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Abstract

We consider in this paper the homogeneous 1-D wave equation defined on
Ω ⊂ R. Using the Hilbert Uniqueness Method, one may define, for each subset
ω ⊂ Ω, the exact control vω of minimal L2(ω × (0, T ))-norm which drives to
rest the system at a large enough time T > 0. We address the question of the
optimal position of ω which minimizes the functional J : ω → ||vω||L2(ω×(0,T )).
We express the shape derivative of J as an integral on ∂ω×(0, T ) independently
of any adjoint solution. This expression leads to a descent direction for J and
permits to define a gradient algorithm efficiently initialized by the topological
derivative associated to J . The numerical approximation of the problem is
discussed and numerical experiments are presented in the framework of the level
set approach. We also investigate the well-posedness character of the problem
by considering its convexification.
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1 Introduction - Problem statement

Let us consider a bounded domain Ω ∈ R and a subset ω ⊂ Ω of positive Lebesgue
measure |ω| which may be composed of a finite number of disjoints components.
In the context of the exact controllability for the 1-D homogeneous wave equation,
the following result is well-known ([13], Theorem 2.6, page 423): for any time T >
T ?(Ω\ω) (T ?(Ω\ω) depends on the diameter of Ω\ω) and any initial data (y0, y1) ∈
H1

0 (Ω) × L2(Ω) independent of ω, there exists a control function vω ∈ L2(ω × (0, T ))
such that the unique solution y ∈ C([0, T ];H1

0 (Ω)) ∩ C1([0, T ];L2(Ω)) of

(1)











ytt − ∆y = vωXω, Ω × (0, T ),

y = 0, ∂Ω × (0, T ),

(y(·, 0), yt(·, 0)) = (y0, y1), Ω,
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satisfies

(2) y(., T ) = yt(., T ) = 0, in Ω.

yt denotes the derivative of y with respect to t and Xω ∈ L∞(Ω, {0, 1}) denotes the
characteristic function of the subset ω.

The control problem formulated above is usually referred to as internal (or dis-
tributed) controllability problem. The controllability property may be obtained using
the Hilbert Uniqueness Method (HUM) introduced by J.-L. Lions in [13], which re-
duces the problem to an optimal control one. Precisely, the unique control vω of
minimal L2-norm (refereed as the HUM control in the sequel) may be obtained by
minimizing the functional J : L2(Ω) ×H−1(Ω) → R defined by

(3) J (φ0, φ1) =
1

2

∫

ω

∫ T

0

φ2dtdx+ < φt(·, 0), y0 >H−1(Ω),H1
0
(Ω) −

∫

Ω

y1φ(·, 0)dx,

where < ·, · >H−1,H1
0

denotes the duality product between H−1(Ω) and H1
0 (Ω) and φ

the solution of the adjoint homogeneous system

(4)











φtt − ∆φ = 0, Ω × (0, T ),

φ = 0, ∂Ω × (0, T ),

(φ(·, 0), φt(·, 0)) = (φ0, φ1), Ω.

This provides the following characterization of the HUM-control (see [13], chapter 7).

Theorem 1.1 Given any ω ∈ Ω, T > T ?(Ω\ω) and (y0, y1) ∈ H1
0 (Ω) × L2(Ω) the

functional J has a unique minimizer (φ0, φ1) ∈ L2(Ω) ×H−1(Ω). If φ is the corre-
sponding solution of (4) with initial data (φ0, φ1) then v = −φXω is the control of (1)
with minimal L2-norm. �

This result is based on the following observation or observability inequality (leading
to the coercivity of J in L2(Ω) ×H−1(Ω)): there exists a constant CT > 0 function
of T (called the observability constant) such that

(5) ||(φ0, φ1)||2L2(Ω)×H−1(Ω) ≤ CT

∫

ω

∫ T

0

φ2(x, t)dt dx

for all (φ0, φ1) ∈ L2(Ω) × H−1(Ω). Therefore, from a practical viewpoint, ω being
fixed, such a control is determined by solving the linear problem

(6) Λ(φ0, φ1) = (y1,−y0) in Ω,

where the isomorphism Λ from L2(Ω) × H−1(Ω) onto H1
0 (Ω) × L2(Ω) is defined by

Λ(φ0, φ1) := (ψt(0),−ψ(0)) with ψ the unique solution of

(7)











ψtt − ∆ψ = −φXω, Ω × (0, T ),

ψ = 0, ∂Ω × (0, T ),

(ψ(·, T ), ψt(·, T )) = (0, 0), Ω.

The HUM control is then vω = −φXω and y = ψ.
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Related to the controllability problem (1)-(2), we consider for any real L ∈ (0, 1),
the following problem :

(8) (Pω) : inf
ω⊂ΩL

J(Xω), where J(Xω) =
1

2
||vω||2L2(ω×(0,T )),

and ΩL = {ω ∈ Ω; |ω| ≤ L|Ω|} which consists in finding the optimal location of
ω ∈ ΩL in order to minimize the L2-norm of the corresponding HUM-control vω. The
size restriction on ω will be justified in the sequel. This optimal location problem may
be not well-posed in the sense of no existence of solution in the class of characteristic
function: the optimal subset ω may be composed of an arbitrarily large number of
disjoints components. A sufficient condition for (Pω) to be well-posed is to restrict
the number of disjoints components (we refer to the books [8] and [12] for a complete
description in the static case).

In this work, we numerically solve the problem (Pω) and proceed as in [15] where
the author considers a damped wave equation and optimizes the position of the damp-
ing zone in order to minimize the energy of the system at a given time T > 0. Since
the control associated to the optimal solution ω is a fortiori a HUM control (that is
of minimal L2(0, T ) norm), (Pω) is reduced to find the optimal HUM control with
respect to ω. In this way, we make use of the explicit characterization of vω in term
of the solution φ of (4). To the knowledge of the author, the problem (Pω) has never
been studied so far. In the similar context of the boundary controllability, it is worth
to mention the work of Asch-Lebeau [2] where the relationships between the geom-
etry of the domain, the geometry of the controlled boundary, and the energy of the
control are dealt with. Moreover, in order to take into account the size restriction,
we introduce a positive multiplier λ and then consider the problem :

(9) inf
ω⊂Ω,λ∈R+

Jλ(Xω) where Jλ(Xω) = J(Xω) + λ||Xω||L1(Ω)

The outline of the paper is as follows. In section 2, we first compute the variation of
Jλ with respect to smooth variations of ω. This derivative expressed as a pointwise
integral on ∂ω×(0, T ) independently of any adjoint solution permits to define a descent
direction and build a minimizing sequence of domains for Jλ. The corresponding
gradient algorithm is presented in section 3 in the framework of the level set approach
and is efficiently initialized by the topological derivative associated to Jλ. In section 4,
we point out the sensibility of the controllability problem with respect to the numerical
approximation, and then present an efficient and robust semi-discrete scheme in space
to solve (6) (the resolution (analytical in time) is discussed in the appendix 8.1). In
section 5, simple numerical experiments are detailed and discussed. Then, in section
6, we investigate whether or not the problem (Pω) is well-posed by considering its
convexification (CPω). Numerical examples are given and compared with those of
section 5. Finally, we give some concluding remarks and perspectives in section 7.

