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Abstract. We consider a bi-dimensional crack domain Ω submitted to a boundary load and
composed of two isotropic elastic materials. In the framework of the linear fracture theory, a common
tool used to describe the smooth evolution of any crack is the so-called energy release rate defined
as the variation of the mechanical energy with respect to the crack dimension. Precisely, the well-
known Griffith’s criterion postulates the evolution of the crack if this rate reaches a critical value. In
this work, we consider the shape design problem which consists in optimizing the distribution of the
two materials in Ω in order to reduce this rate. Since this kind of problem is usually ill-posed, we
first derive a relaxation by using the classical non-convex variational method. The computation of
the quasi-convexified of the cost is performed by using div-curl Young measures, leads to an explicit
relaxed formulation of the original problem, and exhibits fine microstructure in the form of first order
laminates. Finally, numerical simulations suggest that the optimal distribution permits to reduce
significantly the value of the energy release rate.
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1. Introduction - Problem Statement. Let Ω be a bounded domain of R2

(referred to the orthogonal frame (O; e1, e2)) containing a cut γ of extremity the point
F ∈ Ω and occupied by two constituent media with constant isotropic conductivity
α and β such that 0 < α < β <∞ (see Figure 1.1). The overall conductivity in Ω is
denoted by aXω

defined by

aXω
(x) = αXω(x) + β(1−Xω(x)), x = (x1, x2) ∈ Ω (1.1)

where Xω denotes the characteristic function of any domain ω included in Ω. We
introduce Γ0 and Γg as two non-empty disjoint parts of ∂Ω so that Γ0 ∩ γ = ∅ and
Γg ∩ γ = ∅. For any u0 ∈ H1/2(Γ0) and g ∈ L2(Γg), we then consider (in a weak
sense) the scalar solution u of the following problem

− div(aXω
(x)∇u) = 0 Ω,

u = u0 Γ0 ⊂ ∂Ω,
β ∇u · ν = g Γg ⊂ ∂Ω

(1.2)

where ν designates the outward unit normal to Ω. The perfect transmission conditions
are supposed to hold on ∂ω between the phase α and β. The weak solution enjoys
the regularity u ∈ H1(Ω) (see [16]). Finally, we associate with u the finite energy

E(u, γ) =
1
2

∫
Ω

aXω
(x)|∇u|2dx−

∫
Γg

gudσ. (1.3)
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As is well-known, the previous system is a simplified scalar modelisation of a structure
S occupying the domain Ω, fixed on Γ0, submitted to a normal load g on Γg and
containing a crack γ. Our motivation in this work is to optimize the distribution
of the two materials α and β along the structure S in order to prevent, or at least
reduce, the growth of the crack point F . In this respect, in the framework of Fracture
Mechanics (we refer to [3, 19]), a well-known and still widely used growth criterion is
due to A.A. Griffith [15]. This criterion is related to the so-called energy release gψ
(defined as minus the variation of the energy E with respect to variations of F )

gψ(u,Xω) =
∫

Ω

aXω
(x)(Aψ(x)∇u,∇u)dx. (1.4)

It postulates the growth of the point F if gψ(u,Xω) reaches a critical positive value
experimentally determined. Aψ is for all x ∈ Ω a real 2×2 matrix defined in Section 2
and (, ) denotes the scalar product in R2. We point out that this criterion, associated
with E and recently revisited in [14], is global, in contrast with stress criteria such as
Von Misses and Tresca criteria. We also point out that this rate is nonnegative for
all u.

In order to reduce the growth of F due to the load g, we therefore consider in
this work from a mathematical point of view, the following problem

(P ) : inf
Xω∈XL

gψ(u,Xω) (1.5)

where, for any L ∈ (0, 1),

XL = {X ∈ L∞(Ω, {0, 1}), ‖X‖L1(Ω) = L|Ω|} (1.6)

and where u is the solution of (1.2). (P ) is a so-called nonlinear optimal design problem
associated with a functional which depends quadratically on the gradient of u. The
relation ‖X‖L1(Ω) = L|Ω| expresses that the amount of material α to be distributed
on Ω is fixed and equal to L|Ω|.

To our knowledge, very few works have investigated the control of the crack growth
in this context. We mention two preliminary notes by P. Destuynder ([7, 8]). In [7],
the author considers the dynamic wave equation posed on a 2D cracked domain and
defines a growth criterion based on the stress intensity factor. A formulation for the
derivative of this criterion is given with respect to a control defined on the boundary
of the domain. The reference [8] considers a stationary loaded structure with a crack,
and suggests a computational method for a control law which restricts the crack
evolution (we refer to [10] for some numerical treatments). In the more recent work
[17], an active control strategy is addressed which consists in minimizing the rate gψ
with respect to the support and amplitude of an additional boundary load. Following
this idea, we also mention the note [28] which studies the possibility to annihilate the
singularity in a cracked domain using additional (singular) boundary loads. Problem
(P ) is conceptually different and may be qualified as passive control, assuming that the
cracked structure is built once for all. On the mathematical viewpoint, this problem
is a prototype of ill-posed problem in the sense that the infimum may be not reached
in the class of characteristic functions: the optimal domain ω is then composed of an
infinite number of disjoint components. The study of (P ) then consists in finding a
well-posed relaxation for which there exists an optimal solution. This can be done
by mainly two approaches: the Homogenization method (we refer to [1, 34]), and the
classical non-convex variational method (we refer to [5, 31] and references therein).
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The well-known application in conductivity is the minimization of the compliance
for which the matrix Aψ is diagonal, positive definite and independent of x. The
non diagonal and space dependent case provided by the energy release rate gψ seems
original in this context and presents several difficulties. Moreover, the 2 × 2 matrix
Aψ is not positive definite for all x ∈ Ω. In this work, following some previous works
[24, 25, 26], we address the relaxation of (P ) through the variational method using
the div-curl tool introduced and analyzed in [33]. The analysis amounts to computing
the quasi-convexified functional cost.

The paper is organized as follows. In Section 2, we recall the expression of the
energy release rate in terms of a surface integral and some important properties, and
then focus on two relevant choices for the matrix Aψ(x): the diagonal, and the non
diagonal cases (Remark 2.4). Then in Section 3, by using the variational approach
and Young measures, we determine a full relaxation (RP ) of the original problem (P ).
The analysis is divided in three steps: i) an equivalent variational reformulation (V P )
of (P ) (Section 3.1); ii) the computation of a sub-relaxation of (V P ) derived from the
expression of the poly-convexification of the cost (Section 3.2); iii) the determination
of at least one (div-curl) Young measure for which the lower bound is actually attained.
We obtain that both the diagonal and non diagonal cases exhibit first-order laminates
(Section 3.3). Then, in Section 3.4 by introducing an additional field, we transform
the explicit but non standard relaxation (RP ) into a new equivalent formulation (RP )
where u appears as a solution of a nonlinear elliptic equation under a divergence form
(see eq. 3.71). This final step then permits to address the numerical approximation
and discuss some experiments in Section 4. Some remarks and perspectives conclude
this work (Section 5).

γ

ν
νF

F

ω

Γ0 : u = u0 ω

ΩΩΩΩ

O

e2

e1

Γg : ∇u · ν = g

Fig. 1.1. Illustration of problem (P ): Optimization of the location of ω support of the α-material
in the crack domain Ω.

2. Overview about the energy release rate. In this section, we recall the
definition of the energy release rate and its expression in terms of a surface integral.
We use the notation ψ,i for ∂ψ/∂xi, i = 1, 2 as well as the convention of summation
of repeated indices.

