Inverse problems for linear hyperbolic equation via mixed formulations

Arnaud Münch

Université Blaise Pascal - Clermont-Ferrand - France

AMU, November 27-28, 2014
joint work with Nicolae Cîndea (Clermont-Ferrand)

Problem statement

Let $\Omega \subset \mathbb{R}^{N}(N \geq 1)$ and $T>0$.

$$
\begin{cases}L y:=y_{t t}-\nabla \cdot(c(x) \nabla y)+d(x, t) y=f, & (x, t) \in Q_{T}:=\Omega \times(0, T) \tag{1}\\ y=0, & (x, t) \in \Gamma_{T}:=\partial \Omega \times(0, T) \\ \left(y(\cdot, 0), y_{t}(\cdot, 0)\right)=\left(y_{0}, y_{1}\right), & x \in \Omega .\end{cases}
$$

$\left.c \in C^{1}(\bar{\Omega}, \mathbb{R})\right) c(x) \geq c_{0}>0$ in $\bar{\Omega}, d \in L^{\infty}\left(Q_{T}\right),\left(y_{0}, y_{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega) ;$ $f \in L^{2}\left(Q_{T}\right)$.
Let $\omega \subset \Omega$ and $q_{T}:=\omega \times(0, T) \subset Q_{T}$.

$$
\begin{aligned}
& \text { (IP)-Given an element } y_{o b s} \in L^{2}\left(q_{T}\right) \text {, find } y \text { the solution of (1) such that } \\
& \qquad y \equiv y_{o b s} \text { in } q_{T} .
\end{aligned}
$$

From a "good" measurement $y_{o b s}$ on q_{T}, we want to recover y solution of (1).
From the unique continuation property for (1), if q_{T} satisfies some geometric conditions, then the state y corresponding to $y_{o b s}$ is unique.
Objective - Find a convergent approximation of the solution

Problem statement

Let $\Omega \subset \mathbb{R}^{N}(N \geq 1)$ and $T>0$.

$$
\begin{cases}L y:=y_{t t}-\nabla \cdot(c(x) \nabla y)+d(x, t) y=f, & (x, t) \in Q_{T}:=\Omega \times(0, T) \tag{1}\\ y=0, & (x, t) \in \Gamma_{T}:=\partial \Omega \times(0, T) \\ \left(y(\cdot, 0), y_{t}(\cdot, 0)\right)=\left(y_{0}, y_{1}\right), & x \in \Omega .\end{cases}
$$

$\left.c \in C^{1}(\bar{\Omega}, \mathbb{R})\right) c(x) \geq c_{0}>0$ in $\bar{\Omega}, d \in L^{\infty}\left(Q_{T}\right),\left(y_{0}, y_{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega) ;$ $f \in L^{2}\left(Q_{T}\right)$.
Let $\omega \subset \Omega$ and $q_{T}:=\omega \times(0, T) \subset Q_{T}$.

$$
\begin{aligned}
& \text { (IP)-Given an element } y_{o b s} \in L^{2}\left(q_{T}\right) \text {, find } y \text { the solution of (1) such that } \\
& \qquad y \equiv y_{o b s} \text { in } q_{T} .
\end{aligned}
$$

From a "good" measurement $y_{o b s}$ on q_{T}, we want to recover y solution of (1).
From the unique continuation property for (1), if q_{T} satisfies some geometric conditions, then the state y corresponding to $y_{o b s}$ is unique.
Objective - Find a convergent approximation of the solution

Most natural approach: Least-squares method

The most natural (and widely used in practice) approach consists to introduce a least-squares type technic, i.e. consider the extremal problem

$$
(\mathcal{I P}) \begin{cases}\text { minimize } & J\left(y_{0}, y_{1}\right):=\frac{1}{2}\left\|y-y_{o b s}\right\|_{L^{2}\left(q_{T}\right)}^{2} \tag{2}\\ \text { subject to } & \left(y_{0}, y_{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega) \times L^{2}\left(Q_{T}\right) \\ \text { where } y & \text { solves }\end{cases}
$$

A minimizing sequence $\left.\left(y_{0}, y_{1}\right)_{(k>0}\right)$ is defined in term of the solution of an adjoint problem.

A difficulty, when one wants to prove the convergence of a discrete approximation : it is not possible to minimize over a discrete subspace of $\{y ; L y-f=0\}$: If $\operatorname{dim}\left(Y_{h}\right)<\infty$, $\left\{y_{h} \in Y_{h} \subset Y: L y_{h}-f=0\right\}$ is 0 or empty

The minimization procedure first requires the discretization of J and of the system (1);
This raises the issue of uniform coercivity property of the discrete functional with respect to the approximation parameter h.

Most natural approach: Least-squares method

The most natural (and widely used in practice) approach consists to introduce a least-squares type technic, i.e. consider the extremal problem

$$
(\mathcal{I P}) \begin{cases}\text { minimize } & J\left(y_{0}, y_{1}\right):=\frac{1}{2}\left\|y-y_{o b s}\right\|_{L^{2}\left(q_{T}\right)}^{2} \tag{2}\\ \text { subject to } & \left(y_{0}, y_{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega) \times L^{2}\left(Q_{T}\right) \\ \text { where } y & \text { solves }\end{cases}
$$

A minimizing sequence $\left.\left(y_{0}, y_{1}\right)_{(k>0}\right)$ is defined in term of the solution of an adjoint problem.

A difficulty, when one wants to prove the convergence of a discrete approximation : it is not possible to minimize over a discrete subspace of $\{y ; L y-f=0\}$: If $\operatorname{dim}\left(Y_{h}\right)<\infty$, $\left\{y_{h} \in Y_{h} \subset Y: L y_{h}-f=0\right\}$ is 0 or empty

The minimization procedure first requires the discretization of J and of the system (1);
This raises the issue of uniform coercivity property of the discrete functional with respect to the approximation parameter h.

Luenberger observers type approach

[Auroux-Blum 2005],[Chapelle,Cindea,Moireau,2012], [Ramdani-Tucsnak 2011], etc...
Define a dynamic

$$
L \bar{y}=G\left(y_{o b s}, q_{T}\right) \quad \bar{y}(\cdot, 0) \quad \text { fixed }
$$

such that

$$
\|\bar{y}(\cdot, t)-y(\cdot, t)\|_{N(\Omega)} \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty
$$

The reversibility of the wave equation then allows to recover y for any time.
But, for the same reasons, on a numerically point of view, this method requires to prove uniform discrete observability properties.

Klibanov and co-workers approach: Quasi-reversibility for ill-posed problem

[Klibanov, Beilina 20xx], [Bourgeois, Darde 2010]
X, D Hilbert spaces $-P: X \rightarrow D, P$ linear continuous, $\operatorname{Ker}(P)=\{0\}$
$\varepsilon>0$. For $d \in D$, find $y \in Y$ s.t. $P y=d$:
$\mathrm{QR}_{\varepsilon}$ method : for $d \in D$, find $y_{\varepsilon} \in Y$ such that

$$
\left(P y_{\varepsilon}, P y\right)+\varepsilon\left(y_{\varepsilon}, y\right)_{Y}=(d, P y), \quad \forall y \in Y
$$

Here, $d=\left(f, y_{o b s}\right)-P y=\left(L y, y_{q_{T}}\right)$

- \mathcal{A} denotes a functional space which gives a meaning to the first term

- $\varepsilon>0$ a Tikhonov narameter which ensures the well-nosedness
- \mathcal{Y}_{d} a subset of \mathcal{A} involving the data of the problem (for instance the observation $y_{o b s}$ on q_{T}, or some Cauchy data on the boundary).

Klibanov and co-workers approach: Quasi-reversibility for ill-posed problem

[Klibanov, Beilina 20xx], [Bourgeois, Darde 2010]
X, D Hilbert spaces $-P: X \rightarrow D, P$ linear continuous, $\operatorname{Ker}(P)=\{0\}$
$\varepsilon>0$. For $d \in D$, find $y \in Y$ s.t. $P y=d$:
$\mathrm{QR}_{\varepsilon}$ method : for $d \in D$, find $y_{\varepsilon} \in Y$ such that

$$
\left(P y_{\varepsilon}, P y\right)+\varepsilon\left(y_{\varepsilon}, y\right)_{Y}=(d, P y), \quad \forall y \in Y
$$

Here, $d=\left(f, y_{o b s}\right)-P y=\left(L y, y_{q_{T}}\right)$

$$
\begin{equation*}
\inf _{y \in \mathcal{Y}_{d}} J_{\varepsilon}(y):=\frac{1}{2}\|L y-f\|_{L^{2}\left(Q_{T}\right)}^{2}+\frac{\varepsilon}{2}\|y\|_{\mathcal{A}}^{2} \tag{3}
\end{equation*}
$$

- \mathcal{A} denotes a functional space which gives a meaning to the first term
- $\varepsilon>0$ a Tikhonov parameter which ensures the well-posedness
- \mathcal{Y}_{d} a subset of \mathcal{A} involving the data of the problem (for instance the observation $y_{o b s}$ on q_{T}, or some Cauchy data on the boundary).

Main assumption: a generalized obs. inequality

Without loss of generality, $f \equiv 0$.
We consider the vectorial space Z defined by

$$
\begin{equation*}
Z:=\left\{y: y \in C\left([0, T], H_{0}^{1}(\Omega)\right) \cap C^{1}\left([0, T], L^{2}(\Omega)\right), L y \in L^{2}\left(Q_{T}\right)\right\} . \tag{4}
\end{equation*}
$$

and then introduce the following hypothesis :

Hypothesis

There exists a constant $C_{\text {obs }}=C\left(\omega, T,\|c\|_{C^{1}(\bar{\Omega})},\|d\|_{L^{\infty}(\Omega)}\right)$ such that the following estimate holds :

$$
\begin{equation*}
(\mathcal{H}) \quad\left\|y(\cdot, 0), y_{t}(\cdot, 0)\right\|_{H_{0}^{1}(\Omega) \times L^{2}(\Omega)}^{2} \leq C_{o b s}\left(\|y\|_{L^{2}\left(q_{T}\right)}^{2}+\|L y\|_{L^{2}\left(Q_{T}\right)}^{2}\right), \quad \forall y \in Z \tag{5}
\end{equation*}
$$

hold true if (ω, T, Ω) satisfies a geometric optic condition. "Any characteristic line starting at the point $x \in \Omega$ at time $t=0$ and following the optical geometric laws when reflecting at $\partial \Omega$ must meet $q_{T}{ }^{\prime \prime}$.

$$
\begin{equation*}
\|z\|_{L^{2}\left(Q_{T}\right)}^{2} \leq C_{\Omega, T}\left(C_{o b s}\|z\|_{L^{2}\left(q_{T}\right)}^{2}+\left(1+C_{o b s}\right)\|L z\|_{L^{2}\left(Q_{T}\right)}^{2}\right) \quad \forall z \in Z \tag{6}
\end{equation*}
$$

Non cylindrical situation in 1D

[Castro-Cindea-Münch, SICON 2014],
In 1D, the observability inequality also holds for non cylindrical domains.

