact that

h1h2

J∑

j=0

∑

k∈Ij

∫ T

0

(
h21

(
zj+1,k − zj,k

h1

)2
+ h22

(
zj,k+1 − zj,k

h2

)2)
dt

+ h1h2

J∑

j=1

∑

k∈Ij

∫ T

0

aj,k(zj,k(t))
2dt ≤ C

∫ T

0

Fh1,h2
(t)dt,

(39)

inequality (33) immediately follows.

Remark 2.2. In the case where the damping is effective on the whole domain (ω = Ω), we obtain easily that

J∑

j=0

∑

k∈Ij

∫ T

0

[
h21

(
u′j+1,k − u′j,k

h1

)2
+ h22

(
u′j,k+1 − u′j,k

h2

)2]
dt ≤ C

J∑

j=0

∑

k∈Ij

∫ T

0

aj,k(u
′
j,k)

2dt (40)

implying that the proof of (29) is reduced to the proof of (26). Therefore, in this case, the use of extra viscous
terms is no longer necessary.

Step 2: Energy identity for the conservative discretized equation (30)

The purpose of this step is to derive an energy identity for the conservative discretized system (30), which is
the basic tool for proving an a priori asymptotic estimate on the solution of (21). We state the result in the
following lemma:
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Lemma 2.3. The semi-discretized energy Eh1,h2
satisfies the following relation:

TEh1,h2
(0) =

∫ T

0

Eh1,h2
(t)dt

= −h1h2
2

J∑

j=0

∑

k∈Ij

u′j,k

(
jh1

(
uj+1,k − uj−1,k

h1

)
+
uj,k
2

)]T

0

− h1h2
2

J∑

j=0

∑

k∈Ij

u′j,k

(
kh2

(
uj,k+1 − uj,k−1

h2

)
+
uj,k
2

)]T

0

− h2
2

∑

(j,k)∈Ĩ−
jh1

∫ T

0

(
uj+1,k
h1

)2
dt+

h2
2

∑

(j,k)∈Ĩ+
jh1

∫ T

0

(
uj−1,k
h1

)2
dt

− h1
2

∑

(j,k)∈Î−
kh2

∫ T

0

(
uj,k+1
h2

)2
dt+

h1
2

∑

(j,k)∈Î+
kh2

∫ T

0

(
uj,k−1
h2

)2
dt

− h1h2
2

J∑

j=0

∑

k∈Ij

∫ T

0

{(
uj+1,k − uj,k

h1

)2
+

(
uj,k+1 − uj,k

h2

)2}
dt

+
h1h2
2

J∑

j=0

∑

k∈Ij

∫ T

0

{(
uj+1,k+1 − uj,k+1

h1

)(
uj+1,k − uj,k

h1

)}
dt

+
h1h2
2

J∑

j=0

∑

k∈Ij

∫ T

0

{(
uj+1,k+1 − uj+1,k

h2

)(
uj,k+1 − uj,k

h2

)}
dt

+
h1h2
4

J∑

j=0

∑

k∈Ij

∫ T

0

{
h21

(
u′j+1,k − u′j,k

h1

)2
+ h22

(
u′j,k+1 − u′j,k

h2

)2}
dt.

(41)

Remark 2.4. The identity (41) is analogous - on a semi discrete level - to the well-known relation

TE(0) = −
∫

Ω

ut

(
x · ∇u+ u

2

)∣∣∣∣
T

0

dx+
1

2

∫ T

0

∫

∂Ω

x · ν
∣∣∣∣
∂u

∂ν

∣∣∣∣
2

dνdt (42)

where u is solution the continuous conservative wave equation (1) with a ≡ 0. This relation may be obtained
using the multipliers x · ∇u and u (see [12] for instance). More precisely, the two first sums of (41) clearly
approximate the first integral of (42). Furthermore, the third and fourth sums approximate the boundary terms
of (42). To see this, it is convenient to split the boundary integral into two integrals in the subsets where
x.ν > 0 and x.ν < 0, respectively. Due the Dirichlet boundary condition, the approximation of, for instance,
∂u
∂ν
on the point (x1,j , x2,k) of Ĩ

+ is simply −uj−1,k

h1
. Furthermore, Ĩ+ ∪ Î+ coincides with Γ0 while Ĩ

− ∪ Î−

with ∂Ω \ Γ0. However, (41) contains some terms (the last four) that do not appear in the continuous case. It
is precisely in order to absorb these terms and more specifically the positives ones that adding the numerical
viscosity term is needed.

Proof of lemma 2.3 - Let us introduce Mj,k

Mj,k = j

(
uj+1,k − uj−1,k

2

)
+ k

(
uj,k+1 − uj,k−1

2

)
, (43)
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which corresponds to the semi-discrete version of the multiplier x.∇u. Following the developments in [23], we
multiply the first equation of (30) by Mj,k, take the sum over j and k, and integrate by parts in [0, T ].

Step 3: Absorption of the term at time t = 0, T and the crossed one

Now we are going to estimate the term at time t = 0, T as well as the crossed terms entering in the right
hand side of (41).
Using Young inequality as well as (24), we obtain (see the appendix of [23] for more details concerning the unit
square domain)

∣∣∣∣−
h1h2
2

J∑

j=0

∑

k∈Ij

u′j,k

(
jh1

(
uj+1,k − uj−1,k

h1

)
+
uj,k
2

)]T

0

− h1h2
2

J∑

j=0

∑

k∈Ij

u′j,k

(
kh2

(
uj,k+1 − uj,k−1

h1

)
+
uj,k
2

)]T

0

∣∣∣∣

≤
(
2
√
2 +

√
2

4
max(h21, h

2
2)

)
Eh1,h2

(0).

(44)

Also, we obtain

− h1h2
2

J∑

j=0

∑

k∈Ij

∫ T

0

{(
uj+1,k − uj,k

h21

)2
+

(
uj,k+1 − uj,k

h22

)2}
dt

+
h1h2
2

J∑

j=0

∑

k∈Ij

∫ T

0

{(
uj+1,k+1 − uj,k+1

h1

)(
uj+1,k − uj,k

h1

)}
dt

+
h1h2
2

J∑

j=0

∑

k∈Ij

∫ T

0

{(
uj+1,k+1 − uj+1,k

h2

)(
uj,k+1 − uj,k

h2

)}
dt ≤ 0.