2 Shape and topological derivatives of Jλ

In order to solve the problem (Pω) with a gradient descent procedure, we compute
explicitly an expression of the derivative of the functional Jλ with respect to smooth
variations of ω (the so-called shape derivative). Let η ∈ R

+ and a vector field θ ∈
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W 1,∞(Ω,R), θ|∂Ω = 0 and not vanishing on a neighborhood of ∂ω. Smooth pertur-
bation ωη of ω are then defined by the transformation Fη : x→ x+ ηθ(x) ∈ Ωη = Ω
such that ωη = Fη(ω). The parameter η is arbitrarily small so that det(∇Fη) > 0 in
Ω and ωη ⊂ Ω.

Definition 2.1 The derivative of the functional Jλ with respect to a variation of
ω ⊂ Ω in the direction θ is defined as the Fréchet derivative in W 1,∞(Ω,R) at 0 of
the application η → Jλ(X(Id+ηθ)(ω)), i.e.

(10) Jλ(X(Id+ηθ)(ω)) = Jλ(Xω) + η
∂Jλ(Xω)

∂ω
· θ + o(η).

�

It is worth to mention that the initial condition (y0, y1) is independent of ω and that
the field θ is time independent (since ω is time independent). We refer the reader
to [8] for the methodology to compute the shape derivative. We obtain the following
result.

Theorem 2.2 Let T > T ?(Ω\ω) and vω the HUM control for (1). If (y0, y1) ∈
(H2(Ω)∩H1

0 (Ω))×H1
0 (Ω) then the first lagrangian derivative of Jλ with respect to ω

exists and is given by the following expression:

(11)
∂Jλ(Xω)

∂ω
· θ =

1

2

∫

ω

∫ T

0

(2vωVω + v2
ωdivθ) dt dx+ λ

∫

ω

divθ dx

where Vω is the control of minimal L2(ω × (0, T ))-norm associated to the following
system:

(12)











Ytt − ∆Y − ∆θ∇y + 2div(∇θ∇y) = VωXω, Ω × (0, T ),

Y = 0, ∂Ω × (0, T ),

(Y (·, 0), Yt(·, 0)) = (∇y0 · θ,∇y1 · θ), Ω,

such that Y (·, T ) = Yt(·, T ) = 0 in Ω. �

A sketch of the technical proof is presented in the appendix 8.1. The couple (Y, Vω)
is the first lagrangian derivative of (y, vω) and is as expected the solution of an ex-
act controllability problem. Remark that the null controllability of (12) may be
obtained from the Hilbert Uniqueness Method (see Theorem 2.6 page 423) since
(Y (·, 0), Yt(·, 0)) ∈ H1

0 (Ω) × L2(Ω).
Moreover, as well known, the shape derivative may be expressed in terms of a

pointwise integral on ∂ω. We obtain the following result.

Theorem 2.3 Let T > T ?(Ω\ω), vω the HUM control for (1) and ν be the unit
normal vector oriented toward the exterior of ω. If (y0, y1) ∈ (H2(Ω)∩H1

0 (Ω))×H1
0 (Ω)

then the derivative of Jλ with respect to ω is given by the following expression:

(13)
∂Jλ(Xω)

∂ω
· θ = −1

2

∫

∂ω

∫ T

0

v2
ω(x, t)dtθ · ν dσ + λ

∫

∂ω

θ · ν dσ.

�
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Proof of the Theorem 2.3. The expression (13) may be obtained from the relation
(11) after many integrations by part with respect to x and t. We refer to [15] for
an example of calculation in a similar context and to [8] for a general presentation.
Simpler, we use the Cea’s method [7] and introduce the Lagrangian

(14)

L(ω, φ, ψ, p, q) =
1

2

∫

ω

∫ T

0

φ
2
dtdx

−
∫

Ω

∫ T

0

φ
′
p′ dtdx+

∫

Ω

[φ
′
p ]T0 dx+

∫

Ω

∫ T

0

∇φ · ∇p dtdx

−
∫

Ω

∫ T

0

ψ
′
q′ dtdx+

∫

Ω

[ψ
′
q ]T0 dx+

∫

Ω

∫ T

0

∇ψ · ∇q dtdx

+

∫

ω

∫ T

0

φ q dtdx,

for all ψ, p ∈ C([0, T ];H2(Ω) ∩H1
0 (Ω)) ∩ C1([0, T ];H1

0 (Ω)), φ, q ∈ C([0, T ];H1
0 (Ω)) ∩

C1([0, T ];L2(Ω)). L is chosen so that the optimality conditions< ∂L
∂p (ω, φ, ψ, p, q), p >=

0 and < ∂L
∂q (ω, φ, ψ, p, q), q >= 0 lead for all p, q to respectively the weak formulations

associated to φ and ψ solutions of (4)-(6)-(7):

(15) −
∫

Ω

∫ T

0

φ′p′ dtdx+

∫

Ω

[φ′p ]T0 dx+

∫

Ω

∫ T

0

∇φ · ∇p dtdx = 0

and

(16) −
∫

Ω

∫ T

0

ψ′q′ dtdx+

∫

Ω

[ψ′q ]T0 dx+

∫

Ω

∫ T

0

∇ψ · ∇q dtdx = −
∫

ω

∫ T

0

φ q dtdx.

We then write formally that

(17)

dL
dω

(θ) =
∂

∂ω
L(ω, φ, ψ, p, q) · θ+ <

∂

∂φ
L(ω, φ, ψ, p, q),

∂φ

∂ω
· θ >

+ <
∂

∂ψ
L(ω, φ, ψ, p, q),

∂ψ

∂ω
· θ > + <

∂

∂p
L(ω, φ, ψ, p, q),

∂p

∂ω
· θ >

+ <
∂

∂q
L(ω, φ, ψ, p, q),

∂q

∂ω
· θ >

where ∂p
∂ω · θ denotes the first derivative of p in the direction θ. The variables φ, ψ, p

and q being independent of ω, the first term in (17) is

(18)
∂

∂ω
L(ω, φ, ψ, p, q)(θ) =

1

2

∫

ω

∫ T

0

div(φ
2
θ) dtdx+

∫

ω

∫ T

0

div(φ pθ) dtdx.

In addition, by definition of L, the fourth and fifth terms are equal to zero for (φ, ψ) =
(φ, ψ) solution of (4)-(7). Let us then determine the adjoint functions p and q such
that the following equality

(19) <
∂

∂φ
L(ω, φ, ψ, p, q),

∂φ

∂ω
· θ > + <

∂

∂ψ
L(ω, φ, ψ, p, q),

∂ψ

∂ω
· θ) >= 0,
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holds for all φ ∈ C([0, T ];H1
0 (Ω))∩C1([0, T ];L2(Ω)) and for all ψ ∈ C([0, T ];H2(Ω)∩

H1
0 (Ω)) ∩ C1([0, T ];H1

0 (Ω)). The interpretation of (19) implies that q is the unique
solution in C([0, T ];H1

0 (Ω)) ∩ C1([0, T ];L2(Ω)) (the regularity of φ) of

(20)







qtt − ∆q = 0, Ω × (0, T ),

q = 0, ∂Ω × (0, T ),

(q(·, 0), qt(·, 0)) = (q0, q1), Ω,

where (q0, q1) ∈ H1
0 (Ω) × L2(Ω) is such that the solution p ∈ C([0, T ];H2(Ω) ∩