Time dependent domains $q_{T} \subset Q_{T}=\Omega \times(0, T)$
[Lebeau et al, 20xx] for $N \geq 1$

Generalized Observability inequality: weaker hypothesis

Then, within this hypothesis, for any $\eta>0$, we define on Z the bilinear form

$$
\begin{equation*}
(y, \bar{y}) z:=\iint_{q_{T}} y \bar{y} d x d t+\eta \iint_{Q_{T}} L y L \bar{y} d x d t, \quad\|y\|_{z}:=\sqrt{(y, y) z} \quad \forall y, \bar{y} \in Z \tag{7}
\end{equation*}
$$

$(Z,\|\cdot\|)$ is a Hilbert space.
Then, we consider the following extremal problem :

$$
(\mathcal{P}) \quad\left\{\begin{array}{l}
\inf J(y):=\frac{1}{2}\left\|y-y_{o b s}\right\|_{L^{2}\left(q_{T}\right)}^{2} \\
\text { subject to } \quad y \in W:=\left\{y \in Z ; L y=0 \text { in } L^{2}\left(Q_{T}\right)\right\}
\end{array}\right.
$$

(\mathcal{P}) is well posed: J is continuous over W, strictly convex and $J(y) \rightarrow+\infty$ as $\|y\| w \rightarrow \infty$.

The solution of (\mathcal{P}) in W does not depend on η.
From (5), the solution y in Z of (\mathcal{P}) satisfies $\left(y(\cdot, 0), y_{t}(\cdot, 0)\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$, so that problem (\mathcal{P}) is equivalent to the minimization of J w.r.t $\left(y_{0}, y_{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$.

Generalized Observability inequality: weaker hypothesis

Then, within this hypothesis, for any $\eta>0$, we define on Z the bilinear form

$$
\begin{equation*}
(y, \bar{y}) z:=\iint_{q_{T}} y \bar{y} d x d t+\eta \iint_{Q_{T}} L y L \bar{y} d x d t, \quad\|y\|_{z}:=\sqrt{(y, y) z} \quad \forall y, \bar{y} \in Z \tag{7}
\end{equation*}
$$

$(Z,\|\cdot\|)$ is a Hilbert space.
Then, we consider the following extremal problem :

$$
(\mathcal{P}) \quad\left\{\begin{array}{l}
\inf J(y):=\frac{1}{2}\left\|y-y_{o b s}\right\|_{L^{2}\left(q_{T}\right)}^{2}+\frac{r}{2}\|L y\|_{L^{2}\left(Q_{T}\right)}^{2}, \quad r \geq 0 \\
\text { subject to } \quad y \in W:=\left\{y \in Z ; L y=0 \text { in } L^{2}\left(Q_{T}\right)\right\}
\end{array}\right.
$$

(\mathcal{P}) is well posed : J is continuous over W, strictly convex and $J(y) \rightarrow+\infty$ as $\|y\| w \rightarrow \infty$.

The solution of (\mathcal{P}) in W does not depend on η.
From (5), the solution y in Z of (\mathcal{P}) satisfies $\left(y(\cdot, 0), y_{t}(\cdot, 0)\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$, so that problem (\mathcal{P}) is equivalent to the minimization of J w.r.t $\left(y_{0}, y_{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$.

Direct approach

In order to solve (\mathcal{P}), we have to deal with the constraint equality which appears W. We introduce a Lagrange multiplier $\lambda \in \Lambda:=L^{2}\left(Q_{T}\right)$ and the following mixed formulation: find $(y, \lambda) \in Z \times \Lambda$ solution of

$$
\left\{\begin{align*}
\left.a_{r}(y, \bar{y})+b(\bar{y}), \lambda\right) & =l(\bar{y}), & & \forall \bar{y} \in Z \tag{8}\\
b(y, \bar{\lambda}) & =0, & & \forall \bar{\lambda} \in \Lambda
\end{align*}\right.
$$

where

$$
\begin{align*}
& a_{r}: Z \times Z \rightarrow \mathbb{R}, \quad a_{r}(y, \bar{y}):=\iint_{q_{T}} y \bar{y} d x d t+r \iint_{Q_{T}} L y L \bar{y} d x d t \tag{9}\\
& b: Z \times \Lambda \rightarrow \mathbb{R}, \quad b(y, \lambda):=\iint_{Q_{T}} \lambda L y d x d t, \tag{10}\\
& I: Z \rightarrow \mathbb{R}, \quad I(y):=\iint_{q_{T}} y_{o b s} y d x d t . \tag{11}
\end{align*}
$$

System (8) is nothing else than the optimality system corresponding to the extremal problem (\mathcal{P}).

Direct approach

Theorem

Under the hypothesis (\mathcal{H}),
(1) The mixed formulation (8) is well-posed.
(2) The unique solution $(y, \lambda) \in Z \times \Lambda$ is the unique saddle-point of the Lagrangian $\mathcal{L}: Z \times \Lambda \rightarrow \mathbb{R}$ defined by

$$
\mathcal{L}(y, \lambda):=\frac{1}{2} a_{r}(y, y)+b(y, \lambda)-I(y) .
$$

(3) We have the estimate

$$
\begin{equation*}
\|y\|_{Y}=\|y\|_{L^{2}\left(q_{T}\right)} \leq\left\|y_{o b s}\right\|_{L^{2}\left(q_{T}\right)}, \quad\|\lambda\|_{L^{2}\left(Q_{T}\right)} \leq 2 \sqrt{C_{\Omega, T}+\eta}\left\|y_{o b s}\right\|_{L^{2}\left(q_{T}\right)} \tag{12}
\end{equation*}
$$

Direct approach

The kernel $\mathcal{N}(b)=\{y \in Z ; b(y, \lambda)=0 \quad \forall \lambda \in \Lambda\}$ coincides with W : we easily get

$$
a_{r}(y, y)=\|y\|_{Z}^{2}, \quad \forall y \in \mathcal{N}(b)=W
$$

It remains to check the inf-sup constant property: $\exists \delta>0$ such that

$$
\begin{equation*}
\inf _{\lambda \in \Lambda} \sup _{y \in Z} \frac{b(y, \lambda)}{\|y\|_{z}\|\lambda\|_{\Lambda}} \geq \delta \tag{13}
\end{equation*}
$$

For any fixed $\lambda \in \Lambda$, we define y as the unique solution of

$$
\begin{equation*}
L y=\lambda \text { in } Q_{T}, \quad\left(y(\cdot, 0), y_{t}(\cdot, 0)\right)=(0,0) \text { on } \Omega, \quad y=0 \text { on } \Sigma_{T} . \tag{14}
\end{equation*}
$$

We get $b(y, \lambda)=\|\lambda\|_{\Lambda}^{2}$ and $\|y\|_{Z}^{2}=\|y\|_{L^{2}\left(q_{T}\right)}^{2}+\eta\|\lambda\|_{L^{2}\left(Q_{T}\right)}^{2}$.
The estimate $\|y\|_{L^{2}\left(q_{T}\right)} \leq \sqrt{C_{\Omega, T}}\|\lambda\|_{L^{2}\left(Q_{T}\right)}$ implies that $y \in Z$ and that

$$
\sup _{y \in Z} \frac{b(y, \lambda)}{\|y\|_{Y}\|\lambda\|_{\Lambda}} \geq \frac{1}{\sqrt{C_{\Omega, T}+\eta}}>0
$$

leading to the result with $\delta=\left(C_{\Omega, T}+\eta\right)^{-1 / 2}$.

Remarks

Assuming enough regularity on the solution λ, at the optimality, the Lagrange Multiplier solves

$$
\left\{\begin{array}{l}
L \lambda=-\left(y-y_{o b s}\right)_{1_{q_{T}}}, \quad \lambda=0 \quad \text { in } \quad \Sigma_{T}, \tag{15}\\
\lambda=\lambda_{t}=0 \quad \text { on } \Omega \times\{0, T\} .
\end{array}\right.
$$

λ (defined in the weak sense) is a null controlled solution of the wave equation through the control $-\left(y-y_{o b s}\right) 1_{\omega}$.

If $y_{\text {obs }}$ is the restriction to q_{T} of a solution of (1), then λ must vanish almost everywhere.
In that case, $\sup _{\lambda \in \Lambda} \inf _{y \in Y} \mathcal{L}_{r}(y, \lambda)=\inf _{y \in Y} \mathcal{L}_{r}(y, 0)=\inf _{y \in Y} J_{r}(y)$ with

$$
J_{r}(y):=\frac{1}{2}\left\|y-y_{o b s}\right\|_{L^{2}\left(Q_{T}\right)}^{2}+\frac{r}{2}\|L y\|_{L^{2}\left(Q_{T}\right)}^{2} .
$$

The corresponding variational formulation is then : find $y \in Z$ such that

$$
\operatorname{ar}(y, \bar{y})=\iint_{Q_{T}} y \bar{y} d x d t+r \iint_{Q_{T}} L y L \bar{y} d x d t=I(\bar{y}), \quad \forall y \in Z .
$$

[^0]
Remarks

Assuming enough regularity on the solution λ, at the optimality, the Lagrange Multiplier solves

$$
\left\{\begin{array}{l}
L \lambda=-\left(y-y_{o b s}\right)_{1_{q_{T}}}, \quad \lambda=0 \quad \text { in } \quad \Sigma_{T} \tag{15}\\
\lambda=\lambda_{t}=0 \quad \text { on } \Omega \times\{0, T\} .
\end{array}\right.
$$

λ (defined in the weak sense) is a null controlled solution of the wave equation through the control $-\left(y-y_{o b s}\right) 1_{\omega}$.