(45)

The proof of this inequality relies essentially on the inequality −(a2 + b2) + 2ab ≤ 0, for all a, b ∈ R. Reporting

(44) and the above inequality in (41), we get for all T > 2
√
2 +

√
2
4 max(h

2
1, h

2
2)

(
T − 2

√
2−

√
2

4
max(h21, h

2
2)

)
Eh1,h2

(0)

≤ h1h2
2

∑

(j,k)∈Ĩ+
j

∫ T

0

(
uj−1,k
h1

)2
dt+

h1h2
2

∑

(j,k)∈Î+
k

∫ T

0

(
uj,k−1
h2

)2
dt

+
h1h2
4

J∑

j=0

∑

k∈Ij

∫ T

0

{
h21

(
u′j+1,k − u′j,k

h1

)2
+ h22

(
u′j,k+1 − u′j,k

h2

)2}
dt.

(46)

In (46) the boundary terms corresponding to the subsets Ĩ− and Î− have been neglected since they are negative.
The next steps are devoted to the absorption of the remaining boundary terms in the right hand side of (46).

Step 4: Absorption of the boundary terms
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Let us introduce the function f = (f 1, f2) ∈ (W 1,∞(Ω))2 of support ω̂ localized on the neighborhood of Γ0
(defined in (8)) and included in ω; more precisely, we write :





f1(x) = 1 on {x ∈ Γ0, ν(x) = (1, 0)},
f2(x) = 1 on {x ∈ Γ0, ν(x) = (0, 1)},
f(x) = 0 in Ω \ Vr(Γ0),

(47)

where Vr(Γ0) denotes a neighborhood of Γ0 for the euclidean distance,

Vr(Γ0) = {x ∈ Ω ; d(x,Γ0) ≤ r}, (48)

and r a sufficiently small positive real. We then define the discrete cut-off function of support the grid G(ω̂h1,h2
)

of ω̂h1,h2
defined as the union of cells Bj,k contained in ω̂:

{
f1j,k = 1 if (j, k) ∈ Ĩ+, f2j,k = 1 if (j, k) ∈ Î+,

f j,k = 0 if (j, k) /∈ G(Ωh1,h2
) \ (Vr(Ĩ+ ∪ Î+)).

(49)

We also introduce a smooth nonnegative function g = g(t) such that

g(0) = g(T ) = 0, g(t) = 1 in [δ, T − δ] (50)

where δ > 0 is sufficiently small. Now, we multiply the first equation in (30) by

f1j,k

(
uj+1,k − uj−1,k

2h1

)
g(t) + f2j,k

(
uj,k+1 − uj,k−1

2h2

)
g(t) (51)

and proceed as in the first step. We find

1

2

∑

(j,k)∈Ĩ+
j

∫ T

0

g(t)

(
uj−1,k
h1

)2
dt+

1

2

∑

(j,k)∈Î+
k

∫ T

0

g(t)

(
uj,k−1
h2

)2
dt

=
1

2

∑

(j,k)∈ω̂h1,h2

(
f1j+1,k − f1j,k

h1

∫ T

0

g(t)u′j+1,ku
′
j,kdt+

f2j,k+1 − f2j,k
h2

∫ T

0

g(t)u′j,k+1u
′
j,kdt

)

−
∑

(j,k)∈ω̂h1,h2

(
f1j,k

∫ T

0

g′(t)u′j,k(t)

(
uj+1,k − uj−1,k

2h1

)
dt+ f2j,k

∫ T

0

g′(t)u′j,k

(
uj,k+1 − uj,k−1

2h2

)
dt

)

+
1

2

∑

(j,k)∈ω̂h1,h2

f1j+1,k − f1j,k
h1

∫ T

0

g(t)

(
uj+1,k − uj,k

h1

)2
dt

+
1

2

∑

(j,k)∈ω̂h1,h2

f2j,k+1 − f2j,k
h2

∫ T

0

g(t)

(
uj,k+1 − uj,k

h2

)2
dt

−
∑

(j,k)∈ω̂h1,h2

f2j,k

∫ T

0

g(t)

(
uj+1,k − 2uj,k + uj−1,k

h21

)(
uj,k+1 − uj,k−1

2h2

)
dt

−
∑

(j,k)∈ω̂h1,h2

f1j,k

∫ T

0

g(t)

(
uj,k+1 − 2uj,k + uj,k−1

h22

)(
uj+1,k − uj−1,k

2h1

)
dt.

(52)
From the relation (52), we have the following result:
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Lemma 2.5. The bounded terms can be bounded as follows:

1

2

∑

(j,k)∈Ĩ−
j

∫ T−δ

δ

(
uj−1,k
h1

)2
dt+

1

2

∑

(j,k)∈Î+
k

∫ T−δ

δ

(
uj,k−1
h2

)2
dt

≤ C

J∑

j=0

∑

k∈Ij

aj,k

∫ T

0

(u′j,k(t))
2dt+ C

∑

(j,k)∈ω̂h1,h2

∫ T

0

g(t)(uj,k(t))
2dt

+ C
∑

(j,k)∈ω̂h1,h2

∫ T

0

g(t)

{(
uj+1,k − uj,k

h1

)2
+

(
uj,k+1 − uj,k

h2

)2}
dt.

(53)

Proof of lemma 2.5 - Performing as in [23] the result follows.

Reporting (53) in (46) with T > 2
√
2+

√
2
4 max(h

2
1, h

2
2) and δ small enough such that T − 2δ > 0, we obtain,

using the invariance by the translation in time,

Eh1,h2
(0) ≤Ch1h2

J∑

j=0

∑

k∈Ij

∫ T

0

aj,k(u
′
j,k(t))

2dt

+ Ch1h2

J∑

j=0

∑

k∈Ij

∫ T

0

{
h21

(
u′j+1,k − u′j,k

h1

)2
+ h22

(
u′j,k+1 − u′j,k

h2

)2}
dt

+ Ch1h2
∑

(j,k)∈ω̂h1,h2

∫ T

0

g(t)(uj,k(t))
2dt

+ Ch1h2
∑

(j,k)∈ω̂h1,h2

∫ T

0

g(t)

{(
uj+1,k − uj,k

h1

)2
+

(
uj,k+1 − uj,k

h2

)2}
dt.