H1
0 (Ω)) ∩ C1([0, T ];H1

0 (Ω)) of

(21)







ptt − ∆p = −(φ+ q)Xω ≡ −FXω, Ω × (0, T ),

p = 0, ∂Ω × (0, T ),

(p(·, T ), pt(·, T )) = (0,0), Ω,

fulfills (p(·, 0), pt(·, 0)) = (0,0) ∈ (H2(Ω)∩H1
0 (Ω))×H1

0 (Ω)! Equivalently, the function
F ≡ φ+ q fulfills the formulation

(22)











Ftt − ∆F = 0, Ω × (0, T ),

F = 0, ∂Ω × (0, T ),

(F (·, 0), Ft(·, 0) = (φ0 + q0, φ1 + q1), Ω,

where (φ0 + q0, φ1 + q1) is such that (p(·, 0), pt(·, 0)) = (0,0) in Ω. The restriction
−FXω is then the control of minimal L2(ω × (0, T )) norm which stabilizes at time T
the functions (F (·, T ), Ft(·, T )) starting from the initial state (F (·, 0), Ft(·, 0)) = (0,0)
(using the same argument than −φXω for y and the reversibility in time of the system
(21)). We then deduce that F = 0 in ω×(0, T ) and then on Ω×(0, T ) (by the Holmgren
Theorem, see [13], Lemma 2.5 page 423). Consequently, q = −φ on Ω× (0, T ). Then,
writing J0(ω) = L(ω, φ, ψ, p, q), we get from (18),

(23)
∂J0(Xω)

∂ω
· θ =

∂

∂ω
L(ω, φ, ψ, p, q) · θ = −1

2

∫

ω

∫ T

0

div(φ2θ) dtdx

then the relation (13) assuming enough regularity on vω. �

Remark 1 • As expected, the adjoint functions (p, q), dual of the first lagrangian
derivatives ( ∂φ∂ω ·θ,

∂ψ
∂ω ·θ) solve an exact (adjoint) control problem. Moreover, we

remark that the shape derivative (13) is expressed independently of the adjoint
solution (p, q). This is due to the minimal L2(0, T )-norm property of the HUM
control vω.

• It results from the relation (13) that the inclusion ω1 ⊂ ω2 ⊂ Ω implies J0(ω2) ≤
J0(ω1). In particular, for λ = 0, the optimal domain is ω = Ω. This justifies
the introduction of the subset ΩL in the formulation of (Pω). Similarly, for any
ω fixe, the functional J0 is a decreasing function of T (see [2]).

• In order that the previous integral makes sense, it is enough that vω ∈ L∞(0, T,H1
0 (Ω))

implying that v2
ω ∈ L∞(0, T,W 1,1(Ω)). This regularity hold if we assume that

(y0, y1) ∈ (H2(Ω) ∩H1
0 (Ω)) ×H1

0 (Ω) (see [13], chapter 7).
�
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In a very similar way, one may obtain easily the so-called topological derivative
(see [17]) associated to Jλ. The adjoint method introduced in [9] leads to the following
result.

Theorem 2.4 For any x0 ∈ Ω and ρ ∈ R
+ such that D(x0, ρ) = [x0 − ρ/2,x0 +

ρ/2] ⊂ Ω, the functional Jλ associated to XΩ\D(x0,ρ) may be expressed as follows :

(24) Jλ(XΩ\D(x0,ρ)) = Jλ(XΩ) + ρ

(

1

2

∫ T

0

v2
Ω(x0, t)dt− λ

)

+ o(ρ)

in term only of the HUM control vΩ associated to (1) with ω = Ω. The term factor
of ρ is called the topological derivative of Jλ at the point x0. �

3 Minimization of Jλ in the level set framework

Thanks to the previous computations, we are now in position to apply a gradient
descent method for the minimization of the objective function Jλ with respect to the
position and shape of ω. Precisely, from the relation (13), a descent direction is found
by defining on ∂ω, the vector field θ as follows :

(25) θ =

(

1

2

∫ T

0

v2
ω(x, t)dt− λ

)

ν ≡ jλ(vω)ν on ∂ω,

and then we update the shape ω as ωη = (Id+ ηθ)(ω). The parameter η > 0 denotes
a descent step small enough so that the following formal relation

(26) Jλ(Xωη ) = Jλ(Xω) − η

∫

∂ω

(jλ(vω)2)dσ + o(η)

guarantees the decrease of Jλ. This method can be implemented in the Lagrangian
framework: it suffices to mesh the domains ω, Ω\ω and then to advect the mesh
according to the descent direction θ defined on ∂ω by (25). This imposes to mesh the
moving interface ∂ω. Furthermore, the change of topology of ∂ω is quite difficult to
handle with this approach. In this respect, following recent works ([1, 4, 20]), we adopt
an Eulerian approach and we use a level-set method to capture the shape ω on a fixed
mesh. Let us briefly recall the main aspect of this method. The level set approach
(see [18, 19] for a survey) consists in giving a description of the evolving interface ∂ω
which is independent of the discretizing mesh on Ω. We define the level-set function
ψ in Ω such that

(27) ψ(x) ≤ 0 x ∈ ω, ψ(x) = 0 x ∈ ∂ω, ψ(x) ≥ 0 x ∈ Ω\ω.

Therefore, the evolving interface ∂ω, is characterized by

(28) ∂ω = {x(τ) ∈ Ω such that ψ(x(τ), τ) = 0},

where τ designs a pseudo-time variable, increasing with time, that may be the real
time, a load factor or in our case, the iterations of a given algorithm. Differentiation
in τ of (28) then leads to

(29)
∂ψ

∂τ
(x(τ), τ) + ∇ψ(x(τ), τ) · dx(τ)

dτ
= 0 in Ω.
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Denoting by F the speed in the outward normal direction, such that dx(τ)
dτ .ν =

F (x(τ)) where ν = ∇ψ/|∇ψ|, we obtain the following nonlinear Hamilton-Jacobi
equation of first order for ψ:

(30)
∂ψ

∂τ
(x, τ) + F (x, τ)|∇ψ(x, τ)| = 0, given ψ(x, τ = 0).

Assuming that the shape ∂ω evolves in pseudo-time τ with the normal velocity F =
−jλ(vω)ν as proposed in (25), the transport of the level set function ψ is therefore
equivalent to moving the boundary of ω (the zero level-set of ψ) along the descent
gradient direction −∂Jλ/∂ω. Consequently, the partial differential system to solve is

(31)







∂ψ

∂τ
− jλ(vω)|∇ψ| = 0 in Ω × (0,∞),

ψ(., τ = 0) = ψ0 in Ω, ψ = ψ0 > 0 on ∂Ω × (0,∞).

We further impose that ψ be constant and positive on Ω in order to ensure that
∂ω∩∂Ω = ∅. Finally, because of its advection, the level-set function may become too
flat or too steep yielding either large errors in the location of its zero level or large
errors in the evaluation of its gradient by finite differences. Therefore, a standard trick
(see [4]) consists of replacing the level-set ψ at the pseudo time τ0 by the regularized
one, solution of the following problem

(32)







∂ψ̃

∂τ
+ sign(ψ(τ0))(|∇ψ̃| − 1) = 0 in Ω × (0,∞),

ψ̃(., τ = 0) = ψ(τ0) in Ω, ψ̃ = ψ(τ0) on ∂Ω × (0,∞)

admitting as a stationary solution the signed distance to the initial interface {ψ(x, τ0) =
0}.
Remark 2 The behavior of the level set function is therefore strongly linked with the
asymptotic behavior in the pseudo-time variable τ of the system (31). This question
seems difficult and largely open. Some results in this direction exist under some
restrictive assumptions on F (see [3] and the references therein). �

Consequently, the descent algorithm to solve numerically the problem (Pω) in the
framework of the level set approach may be structured as follows : Ω ∈ R, (y0, y1) ∈
(H2(Ω) ∩H1

0 (Ω)) ×H1
0 (Ω), ε1 << 1 and T large enough be given,

(i) Meshing once for all of the fixed domain Ω. Initialization of the level-set ψ0

corresponding to an initial guess ω0 ∈ Ω such that |ω0| = L|Ω|;
(ii) For k ≥ 0, iteration until convergence (i.e. | Jλ(Xωk+1)−Jλ(Xωk) |≤ ε1Jλ(Xω0))

as follows:

• Computation of the HUM control vωk associated to the domain ωk. The
HUM control is obtained by solving the linear system (6) with a conjugate
gradient algorithm (CG).