If $y_{o b s}$ is the restriction to q_{T} of a solution of (1), then λ must vanish almost everywhere.
In that case, $\sup _{\lambda \in \Lambda} \inf _{y \in Y} \mathcal{L}_{r}(y, \lambda)=\inf _{y \in Y} \mathcal{L}_{r}(y, 0)=\inf _{y \in Y} J_{r}(y)$ with

$$
\begin{equation*}
J_{r}(y):=\frac{1}{2}\left\|y-y_{o b s}\right\|_{L^{2}\left(Q_{T}\right)}^{2}+\frac{r}{2}\|L y\|_{L^{2}\left(Q_{T}\right)}^{2} \tag{16}
\end{equation*}
$$

The corresponding variational formulation is then : find $y \in Z$ such that

$$
a_{r}(y, \bar{y})=\iint_{q_{T}} y \bar{y} d x d t+r \iint_{Q_{T}} L y L \bar{y} d x d t=I(\bar{y}), \quad \forall \bar{y} \in Z
$$

$\Longrightarrow Q R_{\varepsilon}$ method with $P y=\left(\sqrt{r} L y, y 1_{q_{T}}\right), d=\left(0, y_{o b s}\right), \varepsilon=0$

Remarks

Assuming enough regularity on the solution λ, at the optimality, the Lagrange Multiplier solves

$$
\left\{\begin{array}{l}
L \lambda=-\left(y-y_{o b s}\right)_{1_{q_{T}}}, \quad \lambda=0 \quad \text { in } \quad \Sigma_{T} \tag{15}\\
\lambda=\lambda_{t}=0 \quad \text { on } \Omega \times\{0, T\} .
\end{array}\right.
$$

λ (defined in the weak sense) is a null controlled solution of the wave equation through the control $-\left(y-y_{o b s}\right) 1_{\omega}$.

If $y_{o b s}$ is the restriction to q_{T} of a solution of (1), then λ must vanish almost everywhere.
In that case, $\sup _{\lambda \in \Lambda} \inf _{y \in Y} \mathcal{L}_{r}(y, \lambda)=\inf _{y \in Y} \mathcal{L}_{r}(y, 0)=\inf _{y \in Y} J_{r}(y)$ with

$$
\begin{equation*}
J_{r}(y):=\frac{1}{2}\left\|y-y_{o b s}\right\|_{L^{2}\left(Q_{T}\right)}^{2}+\frac{r}{2}\|L y\|_{L^{2}\left(Q_{T}\right)}^{2} . \tag{16}
\end{equation*}
$$

The corresponding variational formulation is then : find $y \in Z$ such that

$$
a_{r}(y, \bar{y})=\iint_{q_{T}} y \bar{y} d x d t+r \iint_{Q_{T}} L y L \bar{y} d x d t=I(\bar{y}), \quad \forall \bar{y} \in Z
$$

$\Longrightarrow \mathrm{QR}_{\varepsilon}$ method with $P y=\left(\sqrt{r} L y, y 1_{q_{T}}\right), d=\left(0, y_{o b s}\right), \varepsilon=0$

Stabilized mixed formulation

$$
\begin{aligned}
\tilde{\Lambda}:=\{\lambda \in C(& {\left.\left.[0, T] ; H_{0}^{1}(\Omega)\right) \cap C^{1}\left([0, T] ; L^{2}(\Omega)\right), L \lambda \in L^{2}\left(Q_{T}\right), \lambda(\cdot, 0)=\lambda_{t}(\cdot, 0)=0\right\} . } \\
& \left\{\begin{array}{l}
\sup _{\lambda \in \widetilde{\Lambda}} \inf _{y \in Z} \mathcal{L}_{r, \alpha}(y, \lambda), \quad \alpha \in(0,1) \\
\mathcal{L}_{r, \alpha}(y, \lambda):=\mathcal{L}_{r}(y, \lambda)-\frac{\alpha}{2}\left\|L \lambda+\left(y-y_{o b s}\right) 1 \omega\right\|_{L^{2}\left(Q_{T}\right)}^{2} .
\end{array}\right.
\end{aligned}
$$

Find $(y, \lambda) \in Z \times \widetilde{\Lambda}$ such that

Stabilized mixed formulation

$$
\begin{aligned}
\widetilde{\Lambda}:=\{\lambda \in C(& {\left.\left.[0, T] ; H_{0}^{1}(\Omega)\right) \cap C^{1}\left([0, T] ; L^{2}(\Omega)\right), L \lambda \in L^{2}\left(Q_{T}\right), \lambda(\cdot, 0)=\lambda_{t}(\cdot, 0)=0\right\} . } \\
& \left\{\begin{array}{l}
\sup _{\lambda \in \widetilde{\Lambda}} \inf _{y \in Z} \mathcal{L}_{r, \alpha}(y, \lambda), \quad \alpha \in(0,1) \\
\mathcal{L}_{r, \alpha}(y, \lambda):=\mathcal{L}_{r}(y, \lambda)-\frac{\alpha}{2}\left\|L \lambda+\left(y-y_{o b s}\right) 1 \omega\right\|_{L^{2}\left(Q_{T}\right)}^{2} .
\end{array}\right.
\end{aligned}
$$

Find $(y, \lambda) \in Z \times \tilde{\Lambda}$ such that

$$
\begin{align*}
& \left\{\begin{array}{cl}
a_{r, \alpha}(y, \bar{y})+b_{\alpha}(\bar{y}, \lambda)=l_{1, \alpha}(\bar{y}), & \forall \bar{y} \in Y \\
b_{\alpha}(y, \bar{\lambda})-c_{\alpha}(\lambda, \bar{\lambda})=l_{2, \alpha}(\bar{\lambda}), & \forall \bar{\lambda} \in \tilde{\Lambda},
\end{array}\right. \tag{17}\\
& a_{r, \alpha}: Y \times Y \rightarrow \mathbb{R}, \quad a_{r, \alpha}(y, \bar{y}):=(1-\alpha) \iint_{q_{T}} y \bar{y} d x d t+r \iint_{Q_{T}} L y L \bar{y} d x d t, \\
& b_{\alpha}: Y \times \tilde{\Lambda} \rightarrow \mathbb{R}, \quad b_{\alpha}(y, \lambda):=\iint_{Q_{T}} \lambda L y d x d t-\alpha \iint_{q_{T}} y L \lambda d x d t, \\
& c_{\alpha}: \tilde{\Lambda} \times \tilde{\Lambda} \rightarrow \mathbb{R}, \quad c_{\alpha}(\lambda, \bar{\lambda}):=\alpha \iint_{Q_{T}} L \lambda L \bar{\lambda}, d x d t \\
& I_{1, \alpha}: Y \rightarrow \mathbb{R}, \quad I_{1, \alpha}(y):=(1-\alpha) \iint_{q_{T}} y_{o b s} y d x d t, \\
& I_{2, \alpha}: \tilde{\Lambda} \rightarrow \mathbb{R}, \quad I_{2, \alpha}(\lambda):=-\alpha \iint_{q_{T}} y_{o b s} L \lambda d x d t .
\end{align*}
$$

Stabilized mixed formulation

Proposition

Under the hypothesis (\mathcal{H}), for any $\alpha \in(0,1)$, the corresponding mixed formulation is well-posed. The unique pair (y, λ) in $Z \times \widetilde{\wedge}$ satisfies

$$
\begin{equation*}
\theta_{1}\|y\|_{Z}^{2}+\theta_{2}\|\lambda\|_{\tilde{\Lambda}}^{2} \leq\left(\frac{(1-\alpha)^{2}}{\theta_{1}}+\frac{\alpha^{2}}{\theta_{2}}\right)\left\|y_{o b s}\right\|_{L^{2}\left(q_{T}\right)}^{2} \tag{18}
\end{equation*}
$$

with $\theta_{1}:=\min \left(1-\alpha, r \eta^{-1}\right), \theta_{2}:=\frac{1}{2} \min \left(\alpha, C_{\Omega, T}^{-1}\right)$.

If the solution $(y, \lambda) \in Z \times \Lambda$ of (8) enjoys the property $\lambda \in \widetilde{\Lambda}$, then the solutions of (8) and (17) coincide.

Stabilized mixed formulation

Proposition

Under the hypothesis (\mathcal{H}), for any $\alpha \in(0,1)$, the corresponding mixed formulation is well-posed. The unique pair (y, λ) in $Z \times \widetilde{\wedge}$ satisfies

$$
\begin{equation*}
\theta_{1}\|y\|_{Z}^{2}+\theta_{2}\|\lambda\|_{\tilde{\Lambda}}^{2} \leq\left(\frac{(1-\alpha)^{2}}{\theta_{1}}+\frac{\alpha^{2}}{\theta_{2}}\right)\left\|y_{o b s}\right\|_{L^{2}\left(q_{T}\right)}^{2} \tag{18}
\end{equation*}
$$

with $\theta_{1}:=\min \left(1-\alpha, r \eta^{-1}\right), \theta_{2}:=\frac{1}{2} \min \left(\alpha, C_{\Omega, T}^{-1}\right)$.

Proposition
If the solution $(y, \lambda) \in Z \times \Lambda$ of (8) enjoys the property $\lambda \in \tilde{\Lambda}$, then the solutions of (8) and (17) coincide.

Remarks - Boundary measurement

The results apply if the distributed observation on q_{T} is replaced by a Neumann boundary observation on a sufficiently large subset Σ_{T} of $\partial \Omega \times(0, T)$ (i.e. assuming $\frac{\partial y}{\partial \nu}=y_{o b s} \in L^{2}\left(\Sigma_{T}\right)$ is known on $\left.\Sigma_{T}\right)$.

If $\left(Q_{T}, \Sigma_{T}, T\right)$ satisfy some geometric condition, then there exists a positive constant $C_{o b s}=C\left(\omega, T,\|c\|_{C^{1}(\bar{\Omega})},\|d\|_{L^{\infty}(\Omega)}\right)$ such that

$$
\begin{equation*}
\left\|y(\cdot, 0), y_{t}(\cdot, 0)\right\|_{H_{0}^{1}(\Omega) \times L^{2}(\Omega)}^{2} \leq C_{o b s}\left(\left\|\frac{\partial y}{\partial \nu}\right\|_{L^{2}\left(\Sigma_{T}\right)}^{2}+\|L y\|_{L^{2}\left(Q_{T}\right)}^{2}\right), \quad \forall y \in Z \tag{19}
\end{equation*}
$$

It suffices to re-define the form a in by $a(y, y):=\iint_{\Sigma_{T}} \frac{\partial y}{\partial \nu} \frac{\partial \bar{y}}{\partial \nu} d \sigma d x$ and the form / by $I(y):=\iint_{\Sigma_{T}} \frac{\partial y}{\partial \nu} y_{o b s} d \sigma d x$ for all $y, \bar{y} \in Z$.