(54)

It remains to show that the last two terms in the right hand side of (54) may be uniformly absorbed:

Step 5: Absorption of the discrete gradient term

To absorb the last term in (54) which corresponds to the energy localized in the discrete gradient of ω̂h1,h2
,

we use a localized version of the formula of equipartition of energy. We introduce the function η ∈ W 1,∞(Ω)
with the support ω of the damping a containing strictly the support ω̂ of the function f . As a consequence,
proceeding as in step 4 (see also [23]), an approximation (ηj,k)j,k of η may be defined as follows:

ηj,k = 1 if (j, k) ∈ Ĩ+ ∪ Î+, ηj,k = 0 if (j, k) /∈ G(ωh1,h2
). (55)

Then, multiplying the first equation of (30) by g(t)η2j,kuj,k (with g defined in (50)) and proceeding as in steps

1 and 4, we obtain (see [23]) using ω̂h1,h2
⊂ ωh1,h2

that:

Eh1,h2
(0) ≤ Ch1h2

J∑

j=0

∑

k∈Ij

∫ T

0

aj,k(u
′
j,k(t))

2dt+ Ch1h2
∑

(j,k)∈ωh1,h2

∫ T

0

g(t)(uj,k(t))
2dt

+ Ch1h2

J∑

j=0

∑

k∈Ij

∫ T

0

{
h21

(
u′j+1,k − u′j,k

h1

)2
+ h22

(
u′j,k+1 − u′j,k

h2

)2}
dt,

(56)
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for any T > 2
√
2.

Step 6: Conclusion

To conclude the proof it is sufficient to show that there exists a constant C > 0 such that

∑

(j,k)∈ωh1,h2

∫ T

0

g(t)(uj,k(t))
2dt ≤ C

J∑

j=0

∑

k∈Ij

∫ T

0

aj,k(u
′
j,k(t))

2dt

+ Ch1h2

J∑

j=0

∑

k∈Ij

∫ T

0

{
h21

(
u′j+1,k − u′j,k

h1

)2
+ h22

(
u′j,k+1 − u′j,k

h2

)2}
dt.

(57)

To do this we may argue by means of a classical compactness uniqueness argument as in Proposition 4.1 in [26].
According to this argument, (57) reduces to an unique continuation property for the solution of the continuous
wave equation. But, for that to be true, we need a convergence result guaranteeing that the solutions of the
discrete system converge to those of the wave equation. This is done in Theorem 3.1 of section 3. Since the
analysis described above is analogous to the one developed in [23], we omit the details. This completes the
proof of Theorem 2.1.

3. Convergence of the numerical scheme

The aim of this section is to prove a convergence result of the solution of the semi-discrete scheme (21)
to the solution of system (1). This allows to conclude that the presence of the viscous terms acts only as a
regularization term to damp out the high frequency components and does not change the limit behavior. This
will also permit to pass to the limit in the equation (28) of Theorem 2.1 to find again the exponential decay of
the energy E (equation (6)). Before stating the convergence result, let us introduce the two following extensions
Ph1,h2

and Qh1,h2
defined by:

Ph1,h2
vh1,h2

=





the continuous function linear in each cell Bj,k such that

Ph1,h2
vh1,h2

(x1,j , x2,k) = vj,k,

Ph1,h2
vh1,h2

(x1,j+1, x2,k) = vj+1,k,

Ph1,h2
vh1,h2

(x1,j , x2,k+1) = vj,k+1,

Ph1,h2
vh1,h2

(x1,j+1, x2,k+1) = vj+1,k+1, j ∈ [0, J ], k ∈ Ij .

(58)

Qh1,h2
vh1,h2

=





the step function defined in each square
(
(j − 1

2
)h1, (j +

1

2
)h1

)
×
(
(k − 1

2
)h2, (k +

1

2
)h2

)
∩ Ω

by Qh1,h2
vh1,h2

(x) = vj,k, j ∈ [0, J ], k ∈ Ij .

(59)

We now state our convergence result:

Theorem 3.1 (Convergence of yh1,h2
). Let yh1,h2

denote the solution of (21). Assume that ah1,h2
, (y0)h1,h2

and (y1)h1,h2
are such that there is a nonnegative constant C independent of h1, h2 with

{
Eh1,h2

(0) ≤ C, Qh1,h2
ah1,h2

→ a weakly ∗ in L∞(Ω),

Ph1,h2
(y0)h1,h2

→ y0 weakly in H1
0 (Ω), Qh1,h2

(y1)h1,h2
→ y1 weakly in L2(Ω).

(60)
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Then, we have




Ph1,h2
yh1,h2

→ y weakly ∗ in L∞(0,∞;H1
0 (Ω)),

Qh1,h2

∂yh1,h2

∂t
→ ∂y

∂t
weakly ∗ in L∞(0,∞;L2(Ω)),

(61)

where y is the solution of system (1).

Proof: We decompose the proof in several steps.

Step 1: A priori estimates and weak convergence

Straightforward computations first lead to the two following equalities:

∫

Ωh1,h2

∇Ph1,h2
vh1,h2

(x) · ∇Ph1,h2
wh1,h2

(x)dx

= h1h2

J∑

j=0

∑

k∈Ij

(
vj+1,k − vj,k

h1

)(
wj+1,k − wj,k

h1

)

+ h1h2

J∑

j=0

∑

k∈Ij

(
vj,k+1 − vj,k

h2

)(
wj,k+1 − wj,k

h2

)
,

∫

Ωh1,h2

Qh1,h2
vh1,h2

(x)Qh1,h2
wh1,h2

(x)dx = h1h2

J∑

j=0

∑

k∈Ij

vj,kwj,k.