We assume that, in the neighborhood of F , the crack γ is rectilinear and (without
loss of generalities) oriented along e1. We introduce any velocity field ψ = (ψ1, ψ2) ∈
W ≡ {ψ ∈ (W 1,∞(Ω,R))2,ψ · ν = 0 on ∂Ω/γ}, where ν designates the unit outward
normal to Ω. Moreover, we assume that the support of the function ψ is disjoint from
the support Γg of the load. Let η > 0 and the transformation Fη : x→ x+ ηψ(x) so
that Fη(F ) = F η and Fη(γ) = γη; we first recall the following definition (see [3, 19]).
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Definition 2.1 (Energy release rate). Let u be the solution of (1.2). The
derivative of the functional −E(u, γ) with respect to a variation of γ (precisely F )
in the direction ψ is defined as the Fréchet derivative in W at 0 of the application
η → −E(u, (Id+ ηψ)(γ)), i.e.

E(u, (Id+ ηψ)(γ)) = E(u, γ)− η
∂E(u, γ)
∂γ

.ψ + o(η2). (2.1)

In the sequel, we denote this derivative by gψ(u,Xω). �
The procedure to obtain the explicit expression of gψ is technical but by now well-

known (see [11, 22, 23]). Moreover, since the problem is self-adjoint, the derivative
may be expressed only in terms of u as follows.

Lemma 2.2. The first derivative of −E with respect to γ in the direction ψ =
(ψ1, ψ2) ∈W is given by

gψ(u,Xω) =
∫

Ω

aXω (x)∇u · (∇ψ · ∇u)dx− 1
2

∫
Ω

aXω (x)|∇u|2div(ψ)dx (2.2)

where u is the solution of (1.2). �
Remark that the load g does not appears explicitly in (2.2) since we have assumed

for simplicity that Γg ∩ supp ψ = ∅. Introducing the 2×2 matrix Aψ(x) for all x ∈ Ω
as follows:

Aψ(x) = ∇ψ − 1
2
div(ψ)I2 = ∇ψ − 1

2
Tr(∇ψ)I2

=
1
2

(
ψ1,1 − ψ2,2 2ψ1,2

2ψ2,1 ψ2,2 − ψ1,1

)
,

(2.3)

the energy release rate takes the form (1.4).
Moreover, since gψ is a shape derivative (with respect to F ), gψ should depend

on the function ψ ∈W only in a neighborhood of the crack tip F . This invariance is
true for all ψ ∈ W in the isotropic case for which α = β; in our situation, we have
to assume that the function ψ is such that {x ∈ Ω,ψ(x) 6= 0} ∩ ∂ω = ∅: this simply
requires to have a uniform material (α or β) in a neighborhood, say D ⊂ Ω, of F , so
that ω ∩ D = ∅ and {x ∈ Ω,ψ(x) 6= 0} ⊂ D:

F ∈ {x ∈ Ω,ψ(x) 6= 0} ⊂ D ⊂ Ω/ω. (2.4)

This assumption then permits to link the derivative gψ, which is a mathematical
quantity defined on Ω, to the thermo-dynamic strength G (locally defined on F ).

Lemma 2.3. [(Local) Energy release rate] Let C(F , r) be the circle of center F
and radius r > 0, νc = (νc,1, νc,2) its outward normal and

Gr(u,Xω) =
1
2

∫
C(F ,r)

aXω
(x)u,ju,jψkνc,kdσ −

∫
C(F ,r)

aXω
(x)u,ju,kψkνc,jdσ,

where u is solution of (1.2). The thermo-dynamic strength G is linked to gψ as follows:

gψ(u,Xω) = lim
r→0

Gr(u,Xω) (ψ · ν)|F ≡ G(u,Xω) ψ(F ) · νF , ∀ψ ∈W, (2.5)

where νF = (νF,1, νF,2) designates the orientation of the crack γ at the point F . �
It follows from (2.5) that the energy release rate gψ is related to the strength G by

G(u,Xω) = gψ(u,Xω), ∀ψ ∈W such that ψ(F ) · νF = 1. (2.6)
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Summarizing, the function ψ which defines the virtual crack extension should belong
to

W = {ψ ∈ (W 1,∞(Ω))2,ψ·ν = 0 on ∂Ω/γ, {x ∈ Ω,ψ(x) 6= 0}∩∂ω = ∅,ψ(F )·νF = 1}
(2.7)

in order that the (local) strength may be computed through his integral expression
gψ.

Remark 2.4.
• Since the crack is oriented along the axis e1, the natural choice is to take
ψ = (ψ1, 0) with ψ1ν1 = 0 on ∂Ω/γ. In this case, Aψ is simply

Aψ =
1
2

(
ψ1,1 2ψ1,2

0 −ψ1,1

)
. (2.8)

Moreover, since only the derivative of ψ are involved in gψ defined by (2.2),
it is more accurate from a numerical point of view to consider a function ψ1

which is constant in a neighborhood of F . This permits to obtain the strength
G with the relation (2.2) only as a function of the solution u far away from
F where it is singular [11]. A simple choice is given by the radial function

ψ1(x) = ζ(dist(x,F ))νF,1, ∀x ∈ Ω (2.9)

defining the function ζ ∈ C1(R+; [0, 1]) as follows:

ζ(r) =


1 r ≤ r1

(r − r2)2(3r1 − r2 − 2r)
(r1 − r2)3

r1 ≤ r ≤ r2

0 r ≥ r2

(2.10)

with 0 < r1 < r2 < dist(∂Ω/γ,F ) = infx∈∂Ω/γ dist(x,F ). This situation,
described on Figure 2.1, leads for some x ∈ Ω, to a non diagonal and non
positive definite matrix Aψ(x). In practice, the material is then assumed fixed
equal to α or β in the set D ≡ {x ∈ Ω, dist(x,F ) ≤ r3} for any r3 > r2.

• Let us designates by Ωε = {x ∈ Ω, |x1 − xF | ≤ ε} and ∂Ωε = {x ∈ ∂Ω, |x1 −
xF | ≤ ε}. If there exists an ε > 0 for which ν1 = 0 on ∂Ωε and ∂Γg∩∂Ωε = ∅,
then one may construct an admissible function ψ1 independent of x2. It
suffices to take ψ1(x1, x2) = ζ(x1)

ζ(x1) =



0 x1 ≤ r1
(x1−r1)2(2x1+r1−3r2)

r1−r2 r1 ≤ x1 ≤ r2,

1 r2 ≤ x1 ≤ r3,
(x1−r4)2(2x1+r4−3r3)

r4−r3 r3 ≤ x1 ≤ r4,

0 x1 ≥ r4

(2.11)

with

r1 = xF −
2ε
3
, r2 = xF −

ε

3
, r3 = xF +

ε

3
, r4 = xF +

2ε
3
. (2.12)

In this case, ψ1,2 = 0 and the matrix Aψ defined in (2.8) is simply diagonal
for all x ∈ Ω. However, this choice, described on Figure 2.2, enforces the
material to be constant in the whole vertical strip D ≡ {x ∈ Ω, |x1−xF | ≤ r3}
for any r3 > ε so that Ωε ⊂ D, which is more restrictive than the previous
situation.
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• One may also construct, for any domain, a function ψ = (ψ1, ψ2) such
that ψ1,2 = ψ2,1. In this more general case, the matrix Aψ defined by
(2.3) is symmetric. It suffices to take ψ1 given by (2.10) and ψ2(x1, x2) =∫ x1

0
ψ1,2(s, x2)ds. Since ψ1 is radial, ψ1,2 = 0 on ΓxF

= {(x1, x2) ∈ Ω, x1 =
xF }. Therefore, ψ2 = 0 on ΓxF

, and the virtual extension F η = F + ηψ(F )
remains on ΓxF

for all η > 0 small.
• From the definition, u = 0 implies gψ(u,Xω) = 0. The converse is not true

since for all x ∈ Ω for which ∇ψ(x) 6= 0 (i.e. ψ is not constant), Aψ is not
positive definite. �

γ

νr2

Γg

ψ1 > 0

Γ0

ω

ψ1 = 0 ω

F

Ω

Fig. 2.1. Choice of a radial function ψ1(x) leading to a non diagonal matrix Aψ.