Remarks - Connection with controllability

The mixed formulation has a structure very closed to the one we get when we address - using the same approach - the null controllability of (1): the control of minimal $L^{2}\left(q_{T}\right)$-norm which drives to rest $\left(y_{0}, y_{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ is given by $v=\varphi 1_{q_{T}}$ where $(\varphi, \lambda) \in \Phi \times L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$ solves

$$
\left\{\begin{align*}
a(\varphi, \bar{\varphi})+b(\bar{\varphi}, \lambda) & =l(\bar{\varphi}), & & \forall \bar{\varphi} \in \Phi \tag{20}\\
b(\varphi, \bar{\lambda}) & =0, & & \forall \bar{\lambda} \in L^{2}\left(0, T ; H_{0}^{1}(0,1)\right),
\end{align*}\right.
$$

where

$$
\begin{aligned}
& a: \Phi \times \Phi \rightarrow \mathbb{R}, \quad a(\varphi, \bar{\varphi})=\iint_{q_{T}} \varphi(x, t) \bar{\varphi}(x, t) d x d t \\
& b: \Phi \times L^{2}\left(0, T ; H_{0}^{1}(0,1)\right) \rightarrow \mathbb{R}, \quad b(\varphi, \lambda)=\int_{0}^{T}<L \varphi, \lambda>_{H^{-1}, H_{0}^{1}} d t \\
& I: \Phi \rightarrow \mathbb{R}, \quad I(\varphi)=-<\varphi_{t}(\cdot, 0), y_{0}>_{H^{-1}(0,1), H_{0}^{1}(0,1)}+\int_{0}^{1} \varphi(\cdot, 0) y_{1} d x .
\end{aligned}
$$

with $\Phi=\left\{\varphi \in L^{2}\left(q_{T}\right), \varphi=0\right.$ on Σ_{T} such that $\left.L \varphi \in L^{2}\left(0, T ; H^{-1}(0,1)\right)\right\}$.
[Cindea - Fernandez-Cara - Münch, COCV 2013] [Cindea- Münch, Calcolo 2014]

Remarks

"Reversing the order of priority" between the constraint $y-y_{o b s}=0$ in $L^{2}\left(q_{T}\right)$ and $L y-f=0$ in $L^{2}\left(Q_{T}\right)$, a possibility could be to minimize the functional

$$
\left\{\begin{array}{l}
\text { minimize } J(y):=\|L y-f\|_{L^{2}\left(Q_{T}\right)}^{2} \tag{21}\\
\text { subject to } y \in Z \text { and to } \quad y-y_{o b s}=0 \quad \text { in } L^{2}\left(q_{T}\right)
\end{array}\right.
$$

via the introduction of a Lagrange multiplier in $L^{2}\left(q_{T}\right)$.
The proof of the inf-sup property : there exists $\delta>0$ such that

$$
\inf _{\lambda \in L^{2}\left(q_{T}\right)} \sup _{y \in Z} \frac{\iint_{q_{T}} \lambda y d x d t}{\|\lambda\|_{L^{2}\left(q_{T}\right)}\|y\|_{Y}} \geq \delta
$$

of the corresponding mixed-formulation is however unclear.
This issue is solved by the introduction of a ε-term in J_{ε} (Klibanov-Beilina 20xx).

Dual of the mixed problem

Lemma

Let A_{r} be the linear operator from $L^{2}\left(Q_{T}\right)$ into $L^{2}\left(Q_{T}\right)$ defined by

$$
A_{r} \lambda:=L y, \quad \forall \lambda \in L^{2}\left(Q_{T}\right) \quad \text { where } \quad y \in Z \quad \text { solves } \quad a_{r}(y, \bar{y})=b(\bar{y}, \lambda), \quad \forall y \in Z
$$

For any $r>0$, the operator A_{r} is a strongly elliptic, symmetric isomorphism from $L^{2}\left(Q_{T}\right)$ into $L^{2}\left(Q_{T}\right)$.

Dual of the mixed problem

Lemma

Let A_{r} be the linear operator from $L^{2}\left(Q_{T}\right)$ into $L^{2}\left(Q_{T}\right)$ defined by

$$
A_{r} \lambda:=L y, \quad \forall \lambda \in L^{2}\left(Q_{T}\right) \quad \text { where } \quad y \in Z \quad \text { solves } \quad a_{r}(y, \bar{y})=b(\bar{y}, \lambda), \quad \forall y \in Z
$$

For any $r>0$, the operator A_{r} is a strongly elliptic, symmetric isomorphism from $L^{2}\left(Q_{T}\right)$ into $L^{2}\left(Q_{T}\right)$.

Theorem

$$
\sup _{\lambda \in L^{2}\left(Q_{T}\right)} \inf _{y \in Z} \mathcal{L}_{r}(y, \lambda)=-\inf _{\lambda \in L^{2}\left(Q_{T}\right)} J_{r}^{\star \star}(\lambda) \quad+\mathcal{L}_{r}\left(y_{0}, 0\right)
$$

where $y_{0} \in Z$ solves $a_{r}\left(y_{0}, \bar{y}\right)=I(\bar{y}), \forall \bar{y} \in Y$ and $J_{r}^{\star \star}: L^{2}\left(Q_{T}\right) \rightarrow \mathbb{R}$ defined by

$$
J_{r}^{\star \star}(\lambda)=\frac{1}{2} \iint_{Q_{T}}\left(A_{r} \lambda\right) \lambda d x d t-b\left(y_{0}, \lambda\right)
$$

Recovering the solution and the source f

We assume again that (\mathcal{H}) holds. We note $Y:=Z \times L^{2}\left(Q_{T}\right)$ and define on Y the bilinear form, for any $\varepsilon, \eta>0$

$$
\begin{align*}
& ((y, f),(\bar{y}, \bar{f}))_{Y}:=\iint_{Q_{T}} y \bar{y} d x d t+\eta \iint_{Q_{T}}(L y-f)(L \bar{y}-f) d x d t+\varepsilon \iint_{Q_{T}} f \bar{f} d x d t, \quad \forall(y, f),(\bar{y} \\
& \|(y, f)\|_{Y}:=\sqrt{((y, f),(y, f))_{Y}} . \tag{22}
\end{align*}
$$

Then, for any $\varepsilon>0$, we consider the following extremal problem :

$$
\left(\mathcal{P}_{\varepsilon}\right) \quad\left\{\begin{array}{l}
\inf J_{\varepsilon}(y, f):=\frac{1}{2}\left\|y-y_{o b s}\right\|_{L^{2}\left(q_{T}\right)}^{2}+\frac{\varepsilon}{2}\|f\|_{L^{2}\left(Q_{T}\right)}^{2}, \\
\text { subject to } \quad(y, f) \in W:=\left\{(y, f) \in Y ; L y-f=0 \text { in } L^{2}\left(Q_{T}\right)\right\}
\end{array}\right.
$$

$\forall \varepsilon>0,\left(\mathcal{P}_{\varepsilon}\right)$ is well posed.

Recovering the solution and the source f

Find $\left(\left(y_{\varepsilon}, f_{\varepsilon}\right), \lambda_{\varepsilon}\right) \in Y \times \Lambda$ solution of

$$
\left\{\begin{align*}
a_{\varepsilon}\left(\left(y_{\varepsilon}, f_{\varepsilon}\right),(\bar{y}, \bar{f})\right)+b\left((\bar{y}, \bar{f}), \lambda_{\varepsilon}\right) & =I(\bar{y}, \bar{f}), & & \forall(\bar{y}, \bar{f}) \in Y \tag{23}\\
b\left(\left(y_{\varepsilon}, f_{\varepsilon}\right), \bar{\lambda}\right) & =0, & & \forall \bar{\lambda} \in \Lambda,
\end{align*}\right.
$$

where

$$
\begin{align*}
& a_{\varepsilon}: Y \times Y \rightarrow \mathbb{R}, \quad a_{\varepsilon}((y, f),(\bar{y}, \bar{f})):=\iint_{q_{T}} y \bar{y} d x d t+\varepsilon \iint_{Q_{T}} f \bar{f} d x d t, \tag{24}\\
& b: Y \times \wedge \rightarrow \mathbb{R}, \quad b((y, f), \lambda):=\iint_{Q_{T}} \lambda(L y-f) d x d t, \tag{25}\\
& I: Y \rightarrow \mathbb{R}, \quad I(y, f):=\iint_{q_{T}} y_{\text {obs }} y d x d t . \tag{26}
\end{align*}
$$

Theorem

Under the hypothesis (\mathcal{H}), the mixed formulation (23) is well-posed and

$$
\begin{equation*}
\left\|\left(y_{\varepsilon}, f_{\varepsilon}\right)\right\|_{Y}=\left(\left\|y_{\varepsilon}\right\|_{L^{2}\left(q_{T}\right)}^{2}+\varepsilon\left\|f_{\varepsilon}\right\|_{L^{2}\left(Q_{T}\right)}^{2}\right)^{1 / 2} \leq\left\|y_{o b s}\right\|_{L^{2}\left(q_{T}\right)} \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\lambda_{\varepsilon}\right\|_{L^{2}\left(Q_{T}\right)} \leq 2 \sqrt{C_{\Omega, T}+\eta}\left\|y_{o b s}\right\|_{L^{2}\left(q_{T}\right)} \tag{28}
\end{equation*}
$$

Recovering the solution and the source f

$$
\begin{equation*}
\delta_{\varepsilon}:=\inf _{\lambda \in \Lambda} \sup _{(y, f) \in Y} \frac{b((y, f), \lambda)}{\|(y, f)\|_{Y}\left\|^{\prime}\right\|_{\Lambda}} \geq \inf _{\lambda \in \Lambda} \frac{b((0, \lambda), \lambda)}{\|(0, \lambda)\|_{Y}\left\|^{\prime}\right\|_{\Lambda}}=(\varepsilon+\eta)^{-1 / 2} \tag{29}
\end{equation*}
$$

- λ_{ε} is an exact controlled solution of the wave equation through the control $-\left(y_{\varepsilon}-y_{o b s}\right) 1_{\omega}$

$$
\left\{\begin{array}{l}
L \lambda_{\varepsilon}=-\left(y_{\varepsilon}-y_{o b s}\right)_{1_{\omega}}, \quad \varepsilon f_{\varepsilon}-\lambda_{\varepsilon}=0 \text { in } Q_{T}, \\
\lambda_{\varepsilon}=0 \quad \text { in } \Sigma_{T}, \\
\lambda_{\varepsilon}=\lambda_{\varepsilon, t}=0 \quad \text { on } \Omega \times\{0, T\} .
\end{array}\right.
$$

