On the numerical computation of controls for the 1-D heat equation

Arnaud Münch

Laboratoire de Mathématiques de Clermont-Ferrand Université Blaise Pascal, France
arnaud.munch@math.univ-bpclermont.fr
March. 2011, Sevilla
supported by the project CONUM ANR-07-JC-183284

$$
\begin{gather*}
\omega \subset(0,1), a \in C^{1}\left([0,1], \mathbb{R}_{*}^{+}\right), y_{0} \in L^{2}(0,1), Q_{T}=(0,1) \times(0, T), q_{T}=\omega \times(0, T) \\
\left\{\begin{array}{lc}
L y \equiv y_{t}-\left(a(x) y_{x}\right)_{x}=v 1_{\omega}, & (x, t) \in Q_{T} \\
y(x, t)=0, & (x, t) \in\{0,1\} \times(0, T) \\
y(x, 0)=y_{0}(x), & x \in(0,1) .
\end{array}\right. \tag{1}
\end{gather*}
$$

$\forall y_{0} \in L^{2}(0,1), T>0$ and $v \in L^{2}\left(q_{T}\right), y \in C^{0}\left([0, T] ; L^{2}(0,1)\right) \cap L^{2}\left(0, T ; H_{0}^{1}(0,1)\right)$.
We introduce the linear manifold

$$
\mathcal{C}\left(y_{0}, T\right)=\left\{(y, v): v \in L^{2}\left(q_{T}\right), \quad y \text { solves (??) and satisfies } y(T, \cdot)=0\right\}
$$

non empty (see Fursikov-Imanuvilov'96, Robbiano-Lebeau'95).

The goal is to compute numerically some elements of $\mathcal{C}\left(y_{0}, T\right)$, i.e. compute some controls for the heat equation

1- III-posedness for the control of minimal L^{2}-norm (the "HUM control")

2- Change of norm : framework of Fursikov-Imanuvilov'96 (with Enrique Fernandez-Cara)

3- Transmutation method : from wave to heat (with Enrique Zuazua)

4- Without dual variable via a variational approach (with Pablo Pedregal)

5- Conclusions / Additional references

PARTI
Control of minimal $L^{2}(0,1)$-norm assuming that $a(x)=a_{0}>0$

$$
(P) \inf _{(y, v) \in \mathcal{C}\left(y_{0}, T\right)} J(v, y)=\frac{1}{2}\|v\|_{L^{2}\left(q_{T}\right)}^{2}
$$

$L^{2}(0,1)$-norm of the HUM control with respect to time

Figure: $y_{0}(x)=\sin (\pi x)-T=1-\omega=(0.2,0.8)-t \rightarrow\|v(\cdot, t)\|_{L^{2}(0,1)}$ in $[0, T]$

Figure: $y_{0}(x)=\sin (\pi x)-T=1-\omega=(0.2,0.8)-t \rightarrow\|v(\cdot, t)\|_{L^{2}(0,1)}$ in $[0.92 T, T]$

Minimal L^{2} norm control

Since it is difficult to construct pairs $(v, y) \in \mathcal{C}\left(y_{0}, T\right)$ (a fortiori minimizing sequences for J !), it is by now standard to consider the corresponding dual :

$$
\inf _{(y, v) \in \mathcal{C}\left(y_{0}, T\right)} J(y, v)=-\inf _{\phi_{T} \in H} J^{\star}\left(\phi_{T}\right), J^{\star}\left(\phi_{T}\right)=\frac{1}{2} \int_{q_{T}} \phi^{2} d x d t+\int_{\Omega} \phi(0, \cdot) y_{0} d x
$$

where ϕ solves the backward system

$$
\left\{\begin{array}{lr}
L^{\star} \phi \equiv-\phi^{\prime}-\left(a(x) \phi_{x}\right)_{x}=0 & Q_{T}=(0, T) \times \Omega \\
\phi=0 \quad \Sigma_{T}=(0, T) \times \partial \Omega, & \phi(T, \cdot)=\phi_{T} \quad \Omega
\end{array}\right.
$$

The Hilbert space H is defined as the completion of $\mathcal{D}(0,1)$ with respect to the norm