F

ω

ψ1 = 0

γ

Ω

xF + εxF − ε

Γg

ω

ψ1 = 0

Γ0 ψ1 > 0

ν = (0, 1)

Ωε

Fig. 2.2. Choice of a function ψ1(x) = ψ1(x1)XΩε leading to a diagonal matrix Aψ assuming
the existence of a domain Ωε.

Remark 2.5. The condition β∇u · ν = g on Γg forces the conductivity to be
equal to β on Γg. To simplify the analysis in the next section, we assume that the
conductivity is β on all the boundary so that ω is strictly included in Ω. Consequently,
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the conductivity is β in D. Observe that we may relaxe this condition on ∂Ω if the
normal load g is zero (see Section 4). �

3. Relaxation of (P ). Problem (P ), which involves a functional depending on
the gradient ∇u, typically lacks optimal solution which means that the infimum may
only be achieved by a sequence of more and more intricate subset ωn of Ω (see for
instance [27, 34]). The goal of this section is to perform a relaxation of problem
(P ). It consists in looking for another minimization problem (RP ) for which there
does exist an optimal solution, this minimum has the same value of the infimum of
(P ), and more importantly, the optimal solution of the relaxed problem encodes the
information about (some) minimizing sequence for the original problem. Following
the procedure described in [33], a relaxed problem may be obtained by using Young
measures generated by sequence of pairs {Gn,Hn}, associated with the design Xωn

admissible for (P ), for which we have the information that the divergence of the first
component vanishes while the second component is a gradient. Such class of Young
measures, the so-called div-curl Young measures, has been explicitly introduced and
studied in [33]. In our situation, we denote by ν = {νx}x∈Ω the div-curl associated
with the sequence where each element has the following components:

Gn(x) = (αXn + β(1−Xn))∇un(x), Hn(x) = ∇un(x) (3.1)

respectively. Since Gn comes from the state equation, then each individual νx is
supported in the union of the two linear manifolds

Λγ = {(λ, ρ) ∈ R2 × R2 : ρ = γλ}, γ = α, β (3.2)

so that supp(νx) ⊂ Λα ∪ Λβ . As is usual, the measure νx may be written as

νx = s(x)νx,α + (1− s(x))νx,β (3.3)

with supp(νx,γ) ⊂ Λγ and s(x) ∈ [0, 1], the weak−? limit in L∞(Ω) of a subsequence
of Xωn

. Suppose now that (Xωn
)(n>0) is a minimizing sequence for (P ). Then, by the

fundamental property of Young measures (see [30], Theorem 6.2), we may represent
the limit of the cost associated with Xωn through the measure ν. Precisely, using the
relation (Aψ∇u,∇u) = Aψ ⊗ (∇u∇uT ) where ∇uT designates the transpose of the
vector ∇u, this limit is

lim
n→∞

gψ(un,Xωn
) =

∫
Ω

[
αs(x)Aψ(x)⊗

∫
R2
λλT dν(1)

x,α(λ)

+ β(1− s(x))Aψ(x)⊗
∫

R2
λλT dν

(1)
x,β(λ)

]
dx

(3.4)

where ν(1)
x,γ , γ = α, β, designates the projection of νx,λ onto the first copy of R2. There-

fore, with each minimizing sequence of (P ), we associate an optimal div-curl Young
measure. In this sense, optimizing with respect to Xωn

is equivalent to optimizing
with respect to ν.

3.1. Variational reformulation. We now proceed to the analysis of problem
(P ) in a similar fashion as in [33]. We first put (P ) in an equivalent variational setting.
We introduce the non Carathéodory functions

W (x, ρ, λ) =


αAψ(x)⊗ λλT if (ρ, λ) ∈ Λα,

βAψ(x)⊗ λλT if (ρ, λ) ∈ Λβ ,
+∞ else,

(3.5)
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and

V (ρ, λ) =


1 if (ρ, λ) ∈ Λα,
0 if (ρ, λ) ∈ Λβ ,
+∞ else.

(3.6)

Then we check that (P ) is equivalent to the following new problem

(V P ) : inf
G,u

∫
Ω

W (x, G(x),∇u(x))dx (3.7)

subject to 

G ∈ L2(Ω; R2), u ∈ H1(Ω; R),

div G = 0 in H−1(Ω),
u = u0 Γ0,

β∇u · ν = g Γg ⊂ ∂Ω\(γ ∪ Γ0),∫
Ω

V (G(x),∇u(x))dx = L|Ω|.

(3.8)

This equivalent formulation suffers from the same troubles as the initial problem, so
that it is in need of relaxation. The crucial step is the computation of the constrained
quasi-convexification CQW of the density W leading to a relaxation (RP ) of (V P )
(and thus of (P )):

(RP ) : min
s,G,u

∫
Ω

CQW (x, s(x), G(x),∇u(x))dx (3.9)

for s ∈ L∞(Ω, [0, 1]), and subject to (3.8), but replacing the integral constraint involv-
ing V by

∫
Ω
s(x) dx = L|Ω|. The constrained quasi-convex density CQW is computed

by solving the problem in measures :

CQW (x, s(x), G(x),∇u(x))

= inf
ν

{
αs(x)Aψ(x)⊗

∫
R2
λλT dν(1)

x,α(λ) + β(1− s(x))Aψ(x)⊗
∫

R2
λλT dν

(1)
x,β(λ)

}
(3.10)

for any measure ν subject to

ν = {νx}x∈Ω, νx = s(x)νx,α + (1− s(x))νx,β , supp(νx,γ) ⊂ Λγ ,
ν is div-curl Young measure,

G(x) =
∫

R2
ρdνx(λ, ρ), div G = 0 weakly in Ω,

∇u(x) =
∫

R2
λdνx(λ, ρ).

(3.11)

Moreover, Remark 2.5 enforces the following property on the density:

s(x) = 0 in D ∪ ∂Ω. (3.12)
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3.2. Relaxation. To proceed further with the analysis of this relaxed formu-
lation, we regard x ∈ Ω as a parameter and put νx = ν, G(x) = ρ, ∇u = λ, and
s(x) = s.

Let us take ν a div-curl Young measure which is supported in the set Λ = Λα∪Λβ
where Λγ = {(x, y) ∈ R2 × R2; y = γx}, a linear manifold in R2 × R2. We can
decompose ν = sνα + (1− s)νβ where νγ is a probability measure (most likely not a
Div-Curl Young measure itself) supported in Λγ .

Concerning the first moment of ν, we may write

(λ, ρ) =
∫

Λ

(x, y)dν(x, y) = s

∫
R2

(x, αx)dν(1)
α (x) + (1− s)

∫
R2

(x, βx)dν(1)
β (x) (3.13)

where ν(1)
γ is the projection of νγ onto the first copy of R2 of the product R2 × R2.