(62)

Then, according to the definition (24), we get, for every t ≥ 0,

Eh1,h2
(t) =

1

2
( ||Ph1,h2

yh1,h2
(t)||2H1

0 (Ωh1,h2
) + ||Qh1,h2

y′
h1,h2

(t)||2L2(Ωh1,h2
)). (63)

Then, thanks to (60), (63) and the decreasing character of Eh1,h2
, we deduce that Ph1,h2

yh1,h2
is bounded in

L∞(0,∞;H1
0 (Ωh1,h2

)) ∩W 1,∞(0,∞;L2(Ωh1,h2
)), while

Qh1,h2
y′

h1,h2
is bounded in L∞(0,∞;L2(Ωh1,h2

)). Then, since

||Qh1,h2
yh1,h2

||L2(Ωh1,h2
) ≤ ||(Ph1,h2

−Qh1,h2
)yh1,h2

||L2(Ωh1,h2
) + ||Ph1,h2

yh1,h2
||L2(Ωh1,h2

) (64)

and Eh1,h2
is bounded, straightforward computations leads to

||Ph1,h2
yh1,h2

−Qh1,h2
yh1,h2

||L2(Ωh1,h2
) = O(h1h2),∀t ≥ 0, (65)

what allows to deduce that Qh1,h2
yh1,h2

is bounded in L∞(0,∞;L2(Ωh1,h2
)). In the same way, multiply-

ing the first equation of (21) by yj,k, integrating by part over [0, T ] and rearranging the index, one can
also show that Ph1,h2

y′
h1,h2

is bounded in L∞(0,∞;L2(Ωh1,h2
)) such that Ph1,h2

yh1,h2
is also bounded in

W 1,∞(0,∞;L2(Ωh1,h2
)).

Furthermore, taking into account that solutions both in the continuous and the semi-discrete case satisfy
Dirichlet boundary conditions, we can extend them by zero to the whole unit box B. The extension operator is
denoted by the symbol ·̃. Consequently, we can consider each yh1,h2

, as well as the solution of (1), as solution
of H1

0 (B), and therefore the boundedness of Eh1,h2
(t) mentioned above still holds in the domain B, independent
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of h1 and h2. Thus, we can extract subsequences (that we still denote by ỹh1,h2
), such that





Ph1,h2
ỹh1,h2

→ ỹ weakly ∗ in L∞(0,∞;H1
0 (B)),

Ph1,h2
ỹ′

h1,h2
→ ỹ′ weakly ∗ in L∞(0,∞;L2(B)),

Ph1,h2
ỹh1,h2

→ ỹ strongly in L2loc(0,∞;L2(B)),
Qh1,h2

ỹh1,h2
→ ỹ weakly ∗ in L∞(0,∞;L2(B)),

Qh1,h2
ỹ′

h1,h2
→ ỹ′ weakly ∗ in L∞(0,∞;L2(B)),

hiPh1,h2
ỹ′

h1,h2
→ 0 weakly ∗ in L2(0,∞;H1

0 (B)), i = 1, 2.

(66)

The last convergence in (66) follows from the second one and the boundness of the sequence {hiPh1,h2
}, i = 1, 2,

in the space L2(0,∞;H1
0 (B)) easily obtained by multiplying the first equation of (21) by ỹ

′
j,k, integration by

parts and rearranging the index.
Note that in (66), we implicit claim that the limits of Ph1,h2

ỹh1,h2
and Qh1,h2

ỹh1,h2
are the same which is

a consequence of (65).

Step 2: Characterization of the limit ỹ

Let us now show that the limit ỹ is the solution of (1). To this end, let w ∈ D(Ω× (0,∞)) and extend it by
zero to the whole B. We set w̃h1,h2

= (w̃j,k)j,k where w̃j,k = w̃(x1,j , x2,k). Multiplying the first equation of
(21) by w̃j,k, integrating by parts in (0,∞) and taking the sum, we find

J∑

j=0

K∑

k=0

∫ ∞

0

ỹj,kw̃
′′
j,kdt−

J∑

j=0

K∑

k=0

∫ ∞

0

ãj,kỹj,kw̃
′
j,kdt

+

J∑

j=0

K∑

k=0

∫ ∞

0

[(
ỹj+1,k − ỹj,k

h1

)(
w̃j+1,k − w̃j,k

h1

)
+

(
ỹj,k+1 − ỹj,k

h2

)(
w̃j,k+1 − w̃j,k

h2

)]
dt

+
J∑

j=0

K∑

k=0

∫ ∞

0

[
h21

(
ỹ′j+1,k − ỹ′j,k

h1

)(
w̃j+1,k − w̃j,k

h1

)

+ h22

(
ỹ′j,k+1 − ỹ′j,k

h2

)(
w̃j,k+1 − w̃j,k

h2

)]
dt = 0.

(67)

Using the definitions of Ph1,h2
and Qh1,h2

, we can check that (67) is equivalent to

∫ ∞

0

∫

B

Qh1,h2
ỹh1,h2

Qh1,h2
w̃′′

h1,h2
dxdt

+

∫ ∞

0

∫

B

∇Ph1,h2
ỹh1,h2

· ∇Ph1,h2
w̃h1,h2

dxdt

−
∫ ∞

0

∫

B

Qh1,h2
ỹh1,h2

Qh1,h2
w̃′

h1,h2
Qh1,h2

ãh1,h2
dxdt

+ h1h2

J∑

j=0

K∑

k=0

∫ ∞

0

[
h21

(
ỹ′j+1,k − ỹ′j,k

h1

)(
w̃j+1,k − w̃j,k

h1

)

+ h22

(
ỹ′j,k+1 − ỹ′j,k

h2

)(
w̃j,k+1 − w̃j,k

h2

)]
dt = 0.

(68)
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Now, we observe that, if we show that for every w ∈ D(Ω× (0,∞))

{
Ph1,h2

w̃h1,h2
→ w̃ strongly in L2(0,∞;H1

0 (B)),

Qh1,h2
w̃h1,h2

→ w̃ strongly in L2(0,∞;L2(B)),
(69)

then, we will be able to pass to the limit in (68) leading with (66) to

∫ ∞

0

∫

B∩supp w
ỹw′′dxdt+

∫ ∞

0

∫

B∩supp w
∇ỹ · ∇wdxdt−

∫ ∞

0

∫

B∩supp w
ỹw′adxdt = 0, (70)

where supp w denotes the support of w ∈ D(Ω× (0,∞)), what guaranties that

∫ ∞

0

∫

Ω

ỹw′′dxdt+

∫ ∞

0

∫

Ω

∇ỹ · ∇wdxdt−
∫ ∞

0

∫

Ω

ỹw′adxdt = 0 (71)

for all w ∈ D(Ω× (0,∞)).
Step 3: Property of ỹ(t) for all t ≥ 0

Let us first show that ỹ(t) ∈ H1
0 (Ω) for all t ≥ 0. Since Ph1,h2

yh1,h2
belongs to H1

0 (Ωh1,h2
) ⊂ H1

0 (B), the
limit ỹ(t) belongs toH1

0 (B). Furthermore, since ∂Ω is Lipschitz by assumption and also ∂Ωh1,h2
by construction,

it possess the so-called ε-cone property, introduced in [4]. This implies that the bounded sequence (Ωh1,h2
)h1,h2

defined, for each h1, h2 fixed, as the largest domain included in Ω and union of cell Bj,k converges towards Ω
with respect to the complementary-Hausdorff topology (see [20]). This property implies, in particular, that the
limit of the sequence Ph1,h2

yh1,h2
defined on Ωh1,h2

extended to zero on B \Ω belongs to H1
0 (Ω) for any time

t ≥ 0. Actually, in our situation - (Ωh1,h2
) is an increasing sequence include in Ω - we could obtain the same

property using more classical results of spectral analysis (see [10] and the references therein).
Let us now show that ỹ(0) = y0 and ỹ′(0) = y1. For this purpose, let v ∈ D(Ω) and l ∈ D([0,∞)). Then,

multiplying the first equation of (21) by vj,kl, integrating by parts on [0,∞) and taking the sum, we find