From the observability inequality

Minimal L^{2} norm control

Since it is difficult to construct pairs $(v, y) \in \mathcal{C}\left(y_{0}, T\right)$ (a fortiori minimizing sequences for J !), it is by now standard to consider the corresponding dual :

$$
\inf _{(y, v) \in \mathcal{C}\left(y_{0}, T\right)} J(y, v)=-\inf _{\phi_{T} \in H} J^{\star}\left(\phi_{T}\right), J^{\star}\left(\phi_{T}\right)=\frac{1}{2} \int_{q_{T}} \phi^{2} d x d t+\int_{\Omega} \phi(0, \cdot) y_{0} d x
$$

where ϕ solves the backward system

$$
\begin{cases}L^{\star} \phi \equiv-\phi^{\prime}-\left(a(x) \phi_{x}\right)_{x}=0 & Q_{T}=(0, T) \times \Omega \\ \phi=0 \quad \Sigma_{T}=(0, T) \times \partial \Omega, & \phi(T, \cdot)=\phi_{T} \quad \Omega\end{cases}
$$

The Hilbert space H is defined as the completion of $\mathcal{D}(0,1)$ with respect to the norm

$$
\left\|\phi_{T}\right\|_{H}=\left(\int_{q_{T}} \phi^{2}(t, x) d x d t\right)^{1 / 2}
$$

From the observability inequality

Minimal L^{2} norm control

Since it is difficult to construct pairs $(v, y) \in \mathcal{C}\left(y_{0}, T\right)$ (a fortiori minimizing sequences for J !), it is by now standard to consider the corresponding dual :

$$
\inf _{(y, v) \in \mathcal{C}\left(y_{0}, T\right)} J(y, v)=-\inf _{\phi_{T} \in H} J^{\star}\left(\phi_{T}\right), J^{\star}\left(\phi_{T}\right)=\frac{1}{2} \int_{q_{T}} \phi^{2} d x d t+\int_{\Omega} \phi(0, \cdot) y_{0} d x
$$

where ϕ solves the backward system

$$
\begin{cases}L^{\star} \phi \equiv-\phi^{\prime}-\left(a(x) \phi_{x}\right)_{x}=0 & Q_{T}=(0, T) \times \Omega \\ \phi=0 \quad \Sigma_{T}=(0, T) \times \partial \Omega, & \phi(T, \cdot)=\phi_{T} \quad \Omega\end{cases}
$$

The Hilbert space H is defined as the completion of $\mathcal{D}(0,1)$ with respect to the norm

$$
\left\|\phi_{T}\right\|_{H}=\left(\int_{q_{T}} \phi^{2}(t, x) d x d t\right)^{1 / 2}
$$

From the observability inequality

$$
C(T, \omega)\|\phi(0, \cdot)\|_{L^{2}(\Omega)}^{2} \leq\left\|\phi_{T}\right\|_{H}^{2} \quad \forall \phi_{T} \in L^{2}(\Omega)
$$

J^{\star} is coercive on H. The HUM control is given by $v=\phi \mathcal{X}_{\omega}$ on Q_{T}.

III-posedness

- The completed space H is huge:

$$
H^{-s} \subset H \quad \forall s>0!
$$

(H may also contain elements which are not distribution !!) and the minimizer is singular [Micu-Zuazua preprint 2010] ${ }^{1}$
-Due to the strong regularization effect of the heat operator, the constraint

$$
y(\cdot, T)=0, \quad(0,1)
$$

can be viewed as an equality in a "very small" space; accordingly, the dual variable ϕ_{T} which is nothing but the Lagrange multiplier for the constraint may belong to a "large" dual space, much larger than L^{2}.
-III-posedness here is therefore related to the hugeness of H, poorly approximated numerically.
-This phenomenon is unavoidable (unless $\omega=(0,1)!$) and is independent of the choice of the norm!

[^0]
Regularization

For any $\epsilon>0$, consider $J_{\epsilon}(y, v)=J(y, v)+\frac{\epsilon^{-1}}{2}\|y(T)\|_{H^{-s}(0,1)}^{2}$ and

$$
\inf _{\phi_{T, \epsilon} \in L^{2}(0,1)} J_{\epsilon}^{\star}\left(\phi_{T, \epsilon}\right), \quad J_{\epsilon}^{\star}\left(\phi_{T, \epsilon}\right)=\frac{1}{2} \int_{q_{T}} \phi^{2} d x d t+\int_{\Omega} \phi(0, \cdot) y_{0} d x+\frac{\epsilon}{2}\left\|\phi_{T, \epsilon}\right\|_{H^{s}(0,1)}^{2}
$$

and minimize in L^{2} the quadratic and strictly convex function J_{ϵ}^{\star} by a conjugate gradient algorithm as initially proposed in Carthel-Glowinski-Lions'94 ${ }^{2}$.