By introducing

λγ =
∫

R2
xdν(1)

γ (x), (3.14)

we have λ = sλα + (1− s)λβ , ρ = sαλα + (1− s)βλβ , and then

λα =
1

s(β − α)
(βλ− ρ), λβ =

1
(1− s)(β − α)

(ρ− αλ). (3.15)

Moreover, the commutation with the inner product yields the relation

λT ρ =
∫

Λ

xT ydν(x, y) = αs

∫
R2
xTxdν(1)

α (x) + β(1− s)
∫

R2
xTxdν

(1)
β (x). (3.16)

To find a lower bound of CQW defined by (3.10), we are going to retain just the
relevant property expressed in the commutation (3.16), so that we regard feasible
measures ν as Young measures which satisfy this commutation property, but are not
necessarily a div-curl Young measure. We introduce

Xγ =
∫

R2
xxT dν(1)

γ (x), γ = α, β (3.17)

a convex combination of symmetric rank-one matrices. It is well-known that

Xγ ≥ λγλ
T
γ , γ = α, β (3.18)

in the usual sense of symmetric matrices, i.e. that Xγ−λγλTγ is semi-definite positive.
The relation (3.16) becomes

λT ρ = λ · ρ = αsTr(Xα) + β(1− s)Tr(Xβ) (3.19)

where Tr designates the Trace operator for square matrices. Similarly, the cost may
be written in term of the variable Xγ as follows :

sαAψ ⊗Xα + (1− s)βAψ ⊗Xβ = sαTr(AψXα) + (1− s)βTr(AψXβ) (3.20)

from the relation Aψ ⊗Xγ = Tr(AψXγ), γ = α, β. Consequently, in seeking a lower
bound of the constrained quasiconvexification, we are led to consider the mathematical
programming problem

min
Xα,Xβ

C(Xα, Xβ) = αsTr(AψXα) + β(1− s)Tr(AψXβ) (3.21)

9



subject to the constraints

λT ρ = λ · ρ = αsTr(Xα) + β(1− s)Tr(Xβ), Xγ ≥ λγλ
T
γ . (3.22)

We first realize that the set of vectors for which the constraints yield a non-empty set
takes place if

αsTr(λαλTα) + β(1− s)Tr(λβλTβ ) ≤ λ · ρ (3.23)

i.e. if

B ≡ λ · ρ− αs|λα|2 − β(1− s)|λβ |2 ≥ 0 (3.24)

using that Tr(λρT ) = λ ·ρ. This inequality related to the state equation in (1.2) is the
usual one obtained, for instance, in the so-called compliance problem (see [32]). Notice
that by using (3.15), B may be factorized as follows : B = (λβ − λα) · (βλβ − αλα).
We now solve the mathematical programming problem (3.21) in the diagonal and non
diagonal case respectively, highlighted in Remark 2.4.

3.2.1. Case Aψ diagonal. We first assume the diagonal situation
Aψ = diag(ψ1,1,−ψ1,1) for which the cost is simply

C(Xα, Xβ) =
1
2
ψ1,1

(
αs(Xα,11 −Xα,22) + β(1− s)(Xβ,11 −Xβ,22)

)
(3.25)

under the constraints
sα(Xα,11 +Xα,22) + (1− s)β(Xβ,11 +Xβ,22) = λ · ρ,
Xγ,11 +Xγ,22 ≥ λ2

γ,1 + λ2
γ,2 = |λγ |2, γ = α, β,

(Xγ,11 − λ2
γ,1)(Xγ,22 − λ2

γ,2) ≥ (Xγ,12 − λγ,1λγ,2)2.

(3.26)

Let us first consider the point x of Ω for which ψ1,1(x) ≥ 0. Using the first constraint,
we write that sαXα,22 + (1− s)βXβ,22 = λ · ρ− sαXα,11 + (1− s)βXβ,11, so that the
cost becomes simply

C(Xα, Xβ) = ψ1,1

(
sαXα,11 + (1− s)βXβ,11

)
− 1

2
ψ1,1λ · ρ. (3.27)

The minimum is then reached for Xγ,11 = max(λ2
γ,1, |λγ |2−Xγ,22) since Xγ,11 ≥ λ2

γ,1.
Now, using that Xγ,22 ≥ λ2

γ,2, the maximum is λ2
γ,1. Consequently,

Xγ,11 = λ2
γ,1, Xγ,22 ≥ λ2

γ,2, γ = α, β. (3.28)

The last constraint then provides the equality

Xγ,12 = λγ,1λγ,2, γ = α, β. (3.29)

The cost is then, from (3.15)

C(Xα, Xβ) = ψ1,1

(
α(βλ1 − ρ1)2

s(β − α)2
+

β(ρ1 − αλ1)2

(1− s)(β − α)2

)
− 1

2
ψ1,1λ · ρ. (3.30)

Similarly, the study of the case ψ1,1(x) ≤ 0 leads to

Xγ,11 ≥ λ2
γ,1, Xγ,22 = λ2

γ,2, Xγ,12 = λγ,1λγ,2 γ = α, β, (3.31)
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and a cost equal to

C(Xα, Xβ) = −ψ1,1

(
α(βλ2 − ρ2)2

s(β − α)2
+

β(ρ2 − αλ2)2

(1− s)(β − α)2

)
+

1
2
ψ1,1λ · ρ. (3.32)

We then obtain the following partial result :
Proposition 3.1 (Diagonal case). For any s ∈ L∞(Ω) and (λ, ρ) = (∇u,G)

satisfying (3.8), the function

m(s, λ, ρ) =



ψ1,1

(
α(βλ1 − ρ1)2

s(β − α)2
+

β(ρ1 − αλ1)2

(1− s)(β − α)2

)
− 1

2
ψ1,1λ · ρ

if ψ1,1 ≥ 0 and (3.23)

− ψ1,1

(
α(βλ2 − ρ2)2

s(β − α)2
+

β(ρ2 − αλ2)2

(1− s)(β − α)2

)
+

1
2
ψ1,1λ · ρ

if ψ1,1 ≤ 0 and (3.23)
+∞ else

(3.33)
is a lower bound for the constrained quasi-convexified CQW of W :

m(s, λ, ρ) ≤ CQW (s, λ, ρ). (3.34)

�

3.2.2. Case Aψ non-diagonal. We now assume that Aψ of the form (2.8):

Aψ =
1
2

(
ψ1,1 2ψ1,2

0 −ψ1,1

)
≡

(
a 2b
0 −a

)
(3.35)

so that the mathematical programming problem is now

min
Xγ,11,Xγ,22,Xγ,12

C(Xα, Xβ) (3.36)

with

C(Xα, Xβ) = αs[a(Xα,11−Xα,22)+2bXα,12] +β(1− s)[(a(Xβ,11−Xβ,22)+2bXβ,12)]
(3.37)

and the constraint
sα(Xα,11 +Xα,22) + (1− s)β(Xβ,11 +Xβ,22) = λ · ρ,
Xγ,11 +Xγ,22 ≥ λ2

γ,1 + λ2
γ,2 = |λγ |2, γ = α, β,

(Xγ,11 − λ2
γ,1)(Xγ,22 − λ2

γ,2) ≥ (Xγ,12 − λγ,1λγ,2)2.