−
J∑

j=0

k∑

k=0

(y1)j,kṽj,kl(0) +
J∑

j=0

K∑

k=0

(y0)j,kṽj,kl
′(0)−

J∑

j=0

K∑

k=0

ãj,k(y0)j,kṽj,kl(0)

+
J∑

j=0

K∑

k=0

∫ ∞

0

ỹj,kṽj,kl
′′dt−

J∑

j=0

K∑

k=0

∫ ∞

0

ãj,kỹj,kṽj,kl
′dt

+

J∑

j=0

K∑

k=0

∫ ∞

0

[(
ỹj+1,k − ỹj,k

h1

)(
ṽj+1,k − ṽj,k

h1

)
+

(
ỹj,k+1 − ỹj,k

h2

)(
ṽj,k+1 − ṽj,k

h2

)]
ldt

+

J∑

j=0

K∑

k=0

∫ ∞

0

[
h21

(
ỹ′j+1,k − ỹ′j,k

h1

)(
ṽj+1,k − ṽj,k

h1

)

+ h22

(
ỹ′j,k+1 − ỹ′j,k

h2

)(
ṽj,k+1 − ṽj,k

h2

)]
ldt = 0.

(72)
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Using the definitions of Ph1,h2
and Qh1,h2

and proceeding as in the last steps, we can check that (72) is equivalent
to

− l(0)

∫

B

Qh1,h1
(y1)h1,h2

Qh1,h2
ṽh1,h2

dx+ l′(0)

∫

B

Qh1,h2
(y0)h1,h2

Qh1,h2
ṽh1,h2

dx

− l(0)

∫

B

Qh1,h2
(y0)h1,h2

Qh1,h2
ṽh1,h2

Qh1,h2
ãh1,h2

dx

+

∫ ∞

0

∫

B

Qh1,h2
ỹh1,h2

Qh1,h2
ṽh1,h2

l′′dxdt

+

∫ ∞

0

∫

B

∇Ph1,h2
ỹh1,h2

· ∇Ph1,h2
ṽh1,h2

ldxdt

−
∫ ∞

0

∫

B

Qh1,h2
ỹh1,h2

Qh1,h2
ṽh1,h2

Qh1,h2
ãh1,h2

l′dxdt

+ h1h2

J∑

j=0

K∑

k=0

∫ ∞

0

[
h21

(
ỹ′j+1,k − ỹ′j,k

h1

)(
ṽj+1,k − ṽj,k

h1

)

+ h22

(
ỹ′j,k+1 − ỹ′j,k

h2

)(
ṽj,k+1 − ṽj,k

h2

)]
ldt = 0.

(73)

Passing to the limit as (h1, h2)→ (0, 0) in (73), we get

−l(0)
∫

Ω

y1vdx+ l′(0)

∫

Ω

y0vdx− l(0)

∫

Ω

y0vadx

+

∫ ∞

0

∫

Ω

y v l′′dxdt+

∫ ∞

0

∫

Ω

∇y · ∇v ldxdt−
∫ ∞

0

∫

B

y v a l′dxdt = 0

(74)

from which we derive ỹ(0) = y0 and ỹ
′(0) = y1. Since system (1) has a unique solution, we conclude that the

convergence results in (66) hold for the whole sequence {(h1, h2)}.
Step 3: Proof of (69)

To conclude the proof, let us prove (69). First observe that, for all w ∈ D(Ω× (0,∞)), we have
∫ ∞

0

∫

B

|∇(Ph1,h2
w̃h1,h2

)−∇w̃|2dxdt =

h1h2

J∑

j=0

K∑

k=0

∫ ∞

0

[(
w̃j+1,k − w̃j,k

h1

)2
+

(
w̃j,k+1 − w̃j,k

h2

)2]
dt+

∫ ∞

0

∫

B

|∇w̃|2dxdt

− 2h1h2
J∑

j=0

K∑

k=0

∫ ∞

0

{(
w̃j+1,k − w̃j,k

h1

)∫ 1

0

∫ 1

0

∂w̃

∂x1
((j + s1)h1, x2)ds1dx2

+

(
w̃j,k+1 − w̃j,k

h2

)∫ 1

0

∫ 1

0

∂w̃

∂x2
(x1, (k + s2)h2)ds2dx1

}
dt, where s = (s1, s2),

(75)

so that using the properties of Riemann sums, it follows that

lim
(h1,h2)→0

∫ ∞

0

∫

Ω

|∇(Ph1,h2
wh1,h2

)−∇w|2dxdt = 0, (76)
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leading to the first convergence in (69). The second one is obtained using the same argument and with

∫ ∞

0

∫

B

(Qh1,h2
w̃h1,h2

− w̃)2dxdt = h1h2

J∑

j=1

K∑

k=0

∫ ∞

0

|w̃(jh1, kh2, t)|2dt+
∫ ∞

0

∫

B

w̃2dxdt

− 2h1h2
J∑

j=0

K∑

k=0

∫ ∞

0

{∫ 1
2

0

∫ 1
2

0

w̃j,kw̃

(
(j + s1)h1, (k + s2)h2

)
ds1ds2

+

∫ 1
2

0

∫ 1

1
2

w̃j+1,kw̃

(
(j + s1)h1, (k + s2)h2

)
ds1ds2

+

∫ 1

1
2

∫ 1
2

0

w̃j,k+1w̃

(
(j + s1)h1, (k + s2)h2

)
ds1ds2

+

∫ 1

1
2

∫ 1

1
2

w̃j+1,k+1w̃

(
(j + s1)h1, (k + s2)h2

)
ds1ds2.