- $\left\|y_{\varepsilon}-y_{o b s}\right\|_{L^{2}\left(q_{T}\right)} \rightarrow 0$ as $\varepsilon \rightarrow 0 \Longrightarrow\left\|\lambda_{\varepsilon}\right\|_{L^{2}\left(Q_{T}\right)} \rightarrow 0$ as $\varepsilon \rightarrow 0$
- $\left\|\sqrt{\varepsilon} f_{\varepsilon}\right\|_{L^{2}\left(Q_{T}\right)} \leq C$ but not $\left\|f_{\varepsilon}\right\|_{L^{2}\left(Q_{T}\right)}$

Recovering the solution and the source f when the pair (y, f) is unique

$f(x, t)=\sigma(t) \mu(x)$
$c:=1, d(x, t)=d(x) \in L^{\prime}(\Omega), \sigma \in C^{1}([0, T]), \sigma(0) \neq 0, \mu \in H^{-1}(\Omega)$
$Y:=\left\{(y, \mu) ; y \in C\left([0, T], H_{0}^{1}(\Omega)\right) \cap C^{1}\left([0, T], L^{2}(\Omega)\right), \frac{\partial y}{\partial \nu} \in L^{2}\left(\Sigma_{T}\right), L y-\sigma \mu \in L^{2}\left(Q_{T}\right)\right\}$
Using [Yamamoto-Z'hang 20011, if $c:=1, d^{\prime \prime}(x, t)=d^{\prime}(x)$ and $\left(\Sigma_{T}, T, Q_{T}\right)$ satisfies the geometric optic condition, then $\exists C>0$

Recovering the solution and the source f when the pair (y, f) is unique

$$
\begin{aligned}
& f(x, t)=\sigma(t) \mu(x) \\
& c:=1, d(x, t)=d(x) \in L^{p}(\Omega), \sigma \in C^{1}([0, T]), \sigma(0) \neq 0, \mu \in H^{-1}(\Omega) \\
& Y:=\left\{(y, \mu) ; y \in C\left([0, T], H_{0}^{1}(\Omega)\right) \cap C^{1}\left([0, T], L^{2}(\Omega)\right), \frac{\partial y}{\partial \nu} \in L^{2}\left(\Sigma_{T}\right), L y-\sigma \mu \in L^{2}\left(Q_{T}\right)\right\} \\
& \text { Using [Yamamoto-Zhang 2001], if } C:=1, d(x, t)=d(x) \text { and }\left(\Sigma_{T}, T, Q_{T}\right) \text { satisfies the } \\
& \text { geometric optic condition, then } \exists C>0
\end{aligned}
$$

Recovering the solution and the source f when the pair (y, f) is unique

$$
\begin{aligned}
& f(x, t)=\sigma(t) \mu(x) \\
& c:=1, d(x, t)=d(x) \in L^{p}(\Omega), \sigma \in C^{1}([0, T]), \sigma(0) \neq 0, \mu \in H^{-1}(\Omega) \\
& Y:=\left\{(y, \mu) ; y \in C\left([0, T], H_{0}^{1}(\Omega)\right) \cap C^{1}\left([0, T], L^{2}(\Omega)\right), \frac{\partial y}{\partial \nu} \in L^{2}\left(\Sigma_{T}\right), L y-\sigma \mu \in L^{2}\left(Q_{T}\right)\right\}
\end{aligned}
$$

Using [Yamamoto-Zhang 2001], if $c:=1, d(x, t)=d(x)$ and $\left(\Sigma_{T}, T, Q_{T}\right)$ satisfies the geometric optic condition, then $\exists C>0$

$$
\begin{equation*}
\|\mu\|_{H^{-1}(\Omega)}^{2} \leq C\left(\left\|\frac{\partial y}{\partial \nu}\right\|_{L^{2}\left(\Sigma_{T}\right)}^{2}+\|L y-\sigma(t) \mu(x)\|_{L^{1}\left((0, T), L^{2}(\Omega)\right)}^{2}\right), \quad \forall(y, \mu) \in Y \tag{30}
\end{equation*}
$$

Recovering the solution and the source f when the pair (y, f) is unique

$$
\begin{aligned}
& f(x, t)=\sigma(t) \mu(x) \\
& c:=1, d(x, t)=d(x) \in L^{p}(\Omega), \sigma \in C^{1}([0, T]), \sigma(0) \neq 0, \mu \in H^{-1}(\Omega) \\
& Y:=\left\{(y, \mu) ; y \in C\left([0, T], H_{0}^{1}(\Omega)\right) \cap C^{1}\left([0, T], L^{2}(\Omega)\right), \frac{\partial y}{\partial \nu} \in L^{2}\left(\Sigma_{T}\right), L y-\sigma \mu \in L^{2}\left(Q_{T}\right)\right\}
\end{aligned}
$$

Using [Yamamoto-Zhang 2001], if $c:=1, d(x, t)=d(x)$ and $\left(\Sigma_{T}, T, Q_{T}\right)$ satisfies the geometric optic condition, then $\exists C>0$

$$
\begin{align*}
& \|\mu\|_{H^{-1}(\Omega)}^{2} \leq C\left(\left\|\frac{\partial y}{\partial \nu}\right\|_{L^{2}\left(\Sigma_{T}\right)}^{2}+\|L y-\sigma(t) \mu(x)\|_{L^{1}\left((0, T), L^{2}(\Omega)\right)}^{2}\right), \quad \forall(y, \mu) \in Y \tag{30}\\
& \sup _{\lambda \in L^{2}\left(Q_{T}\right)} \inf _{(y, \mu) \in Y} \mathcal{L}((y, \mu), \lambda):=\frac{1}{2}\left\|\frac{\partial y}{\partial \nu}-y_{o b s}\right\|_{L^{2}\left(\Sigma_{T}\right)}^{2}+\int_{Q_{T}} \lambda(L y-\sigma \mu) d x d t
\end{align*}
$$

Conformal approximation of the space-time variational framework

Let Y_{h} and Λ_{h} be two finite dimensional spaces parametrized by h such that

$$
Y_{h} \subset Y, \quad \Lambda_{h} \subset \Lambda, \quad \forall h>0
$$

Find $\left(\left(y_{\varepsilon, h}, f_{\varepsilon, h}\right), \lambda_{\varepsilon, h}\right) \in Y_{h} \times \Lambda_{h}$ solution of

$$
\left\{\begin{align*}
a_{\varepsilon, r}\left(\left(y_{\varepsilon, h}, f_{\varepsilon, h}\right),\left(\bar{y}_{h}, \bar{f}_{h}\right)\right)+b\left(\left(\bar{y}_{h}, \bar{f}_{h}\right), \lambda_{\varepsilon}\right) & =l\left(\bar{y}_{h}, \bar{f}_{h}\right), & & \forall\left(\bar{y}_{h}, \bar{f}_{h}\right) \in Y_{h} \tag{31}\\
b\left(\left(y_{\varepsilon, h}, f_{\varepsilon, h}\right), \bar{\lambda}_{h}\right) & =0, & & \forall \bar{\lambda}_{h} \in \Lambda_{h} .
\end{align*}\right.
$$

Conformal approximation of the space-time variational framework

Let Y_{h} and Λ_{h} be two finite dimensional spaces parametrized by h such that

$$
Y_{h} \subset Y, \quad \Lambda_{h} \subset \Lambda, \quad \forall h>0
$$

Find $\left(\left(y_{\varepsilon, h}, f_{\varepsilon, h}\right), \lambda_{\varepsilon, h}\right) \in Y_{h} \times \Lambda_{h}$ solution of

$$
\left\{\begin{align*}
a_{\varepsilon, r}\left(\left(y_{\varepsilon, h}, f_{\varepsilon, h}\right),\left(\bar{y}_{h}, \bar{f}_{h}\right)\right)+b\left(\left(\bar{y}_{h}, \bar{f}_{h}\right), \lambda_{\varepsilon}\right) & =l\left(\bar{y}_{h}, \bar{f}_{h}\right), & & \forall\left(\bar{y}_{h}, \bar{f}_{h}\right) \in Y_{h} \tag{31}\\
b\left(\left(y_{\varepsilon, h}, f_{\varepsilon, h}\right), \bar{\lambda}_{h}\right) & =0, & & \forall \bar{\lambda}_{h} \in \Lambda_{h} .
\end{align*}\right.
$$

- $a_{\varepsilon, r}$ is coercive on $\mathcal{N}_{h}(b) \subset Y$ thanks to :

$$
a_{\varepsilon, r}((y, f),(y, f)) \geq(r / \eta)\|(y, f)\|_{Y}^{2} \quad \forall Y
$$

- For any λ_{h} fixed in Λ_{h}, taking $y_{h}=0$ and $f_{h}=\lambda_{h} \in \Lambda_{h} \subset F_{h}$, we get

Consequently, for any fixed $h>0$, there exists a unique couple ($y_{\varepsilon, h}, \lambda_{\varepsilon, h}$) solution of (31).

Conformal approximation of the space-time variational framework

Let Y_{h} and Λ_{h} be two finite dimensional spaces parametrized by h such that

$$
Y_{h} \subset Y, \quad \Lambda_{h} \subset \Lambda, \quad \forall h>0
$$

Find $\left(\left(y_{\varepsilon, h}, f_{\varepsilon, h}\right), \lambda_{\varepsilon, h}\right) \in Y_{h} \times \Lambda_{h}$ solution of

$$
\left\{\begin{align*}
a_{\varepsilon, r}\left(\left(y_{\varepsilon, h}, f_{\varepsilon, h}\right),\left(\bar{y}_{h}, \bar{f}_{h}\right)\right)+b\left(\left(\bar{y}_{h}, \bar{f}_{h}\right), \lambda_{\varepsilon}\right) & =l\left(\bar{y}_{h}, \bar{f}_{h}\right), & & \forall\left(\bar{y}_{h}, \bar{f}_{h}\right) \in Y_{h} \tag{31}\\
b\left(\left(y_{\varepsilon, h}, f_{\varepsilon, h}\right), \bar{\lambda}_{h}\right) & =0, & & \forall \bar{\lambda}_{h} \in \Lambda_{h} .
\end{align*}\right.
$$

- $a_{\varepsilon, r}$ is coercive on $\mathcal{N}_{h}(b) \subset Y$ thanks to :

$$
a_{\varepsilon, r}((y, f),(y, f)) \geq(r / \eta)\|(y, f)\|_{Y}^{2} \quad \forall Y
$$

- For any λ_{h} fixed in Λ_{h}, taking $y_{h}=0$ and $f_{h}=\lambda_{h} \in \Lambda_{h} \subset F_{h}$, we get

$$
\begin{equation*}
\delta_{\varepsilon, h}:=\inf _{\lambda_{h} \in \Lambda_{h}} \sup _{\left(y_{h}, f_{h}\right) \in Y_{h}} \frac{b\left(\left(y_{h}, f_{h}\right), \lambda_{h}\right)}{\left\|\left(y_{h}, f_{h}\right)\right\| Y\left\|\lambda_{h}\right\|_{\Lambda}} \geq 1 / \sqrt{\varepsilon+\eta} \tag{32}
\end{equation*}
$$

Consequently, for any fixed $h>0$, there exists a unique couple ($y_{\varepsilon, h}, \lambda_{\varepsilon, h}$) solution of (31).