(3.38)

With the change of variable Yγ = Xγ − λγλTγ , the cost and the constraints are trans-
formed into

min
Yγ,11,Yγ,22,Yγ,12

αs(a(Yα,11−Yα,22)+2bYα,12)+β(1−s)((a(Yβ,11−Yβ,22)+2bYβ,12))+A

(3.39)
and {

sα(Yα,11 + Yα,22) + (1− s)β(Yβ,11 + Yβ,22) = B,

Yγ,11 + Yγ,22 ≥ 0, Yγ,11Yγ,22 ≥ Y 2
γ,12 γ = α, β

(3.40)
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where the constants A and B are defined by

A = αs(a(λ2
α,1 − λ2

α,2) + 2bλα,1λα,2) + β(1− s)((a(λ2
β,1 − λ2

β,2) + 2bλβ,1λβ,2)) (3.41)

and (3.24) respectively. We first realize that the minimum of the linear cost is reached
on the boundary of the convex sets

Γγ =
{

(Yγ,11, Yγ,22, Yγ,12) ∈ R3, Yγ,11 ≥ 0, Yγ,22 ≥ 0, Yγ,11Yγ,22 ≥ Y 2
γ,12

}
, γ = α, β

(3.42)
which implies necessarily the equality Yγ,11Yγ,22 = Y 2

γ,12. Therefore, we can introduce
the new variables Zγ ≡ (Zγ,11, Zγ,22)T so that Yγ,11 = Z2

γ,11, Yγ,22 = Z2
γ,22 and

εγ = ±1 and then Zγ,11Zγ,22 = εγYγ,12 reducing the problem to

min
Zγ,11,Zγ,22,εγ

C(Zγ , εγ) = αs(a(Z2
α,11 − Z2

α,22) + 2bεαZα,11Zα,22)

+ β(1− s)((a(Z2
β,11 − Z2

β,22) + 2bεβZβ,11Zβ,22)) +A
(3.43)

under the constraint

sα(Z2
α,11 + Z2

α,22) + (1− s)β(Z2
β,11 + Z2

β,22) = B. (3.44)

Introducing the Lagrangian L and the multiplier p

L(Zγ , p) = C(Zγ , εγ)− p

(
sα(Z2

α,11 + Z2
α,22) + (1− s)β(Z2

β,11 + Z2
β,22)−B

)
, (3.45)

we arrive at the optimality conditions :

Aψ,εγZγ = pZγ , Aψ,εγ =
(

a bεγ
bεγ −a

)
. (3.46)

The trivial solution is (Zγ,11, Zγ,22) = (0, 0) leading to the value of the cost
C(Zγ , εγ) = A. The other cases lead to the resolution of a spectral problem: we
obtain

p = −
√
a2 + b2, Zγ = aγ

(
bεγ ,−(a+

√
a2 + b2)

)T
(3.47)

and

p =
√
a2 + b2, Zγ = aγ

(
bεγ ,−(a−

√
a2 + b2)

)T
(3.48)

for any aγ ∈ R∗. Now, writing that a(Z2
γ,11−Z2

γ,22) + 2bεγZγ,11Zγ,22 = Aψ,εγZγ ·Zγ ,
we may write from (3.46) that

C(Zγ , εγ) =αsAψ,εαZα · Zα + β(1− s)Aψ,εγZβ · Zβ +A

=p(αs|Zα|2 + β(1− s)|Zβ |2) +A
(3.49)

and then conclude from the constraint (3.44) that the cost given by (3.43) is
C(Zγ , εγ) = pB+A. Therefore, the cost, independent of εγ is obtained for the lowest
eigenvalue (independent here of the sign of a) :

minC(Zγ , εγ) = −
√
a2 + b2B +A (3.50)

12



for Zγ = aγ(bεγ ,−(a+
√
a2 + b2))T . The constraint (3.44) then gives the relation

(a2
αsα+ a2

β(1− s)β)(b2 + (a+
√
a2 + b2)2) = B. (3.51)

We then observe that the cost for this non trivial solution is lower (except in the case
B = 0, i.e. the equality in (3.23)). It is also important for the search of laminates (see
Section 3.3) to remark that the value of the cost is unchanged if Zα = 0 or Zβ = 0.
Precisely, (3.49) remains true. At last, we check that for b = 0, we recover the cost of
the diagonal case. Consequently, the partial result is as follows :

Proposition 3.2 (Non diagonal case). For any s ∈ L∞(Ω) and (λ, ρ) = (∇u,G)
satisfying (3.8), the function

m(s, λ, ρ) =



1
2

[
−

√
ψ2

1,1 + ψ2
1,2(ρ · λ− αs|λα|2 − β(1− s)|λβ |2)

+ ψ1,1(αsλ2
α,1 + (1− s)βλ2

β,1)− ψ1,1(αsλ2
α,2 + (1− s)βλ2

β,2)

+ 2ψ1,2(αsλα,1λα,2 + (1− s)βλβ,1λβ,2)
]

if (3.23)

+∞ else
(3.52)

is a lower bound for the constrained quasi-convexified CQW of W :

m(s, λ, ρ) ≤ CQW (s, λ, ρ). (3.53)

λγ = λγ(s, λ, ρ), γ = α, β are defined by (3.15). �

3.3. (Div-Curl) laminates and relaxed formulation. We now study whe-
ther or not the optimal measure may be recovered by laminates. This would imply
that the constrained quasi-convexified is reached. Except for special examples (like
the compliance case which exhibits first and second order laminates [32]), the search
of explicit laminates is difficult. In the case studied here, the situation is actually
straightforward because the function m is zero out of the support of the function ψ.
Let us discuss the non diagonal case. In the set D, the material β is imposed so that
the density s is equal to zero. Therefore, the search of laminates is meaningful only
in Ω/D. According to the computation of Section 3.2.2, the optimal second moment
are of the form

Xγ = λγλ
T
γ + a2

γ

 ψ2
1,2 −ψ1,2(ψ1,1 +

√
ψ2

1,1 + ψ2
1,2)

−ψ1,2(ψ1,1 +
√
ψ2

1,1 + ψ2
1,2) (ψ1,1 +

√
ψ2

1,1 + ψ2
1,2)

2


(3.54)

leading to the cost −
√
ψ2

1,1 + ψ2
1,2B +A. But, on Ω/D, the radial function ψ is zero

so that,

Xγ = λγλ
T
γ , x ∈ Ω/D (3.55)

i.e. in particular

Xγ,ii =
∫

R
x2
i dν

(1,i)
γ (xi) =

(∫
R
xidν

1,i
γ (xi)

)2

= (λγ,i)2, i = 1, 2 (3.56)
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where ν(1,i)
γ denotes the projection of ν(1) onto the i-th copy of R2. From the strict

convexity of the square function, this implies that ν(1,i)
γ = δλγ,i , i.e.

ν(1,i)
α = δ βλi−ρi

s(β−α)
, ν

(1,i)
β = δ ρi−αλi

(1−s)(β−α)
. (3.57)

Remark that this is compatible with the third equality Xγ,12 = λγ,1λ
T
γ,2. This also

implies (see for instance (3.51)) the equality in (3.23), i.e. that

B = λ · ρ− αs|λα|2 − β(1− s)|λβ |2 = 0. (3.58)

Consequently, the optimal value m(s, λ, ρ) may be recovered by the following measure

ν = sδ(αλα,λα) + (1− s)δ(βλβ ,λβ) (3.59)

which is a first order (div-curl) laminate, the div-curl condition (βλβ − αλα) · (λβ −
λα) = 0 (analogous to a rank one condition for H1−gradient Young measure) being
equivalent precisely to B = 0. We therefore may establish the following relaxation :

Theorem 3.3. The variational problem

(RP ) : min
s,u,G

∫
Ω

m(s,∇u,G)dx (3.60)

subject to 
s ∈ L∞(Ω, [0, 1]), s = 0 in D ∪ ∂Ω,

∫
Ω

s(x)dx = L|Ω|,

u ∈ H1(Ω), u = u0 on Γ0, β∇u · ν = g on Γg,

G ∈ (L2(Ω))2, div G = 0 weakly in Ω,

(3.61)

where m is defined by (3.52) is a relaxation of (V P ) in the sense that the minimum
of (RP ) exists and equals the minimum of (V P ). Moreover, the underlying Young
measure associated with (RP ) can be found in the form of a first order laminate
whose direction of lamination are given explicitly in terms of the optimal solution
(u,G): precisely, the normal are orthogonal to λβ − λα. �

The above formulation may be simplified by taking into account that B = 0.
Precisely, we use (3.15) to express B = (βλβ − αλα)(λβ − λα) = 0 as follows

(ρ− λ−(s)λ) · (ρ− λ+(s)λ) = 0 (3.62)

in terms of the harmonic and arithmetic mean of α, β defined as follows:

λ−(s) =
αβ

α(1− s) + βs
, λ+(s) = αs+ β(1− s). (3.63)

Therefore, Theorem 3.3 is equivalent to
Theorem 3.4. The variational problem

(RP ) : min
s,u,G

∫
Ω

F (s,∇u,G)dx (3.64)

subject to 

s ∈ L∞(Ω, [0, 1]), s = 0 in D ∪ ∂Ω,
∫

Ω

s(x)dx = L|Ω|,

u ∈ H1(Ω), u = u0 on Γ0, β∇u · ν = g on Γg,

G ∈ (L2(Ω))2, div G = 0 weakly in Ω,

(G− λ−(s)∇u) · (G− λ+(s)∇u) = 0 in L2(Ω),

(3.65)
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where F , deduced from m, is defined

F (s, λ, ρ) =
1
2

[
ψ1,1(αsλ2

α,1 + (1− s)βλ2
β,1)− ψ1,1(αsλ2

α,2 + (1− s)βλ2
β,2)

+ 2ψ1,2(αsλα,1λα,2 + (1− s)βλβ,1λβ,2)
] (3.66)

is a relaxation of (V P ) in the sense that the minimum of (RP ) exists and equals the
minimum of (V P ). �

3.4. A Final transformation. The above analysis provides an explicit relax-
ation (RP ), in terms of a minimum of a new functional over a convex set. Remark
that this formulation is not standard since the state equation (1.2) under a usual di-
vergence form has disappeared. This state equation is incorporated in the constraints
(3.65). This fact explains why a direct numerical approximation (a priori, the non-
linear problem (RP ) can not be solved analytically) of this problem is difficult. In
order to overpass this point, we remark that the relation (3.62) is equivalent to∣∣∣∣ρ− λ+(s) + λ−(s)

2
λ

∣∣∣∣2 =
(
λ+(s)− λ−(s)

2

)2

|λ|2. (3.67)

Therefore, by introducing the additional variable t(x) ∈ R2 such that |t| = 1, we may
write ρ = G(x) for all x ∈ Ω under the form (we use that λ−(s) ≤ λ+(s) for all
s ∈ (0, 1))

ρ =
λ+(s) + λ−(s)

2
λ+

λ+(s)− λ−(s)
2

|λ|t ≡ φ(s, t, λ). (3.68)

We have

λ+(s) + λ−(s)
2

=
2αβ + s(1− s)(β − α)2

2(α(1− s) + βs)
≡ A(s), (3.69)

and

λ+(s)− λ−(s)
2

=
s(1− s)(β − α)2

2(α(1− s) + βs)
≡ B(s). (3.70)

The relation div G = 0 then permits to recover u as the solution of a nonlinear
equation under a divergence form (having in mind that λ = ∇u):

div(A(s)∇u+B(s)|∇u|t) = 0, in Ω,
u = u0, on Γ0,

β∇u · ν = g, on Γg.
(3.71)

The study - out of the scope of this work - of this apparently non standard elliptic
equation would be very interesting. We assume here that (3.71) is well-posed. Note
that the nonlinear part vanishes where s takes the values in {0, 1} since B(0) =
B(1) = 0. In such a case, (3.71) is nothing but (1.2). The relaxed problem is then
equivalent to the following one, easier to solve numerically although nonlinear in u
and non standard :
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Theorem 3.5. Let F and φ be defined respectively by (3.66) and (3.68). The
following formulation

(RP ) : min
s,t

I(s, t) =
∫

Ω

F (s,∇u, φ(s, t,∇u))dx (3.72)

subject to the constraints
s ∈ L∞(Ω, [0, 1]), s = 0 in D ∪ ∂Ω,

∫
Ω

s(x)dx = L|Ω|,

t ∈ L∞(Ω,R2), |t| = 1,

u ∈ H1(Ω), u = u0 on Γ0, β∇u · ν = g on Γg,
div φ(s, t,∇u) = 0 weakly in Ω

(3.73)

is equivalent to the relaxation (RP ). In particular, (RP ) is a full well-posed relaxation
of (V P ). �

Remark 3.6. Using the fact that the density s is identically zero on {x ∈
Ω, ψ(x) 6= 0}, one may simplify a bit more the integrand F . Using (3.15) and (3.68),
we explicit λγ in terms of λ, s and t:

λα =
2β − (1− s)(β − α)

2(α+ s(β − α))
λ− (1− s)(β − α)

2(α+ s(β − α))
|λ|t,

λβ =
s(β − α) + 2α

2(α+ s(β − α))
λ+

s(β − α)
2(α+ s(β − α))

|λ|t.
(3.74)

and compute that

F (0, λ, φ(0, t, λ)) =
1
2
βψ1,1(λ2

1 − λ2
2) + βψ1,2λ1λ2. (3.75)

Now since s = 0 in {x ∈ Ω, ψ(x) 6= 0}, we deduce that (taking λ = ∇u)

F (s,∇u, φ(s, t,∇u)) =
1
2
βψ1,1(u2

,1 − u2
,2) + βψ1,2u,1u,2 (3.76)

which is nothing but the integrand of gψ. Therefore, the relaxation of (P ) is simply
apparent through the nonlinear state equation (3.71). �

4. Numerical study. We illustrate in this section our theoretical results by
some numerical developments. We first detail the numerical resolution of the relaxed
formulation (RP ) and then provides some numerical examples.

4.1. Numerical resolution of the relaxed problem (RP ). Since u is com-
pletely determined by s and t, the minimization of the cost is over s and t using a first
order gradient method. We compute explicitly the first variation of I with respect to
s and t in the direction δs and δt, defined (formally) as :

∂I(s, t)
∂s

· δs = lim
η→0

I(s+ ηδs, t)− I(s, t)
η

, η ∈ R∗ (4.1)

and

∂I(s, t)
∂t

· δt = lim
η→0

I(s, t+ ηδt)− I(s, t)
η

, η ∈ R∗. (4.2)
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Theorem 4.1. The first variation of I with respect to s and t in the direction δs
and δt exist and are given respectively by

dI(s, t, u, p)
ds

· δs =
∫

Ω

F,s(s,∇u, φ(s, t,∇u)) · δs dx

+
∫

Ω

(
A,s(s)∇u · ∇p+B,s(s)|∇u|t · ∇p

)
· δs dx

(4.3)

and

dI(s, t, u, p)
dt

· δt =
∫

Ω

F,t(s,∇u, φ(s, t,∇u)) · δt dx+
∫

Ω

B(s)|∇u|δt · ∇p dx (4.4)

where p ∈ H1
Γ0

(Ω) = {v ∈ H1(Ω), v = 0 on Γ0} solves the adjoint problem∫
Ω

F,u(s,∇u, φ(s, t,∇u)) ·v dx+
∫

Ω

(
A(s)∇v ·∇p+B(s)

∇u · ∇v
|∇u|

t ·∇p
)
dx = 0, (4.5)

for all v in H1
Γ0

(Ω). A,s and B,s denote the partial derivative of A and B with respect
to s and F,t the partial derivative of F with respect to t. �

Notice that the adjoint formulation (4.5) is linear in contrast with the formulation
associated with u, which reads as follows,∫

Ω

(
A(s)∇u · ∇v +B(s)|∇u|t · ∇v

)
dx =

∫
Γg

gv dσ, ∀v ∈ H1
Γ0

(Ω) (4.6)

using that s = 0 on ∂Ω and that A(0) = β, B(0) = 0.
Proof of Theorem 4.1- The proof is standard. We introduce the lagrangian

L(s, t, u, p) =
∫

Ω

F (s,∇u, φ(s, t,∇u))dx

+
∫

Ω

(
A(s)∇u · ∇p+B(s)|∇u|t · ∇p

)
dx−

∫
Γg

gpdσ

(4.7)

and write that

dL(s, t, u, p)
d(s, t)

· (δs, δt) =
dL(s, t, u, p)

ds
· δs+

dL(s, t, u, p)
dt

· δt. (4.8)

Formally, we have

dL(s, t, u, p)
ds

· δs =
∂L(s, t, u, p)

∂s
· δs+ <

∂L(s, t, u, p)
∂u

,
∂u

∂s
· δs >

+ <
∂L(s, t, u, p)

∂p
,
∂p

∂s
· δs > .