}
dt

(77)

Again, using the properties of Riemann sums, we obtain the second convergence in (69). This concludes the
proof of Theorem 3.1.

Remark 3.2. The convergence of the finite difference space semi-discretization without numerical viscous term
was previously proved in [21]. In this work the authors use the approach considered here to construct a uniform
exponentially stable approximations for an abstract class of second order evolution equations with bounded
feedback controls.

Remark 3.3. Assuming strong convergence of the initial data instead of (60), one may also show, by a
compactness property related to the Hausdorff topology, that convergence (61) holds for a more strong topology
(see for instance [14], chapter 4) leading to

Eh1,h2
(t)→ E(t), ∀t ≥ 0, when (h1, h2)→ (0, 0). (78)

Therefore, up to this additional strong convergence assumption, we may take the limit in the relation (28) to
reobtain the inequality (6) for weak solution of (1) defined on Ω, Ω being the limit for the Hausdorff metric of
a bounded sequence Ωh1,h2

.Indeed, assume that the initial data satisfies

Eh1,h2
(0)→ E(0) as (h1, h2)→ (0, 0). (79)

Since Eh1,h2
(t) decreases to zero as t→∞, it follows from (25) that

Eh1,h2
(0) = h1h2

J∑

j=0

∑

k∈Ij

∫ ∞

0

aj,k(y
′
j,k)

2dt+ h1h2

J∑

j=0

∑

k∈Ij

∫ ∞

0

{
h21

(y′j+1,k − y′j,k
h1

)2
+ h22

(y′j+1,k − y′j,k
h1

)2}
dt.

(80)
On the other hand, being Ω of C2 class, E(t)→ 0 as t→∞, and therefore

E(0) =

∫ ∞

0

∫

Ω

a(x)|yt|2dxdt. (81)
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Thus, from (79)-(81) it follows that

lim sup
(h1,h2)→(0,0)

h1h2

J∑

j=0

∑

k∈Ij

∫ ∞

0

aj,k(y
′
j,k)

2dt = lim sup
(h1,h2)→(0,0)

∫ ∞

0

∫

Ω

Qh1,h2
ah1,h2

|Qh,h2
y′h1,h2

|2dxdt

≤
∫ ∞

0

∫

Ω

a(x)|yt|2dxdt,
(82)

which combined with the weak convergence proved in Theorem 3.1 yields

h1h2

J∑

j=0

∑

k∈Ij

aj,k(y
′
j,k)

2 →
∫

Ω

a(x)|yt|2dx strongly in L2(0,∞). (83)

Consequently,

hiPh1,h2
y′h1,h2

→ 0 strongly in L2(0,+∞;H1
0 (Ω)), i = 1, 2. (84)

Moreover, thanks to

E(0) = E(t) +

∫ t

0

∫

Ω

a(x)|yt|2dxdt, ∀ t > 0, (85)

we have

|Eh1,h2
(t)− E(t)| ≤ |Eh1,h2

(0)− E(0)|+ h1h2

∫ t

0

∫

Ω

|∇Ph1,h2
y′h1,h2

|2dxdt

+
∣∣∣h1h2

J∑

j=0

∑

k∈Ij

∫ t

0

aj,k(y
′
j,k)

2dt−
∫ t

0

∫

Ω

a(x)|yt|2dxdt
∣∣∣

≤ |Eh1,h2
(0)− E(0)|+ h1h2

∫ ∞

0

∫

Ω

|∇Ph1,h2
y′h1,h2

|2dxdt

+

∫ t

0

∣∣∣h1h2
J∑

j=0

∑

k∈Ij

aj,k(y
′
j,k)

2 −
∫

Ω

a(x)|yt|2dx
∣∣∣dt

≤ |Eh1,h2
(0)− E(0)|+ h1h2

∫ ∞

0

∫

Ω

|∇Ph1,h2
y′h1,h2

|2dxdt

+

∫ ∞

0

∣∣∣h1h2
J∑

j=0

∑

k∈Ij

aj,k(y
′
j,k)

2 −
∫

Ω

a(x)|yt|2dx
∣∣∣dt

(86)

and (78) follows.

4. Numerical experiments

The aim of this section is to present some simple numerical experiments in order to confirm the theoretical
results that indicate the need and efficiency of adding an extra viscous damping term. This is done over a
fully-discrete approximation.
A rigorous analysis of the results in this paper to the fully discrete case remains to be done. However, the

recent results in [17, 19] on the discrete Ingham inequality and its applications to fully-discrete approximation
of the 1-D wave equation suggest that, very likely, the viscous term will suffice to guarantee the uniform decay
property to hold in this case too.
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4.1. Description of a fully discrete finite-difference scheme

We describe a fully discrete - in space and also in time - scheme associated to system (27). In order to
simplify the formulation, we assume now that h1 = h2 ≡ h. Let us denote by ynj,k the approximation of the

solution y of (27) at the point of coordinates (x1,j , x2,k) and at time n∆t:

ynj,k ≈ y(x1,j , x2,k, n∆t). (87)

Here and in the sequel ∆t denotes the time-step and n a nonnegative integer in the set {0, N}. N and ∆t are
defined such that T = N∆t. Therefore, we consider the following finite-difference approximation for the time
derivative :

∂2y

∂t2
(x, t) ≈ y(x, t+∆t)− 2y(x, t) + y(x, t−∆t)

(∆t)2
,

∂y

∂t
(x, t) ≈ y(x, t+∆t)− y(x, t−∆t)

2∆t
. (88)

Then, we introduce the following fully discrete approximation of (27):

{
(M1(y

n+1))j,k = (M2(y
n))j,k + (M3(y

n−1))j,k,∀(j, k) ∈ Ωh1,h2
,∀n ∈ [0, N ]

ynj,k = 0, ∀(j, k) ∈ ∂Ωh1,h2
, ∀n ∈ [0, N ], (89)

with 



(M1(y))j,k ≡ (1 + aj,k
∆t

2
)yj,k −

∆t

2
(M(y))j,k

(M2(y))j,k ≡ 2yj,k + r2(M(y))j,k

(M3(y))j,k ≡ (−1 + aj,k
∆t

2
)yj,k −

∆t

2
(M(y))j,k

(M(y))j,k = yj+1,k + yj−1k + yj,k+1 + yjk−1 − 4yj,k

(90)

and r = ∆t/h. To initialize (89), we use

y0j,k = y0(x1,j , x2,k),
y1j,k − y−1j,k
2∆t

= y1(x1,j , x2,k), ∀(j, k) ∈ ∂Ωh1,h2
. (91)

Writing the first relation of (89) for n = 0, we obtain that the approximation of the solution y at time ∆t is

y1j,k =
1

2

(
M2(y0(x1,j , x2,k))− 2∆tM3(y1(x1,j , x2,k))

)
(92)

Remark 4.1. • In the absence of damping and viscous terms, the scheme above reduces to (M1(y))j,k =
(M3(y))j,k = yj,k which coincides with the classical finite difference (explicit) scheme for the wave
equation.