• Computation on Ω of the integrand jλ(vωk) according to the relation (13).

• Deformation of the shape by solving the transport Hamilton-Jacobi system
(31). The new domain ωk+1 is characterized by the level-set function ψk+1

solution of (31) after a pseudo-time step ∆τk starting from the initial
function ψk with velocity −jλ(vωk). The pseudo-time step ∆τk is chosen
according to the stability condition (40).
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(iii) From time to time, for stability reasons, re-initialization of the level-set function
ψ by solving (32).

At each iteration, the Lagrange multiplier λ = λk is chosen so that the length
of ω remains constant: ||Xωk ||L1(Ω) − ||Xωk+1 ||L1(Ω) = 0, ∀k ≥ 0. From the relation

ωk+1 = (I + ηθk)ωk, we obtain

(33) ||Xωk+1 ||L1(Ω) − ||Xωk ||L1(Ω) = η

∫

ωk

div(θk)dx.

We deduce from (25) that

(34) λk =
1

2

∫

ωk

div

(
∫ T

0

v2
ωk(x, t) dtνk

)

dx

/
∫

ωk

div(νk) dx

where the normal νk is extended to the whole domain Ω as follows : νk = ∇ψk/|∇ψk|.
Furthermore, the topological derivative (24) permits to initialize efficiently the

domain ω0. It suffices to compute the HUM control vΩ corresponding to ω = Ω.

This gives the distribution of the function x0 → 1/2
∫ T

0
v2
Ω(x0, t)dt in Ω. Then, the

domain ω0 is defined by

(35) ω0 = {x ∈ Ω,
1

2

∫ T

0

v2
Ω(x, t)dt− λ > 0}

where λ is chosen so that the length ||Xω0 ||L1(Ω) of ω0 be equal to L|Ω|. The level set

function ψ0, negative in ω0, is then ψ0(x) = λ− 1
2

∫ T

0
v2
Ω(x, t)dt for all x in Ω.

4 Numerical Approximation

The main part of the algorithm is the computation of the HUM control associated to
ω. It is well-known that such a problem is extremely sensitive to the numerical ap-
proximation. We briefly describe in this section a recent, robust and efficient method
to compute numerically this control (detailed in the appendix 8.1).

4.1 Numerical approximation of the HUM control - Introduc-
tion of additional vanishing terms

Since the pioneering work of Glowinski-Li-Lions [10], the numerical approximation of
the HUM control is known to be extremely sensitive with respect to the parameters
of approximations (we refer to [21] for a review on this aspect). For simplicity, let us
choose to approximate the wave system (1) by a semi-discrete finite difference scheme.
Let us consider N ∈ N, h = 1/(N + 1) and a uniform grid (xi)(i=0,...,N+1) of Ω. Let
us denote by vh the control vector of the finite dimensional system

(36)











(yh)tt − ∆hyh = vhXω, Ω × (0, T ),

yh = 0, ∂Ω × (0, T ),

(yh(0), (yh)t(0)) = (y0
h,y

1
h), Ω,

such that yh(T ) = (yh)t(T ) = 0 on Ω. ∆h designates a consistent finite differ-
ence approximation of the operator ∆. Following [10], the control vh of minimal
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l2-norm may be obtained by solving the linear system Λh(φ0
h,φ

1
h) = (y1

h,y
0
1
) - semi

discrete version of (6)- using a conjugate gradient algorithm. Λh designates the dis-
crete HUM matrix. Let us note P (vh) the piecewise linear function on Ω such that
(P (vh))(xi) = (vh)i, i = 1, ..., N+. Numerical simulations ([6, 14]) highlight that the
behavior of eh = ||v − P (vh)||L2(ω×(0,T )) with respect to the parameter of discretiza-
tion h crucially depends on the approximation ∆h of ∆. For instance, if the centered
five point approximation is used for ∆h, then the error eh blows up exponentially
with 1/h. This implies a wrong approximation of the descent direction jλ(vω) and a
fortiori a divergence of the descent algorithm of the section 3 ! This non commuting
property between exact controllability and numerical approximation is due, for the
wave equation, to the spurious high frequency oscillations generated by the discrete
dynamics (36). These spurious oscillations propagates with a so called group veloc-
ity of order h and therefore can not be controlled in a uniform (with respect to h)
time t = T . In practice, we observe that the conditioning number of Λh behaves
like O(e1/h) and imply a divergence of the conjugate gradient algorithm (for h small
enough). In order to restore the uniform convergence of the discrete control (and
therefore expect a convergence of the level function ψk

h - approximation of ψk (see
next section) - with respect to k), it is necessary to increase the group velocity of the
high frequencies component. An efficient remedy consists in considering the approx-
imation (using standard finite difference or finite element method) of the so-called
viscous wave equation

(37) ytt − ∆y +
h2

4
∆(ytt) = vωXω, Ω × (0, T ),

consistent with (1) and which group velocity is uniformly (with respect to h) bounded
by below for all the components. Using a Fourier analysis [14] or a semi-discrete
multiplier technique [6], one may obtain the following result.

Theorem 4.1 The semi-discrete scheme associated to (37) is uniformly controllable
with respect to h. In addition, if (P (y0

h), P (y1
h)) converge strongly toward (y0, y1) in

H1
0 (Ω)×L2(Ω) as h goes to 0, then the corresponding control vh of minimal l2-norm

is such that limh→0 ||P (vh) − v||L2(ω×(0,T )) = 0. �

The conditioning number cond(Λh) of the discrete HUM matrix associated to this
modified scheme is of order of h−2. In practice, this modification leads to a very
fast convergence of the conjugate gradient algorithm, obtained after few iterations
independent of the value of h. Moreover, on the square domain where the eigenvalues
and eigenvectors of the discrete scheme are known, the control vh may be solved
exactly in time via a spectral method. This is detailed in the appendix 8.2. For
general domain, a time discretization is necessary and we refer to [14] for uniformly
controllable (with respect to both h and ∆t ) full discrete approximation of (1).

4.2 Resolution of the Hamilton-Jacobi equation

Let us now briefly consider the resolution of the non-linear Hamilton-Jacobi equation
(31). We introduce a parameter ∆τ > 0 and note by ψk

h the approximation of the
function ψ at the point xi and at the pseudo-time τ = k∆τ . We note jλh the
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approximation of jλ(v
k
ω) such that

(38) jλh =
1

2

∫ T

0

(vh)2dt− λ.