(4.9)

As usual, since L is linear in p and since u is the solution of (4.6), the third term is
equal to zero. The solution p is then determined in order that the second term be
also equal to zero. We write (for simplicity, we note δu for (∂u/∂s) · δs)

<
∂L(s, t, u, p)

∂u
, δu >=

∫
Ω

F,u(s,∇u, φ(s, t,∇u)) · δudx

+
∫

Ω

(
A(s)∇δu · ∇p+B(s)

∇u · ∇δu
|∇u|

t · ∇p
)
dx

(4.10)
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for all δu ∈ H1
Γ0

(Ω) leading to the linear weak formulation of p ∈ H1
Γ0

(Ω). In particu-
lar, we check that ∇p · ν = 0 on ∂Ω/Γ0. The variation of L with respect to s is then
given by (4.3). Relation (4.4) is obtained in a similar way. �

Theorem 4.1 leads to the descent directions

δs = −F,s(s,∇u, φ(s, t,∇u))−
(
A,s(s)∇u · ∇p+B,s(s)|∇u|t · ∇p

)
, in Ω (4.11)

and

δt = −
(
F,t(s,∇u, φ(s, t,∇u)) +B(s)|∇u|∇p

)
, in Ω. (4.12)

Moreover, since |t| = 1, we introduce the variable θ and write t = (cos(θ), sin(θ)), in
which case (4.12) is replaced by

δθ = − sin(θ)(δt)1 + cos(θ)(δt)2, in Ω. (4.13)

The volume constraint on s is taken into account through a classical and efficient
way by introducing an explicit lagrange multiplier (we refer to [21]). The algorithm
for the variable s is therefore{

s(0) ∈ L∞(Ω, [0, 1]),

s(k+1) = s(k) + εfs(sk)δs(k), fs(s(k)) = sk(1− s(k)), k ≥ 0
(4.14)

where the positive value fs(s(k)) is introduced in order to enforce s(k+1) to be in [0, 1]
and ε a positive real small enough. The descent algorithm for the field θ is

θ(0) ∈ L∞(Ω,R), θ(k+1) = θ(k) + εδθ(k), k ≥ 0. (4.15)

At each step k of these two algorithms, the solution u of the nonlinear system (3.71)
is solved from (4.6) by using the Newton method :

u0 ∈ H1(Ω), u0 = u0 on Γ0,∫
Ω

(
A(s(k))∇un+1 · ∇v +B(s(k))

∇un+1 · ∇un

|∇un|
t(k) · ∇v

)
dx

=
∫

Γg

gv dσ,∀n > 0,∀v ∈ H1
Γ0

(Ω).

(4.16)

This formulation and the linear equation (4.5) for p are solved using continuous fi-
nite elements of order one approximating the space H1

Γ0
(Ω) by the following finite

dimensional space :

H1
Γ0,h(Ω) = {vh, vh ∈ C0(Ω), vh|Q ∈ Q1(Q),∀Q ∈ Qh, vh = 0 on Γ0} (4.17)

where Q1(Q) denotes the space of polynomial functions of degree ≤ 1 on Q, the
notation (Qh)h>0 stands for a regular family of quadrangulations characterized by the
space step h such that Ω = ∪Q∈Qh

Q. We highlight that the corresponding stiffness
matrix is identical for (4.5) and (4.16). The lips of the crack γ, assumed rectilinear,
are composed of edges of elements in Qh. Besides, as proved in [12] (Theorem 4.2
page 96), (4.17) implies the a priori estimation |gψ − gψ,h| = O(h1−η),∀η > 0 if gψ,h
designates the numerical approximation of the energy release rate gψ.
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4.2. Numerical experiments. For simplicity, we consider in the sequel the
domain Ω = (0, 1)2 with the crack γ = [0.5, 1] × {a} (a ∈ (0, 1)). Γ0 is divided into
two parts Γ0,1 ∪ Γ0,2: Γ0,1 = {0} × [0, 1] = {x = (x1, x2) ∈ R2, x1 = 0, x2 ∈ [0, 1]}
where u0 = 0 and Γ0,2 = {1} × [0.5, 0.8] where u0 = 0.5. There is not normal load :
Γg = ∅.

The examples that we describe in the sequel concern the non diagonal case (2.8)
which imposes the material to be constant around F , D = {x ∈ Ω, ‖x − F ‖ ≤ r3}
(see Remark 2.4, item i)). In order to limit the measure of this set, we take r3 small
enough with respect to the size of the domain, precisely r3 = 0.05. The radial function
ψ = (ψ1, 0) is then defined by (2.9) with r1 = 0.015 and r2 = 0.045 < r3. Therefore,
ψ1 is constant equal to νF,1 = −1 on {x ∈ Ω, ‖x−F ‖ ≤ r1} (we recall that this permits
to avoid the singularity of u on F ). These small values limit the measure of D but
enforces a very fine mesh where ψ1 > 0 in order to have an accurate approximation
of gψ. We therefore use a non uniform regular quadrangulation (Qh)h>0 of Ω with a
refinement around the crack point. For F = (1/2, 1/2), an example is given on Figure
4.1, corresponding to 52 × 52 elements (and 2916 degrees of freedom). In practice,
20 × 20 elements on {x ∈ Ω, ‖x − F ‖ ≤ r2} are sufficient to obtain an accurate and
invariant (with respect to r1 and r2) approximation of the energy release rate. In the
sequel, a mesh composed of 82× 82 quadrangles will be used.
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Fig. 4.1. Example of quadrangulation of the unit square with a refinement on the support of
the radial function ψ1 (52× 52 finite elements) around the point F = (1/2, 1/2).

We discuss the optimal distribution of the two materials with respect to the values
of (α, β) and a. Let us first take (α, β) = (1, 2) and L = 2/5 and a = 1/2 so that F =
(1/2, 1/2). The iso-value of the density sopt obtained after 1000 iterations is depicted
on Figure 4.2. The algorithm is initialized with θ(0) = 0 on Ω and s(0) = 0 on D∪ ∂Ω
and constant elsewhere which does not privilege any location for ω. The constant is
determined in order to satisfy the volume constraint. At the convergence, the cost
is I(sopt, topt) = 2.87 × 10−2. This distribution permits to divide by three the cost
from the initial guess. The evolution of the cost with respect to the iteration is given
on Figure 4.3-Left. At each iteration, around five iterations of the Newton algorithm
permit to solve the nonlinear system (3.71) (the Newton algorithm is stopped as soon
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as the residual is lower than 10−10). The corresponding solution is given on Figure
4.3-Right. As expected the soft material is located around the part of the boundary
where the displacement is imposed. This has the effect to absorb partially the load
and reduce his influence on the crack zone. We also observe that the density is almost
a characteristic function, i.e. a (0, 1) function. We check a posteriori that the relation
(3.62) holds : we obtain

‖(ρ− λ−(sopt)λ) · (ρ− λ+(sopt)λ)‖L2(Ω) ≈ 1.32× 10−6. (4.18)

Moreover, we obtain

‖ρ− λ+(sopt)λ‖L2(Ω) ≈ 3.13× 10−4, ‖ρ− λ−(sopt)λ‖L2(Ω) ≈ 4.21× 10−3. (4.19)

We recall that λ− = λ+ for a characteristic function. We also observe that we obtain
a similar cost (I(sopt, topt) ≈ 2.84× 10−2) when the constraint s = 0 is relaxed on the
boundary, in agreement with Remark 2.5. The corresponding distribution is given on
Figure 4.4.
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Fig. 4.2. (α, β) = (1, 2)- L = 2/5; F = (1/2, 1/2) - Iso-value of the density sopt on the crack
domain Ω with sopt = 0 on ∂Ω.