and taking $y_{0}=0$ (for simplicity), we obtain the relation

[^1]
Regularization

For any $\epsilon>0$, consider $J_{\epsilon}(y, v)=J(y, v)+\frac{\epsilon^{-1}}{2}\|y(T)\|_{H^{-s}(0,1)}^{2}$ and

$$
\inf _{\phi_{T, \epsilon} \in L^{2}(0,1)} J_{\epsilon}^{\star}\left(\phi_{T, \epsilon}\right), \quad J_{\epsilon}^{\star}\left(\phi_{T, \epsilon}\right)=\frac{1}{2} \int_{q_{T}} \phi^{2} d x d t+\int_{\Omega} \phi(0, \cdot) y_{0} d x+\frac{\epsilon}{2}\left\|\phi_{T, \epsilon}\right\|_{H^{s}(0,1)}^{2}
$$

and minimize in L^{2} the quadratic and strictly convex function J_{ϵ}^{\star} by a conjugate gradient algorithm as initially proposed in Carthel-Glowinski-Lions'94 ${ }^{2}$.

$$
\phi_{T}(x)=\sum_{k \geq 1} a_{k} \sin (k \pi x) \Longleftrightarrow y_{T}(x)=\sum_{p \geq 1} b_{p} \sin (p \pi x), \quad x \in \Omega
$$

and taking $y_{0}=0$ (for simplicity), we obtain the relation

$$
\begin{gathered}
b_{p}=\sum_{k \geq 1}\left(c_{p, k}(\omega) g_{p, k}(T)+\epsilon(k \pi)^{2 s} \delta_{p, k}\right) a_{k, \epsilon}, \quad s=0,1 . \\
c_{p, k}(\omega)=2 \int_{\omega} \sin (k \pi x) \sin (p \pi x) d x, \quad g_{p, k}(T)=\frac{1-e^{-c\left(\lambda_{p}+\lambda_{k}\right) T}}{\lambda_{k}+\lambda_{p}}, \quad \lambda_{k}=(k \pi)^{2}
\end{gathered}
$$

[^2]
Regular perturbation

$$
T=1, \quad y_{T}(x)=e^{-a_{0} \pi^{2} T} \sin (\pi x), \quad a_{0}=1 / 10, \quad \omega=(0.2,0.8)
$$

ϵ	10^{-1}	10^{-3}	10^{-5}	10^{-7}	10^{-9}		
$\left\\|\phi_{T, \epsilon}^{N}\right\\|_{L^{2}(\Omega)}$	5.47×10^{-1}	2.52×10^{0}	1.42×10^{1}	9.20×10^{1}	6.66×10^{2}		
$\left\\|v_{\epsilon}^{N}\right\\|_{L^{2}((0, T) \times \omega)}$	2.23×10^{-1}	3.85×10^{-1}	4.28×10^{-1}	4.43×10^{-1}	4.49×10^{-1}		
$\operatorname{cond}\left(\boldsymbol{\Lambda}_{\boldsymbol{N}, \epsilon}\right)$	5.44×10^{0}	5.87×10^{2}	7.46×10^{4}	7.45×10^{6}	7.18×10^{8}		

Table: $N=80-\left\|v^{N}-v_{\epsilon}^{N}\right\|_{L^{2}((0, T) \times \omega)} \approx O\left(\epsilon^{0.295}\right)$.

Figure: L^{2} regularization for $\epsilon=10^{-7}$ and $N=80$-Left: Adjoint solution $\phi_{T, \epsilon}$ Right: L^{2} - norm of the control vs. t.

Resolution of the optimality condition for $J \star$ via Fourier Series in 1-D

$$
\epsilon=10^{-14}, T=1, \quad y_{T}(x)=e^{-c \pi^{2} T} \sin (\pi x), \quad c=0.1
$$

	$N=10$	$N=20$	$N=40$	$N=80$		
$\left\\|\phi_{T}^{N}\right\\|_{L^{2}(\Omega)}$	4.27	3.22×10^{1}	1.68×10^{3}	5.38×10^{6}		
$\left\\|\phi^{N} \mathcal{X}_{\omega}\right\\|_{L^{2}\left(Q_{T}\right)}$	4.194×10^{-1}	4.410×10^{-1}	4.526×10^{-1}	4.586×10^{-1}		

Figure: $T=1-\omega=(0.2,0.8)-\phi_{T}^{N}$ for $N=80$ on Ω (Left) and on ω (Right).