• Note that M1 is not a diagonal matrix because of the presence of the viscous damping term. Therefore,
the scheme (89) is implicit.

Proposition 4.2. The implicit scheme (89) is consistent of order 2 in time and space and is stable under the

CFL condition ∆t ≤ h/
√
2. Therefore, the scheme is convergent.

Proof. The first assertion is a direct consequence of (88). Concerning the stability condition, let us assume
that the function a(x) ≡ a is constant in Ω and then perform a Von Neumann analysis. We assume that
ynj,k = ŷnei(j jx1

+k kx2
)πh, with jx1

∈ [1, J ], kx2
∈ [1,K] and replace this expression in (89). We obtain the

following relation

ŷn+1
(
1 + C

∆t

2

)
+ ŷn

(
r2ξ2 − 2

)
+ ŷn−1

(
1− C

∆t

2

)
= 0 (93)
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with

C ≡ a+ ξ2; ξ2 ≡ 4
(
sin2(kx1

πh/2) + sin2(jx2
πh/2)

)
. (94)

According to the Von Neumann analysis, the scheme (89) is stable if the modulus of each root of the following
polynomial is less than one ;

X2

(
1 + C

∆t

2

)
+X

(
r2ξ2 − 2

)
+

(
1− C

∆t

2

)
= 0. (95)

This is the case if
2r2ξ2(−4 + r2ξ2)− 4(a+ ξ2)∆t ≤ 0. (96)

Since a ≥ 0, this inequality holds if r2ξ2 ≤ 4, i.e., if r2 ≤ 1/2 which leads to the condition ∆t ≤ h/
√
2. From

the Lax theorem (see [5]), we conclude that the scheme (89) is convergent.

Remark 4.3. • The case where a(x) is non constant can be treated using an energy method( [5]). This
leads to the same CFL condition.

• Using the approximation ∂y
∂t
(x, t) ≈ (y(x, t) − y(x, t − ∆t))/∆t instead of (88) leads to the following

explicit scheme :

{
yn+1j,k = (M2(y

n))j,k + (M3(y
n−1))j,k, (j, k) ∈ Ωh1,h2

,∀n ∈ [0, N ]
ynj,k = 0,∀(j, k) ∈ ∂Ωh1,h2

, ∀n ∈ [0, N ],
(97)

with {
(M2(y))j,k ≡ (2−∆t aj,k)yj,k + (r2 +∆t)(M(y))j,k
(M3(y))j,k ≡ (−1 + ∆t aj,k)yj,k − (M(y))j,k

(98)

and (92) being replaced by

y1j,k = y0(x1,j , x2,k) + ∆t y1(x1,j , x2,k). (99)

However, this scheme is only of order one in time and is stable under a more restrictive CFL condition
depending on a.

4.2. Spectrum of the discrete damped wave operator

In this section, we study the influence of the viscous terms on the spectrum of the discrete damped wave
operator

A
(p)
h =

(
0 Ih,Ω

∆h −aIh,ω + ph2∆h

)
(100)

We designate by σ(A
(p)
h ) this spectrum and we recall that - at the continuous level - the exponential decay rate

verifies the inequality: α ≤ − sup{Re(λ), λ ∈ σ(A)}. When p = 1, the viscous terms are used. We consider the
geometry of the figure 3 included in the unit box (see also Figure 4 ). The domain ω is represented by Figure 4.

For a(x) = 10 11ω(x) and h = 1/20, Figures 5 depict the discrete spectrum σ(A
(p)
h ) for p = 0 and p = 1. As

well-known, ω being fixed, the profile of the spectrum strongly depends on the function a. However, whatever

a, we observe that without viscosity terms, the spectral abscissa -max{Re(λ), λ ∈ σ(A
(0)
h )} goes to zero with h.

On the contrary, this quantity remains uniformly bounded by below when the viscosity terms are used (see Table
2). This clearly indicates the necessity of introducing viscosity term in order to restore the uniform exponential
decay property. Moreover, in agreement with the Remark 2.2, we observe any difference on the spectral abscissa
with and without viscosity term when the damping function is effective on the whole domain, i.e. when ω = Ω.

We obtain −max{Re(λ), λ ∈ σ(A
(p)
h )} ≥ 5 for all h > 0 and p = 0, 1. Clearly, in this case, whatever the speed
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Figure 4. Domain Ω ⊂ (0, 1)2 (left) and support ω ⊂ Ω (right) of the damping function a (right).

of the wave packets of high frequencies, they reach the region ω in a finite time. Furthermore, we refer the
reader to [1] for the computation of the spectrum for geometrically complex domain in R

2.
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−60
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)
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60

Re(λ)
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)

Figure 5. Location of the eigenvalues of A
(0)
h (left - without viscosity terms) and A

(1)
h (right

- with viscosity terms).

h = 1/20 h = 1/40 h = 1/80 h = 1/160
without viscosity terms 0.01532 0.00934 0.00312 0.00023
with viscosity terms 0.2321 0.1924 0.1902 0.1898

Table 2. -max{Re(λ), λ ∈ σ(A
(p)
h )} without (p = 0) and with (p = 1) viscosity terms.

4.3. Numerical examples

In this section, we present some numerical experiments for three different initial conditions. The first one
concerns the simplest regular initial condition involving only the first component of the frequency mode (see eq.
(101)). The second one is a very singular one involving a discontinuous initial condition y0. For these two cases,
we consider the domain Ω - part of the unit square - described by Figure 4-left. Finally, we take a(x) = 10 11ω(x)
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where ω ⊂ Ω is described by Figure 4-right. The third example concerns a very oscillating function y0 defined
on the unit square.