The hyperbolic system (31) is then solved using an explicit weighted essentially non-
oscillatory scheme of order one in pseudo-time τ and of order two in space (see [18, 19]
for a complete description):

(39)
ψ

k+1

h −ψk
h

∆τ
+

(

max(−jλh(vωk), 0)∇+
k + min(−jλh(vωk), 0)∇−

k

)

= 0, k ≥ 0

where (∇+
k ,∇−

k ) designates forward and upward approximation of |∇ψk|. This ex-
plicit scheme is stable under the condition ∆τ ≤ h/maxΩ|jλh(vωk)|. In order that
the pseudo-time step ∆τ decreases with respect to the iterations k, we consider the
following pseudo-time step

(40) ∆τk = min

(

1,maxΩ|jλh(vωk)|
)

h

maxΩ|jλh(vωk)| (≤ ∆τk−1), ∀k > 0.

Remark 3 The upwind scheme (39) is motivated by the propagation of information
through characteristics in the first order hyperbolic equation (30). Very interestingly
with respect to the discussion of the previous section, this scheme may be replaced by
usual centered finite differences ones, provided the addition of an artificial viscosity
term (see [18]) (namely the approximation of ψτ + F |∇ψ| = h∆ψ instead of (30)).
The reason to introduce this term here is however different. �

5 Numerical experiments

In this section, we present some numerical experiments in order to evaluate the ef-
ficiency of the previous algorithm to find local minima of the functional Jλ. Since
the computation of the HUM control (via the resolution of (6)) is more expensive in
CPU time than the resolution of the Hamilton-Jacobi (31) system, we perform two
explicit pseudo-time steps of (31) after each resolution of (6). During these steps, we
perform two re-initialization of the level set function by solving (32). Moreover, in
the algorithm, we use ε1 = 10−6 and values of h smaller than 1/300.

5.1 Example 1: Observability constant

Let us consider the simplest initial condition on Ω = [0, 1]

(41) y0(x) = sin(πx); y1(x) = 0.

Some calculations permits to obtain that the HUM control vΩ acting on the whole
domain is given by
(42)

vΩ(x, t) =
−π2

π2T 2 − sin(πT )2

(

sin(πT )2 cos(πt)−(cos(πT ) sin(πT )+πT ) sin(πt)

)

y0(x)
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Figure 1: T = 3- L = 0.2. Evolution of the
zeros of ψk vs k.
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Figure 2: Evolution of the cost J(Xωk) (top)
and of the ratio (44) (bottom) vs. k.

leading to

(43)
1

2

∫ T

0

v2
Ω(x, t)dt = π3πT + cos(πT ) sin(πT )

π2T 2 − sin(πT )2
(y0(x))2;

Consequently, it follows from the relation (24) that the optimal position for ω with an
arbitrarily small length is the centered interval on Ω (provided that T > T ?(Ω\ω)).
This is what we obtain numerically, for any initialization ψ0 of the level set function.
This result still holds for any value of |ω| < 1 (non necessary small). For this particular
choice of initial condition (y0, y1), the functional to minimize is strictly convex: the
minimum is unique and the original problem (Pω) is well-posed. We take L = 0.2
and T = 3. Figure 1 depicts the evolution of the zeros of the level set function ψk in
function of k, arbitrarily initialized by ψ0(x) = (x− 0.1)(x− 0.3). The limit domain
is ωlim = [1/2 − L/2, 1/2 + L/2] = [0.4, 0.6]. Figure 2 depicts the corresponding
evolution of J(ωk) and of the ratio

(44)
||φ0

ωk ||2L2(Ω) + ||φ1
ωk ||2H−1(Ω)

∫

ωk

∫ T

0
(φωk(x, t))2dtdx

which appears in (5). The fact that this ratio decreases implies that the domain ωk+1

leads to a better estimation of the norm ||(φ0, φ1)||L2×H−1 than ωk. Thus and as
expected, by minimizing the L2-norm of the exact control with respect to its support,
we increase the observability/controllability character of the wave system (we remind
that the constant CT in (5) is arbitrarily large if (1) is not exactly controllable with
the couple (ω, T )). Practically, this implies that if (1) is controllable for (ωk, T ) at the
iteration k, then (1) remains exactly controllable for (ωk+1, T ) = ((I + ηθk)(ωk), T )
where θk is such that J(Xωk+1) ≤ J(Xωk). The descent algorithm conserves the
controllability property.

We check on this example the decrease of J with respect to the inclusion of ω
and with respect to T . Figure 3 depicts the variation of log(J(Xω, T )) with respect
to log(T ) for ω = [0.4, 0.6]. For T large enough, we obtain J(Xω, T ) ≈ O(T−1.007) in
agreement with (43). Figure 4 depicts the variation of log(J(Xωρ

)) with respect to



13

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5
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log(J(Xωρ

)) vs log(ρ) - ρ ∈ [0.03, 0.25].

ρ for ωρ = [1/2 − ρ, 1/2 + ρ] and T = 3. For ρ small enough, we obtain J(Xωρ
) =

O(ρ−0.997) (we may also check numerically the relation (24)).

5.2 Example 2: Dependence with respect to the time T

Still with Ω = (0, 1), we consider the following regular initial condition, on Ω

(45) y0(x) = e−100(x−0.3)2XΩ(x); y1(x) = 0.

Moreover, we take L = 0.16. Let us first use the relation (24). The function

1/2
∫ T

0
v2
Ω(x, t)dt is depicted on figure 5-left for T = 1.5, 2.5 and T = 3. For each

values of T , the functions presents local minima highlighting that the optimal domain
is very likely composed of several disjoint sub-intervals. For instance for T = 2.5,
the prediction ω0 of length L defined from the relation (35) is composed of three
sub-intervals : [0.056, 0.132] ∪ [0.269, 0.328] ∪ [0.686, 0.711]. The corresponding value
of the multiplier is λ ≈ 6.733. We obtain J(Xω0) ≈ 22.491. Figure 5-right depicts the

corresponding function ψ0
opt(x) = −1/2

∫ T

0
v2
Ω(x, t)dt+ λ we may choose to initialize

the level set function. The prediction depends also on the time T . For T = 3, we
obtain a symmetric prediction ω0 ≈ [0.071, 0.107] ∪ [0.278, 0.322] ∪ [0.678, 0.722] ∪
[0.893, 0.929] for which J(Xω0) ≈ 18.307 (λ ≈ 5.696). For T = 1.5, the prediction is
composed of two disjoints components ω0 ≈ [0.668, 0.737] ∪ [0.858, 0.949] for which
J(Xω0) ≈ 33.638 (λ ≈ 11.26).