As already observed in several different situations ([26] for the heat equation
and [20, 24, 25] for the wave equation), the results are qualitatively different when
the gap β − α is greater. Figure 4.5 gives the iso-values of the optimal density for
(α, β) = (1, 10). The cost is I(sopt, topt) ≈ 1.15×10−2. This (local) optimal density is
no more a (0, 1)-function. The soft material α is however mainly concentrated around
the point F and the part of the boundary Γ0,2 where u is imposed. This observation
justifies the need of relaxation for this problem. In this case, the convergence of the
algorithm is slower (Figure 4.6-Left). Moreover, at each step, the Newton method
requires more iterations (around 8): the term B(s) in (3.71) is greater in that case so
that the nonlinear term is not negligible with respect to the linear one. Moreover, as
expected, the equality (3.62) still holds

‖(ρ− λ−(sopt)λ) · (ρ− λ+(sopt)λ)‖L2(Ω) ≈ 1.32× 10−5 (4.20)
20
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Fig. 4.3. (α, β) = (1, 2)- L = 2/5; F = (1/2, 1/2) - Evolution of the relaxed cost I(s(k), t(k))
w.r.t the iteration (Left) and final solution u on Ω (Right).
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Fig. 4.4. (α, β) = (1, 2)- L = 2/5; F = (1/2, 1/2) - Iso-value of the density s on the crack
domain with s free on ∂Ω.

but not for the arithmetic nor the harmonic mean :

‖ρ− λ+(sopt)λ‖L2(Ω) ≈ 8.21× 10−1, ‖ρ− λ−(sopt)λ‖L2(Ω) ≈ 4.09× 10−1. (4.21)

If we assume a priori for instance the arithmetic mean, i.e. if we simply replace in
(P ) Xω by s and optimize with respect to s, then we obtain a greater cost equal to
4.39× 10−2. The corresponding solution u on the crack domain is depicted on Figure
4.6-Right.

It is then necessary to associate with this optimal composite material a workable
shape ω, i.e. to construct a sequence of characteristic function, say Xω(k) , for which
gψ(Xω(k)) converges toward I(sopt, topt). A simple approach, using a local mean ar-
gument on s is proposed in [20] to approximate such a sequence. Further, it would
be interesting to use the information of the normal of the first-order laminate at each
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point given by λβ−λα (we refer to [29] for such analysis in the context of Homogenei-
sation): iso-values of the vector λβ − λα are given in Figure 4.7.
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Fig. 4.5. (α, β) = (1, 10)- L = 2/5; F = (1/2, 1/2) - Iso-values of the density s on the crack
domain.
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Fig. 4.6. (α, β) = (1, 10)- L = 2/5; F = (1/2, 1/2) - Relaxed cost I(s(k), t(k)) w.r.t. the
iteration (Left) and final solution u on Ω (Right).

Finally, similar results are observed for different value of a and L vary. For a = 1/3
corresponding to F = (1/2, 1/3), Figure 4.8 represents the optimal density obtained
for the volume fraction L = 2/5 and L = 1/5. For L = 2/5, we check that the cost
I(s, t) ≈ 1.02 × 10−2 is lower in that case since the crack point is far away from the
load support Γ0,2.

We also observe that the energy release rate is reduced but not arbitrarily small
in spite of the important degree of freedom contained by the shape of ω. Therefore
the singularities are not cancelled. We suspect that this is due to our mechanical as-
sumption around the point F . This also suggests, quite surprisingly, that the optimal
distribution around the crack point is not composed only of the harder material.
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Fig. 4.7. (α, β) = (1, 10)- L = 2/5; F = (1/2, 1/2) - Iso-values of the components of the vector
λβ − λα.
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Fig. 4.8. (α, β) = (1, 2)- F = (1/2, 1/3) - Iso-values of the density s for L = 2/5 (Left) and
L = 1/5 (Right).

5. Concluding remarks. To our knowledge, this work is the first one which at-
tempts to minimize the energy release rate, and therefore to control the crack growth,
with respect to the conductivity coefficient. This energy release rate presents the
originality to be expressed as a scalar product in terms of a non definite positive
matrix, in contrast with usual examples such as the energy itself. This apparent dif-
ficulty in terms of relaxation is compensated by the mechanical assumption around
the crack point. Thus, the variational non-convex approach coupled with Young mea-
sures permits to derive an explicit relaxed formulation (RP ) of the optimal design
problem, involving a non Caratheodory quasi-convexification. Moreover, the optimal
measure is a first order laminate. Then, following [33], (RP ) is transformed into an
equivalent relaxed formulation (RP ) involving an original nonlinear divergence form
system. The numerical experiments suggest that an optimal distribution permits to
reduce significantly (with respect to an isotropic one) the cost. However, the optimal
cost is not arbitrarily small so that the singularities around the crack tip are not
cancelled in contrast with [17] where the control variable is an additional boundary
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load. This phenomenon is very likely due to the condition (necessary in our context)
which imposes the conductivity to be constant around the crack tip.

This preliminary work would merit to be enriched in several directions. For
instance, it is worth to replace the conductivity system by the elastic one (and thus
take into account the contact condition on the crack γ as it is done in [17]). For the
elasticity operator, the full relaxation process is still an open problem. However, the
fact that the integrand of the cost gψ is non zero only where the material is uniform
may be helpful in the search of div-curl laminates as it is in this work. Moreover,
it would be interesting to obtain an optimal distribution independent of the normal
load g ∈ L2(Γg) and thus consider an inf-sup problem of the type infXω

sup(g,Γg) gψ.
Similarly, in view of the growth of the point F , it would be interesting to minimize
the rate independently of the length of the crack, assumed straight. Finally, we also
plan in the near future to compare the numerical results derived from this relaxation
approach with a more direct one based on level set method (we refer [4, 21]). In this
direction, we mention the recent work [2] in the framework of damage mechanic.
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[19] J-B. Leblond, Mécanique de la rupture fragile et ductile, Hermes Sciences, 1-197 (2003).
[20] F. Maestre, A. Münch, P. Pedregal, A spatio-temporal design problem for a damped wave

equation, SIAM J. Applied Mathematics, 68(1), 109-132 (2007).
[21] A. Münch, Optimal design of the support of the control for the 2-D wave equation: numerical

investigations, Int. J. of Numerical Analysis and Modeling, 5(2), 331-351 (2008).
[22] A. Münch, Y. Ousset, Energy release rate for a curvilinear beam, C.R.Acad. Sci. Paris, Série

IIb, 328, 471-476 (2000).
[23] A. Münch, Y. Ousset, Numerical simulation of delamination growth in curved interfaces, Com-

put. Methods Appl. Mech. Engrg, 191, 2045-2067 (2002).
[24] A. Münch, P. Pedregal, F. Periago, Optimal design of the damping set for the stabilization of

the wave equation, J. Diff. Eq. , 231(1), 331-358 (2006).
[25] A. Münch, P. Pedregal and F. Periago, Optimal internal stabilization of the linear system of

elasticity. Arch. Rational Mech. Analysis., in press.
[26] A. Münch, P. Pedregal and F. Periago, Relaxation of an optimal design problem for the heat
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