Let ($y_{\varepsilon}, f_{\varepsilon}, \lambda_{\varepsilon}$) and ($y_{\varepsilon, h}, f_{\varepsilon, h}, \lambda_{\varepsilon, h}$) be the solution of (23) and (31) respectively. The following hold :

$$
\begin{array}{r}
\left\|\left(y_{\varepsilon}, f_{\varepsilon}\right)-\left(y_{\varepsilon, h}, f_{\varepsilon, h}\right)\right\|_{Y} \leq 2\left(1+\sqrt{\frac{\eta+\varepsilon}{\eta}}\right) d\left(\left(y_{\varepsilon}, f_{\varepsilon}\right), Y_{h}\right)+\frac{1}{\sqrt{\eta}} d\left(\lambda_{\varepsilon}, \Lambda_{h}\right) \\
\left\|\lambda_{\varepsilon}-\lambda_{\varepsilon, h}\right\|_{\Lambda} \leq \sqrt{\eta+\varepsilon}\left(2+\sqrt{\frac{\eta+\varepsilon}{\eta}}\right) d\left(\left(y_{\varepsilon}, f_{\varepsilon}\right), Y_{h}\right)+3 \sqrt{\frac{\eta+\varepsilon}{\eta}} d\left(\lambda_{\varepsilon}, \Lambda_{h}\right),
\end{array}
$$

where $d\left(\lambda_{\varepsilon}, \Lambda_{h}\right):=\inf _{\lambda_{h} \in \Lambda_{h}}\left\|\lambda_{\varepsilon}-\lambda_{h}\right\|_{\Lambda}=\inf _{\lambda_{h} \in \Lambda_{h}}\left\|\lambda_{\varepsilon}-\lambda_{h}\right\|_{L^{2}\left(Q_{T}\right)}$ and

$$
\begin{aligned}
& d\left(\left(y_{\varepsilon}, f_{\varepsilon}\right), Y_{h}\right):=\inf _{\left(y_{h}, f_{h}\right) \in Y_{h}}\left\|\left(y_{\varepsilon}, f_{\varepsilon}\right)-\left(y_{h}, f_{h}\right)\right\|_{Y} \\
& =\inf _{\left(y_{h}, f_{h}\right) \in Y_{h}}\left(\left\|y_{\varepsilon}-y_{h}\right\|_{L^{2}\left(Q_{T}\right)}^{2}+\varepsilon\left\|f_{\varepsilon}-f_{h}\right\|_{L^{2}\left(Q_{T}\right)}^{2}+\right. \\
& \left.\quad \eta\left\|L\left(y_{\varepsilon}-y_{h}\right)-\left(f_{\varepsilon}-f_{h}\right)\right\|_{L^{2}\left(Q_{T}\right)}^{2}\right)^{1 / 2} .
\end{aligned}
$$

Linear system

Let $n_{h}=\operatorname{dim} Y_{h}, m_{h}=\operatorname{dim} \Lambda_{h}$ and let the real matrices $A_{\varepsilon, r, h} \in \mathbb{R}^{n_{h}, n_{h}}, B_{h} \in \mathbb{R}^{m_{h}, n_{h}}$, $J_{h} \in \mathbb{R}^{m_{h}, m_{h}}$ and $L_{h} \in \mathbb{R}^{n_{h}}$ be defined by

$$
\left\{\begin{aligned}
a_{\varepsilon, r}\left(\left(y_{h}, f_{h}\right),\left(\overline{y_{h}}, \overline{f_{h}}\right)\right) & =\left\langle A_{\varepsilon, r, h}\left(\left\{y_{h}\right\},\left\{f_{h}\right\}\right),\left(\left\{\overline{y_{h}}\right\},\left\{\overline{f_{h}}\right\}\right)\right\rangle_{\mathbb{R}^{n_{h}}, \mathbb{R}^{n_{h}}} \\
b\left(\left(y_{h}, f_{h}\right), \lambda_{h}\right) & =\left\langle B_{h}\left\{y_{h}\right\},\left\{\lambda_{h}\right\}\right\rangle_{\mathbb{R}^{m_{h}}, \mathbb{R}^{m_{h}}} \\
\iint_{Q_{T}} \lambda_{h} \overline{\lambda_{h}} d x d t & =\left\langle U_{h}\left\{\lambda_{h}\right\},\left\{\overline{\lambda_{h}}\right\}\right\rangle_{\mathbb{R}^{m_{h}}, \mathbb{R}^{m_{h}}} \\
I\left(y_{h}, f_{h}\right) & =\left\langle L_{h},\left(\left\{y_{h}, f_{h}\right\}\right)\right\rangle_{\mathbb{R}^{n_{h}}},
\end{aligned}\right.
$$

for every $\left(y_{h}, f_{h}\right),\left(\overline{y_{h}}, \overline{f_{h}}\right) \in Y_{h}$ and for every $\lambda_{h}, \overline{\lambda_{h}} \in \Lambda_{h}$.
The problem (31) reads as follows : find $\left\{y_{h}, f_{h}\right\} \in \mathbb{R}^{n_{h}}$ and $\left\{\lambda_{h}\right\} \in \mathbb{R}^{m_{h}}$ such that

$$
\left(\begin{array}{cc}
A_{\varepsilon, r, h} & B_{h}^{T} \tag{33}\\
B_{h} & 0
\end{array}\right)_{\mathbb{R}^{n_{h}+m_{h}, n_{h}+m_{h}}}\binom{\left(\left\{y_{h}, f_{h}\right\}\right.}{\left\{\lambda_{h}\right\}}_{\mathbb{R}^{n_{h}+m_{h}}}=\binom{L_{h}}{0}_{\mathbb{R}^{n_{h}+m_{h}}} .
$$

The matrix of order $m_{h}+n_{h}$ in (33) is symmetric but not positive definite.

Choice of the space Y_{h} and Λ_{h}

The space Y_{h} must be chosen such that $L y_{h} \in L^{2}\left(Q_{T}\right)$ for any $y_{h} \in Y_{h}$. This is guaranteed for instance as soon as y_{h} possesses second-order derivatives in $L_{l o c}^{2}\left(Q_{T}\right)$. A conformal approximation based on standard triangulation of Q_{T} is obtained with spaces of functions continuously differentiable with respect to both x and t.

We introduce a triangulation \mathcal{T}_{h} such that $\overline{Q_{T}}=\cup_{K \in \mathcal{T}_{h}} K$ and we assume that $\left\{\mathcal{T}_{h}\right\}_{h>0}$ is a regular family. We note $h:=\max \left\{\operatorname{diam}(K), K \in \mathcal{T}_{h}\right\}$.

We introduce the space Φ_{h} as follows: $Z_{h}=\left\{y_{h} \in Z \in C^{1}\left(\overline{Q_{T}}\right):\left.z_{h}\right|_{K} \in \mathbb{P}(K) \quad \forall K \in \mathcal{T}_{h}, z_{h}=0\right.$ on $\left.\Sigma_{T}\right\}$
where $\mathbb{P}(K)$ denotes an appropriate space of polynomial functions in x and t. We consider for $\mathbb{P}(K)$ the reduced Hsieh-Clough-Tocher C^{1}-element (Composite finite element and involves as degrees of freedom the values of $\varphi_{h,}, \varphi_{h, x}, \varphi_{h, t}$ on the vertices of each triangle K)

We also define the finite dimensional space

Choice of the space Y_{h} and Λ_{h}

The space Y_{h} must be chosen such that $L y_{h} \in L^{2}\left(Q_{T}\right)$ for any $y_{h} \in Y_{h}$. This is guaranteed for instance as soon as y_{h} possesses second-order derivatives in $L_{l o c}^{2}\left(Q_{T}\right)$. A conformal approximation based on standard triangulation of Q_{T} is obtained with spaces of functions continuously differentiable with respect to both x and t.

We introduce a triangulation \mathcal{T}_{h} such that $\overline{Q_{T}}=\cup_{K \in \mathcal{T}_{h}} K$ and we assume that $\left\{\mathcal{T}_{h}\right\}_{h>0}$ is a regular family. We note $h:=\max \left\{\operatorname{diam}(K), K \in \mathcal{T}_{h}\right\}$.

We introduce the space Φ_{h} as follows:

$$
z_{h}=\left\{y_{h} \in Z \in C^{1}\left(\overline{Q_{T}}\right):\left.z_{h}\right|_{K} \in \mathbb{P}(K) \quad \forall K \in \mathcal{T}_{h}, z_{h}=0 \text { on } \Sigma_{T}\right\}
$$

where $\mathbb{P}(K)$ denotes an appropriate space of polynomial functions in x and t. We consider for $\mathbb{P}(K)$ the reduced Hsieh-Clough-Tocher C^{1}-element (Composite finite element and involves as degrees of freedom the values of $\varphi_{h}, \varphi_{h, x}, \varphi_{h, t}$ on the vertices of each triangle K).

We also define the finite dimensional space

Choice of the space Y_{h} and Λ_{h}

The space Y_{h} must be chosen such that $L y_{h} \in L^{2}\left(Q_{T}\right)$ for any $y_{h} \in Y_{h}$. This is guaranteed for instance as soon as y_{h} possesses second-order derivatives in $L_{l o c}^{2}\left(Q_{T}\right)$. A conformal approximation based on standard triangulation of Q_{T} is obtained with spaces of functions continuously differentiable with respect to both x and t.

We introduce a triangulation \mathcal{T}_{h} such that $\overline{Q_{T}}=\cup_{K \in \mathcal{T}_{h}} K$ and we assume that $\left\{\mathcal{T}_{h}\right\}_{h>0}$ is a regular family. We note $h:=\max \left\{\operatorname{diam}(K), K \in \mathcal{T}_{h}\right\}$.

We introduce the space Φ_{h} as follows:

$$
z_{h}=\left\{y_{h} \in Z \in C^{1}\left(\overline{Q_{T}}\right):\left.z_{h}\right|_{K} \in \mathbb{P}(K) \quad \forall K \in \mathcal{T}_{h}, z_{h}=0 \text { on } \Sigma_{T}\right\}
$$

where $\mathbb{P}(K)$ denotes an appropriate space of polynomial functions in x and t. We consider for $\mathbb{P}(K)$ the reduced Hsieh-Clough-Tocher C^{1}-element (Composite finite element and involves as degrees of freedom the values of $\varphi_{h}, \varphi_{h, x}, \varphi_{h, t}$ on the vertices of each triangle K).