We now compare the result of the level set algorithm initialized either by ψ0
opt

or by functions of the type ψ0
p(x) = Cp − sin2(pπx), p ∈ N and Cp > 0 such that

||X(ψ0
p≤0)||L1(Ω) = L|Ω|. The corresponding ω0

p is composed of p disjoints components

uniformly distributed on Ω. Figure 6 depicts the zeros of ψkp , for k = 1, ..., 100 and the

value p = 6. The convergent domain ωlimp , obtained after less than 100 iterations, is
composed of three disjoints intervals and is in agreement with the prediction obtained
from the relation (24) highlighting the interest of the topological derivative. The
algorithm permits a significant reduction of the norm of the control, from J(Xω0) ≈
28.11 to J(Xωlim) ≈ 22.65. Figure 7 depicts the level set functions ψ0

p and ψ100
p and
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Figure 5: Left: Function 1/2
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0
v2
Ω(x, t)dt for T = 1.5, 2.5 and 3 - Right: Correspond-

ing initial level set ψ0(x) = −1/2
∫ T

0
v2
Ω(x, t)dt+ λ.
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Figure 6: p = 6 - Evolution of the zeros
of ψkp , k = 1, ..., 100 - J(Xω0

p
) ≈ 28.11 ,

J(Xω100
p

) ≈ 22.65.
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Figure 7: p = 6 - T = 2.5 - Initial ψ0
p (−−)

and ”limit” ψlimp (−) level set functions.
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Figure 8: p = 13 - Evolution of the zeros
of ψkp , k = 1, ..., 500 - J(Xω0
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J(Xω500
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Figure 9: p = 13 - T = 2.5 - Initial ψ0 (−−)
and ”limit” ψ500

p (−) level set functions.

points out the effect of the regularization process (32) on the shape of ψ100
p . Figures

8-9 depict the results obtained with p = 13. This value provides a different local
minimum ω and improves slightly the value of J(Xωlim) ≈ 22.32. This also put in
evidence the dependence of the limit with respect to the initialization and the existence
of several local minima. Figures 10-left represents the evolution of the energy of the
wave system (1) and the L2(ω)-norm of the control with respect to time, associated
to the initial domain ω0

p (dashed curve) and to the limit one ωlimp (continuous curve).
The uniform distributed initial domain ω0

p produces a regular decrease of the energy.
On the contrary, the control associated to the optimal configuration acts more on the
second part of the time interval [0, T ].

Additional simulations with the values T = 1.5 and T = 3 produce similar results
in agreement with the prediction ω0

p given by the topological derivative. For T = 3,

Figure 11 and Figure 12 depicts the evolution of the zeros of ψkp initialized using the
value p = 2 and p = 13 respectively. The second value provides the optimal global
domain (composed of four intervals) while the first one leads to a local minimum
(composed of two intervals).

Furthermore, for small values of T , a direct use of the relation (24) may be in-
appropriate to initialize efficiently the support of the control. We recall that this
relation is valid for a couple (ω, T ) for which system (1) is exactly controllable and
may be applied if the length |ω| is small. These two conditions are incompatible if T
is small enough. Thus, for T = 0.5, (24) leads to an initial prediction ω0 concentrated
around the point x = 1/10 (see figure 13). On the other hand, Figure 14 depicts the
evolution of the level set function initialized using p = 13 (a uniformly distribution
of p = 13 sub-intervals on Ω for which (1) is exactly controllable). The convergent
domain ωlimp , obtained after 150 iterations is composed of 7 sub-intervals distributed

on the whole interval Ω so that (1) be exactly controllable for the couple (ωlimp , T )

(we check that the point x = 1/10 belongs to ωlim).
More generally, remark that the method we present permits to find numerically the

exact HUM control of (1) associated to an arbitrarily small value of T distributed on
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Figure 11: T = 3 and p = 2 - Evolution of
the zeros of ψkp for k = 1, ..., 500 - J(Xω0
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ωT (dependent on T ) of arbitrarily small Lebesgue measure |ωT | ! One may conjecture
that the number of disjoints components of the optimal domain ωT is an increasing
function of T−1.
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Figure 13: T = 0.5 - 1/2
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0
v2
Ω(x, t)dt in Ω.
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Figure 14: T = 0.5 - p = 13 - Evolution of
the zeros of ψkp vs. k.

6 Convexification of the problem (Pω)

We investigate in this section whether or not the problem (Pω) may be not well-
posed: is there exist an initial condition (y0, y1) ∈ H1

0 (Ω) × L2(Ω) for which the
infimum cost function is not reached in the set of characteristic function. In such a
case, the optimal sub-domain ω is composed of an arbitrarily large number of disjoint
components and the original problem is thus non well-posed. The numerical detection
of this phenomenon with the level set approach may be done as follows: (i) consider an
initial level set function ψp of the type ψp(x) = Cp − sin2(pπx), Cp ∈]0, 1[ associated
to a domain ωp composed of p ∈ N disjoint components uniformly distributed in
Ω; (ii) compute with the algorithm described above the limit level set function ψlimp
associated to a domain ωlimp ; (iii) count the number ]ωlimp of disjoint components of

ωlimp . Then, the variation of the function p→ ]ωlimp permits to detect the possible non
well-posedness character of (Pω). However, for large values of p, this method requires
very small values of h and cannot be used. Another method consists in replacing
the set L∞(Ω, {0, 1}) of characteristics function by it weak ∗ closure L∞(Ω, [0, 1]) (or
equivalently its convex envelop). We then define the convexified problem (CPω) of
(Pω):
(46)

(CPω) : inf
s∈L∞(Ω;[0,1])

Jλ(s) with Jλ(s) =
1

2

∫

Ω

s(x)

∫ T

0

v2
s(x, t)dtdx+ λ

∫

Ω

s(x)dx
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where vs (function of the density s) is such that svs is the HUM control of minimal
L2(Ω × (0, T )) norm associated to

(47)











ytt − ∆y = s(x)vs, Ω × (0, T ),

y = 0, ∂Ω × (0, T ),

(y(·, 0), yt(·, 0)) = (y0, y1), Ω.

Once again, the multiplier λ is chosen so that
∫

Ω
s(x)dx = L|Ω|, relaxed version of

the condition |ω| = L|Ω|. Thus, the optimal shape design problem (Pω) is replaced
by a simpler functional optimal problem. It is easy to see that problem (CPω) is well
posed and admits solutions in L∞(Ω; [0, 1]). Moreover, problems (CPω) and (Pω) both
coincide if and only if the optimal density s for (CPω) is a characteristic function.
On the contrary, if the optimal density s takes value in ]0, 1[, this indicates that the
original problem is not well-posed.

Similarly to problem (Pω), local minimal density may be obtained using a gra-
dient descent method. For any η ∈ R

+ and any s1 ∈ L∞(Ω), we associate to the
perturbation sη = s + ηs1 the derivative of Jλ with respect to s in the direction s1
as follows:

(48)
∂Jλ(s)

∂s
· s1 = lim

η→0

Jλ(s+ ηs1) − Jλ(s)

η

and we obtain that :

Theorem 6.1 If (y0, y1) ∈ (H2(Ω)∩H1
0 (Ω))×H1

0 (Ω), then the derivative of Jλ with
respect to s in the direction s1 exists and take the expression

(49)
∂Jλ(s)

∂s
· s1 =

∫

Ω

s1(x)

(

−1

2

∫ T

0

v2
s(x, t)dt− λ

)

dx

�

This permits to define the following descent direction :

(50) s1(x) =
1

2

∫ T

0

v2
s(x, t)dx− λ, ∀x ∈ Ω.

Consequently, for any function η ∈ L∞(Ω,R+) with ||η||L∞ small enough, we have
Jλ(s + ηs1) ≤ Jλ(s). The multiplier λ is determined so that, for any function η ∈
L∞(Ω,R+) and η 6= 0, ||s+ ηs1||L1(Ω) = L|Ω| leading to

(51) λ =
(
∫

Ω
s(x)dx− L|Ω|) −

∫

Ω
η(x)

∫ T

0
v2
s(x, t) dtdx

∫

Ω
η(x)dx

.