Optimal ϕ on $\partial \omega$

$$
T=1, \quad y_{0}(x)=\sin (\pi x), \quad a(x)=a_{0}=1 / 10, \quad \omega=(0.2,0.8)
$$

Figure: $T=1-\omega=(0.2,0.8)-\phi^{N}(\cdot, 0.8)$ for $N=80$ on $[0, T]$ (Left) and on $[0.92 T, T]$ (Right).

Minimization of J_{h}^{\star} in $L^{2}(0,1)$ using a conjugate gradient method

$$
T=1, \quad y_{0}(x)=\sin (\pi x), \quad a(x)=a_{0}=1 / 10, \quad \omega=(0.2,0.8)
$$

h	1/20	1/40	1/80	1/160				
\# Iteration	36	218	574	1588				
$\left\\|v_{h}\right\\|_{L^{2}((0, T) \times \omega)}$	4.05×10^{-1}	4.322×10^{-1}	4.426×10^{-1}	4.492×10^{-1}				
$\left\\|y_{h}(T, \cdot)-y_{T h}\right\\|_{L^{2}(\Omega)}$	2.11×10^{-9}	1.58×10^{-9}	2.65×10^{-9}	2.35×10^{-9}				
$\frac{\left\\|\phi_{h}(0, x)\right\\|_{L^{2}(\Omega)}^{2}}{\left\\|\phi_{h} \mathcal{X}_{\omega}\right\\|_{L^{2}\left(Q_{T}\right)}^{2}}$	4.072×10^{-1}	4.329×10^{-1}	4.429×10^{-1}	4.439×10^{-1}				

Table: Semi-discrete scheme $\omega=(0.2,0.8)-\Omega=(0,1)-T=1$.
\Longrightarrow The conditioning number of the problem blows up exponentially w.r.t. $1 / h$.

Minimization of $J \star$ by a conjugate gradient method

Figure: Semi-discrete scheme $-h=1 / 80$ - Evolution of the residu w.r.t. the iteration of the GC algorithm

Lack of uniform observability vs. ill-posedness

$$
\begin{gathered}
C_{1 h}\left\|\phi_{h}(0)\right\|_{L^{2}(\Omega)}^{2} \leq \int_{0}^{T} \int_{\omega} \phi_{h}^{2}(t, x) d x d t \leq C_{2 h}\left\|\phi_{h}(0)\right\|_{L^{2}(\Omega)}^{2}, \quad \forall \phi_{T h} \in L^{2}(\Omega) \\
\operatorname{cond}\left(\Lambda_{h}\right) \leq C_{1 h}^{-1} C_{2 h} h^{-2} \\
C_{2 h} \rightarrow \infty \quad h \rightarrow 0
\end{gathered}
$$

(more in [AM-Zuazua, Inverse Problems 2010]).

Regular and singular perturbation of the controllability problem

Other regularization / perturbation are considered in [AM-Zuazua'10] 1- Replace the heat equation by the hyperbolic equation

$$
y_{\epsilon, t}-c y_{\epsilon, x x}+\epsilon \boldsymbol{y}_{\epsilon, t t}=v_{\epsilon} 1_{\omega}, \quad \text { in } \quad Q_{T},
$$

2- Singular (non uniformly controllable w.r.t. ε) perturbation

$$
y_{\epsilon, t}-c y_{\epsilon, x x}-\epsilon \boldsymbol{y}_{\epsilon, t x x}=v_{\epsilon} 1_{\omega} \quad \text { in } \quad Q_{T} .
$$

\Longrightarrow The main open issue is to characterize deeper the space $H!!$

$$
\left(P_{\infty}\right) \inf _{(y, v) \in \mathcal{C}\left(y_{0}, T\right)} J(v, y)=\|v\|_{L \infty\left(q_{T}\right)}
$$

\Longrightarrow Bang-Bang control (piecewise constant in q_{T}) [Fabre-Puel-Zuazua,95] ${ }^{3}$

Figure: $y_{0}(x)=\sin (2 \pi x)-a_{0}=1 / 10-s^{\prime}=1 .-\omega=(0.2,0.8)$ - Iso-values of the control function $v_{h} \in Q_{T}$.