We also define the finite dimensional space

$$
\Lambda_{h}=\left\{\lambda_{h} \in C^{0}\left(\overline{Q_{T}}\right),\left.\lambda_{h}\right|_{K} \in \mathbb{P}_{1}(K) \quad \forall K \in \mathcal{T}_{h}\right\}
$$

For any $h>0$, we have $Y_{h}:=Z_{h} \times \Lambda_{h} \subset Y$ and $\Lambda_{h} \subset L^{2}\left(Q_{T}\right)$.

Convergence rate in Y

Proposition (BFS element for $N=1$ - Rates of convergence for the norm Y)

Let $h>0$ and an integer $k \leq 2$. Let $\left(y_{\varepsilon}, f_{\varepsilon}, \lambda_{\varepsilon}\right)$ and $\left(y_{\varepsilon, h}, f_{\varepsilon, h}, \lambda_{\varepsilon, h}\right)$ be the solution of (23) and (31) respectively. If $\left(y_{\varepsilon}, f_{\varepsilon}\right)$ belongs to $H^{k+2}\left(Q_{T}\right) \times H^{k}\left(Q_{T}\right)$ and if λ_{ε} belongs to $H^{k}\left(Q_{T}\right)$, then there exists two positives constant $K_{i}=K_{i}\left(\|y\|_{H^{k+2}\left(Q_{T}\right)}\right.$, $\left.\|f\|_{H^{k}\left(Q_{T}\right)},\|c\|_{C^{1}\left(\overline{Q_{T}}\right)},\|d\|_{L^{\infty}\left(Q_{T}\right)}, \varepsilon, \eta\right), i=1,2$, independent of h, such that

$$
\begin{equation*}
\left\|\left(y_{\varepsilon}, f_{\varepsilon}\right)-\left(y_{\varepsilon, h}, f_{\varepsilon, h}\right)\right\|_{Y} \leq K_{1} h^{k}, \quad\left\|\lambda_{\varepsilon}-\lambda_{\varepsilon, h}\right\|_{\Lambda} \leq K_{2} h^{k} \tag{34}
\end{equation*}
$$

Convergence rate in $L^{2}\left(Q_{T}\right)$

We write that $\left(y_{\varepsilon}-y_{\varepsilon, h}\right)$ solves

$$
\left\{\begin{array}{l}
L\left(y_{\varepsilon}-y_{\varepsilon, h}\right)=\left(f_{\varepsilon}-f_{\varepsilon, h}\right)+\left(f_{\varepsilon, h}-L y_{\varepsilon, h}\right) \quad \text { in } Q_{T} \\
\left(\left(y_{\varepsilon}-y_{\varepsilon, h}\right),\left(y_{\varepsilon}-y_{\varepsilon, h}\right)_{t}\right)(0) \in H^{1}(\Omega) \times L^{2}(\Omega) \\
y_{\varepsilon}-y_{\varepsilon, h}=0 \quad \text { on } \Sigma_{T} .
\end{array}\right.
$$

Therefore using (6), there exists a constant $C\left(C_{\Omega, T}, C_{o b s}\right)$ such that

$$
\left\|y_{\varepsilon}-y_{\varepsilon_{h}}\right\|_{L^{2}\left(Q_{T}\right)} \leq C\left(C_{\Omega, T}, C_{o b s}\right) \sqrt{3} \max \left(1, \frac{1}{\sqrt{\varepsilon}}, \frac{1}{\sqrt{\eta}}\right)\left\|\left(y_{\varepsilon}, f_{\varepsilon}\right)-\left(y_{\varepsilon, h}, f_{\varepsilon, h}\right)\right\|_{\gamma}
$$

Convergence rate in $L^{2}\left(Q_{T}\right)$

We write that $\left(y_{\varepsilon}-y_{\varepsilon, h}\right)$ solves

$$
\left\{\begin{array}{l}
L\left(y_{\varepsilon}-y_{\varepsilon, h}\right)=\left(f_{\varepsilon}-f_{\varepsilon, h}\right)+\left(f_{\varepsilon, h}-L y_{\varepsilon, h}\right) \quad \text { in } Q_{T} \\
\left(\left(y_{\varepsilon}-y_{\varepsilon, h}\right),\left(y_{\varepsilon}-y_{\varepsilon, h}\right)_{t}\right)(0) \in H^{1}(\Omega) \times L^{2}(\Omega) \\
y_{\varepsilon}-y_{\varepsilon, h}=0 \quad \text { on } \Sigma_{T} .
\end{array}\right.
$$

Therefore using (6), there exists a constant $C\left(C_{\Omega, T}, C_{o b s}\right)$ such that

$$
\left\|y_{\varepsilon}-y_{\varepsilon_{h}}\right\|_{L^{2}\left(Q_{T}\right)} \leq C\left(C_{\Omega, T}, C_{o b s}\right) \sqrt{3} \max \left(1, \frac{1}{\sqrt{\varepsilon}}, \frac{1}{\sqrt{\eta}}\right)\left\|\left(y_{\varepsilon}, f_{\varepsilon}\right)-\left(y_{\varepsilon, h}, f_{\varepsilon, h}\right)\right\|_{\gamma}
$$

Theorem (BFS element for $N=1$ - Rate of convergence in $L^{2}\left(Q_{T}\right)$)

Assume that the hypothesis (\mathcal{H}) holds. Let $h>0$ and an integer $k \leq 2$. Let $\left(y_{\varepsilon}, f_{\varepsilon}, \lambda_{\varepsilon}\right)$ and $\left(y_{\varepsilon, h}, f_{\varepsilon, h}, \lambda_{\varepsilon, h}\right)$ be the solution of (23) and (31) respectively. If $\left(y_{\varepsilon}, f_{\varepsilon}\right)$ belongs to $H^{k+2}\left(Q_{T}\right) \times H^{k}\left(Q_{T}\right)$ and if λ_{ε} belongs to $H^{k}\left(Q_{T}\right)$, then there exists a positive constant $K=K\left(\|y\|_{H^{k+2}\left(Q_{T}\right)},\|f\|_{H^{k}\left(Q_{T}\right)},\|c\|_{C^{1}\left(\overline{Q_{T}}\right)},\|d\|_{L^{\infty}\left(Q_{T}\right)}, \varepsilon, \eta\right)$ independent of h, such that

$$
\begin{equation*}
\left\|y_{\varepsilon}-y_{\varepsilon, h}\right\|_{L^{2}\left(Q_{T}\right)} \leq C\left(C_{\Omega, T}, C_{o b s}\right) \max \left(1, \frac{1}{\sqrt{\varepsilon}}, \frac{1}{\sqrt{\eta}}\right) K h^{k}, \quad \forall h>0 \tag{35}
\end{equation*}
$$

The problem (17) becomes: find $\left(y_{h}, \lambda_{h}\right) \in Z_{h} \times \widetilde{\Lambda}_{h}$ solution of

$$
\left\{\begin{array}{rlrl}
a_{r, \alpha}\left(y_{h}, \bar{y}_{h}\right)+b_{\alpha}\left(\lambda_{h}, \bar{y}_{h}\right) & =l_{1, \alpha}\left(\bar{y}_{h}\right), & & \forall \bar{y}_{h} \in Z_{h} \\
b_{\alpha}\left(\bar{\lambda}_{h}, y_{h}\right)-c_{\alpha}\left(\lambda_{h}, \bar{\lambda}_{h}\right) & =l_{2, \alpha}\left(\bar{\lambda}_{h}\right), & \forall \bar{\lambda}_{h} \in \tilde{\Lambda}_{h} \tag{37}\\
\tilde{\Lambda}_{h}=\left\{\lambda \in Z_{h} ; \lambda(\cdot, 0)=\lambda_{t}(\cdot, 0)=0\right\} . &
\end{array}\right.
$$

(BFS element for $N=1$ - Rates of convergence - Stabilized mixed formulation)

Let $h>0$, let $k \leq 2$ be a positive integer and let $\alpha \in(0,1)$. Let (y, λ) and $\left(y_{h}, \lambda_{h}\right)$ be the solution of (17) and (36) respectively. If (y, λ) belongs to $H^{k+2}\left(Q_{T}\right) \times H^{k+2}\left(Q_{T}\right)$, then there exists a positive constant
$K=K\left(\|y\|_{H^{k+2}\left(Q_{T}\right)},\|c\|_{C^{1}\left(\overline{Q_{T}}\right)},\|d\|_{L^{\infty}\left(Q_{T}\right)}, \alpha, r, \eta\right)$ independent of h, such that

$$
\begin{equation*}
\left\|y-y_{h}\right\|_{z}+\left\|\lambda-\lambda_{h}\right\|_{\tilde{\Lambda}} \leq K h^{k} \tag{38}
\end{equation*}
$$

(EX1) $\left\{\begin{array}{l}y_{0}(x)=16 x^{2}(1-x)^{2}, \\ y_{1}(x)=\left(3 x-4 x^{3}\right) 1_{(0,0.5)}(x)+\left(4 x^{3}-12 x^{2}+9 x-1\right) 1_{(0.5,1)}(x),\end{array} x \in(0,1)\right.$
and $f=0$. The corresponding solution of (1) with $c \equiv 1, d \equiv 0$ is given by

$$
y(x, t)=\sum_{k>0}\left(a_{k} \cos (k \pi t)+\frac{b_{k}}{k \pi} \sin (k \pi t)\right) \sqrt{2} \sin (k \pi x)
$$

with

$$
a_{k}=\frac{32 \sqrt{2}\left(\pi^{2} k^{2}-12\right)}{\pi^{5} k^{5}}\left((-1)^{k}-1\right), \quad b_{k}=\frac{48 \sqrt{2} \sin (\pi k / 2)}{\pi^{4} k^{4}}, \quad k>0
$$