At last, the function η is chosen so that s(x) + ηs1(x) ∈ [0, 1] for all x ∈ Ω. A simple
and efficient choice consists in taking η = εs(x)(1− s(x)) for all x ∈ Ω with ε a small
real positive. Consequently, the descent algorithm to solve the convexified problem
(CPω) may be structured as follows : let Ω ∈ R, (y0, y1) ∈ (H2(Ω)∩H1

0 (Ω))×H1
0 (Ω),

L ∈ (0, 1), T > T (Ω) and ε < 1, ε1 << 1 be given:

• Initialization of the density function s0 ∈ L∞(Ω; ]0, 1[);
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• For k ≥ 0, iteration until convergence (i.e. |J0(s
k+1) − J0(s

k)| ≤ ε1|J0(s
0)|) as

follows :

– Computation of the HUM control skvsk corresponding to s = sk.

– Computation of the descent direction sk1 defined by (50) where the multi-
plier λk is defined by (51) with η = εs(1 − s).

– Update of the density function in Ω:

(52) sk+1 = sk + εsk(1 − sk)sk1

with ε ∈ R
+ small enough in order to ensure the decrease of the cost

function and sk+1 ∈ L∞(Ω, [0, 1]).

We now complete the section 5 with additional simulations using this new ap-
proach. Once again, we consider the simple initial condition (45) and choose to
initialize the density s by s0(x) = L = 0.16 in Ω (so that

∫

Ω
s0(x)dx = L|Ω|). We

take ε = 10−2 and ε1 = 10−6.
Figure 15 depicts the evolution of the cost function J0(s

k) with respect to k.
Figure 16 depicts the evolution of the ratio

(53)
||φ0

sk ||2L2(Ω) + ||φ1
sk ||2H−1(Ω)

∫

Ω
sk(x)

∫ T

0
(φsk(x, t))2dtdx

in function of k, relaxed version of the ratio (44). Once again, this ratio is decreasing
with respect to k.
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Figure 15: T = 3- J0(s
k) vs. k.
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Figure 16: Corresponding ratio (53) vs k.

Figures 17 depicts the limit of the density sk for the cases T = 0.5, 1.5, 2.5 and T =
3. First, we observe that these limit densities are characteristic functions. Therefore,
at least, for these data, the problem (CPω) coincides with (Pω) which is well-posed.
Secondly, we obtain the same limit domain than with the level-set approach (see figure
8 for T = 2.5 and figure 12 for T = 3).

We have not been able to exhibit an initial condition (y0, y1) ∈ (H2(Ω)∩H1
0 (Ω))×

H1
0 (Ω) (nor in H1

0 (Ω)×L2(Ω)) leading to a limit density slim such that |{x ∈ Ω, 0 <
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Figure 17: Limit density function slim for T = 0.5 (top left), T = 1.5 (top right),
T = 2.5 (bottom left) and T = 3 (bottom right) initialized with s0 = L on Ω = (0, 1)
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s(x) < 1}| > 0. Therefore, we conjecture that the problem (Pω) is always well-
posed: the infimum of J is reached for a domain composed of a finite number of
disjoints components. The introduction of the relaxed problem (CPω) is however not
useless: on the practical viewpoint, the algorithm described in this section appears
more simple and less sensitive to numerical approximation than the algorithm based
on the level set methodology. It avoids the resolution of Hamilton-Jacobi equation
and provides a more regular decrease of the cost function.

7 Concluding remarks

We have presented a numerical method to obtain the optimal position of the dis-
tributed control for the 1-D wave equation. The method is based on an iterative
descent method of first order which requires at each iteration the computation of a
HUM control vω and the computation of a descent direction θ. The function vω is
obtained using very efficient and robust schemes mixing gradient conjugate algorithm
and finite difference scheme. The field θ, expressed independently of any adjoint con-
trol function, is obtained directly from vω. These two aspects explain the interest
of the approach we suggest. In addition, the numerical experiments illustrates the
potential of the topological derivative to initialize the algorithm. It is interesting to
notice that the method is able to find the HUM control distributed on ω (of arbitrarily
small measure |ω|) which drives to rest the system (1) after an arbitrarily small time
T . For small values of T , the optimal domain is composed of several disjoints compo-
nents distributed on the whole domain Ω so that all the wave components be observed
by ω in the time lower or equal than T . Furthermore, from the numerical resolution
of the convexified problem (CPω) of (Pω), we may conjecture that the original prob-
lem is well-posed in the class of characteristic functions. Following [16] in a similar
context, it is worth to investigate theoretically whether or not (CPω) and (Pω) always
coincide for any initial condition in H1

0 (Ω) × L2(Ω). It would be also interesting to
extend this work to the 2-D case for more generals system like the elasticity one, and
also to treat the boundary case. Finally, the treatment of time-dependent domains
(ω(t))t∈[0,T ] seems open and challenging.

8 Appendix

8.1 Sketch of the proof of Theorem 2.2

The control vω of minimal L2-norm is completely characterized by the couple (φ, ψ)
given by (4)-(7). Let us apply the change of variables in the formulation of φ and
ψ and introduce the functions (φη(x), ψη(x)) = (φ(xη), ψ(xη)). According to the
relations

(54)







dxη = det(∇Fη)dx = (1 + ηdivθ)dx,

∂

∂xη
=

∂

∂xη
· (I + η∇θ)−1 =

∂

∂xη
· (I − η∇θ) +O(η2)
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usual computations leads to the formulations :

(55)











φηtt − det(∇Fη)−1div(Aη(θ).∇φη) = 0, Ω × (0, T ),

φη = 0, ∂Ω × (0, T ),

(φη(·, 0), φηt (·, 0)) = (φη0, φη1), Ω,

and

(56)











ψηtt − det(∇Fη)−1div(Aη(θ).∇ψη) = −Xωφη, Ω × (0, T ),

ψη = 0, ∂Ω × (0, T ),

(ψη(·, T ), ψηt (·, T )) = (0,0), Ω,

where Aη(θ) = det(∇Fη)(Id + η∇θ)−1 · (Id + η∇θ)−T . These two systems are
a regular perturbation of (4) and (7) with respect to η. In particular, the term
div(Aηv) = ∆v + ηO(div(∇v,θ,∇θ,∇2θ, ...)) is regular perturbation of ∆v in the
sense that the additional terms in η does not contain derivatives of order higher than
2 in v and that θ is as regular as needed. Consequently, applying the HUM method,
we obtain (proceeding as in [13]) that for all η > 0 in the neighborhood of 0, there
exists an initial condition (φ0η, φ1η) ∈ L2(Ω)×H−1(Ω) such that (ψη(·, 0), ψt(·, 0)) =
(y0 + η∇y0 · θ, y1 + η∇y1 · θ) ∈ H1

0 (Ω)×L2(Ω). We have truncated to the first order
the Taylor expansion of y0(x + ηθ(x)) in order to avoid more regularity on y0 and
y1. This keep unchanged the first derivative of J . Consequently, the function −Xωφη
associated to (φ0η, φ1η) is the control of minimal L2-norm of the system

(57)











yηtt − det(∇Fη)−1div(Aη(θ) · ∇yη) = vηXω, Ω × (0, T ),

yη = 0, ∂Ω × (0, T ),

(yη(·, 0), yηt (·, 0)) = (y0 + η∇y0 · θ, y1 + ∇y1 · θ), Ω,

Similarly, the function −(φη−φ)Xω associated to the initial condition (φ0η−φ0, φ1η−
φ1) is the HUM control for the system

(58)