4.3.1. Regular initial conditions

Let us designate by D the disc of center (1/2, 1/2) and radius
√
0.02. We check that D ⊂ Ω\ω. We then

define the following initial conditions in H1
0 (Ω)× L2(Ω) :

y0(x1, x2) = 100

[
0.02− (x1 − 1/2)2 − (x2 − 1/2)2

]
11D(x1, x2), y1(x1, x2) = 0. (101)

On Ω, the function y0 is positive and continuous.

For this function and this geometry, we check - in the conservative case - the order 2 of the convergence of
the scheme (89). Figure 6 depicts the relative error of the energy |Eh(0)− Eref (0)|/Eref (0) with respect to h
(in a log-log scale): we obtain |Eh(0) − Eref (0)| = O(h1.92). The value of reference Eref (0) is obtained with
h = 1/500.

4 4.5 5 5.5
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−log(h)

1

≈ 1.92

Figure 6. log(|Eh(0) −
Eref (0)|/Eh(0)) vs. −log(h).
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Figure 7. log(Eh(t)) vs. t,
h = 1/100.

Figure 7 describes the evolution of the energy for the conservative case, the case with velocity damping and
the one with both velocity damping and viscous term. The scheme clearly reproduces the expected properties:
in the conservative case, Eh is constant in time whereas in the other cases, the decay rate is exponential. In
the damped case (without viscous term), the energy Eh is initially constant during a small period: this period
corresponds to the time needed for the wave to reach ω. We also observe that the viscous term has a low impact
on the decay rate. The regularity of the function y0 implies that h

2∆y is negligible with respect to the other
terms in eq.(27): when h goes to zero, both decay rates converge to the same value (see Table 3).

h = 1/50 h = 1/100 h = 1/150 h = 1/200
without viscosity terms -1.16484 -1.19264 -1.19521 -1.19655
with viscosity terms -1.23830 -1.20136 -1.19892 -1.19723

Table 3. Exponential decay rate observed in the time interval [0, 3] vs. h.

Finally, Figures 8 depicts the evolution of the solution for t ∈ [0, 9/4] obtained with h = 1/100, highlighting
the damping mechanism.
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Figure 8. Solution yh at time t = 0, 1/4, 2/4, 3/4, 4/4, 5/4, 6/4, 7/4, 8/4, 9/4 - Eh(0) ≈ 11.98,
Eh(1/4) ≈ 11.38, Eh(2/4) ≈ 8.83, Eh(3/4) ≈ 5.56, Eh(4/4) ≈ 3.95, Eh(5/4) ≈ 3.18, Eh(6/4) ≈
2.41, Eh(7/4) ≈ 1.72, Eh(8/4) ≈ 1.21, Eh(9/4) ≈ 0.95.
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4.3.2. Irregular initial conditions

The previous section does not highlight the necessity of the viscous term. With the same geometry, we now
consider the discontinuous initial conditions :

y0(x) = 2 11D(x) ; y1(x) = 0. (102)

In this case, the viscous term h2∆y is not negligible. Figure 9 and Figure 10 represent the evolution of Eh

for t ∈ [0, 3] with and without extra viscous terms with mesh size h = 1/100. In both cases, we observe an
exponential decay rate. However, contrary to the first example, the decay rates are different (see Table 4).
The viscous term permits to damped out the high frequencies components of the solution enhanced by the
irregularity of y0. Without viscous term, the time needed for all the wave packets to reach ω is larger (and
dependent of h). After this time (large enough), the energy in both cases are similar. Finally, in order to
appreciate the regularizing effect of the term h2∆y, Figure 11 depicts in both cases the solution yh(x1, 0.4) at
time t = 2.
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Figure 9. Eh(t) vs. t ∈
[0, 6], h = 1/100.
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Figure 10. log(Eh(t)) vs.
t ∈ [0, 2], h = 1/100.

h = 1/50 h = 1/100 h = 1/150 h = 1/200
without viscosity terms -0.94462 -0.92221 -0.90134 -0.90012
with viscosity terms -1.84121 -2.00718 -2.13322 -2.155835

Table 4. Exponential decay rate observed in the time interval [0, 2] vs. h.

4.3.3. Influence of the high frequencies

In the extreme case where the solution y is only represented by high frequencies components, the term h2∆y
becomes preponderant. On the unit square, let us now consider the very oscillating initial condition (but still
continuous) :

y0(x) = sin(−πx1
1

h
)sin(−πx2

1

h
)− sin(πx1(1−

1

h
))sin(πx2(1−

1

h
)) ; y1(x) = 0 (103)
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Figure 11. yh(x1, 0.4, t = 2) vs. x1 ∈ [0, 1] for h = 1/100 with and without extra viscous terms.

and a(x) ≡ 20 11ω(x) where ω ≡ {x1 ∈ [0.9, 1], x2 ∈ [0, 1]} ∪ {x1 ∈ [0, 1], x2 ∈ [0.9, 1]}. These initial conditions
lead to wave packets with group velocity of the order of the mesh size h and they are the main obstacle for
the uniform stabilization property to hold. We observe a clear difference on the behavior of the solution yh

obtained with or without viscous damping. Without extra viscous terms, the velocity damping has no effect:
computations lead to a rate of decay slowly converging toward zero when h goes to zero. On the contrary, when
the viscous term is added, we obtain a rate of decay near −7 (see figure 12 and Table 5). This is also illustrated
in Figures 13 where we draw the evolution of yh(x1, 1/2, t) for t ∈ [0, 2.]. Finally, it is worth mentioning that
the use of the viscous scheme leads to a significant increase of the computational cost.

0 0.5 1 1.5 2 2.5 3

−10

−5

0

5

10

viscous terms

no damping

no viscous terms

t

lo
g
(E

h
(t
))

Figure 12. log(Eh(t)) vs. t; h = 1/60.
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Figure 13. yh(x1, 1/2, t) without (left) and with (right) extra viscous terms for t = 0.8, 1.2, 1.6, 2.
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h = 1/20 h = 1/40 h = 1/60 h = 1/80 h = 1/100
without viscosity terms -0.4256 -0.4042 -0.3911 -0.3815 -0.3700
with viscosity terms -5.8714 -6.4738 -6.7190 -6.8379 -6.9098

Table 5. Exponential decay rate observed in the time interval [0, 2] vs. h.
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