Numerical illustration $-N=1-\varepsilon=0$

$$
T=2-r=h^{2}-\omega=(0.1,0.3)-\mathrm{BFS}
$$

h	7.01×10^{-2}	3.53×10^{-2}	1.76×10^{-2}	8.83×10^{-3}	4.42×10^{-3}				
$\frac{\left\\|y-y_{h}\right\\|_{L^{2}\left(Q_{T}\right)}}{\\|y\\|_{L^{2}}\left(Q_{T}\right)}$	9.55×10^{-2}	4.58×10^{-2}	2.24×10^{-2}	1.10×10^{-2}	5.52×10^{-3}				
$\frac{\left\\|y-y_{h}\right\\|_{L^{2}\left(q_{T}\right)}}{\\|y\\|_{L^{2}}\left(q_{T}\right)}$	8.35×10^{-2}	4.28×10^{-2}	2.16×10^{-2}	1.09×10^{-2}	5.51×10^{-3}				
$\left\\|L y_{h}\right\\|_{L^{2}\left(Q_{T}\right)}$	5.62×10^{-3}	3.21×10^{-3}	1.78×10^{-3}	9.99×10^{-4}	8.54×10^{-4}				
$\left\\|\lambda_{h}\right\\|_{L^{2}\left(Q_{T}\right)}$	2.67×10^{-5}	1.37×10^{-5}	6.89×10^{-6}	3.44×10^{-6}	1.76×10^{-6}				

$$
\begin{equation*}
\frac{\left\|y-y_{h}\right\|_{L^{2}\left(Q_{T}\right)}}{\|y\|_{L^{2}\left(Q_{T}\right)}}=\mathcal{O}\left(h^{1.03}\right), \quad \frac{\left\|y-y_{h}\right\|_{L^{2}\left(q_{T}\right)}}{\|y\|_{L^{2}\left(q_{T}\right)}}=\mathcal{O}\left(h^{0.98}\right), \quad\left\|\lambda_{h}\right\|_{L^{2}\left(Q_{T}\right)}=\mathcal{O}\left(h^{0.98}\right) \tag{39}
\end{equation*}
$$

The L^{2}-norm of $L y_{h}$ do also converges to 0 with h, with a lower rate:

$$
\begin{equation*}
\left\|L y_{h}\right\|_{L^{2}\left(Q_{T}\right)}=\mathcal{O}\left(h^{0.71}\right) \tag{40}
\end{equation*}
$$

Example $1-N=1$

$$
r=h^{2}-h=0.0125
$$

$$
y \text { and } y_{h} \text { in } Q_{T}
$$

Example $1-N=1$

Example $1-N=1$

$$
r=h^{2}-h=0.0125
$$

Example $1-N=1$

$$
r=h^{2}-h=0.0125
$$

y_{t} and $\left(y_{t}\right)_{h}$ in Q_{T}

Example $1-N=1$

$$
r=h^{2}-h=0.0125
$$

$$
y_{x t} \text { and }\left(y_{x t}\right)_{h} \text { in } Q_{T}
$$

Example 1 - Minimization of $J \star \star$

h	7.01×10^{-2}	3.53×10^{-2}	1.76×10^{-2}	8.83×10^{-3}	4.42×10^{-3}
κ	1.4×10^{10}	4.6×10^{11}	1.3×10^{13}	4.2×10^{14}	1.3×10^{16}
$\operatorname{card}\left(\left\{\lambda_{h}\right\}\right)$	861	3321	13041	51681	205761
\sharp CG iterates	27	42	70	96	90

$\log _{10}$ of the residus w.r.t. iterates

Example $2-N=1$

(EX2) $\quad y_{0}(x)=1-|2 x-1|, \quad y_{1}(x)=1_{(1 / 3,2 / 3)}(x), \quad x \in(0,1)$
in $H_{0}^{1} \times L^{2}$ for which the Fourier coefficients are

$$
a_{k}=\frac{4 \sqrt{2}}{\pi^{2} k^{2}} \sin (\pi k / 2), \quad b_{k}=\frac{1}{\pi k}(\cos (\pi k / 3)-\cos (2 \pi k / 3)), \quad k>0
$$

Example $2-N=1$

h	7.01×10^{-2}	3.53×10^{-2}	1.76×10^{-2}	8.83×10^{-3}	4.42×10^{-3}				
$\frac{\left\\|y-y_{h}\right\\|_{L^{2}\left(Q_{T}\right)}}{\\|y\\|_{L^{2}}\left(Q_{T}\right)}$	1.01×10^{-1}	4.81×10^{-2}	2.34×10^{-2}	1.15×10^{-2}	5.68×10^{-3}				
$\frac{\left\\|y-y_{h}\right\\|_{L^{2}\left(q_{T}\right)}}{\\|y\\|_{L^{2}\left(q_{T}\right)}}$	1.34×10^{-1}	5.05×10^{-2}	2.37×10^{-2}	1.16×10^{-2}	5.80×10^{-3}				
$\left\\|L y_{h}\right\\|_{L^{2}\left(Q_{T}\right)}$	7.18×10^{-2}	6.59×10^{-2}	6.11×10^{-2}	5.55×10^{-2}	5.10×10^{-2}				
$\left\\|\lambda_{h}\right\\|_{L^{2}\left(Q_{T}\right)}$	1.07×10^{-4}	4.70×10^{-5}	2.32×10^{-5}	1.15×10^{-5}	5.76×10^{-6}				
\sharp CG iterates	29	46	83	133	201				

$$
\begin{equation*}
\left\|L y_{h}\right\|_{L^{2}\left(Q_{T}\right)}=\mathcal{O}\left(h^{0.123}\right) \tag{41}
\end{equation*}
$$

Enough to guarantee the convergence of y_{h} toward a solution of the wave equation: recall (see Remark ??) that then $\left\|L y_{h}\right\|_{L^{2}\left(0, T ; H^{-1}(0,1)\right)}=\mathcal{O}\left(h^{1.123}\right)$.

Example $2-N=1$

Example $2-N=1$

h	7.01×10^{-2}	3.53×10^{-2}	1.76×10^{-2}	8.83×10^{-3}	4.42×10^{-3}
\sharp CG iterates	29	46	83	133	201

$\log _{10}$ of the residus w.r.t. iterates

Example $2-N=1-$ Mesh adaptation

Iterative local refinement of the mesh according to the gradient of y_{h}

Example 2- $N=1$ - Mesh adaptation

Non cylindrical domain q_{T}

Triangular meshes - reduced HCT elements

Domain q_{T}^{1} (a) and domain $q_{T}^{2}(\mathrm{~b})$ triangulated using some coarse meshes.

$2 D$ example: $\Omega=(0,1)^{2}$

(a)

Mesh Number	0	1	2	3
Number of elements	5320	15320	31740	120160
Number of nodes	3234	8799	17670	64411

Characteristics of the three meshes associated with Q_{T}.

$2 D$ example: $\Omega=(0,1)^{2}$

$\left(y_{0}, y_{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega):$

$$
\left(\text { EX2-2D) } \quad \left\{\begin{array}{l}
y_{0}\left(x_{1}, x_{2}\right)=\left(1-\left|2 x_{1}-1\right|\right)\left(1-\left|2 x_{2}-1\right|\right) \tag{42}\\
y_{1}\left(x_{1}, x_{2}\right)=\mathbf{1}_{\left(\frac{1}{3}, \frac{2}{3}\right)^{2}}\left(x_{1}, x_{2}\right)
\end{array} \quad\left(x_{1}, x_{2}\right) \in \Omega .\right.\right.
$$

The Fourier coefficients of the corresponding solution are

$$
\begin{aligned}
& a_{k l}=\frac{2^{5}}{\pi^{4} k^{2} l^{2}} \sin \frac{\pi k}{2} \sin \frac{\pi l}{2} \\
& b_{k l}=\frac{1}{\pi^{2} k l}\left(\cos \frac{\pi k}{3}-\cos \frac{2 \pi k}{3}\right)\left(\cos \frac{\pi l}{3}-\cos \frac{2 \pi l}{3}\right) .
\end{aligned}
$$

Mesh number	0	1	2	3				
$\frac{\left\\|y-y_{h}\right\\|_{L^{2}\left(Q_{T}\right)}}{\\|y\\|_{L^{2}\left(Q_{T}\right)}}$	4.74×10^{-2}	3.72×10^{-2}	2.4×10^{-2}	1.35×10^{-2}				
$\left\\|L y_{h}\right\\|_{L^{2}\left(Q_{T}\right)}$	1.18	0.89	0.99	0.99				
$\left\\|\lambda_{h}\right\\|_{L^{2}\left(Q_{T}\right)}$	3.21×10^{-5}	1.46×10^{-5}	1.02×10^{-5}	3.56×10^{-6}				

Table: Example EX2-2D $-r=h^{2}$

2D example

(a)

Mesh number	0	1	2
Number of elements	5730	44900	196040
Number of nodes	3432	24633	103566

Characteristics of the three meshes associated with Q_{T}.

$$
\left\{\begin{array}{lll}
-\Delta y_{0}=10, & \text { in } \Omega \tag{43}\\
y_{0}=0, & \text { on } \partial \Omega, & y_{1}=0 .
\end{array}\right.
$$

Mesh number	0	1	2				
$\frac{\left\\|\bar{y}_{h}-y_{h}\right\\|^{2}\left(Q_{T}\right)}{\left\\|\bar{Y}_{h}\right\\|_{1}\left(Q_{T}\right)}$	1.88×10^{-1}	8.04×10^{-2}	5.41×10^{-2}				
$\left\\|L y_{n}\right\\|_{L^{2}\left(Q_{T}\right)}$	3.21	2.01	1.17				
$\left\\|\lambda_{h}\right\\|_{L^{2}}\left(Q_{T}\right)$	8.26×10^{-5}	3.62×10^{-5}	2.24×10^{-5}				

$$
r=h^{2}-T=2
$$

2D example

Concluding remarks

Mixed formulation allows to reconstruct solution and source
Direct and robust Method - Strong convergence
The minimization of $J_{r}^{\star \star}(\lambda)$ is Very robust and fast contrary to the MINIMIZATION OF $J\left(y_{0}, y_{1}\right)$ (INVERSION OF SYMMETRIC DEFINITE POSITIVE AND VERY SPARSE MATRIX WITH DIRECT CHOLESKY SOLVERS)

DIRECT APPROACH CAN BE USED FOR MANY OTHER OBSERVABLE SYSTEMS FOR which a generalized obs. estimate is available. In particular, Heat, Stokes

$$
\mathcal{L}_{r}(y, \lambda):=\frac{1}{2}\left\|\rho_{0}\left(y-y_{o b s}\right)\right\|_{L^{2}\left(q_{T}\right)}^{2}+\frac{r}{2}\|\rho L y\|_{L^{2}\left(Q_{T}\right)}^{2}+\iint_{Q_{T}} \rho_{1} \lambda L y
$$

(In progress with D. A. de Souza)
Reconstruction of potential, coefficients

[^0]: $\Longrightarrow \mathrm{QR}_{\varepsilon}$ method with $P y=\left(\sqrt{r} L y, y 1_{q_{T}}\right), d=\left(0, y_{o b s}\right), \varepsilon=0$