(yη − y)tt − ∆(yη − y) + ηF (yη,θ) = (vη − v)Xω, Ω × (0, T ),

yη − y = 0, ∂Ω × (0, T ),

((yη − y)(·, 0), (yη − y)t(·, 0)) = η(∇y0 · θ,∇y1 · θ), Ω,

where F is a function of Aη, such that ((yη − y)(·, T ), (yη − y)t(·, T )) = (0,0). Then,
by continuity of the solution and the control with respect to the initial condition, we
conclude that there exist a function φ1 and ψ1 such that for all η > 0, φη − φ =
ηφ1 + o(η) and ψη − ψ = ηψ1 + o(η). φ1 and ψ1 designates the first Lagrangian
derivatives of φ and ψ and fulfils the systems

(59)











φ1
tt − ∆φ1 −∇(divθ) · ∇φ+ div((∇θ + ∇θT ) · ∇φ) = 0, Ω × (0, T ),

φ1 = 0, ∂Ω × (0, T ),

(φ1(·, 0), φ1
t (·, 0)) = (φ1,0, φ1,1), Ω,

and
(60)











ψ1
tt − ∆ψ1 −∇(divθ).∇ψ + div((∇θ + ∇θT ).∇ψ) = −φ1Xω Ω × (0, T ),

ψ1 = 0, ∂Ω × (0, T ),

(ψ1(·, T ), ψ1
t (·, T )) = (0,0), Ω,
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such that (ψ1(·, 0), ψ1
t (·, 0)) = (∇y0 ·θ,∇y1 ·θ). −φ1Xω is then the control of minimal

L2 -norm supported on ω for the system (12). The existence of the control v1 implies
the existence of the first lagrangian shape derivative and permits to write

(61) J(X(Id+ηθ)(ω)) =
1

2

∫

ω

∫ T

0

(v + ηv1))2(1 + ηdivθ)dtdx+ o(η2)

Then, by passing to the limit according to the definition 2.1, we obtain the relation
(11). �

8.2 Semi-discrete in space resolution of (6)

The aim of this appendix is to detail the exact resolution in time of the semi-discrete
wave systems in φ (4) and ψ (7) which appear at each iteration of the conjugate gradi-
ent algorithm used to solve the linear system (6) (accordingly to the HUM method).
The wave equations (4) and (7) are solved using a viscous finite difference scheme
similar to (37). Let us first present the exact resolution in time of the semi-discrete
system associated to (4):

(62)



















(I +
h2

4
∆h)(φh)tt − ∆hφh = 0, Ω × (0, T ),

φh = 0, ∂Ω × (0, T ),

(φh(0), (φh)t(0) = (φ0
h,φ

1
h), Ω,

that we may write in the following vectorial form :

(63)

{

Mφh
′′(t) +Khφh(t) = 0, t ∈ (0, T ),

(φh(0),φ′

h(0)) = (φ0
h,φ

1
h)

whereM andKh ∈ MN×N (R) designates the mass and stiffness matrices respectively.
Theses two matrices are diagonal, symmetric and definite positive. Moreover, let us
designates by Vh,Dh ∈ MN×N (R) the eigenvectors matrix and eigenvalues matrix
respectively of M−1Kh such that

(64) KhVh = MVhDh.

The matrix Dh = (λk)1≤k≤N is diagonal, with λk = 4h−2 tan2(kπh/2) whereas the
matrix Vh is symmetric and orthonormal such that V 2

h = IN×N . The eigenvector cor-
responding to λk is Vk = (Vik)i=1,...,N ∈ MN×1(R), with Vik = sin(ikπh)). Therefore,
the solution φh(t) = (φi(t))(1≤i≤N) is

(65) φi(t) =

N
∑

k=1

Vik

(

ak cos(
√

λkt) +
bk√
λk

sin(
√

λkt)

)

, 1 ≤ i ≤ N, t ≥ 0

where (ah, bh) = (V −1
h φ0

h, V
−1
h φ1

h) and ah = (ak)(1≤k≤N), bh = (bk)(1≤k≤N).

Similarly, the semi-discretization of (7) takes the following form

(66)

{

M(ψh)tt(t) +Khψh(t) = −Xωh
φh(t), t ∈ (0, T ),

(ψh(T ),ψ′

h(T )) = (0,0).
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Let A be the diagonal matrix in MN×N associated to −Xωh
. It follows that the

new variable zh(t) = V −1
h ψh(t) is solution of

(67)

{

z′′

h(t) +Dhzh(t) = (MVh)
−1Aφh(t), t ∈ (0, T ),

(zh(T ),z′

h(T )) = (0,0).

Then, introducing the matrix P = (MVh)
−1, the j-th component of the vector zh

is solution of

(68) z′′j (t) + λjzj(t) =

(

PAφh(t)

)

j

, t ≥ 0, 1 ≤ j ≤ N.

Using (65), the right hand term is

(69)

(

PAφh(t)

)

j

=
∑

1≤k,l≤N

PjkAklφl(t)

=
∑

1≤k,l,p≤N

PjkAklVlp

(

ap cos(
√

λpt) +
bp

√

λp
sin(

√

λpt)

)

Consequently, the component zj is solution of the following system

(70) z′′j (t) + λjzj(t) =
∑

1≤p≤N

Bjp
(

ap cos(
√

λpt) +
bp

√

λp
sin(

√

λpt)

)

, 1 ≤ j ≤ N

where B = PA1Vh. Some computations lead to

(71)

zj(t) =Cj1 cos(
√

λjt) + Cj2 sin(
√

λjt)

+
∑

1≤p≤N,λp 6=λj

Bjp
λj − λp

(

ap cos(
√

λpt) +
bp

√

λp
sin(

√

λpt)

)

+
1

2

∑

1≤p≤N,λp=λj

Bjp
λp

(

(ap − bpt) cos(
√

λpt) + ap
√

λpt sin(
√

λpt)

)

≡ Cj1 cos(
√

λjt) + Cj2 sin(
√

λjt) + Fj(t).

We then use the condition at time T in (67) to fixe the constants Cj1 and Cj2 , for
1 ≤ j ≤ N ;
(72)

Cj1 = − cos(
√

λjT )Fj(T )+
sin(

√

λjT )
√

λj
F ′
j(T ), Cj2 = − sin(

√

λjT )Fj(T )−cos(
√

λjT )
√

λj
F ′
j(T ).

Finally, we obtain the vector ψh(t) = Vhzh(t) for all t ∈ (0, T ).

Then, making t = 0 in (71), we obtain

(73) zj(0) = Cj1 +
∑

1≤p≤N,λp 6=λj

Bjp
λj − λp

ap +
1

2

∑

1≤p≤N,λp=λj

Bjp
λp

ap

and a similar relation for z′j(0). This provides the explicit linear relation between the

initial condition (φ0
h,φ

1
h) = (Vhah, Vhbh) and (ψh(0),ψ′

h(0)) = (Vhzh(0), Vhz
′

h(0)) =
(y0

h,y
1
h). The resulted linear system Λh(φ0

h,φ
1
h) := (y0

h,y
1
h) is efficiently solved using

a gradient conjugate algorithm initialized by (φ0
h,φ

1
h) = (0,0).
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Remark 4 The computation of P = (MVh)
−1 is straightforward. From M−1 =

VhDMV
−1
h and V −1

h = Vh, the matrix P is simply P = (DM )−1Vh where DM is the
diagonal matrix composed of the (analytically known) eigenvalues of M . �
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