[^3]
Remark for the L^{∞} - case

\Longrightarrow Set $v=\left[\lambda \mathcal{X}_{\mathcal{O}}+(-\lambda)\left(1-\mathcal{X}_{\mathcal{O}}\right)\right]{ }_{\omega}{ }_{\omega}$
\Longrightarrow Reformulate $\left(P_{\infty}\right)$ as follows :

$$
\left(T_{\infty}\right)\left\{\begin{array}{l}
\text { Minimize } \lambda^{2} \\
\text { Subject to }\left(\lambda, \mathcal{X}_{\mathcal{O}}\right) \in \mathcal{D}\left(y_{0}, T\right)
\end{array}\right.
$$

$\mathcal{D}\left(y_{0}, T\right)=\left\{\left(\lambda, \mathcal{X}_{\mathcal{O}}\right) \in \mathbb{R}^{+} \times L^{\infty}\left(Q_{T},\{0,1\}\right) y=y\left(\lambda, \mathcal{X}_{\mathcal{O}}\right)\right.$ solves (??) and $\left.\|y(T)\|_{L^{2}(\Omega)}=0\right\}$ with

$$
\left\{\begin{array}{lr}
y_{t}-\left(a(x) y_{x}\right)_{x}=\left[\lambda \mathcal{X}_{\mathcal{O}}+(-\lambda)\left(1-\mathcal{X}_{\mathcal{O}}\right)\right] 1_{\omega}, & (x, t) \in Q_{T} \tag{2}\\
y(x, t)=0, & (x, t) \in\{0,1\} \times(0, T) \\
y(x, 0)=y_{0}(x), & x \in(0,1)
\end{array}\right.
$$

\Longrightarrow Relaxation of the (time dependent) optimal design problem (T_{∞}) and capture of the oscillation near T via time-dependent density and (Young) measure ${ }^{4}$.

[^4]
Part II

Change of the norm : framework of Fursikov-Imanuvilov'96 ${ }^{5}$
$\left\{\begin{array}{l}\text { Minimize } J(y, v)=\frac{1}{2} \iint_{Q_{T}} \rho^{2}|y|^{2} d x d t+\frac{1}{2} \iint_{q_{T}} \rho_{0}^{2}|v|^{2} d x d t\end{array}\right.$ Subject to $(y, v) \in \mathcal{C}\left(y_{0}, T\right)$.
where ρ, ρ_{0} are non-negative continuous weights functions such that $\rho, \rho_{0} \in L^{\infty}\left(Q_{T-\delta}\right) \quad \forall \delta>0$.

[^5]
Primal (direct) approach

Following Fursikov-Imanuvilov'96, we assume Carleman type weights :
$\left\{\begin{array}{l}\rho(x, t)=\exp \left(\frac{\beta(x)}{T-t}\right), \quad \rho_{0}(x, t)=(T-t)^{3 / 2} \rho(x, t), \quad \beta(x)=K_{1}\left(e^{K_{2}}-e^{\beta_{0}(x)}\right)\end{array}\right.$ where the K_{i} are sufficiently large positive constants (depending on T, a_{0} and $\|a\|_{C^{1}}$)
and $\beta_{0} \in C^{\infty}([0,1]), \beta_{0}>0$ in $(0,1), \beta_{0}(0)=\beta_{0}(1)=0,\left|\beta_{0}^{\prime}\right|>0$ outside ω.
We introduce

$$
\begin{equation*}
P_{0}=\left\{q \in C^{2}\left(\bar{Q}_{T}\right): q=0 \text { on } \Sigma_{T}\right\} . \tag{4}
\end{equation*}
$$

In this linear space, the bilinear form

$$
(p, q)_{p}:=\iint_{Q_{T}} \rho^{-2} L^{*} p L^{*} q d x d t+\iint_{q_{T}} \rho_{0}^{-2} p q d x d t
$$

with $L^{*} p=-p_{t}-\left(a(x) p_{x}\right)_{x}$, is a scalar product (unique continuation property).
Let P be the completion of P_{0} for this scalar product.

Primal (direct) approach

Following Fursikov-Imanuvilov'96, we assume Carleman type weights :
$\left\{\begin{array}{l}\rho(x, t)=\exp \left(\frac{\beta(x)}{T-t}\right), \quad \rho_{0}(x, t)=(T-t)^{3 / 2} \rho(x, t), \quad \beta(x)=K_{1}\left(e^{K_{2}}-e^{\beta_{0}(x)}\right)\end{array}\right.$ where the K_{i} are sufficiently large positive constants (depending on T, a_{0} and $\|a\|_{C^{1}}$)
and $\beta_{0} \in C^{\infty}([0,1]), \beta_{0}>0$ in $(0,1), \beta_{0}(0)=\beta_{0}(1)=0,\left|\beta_{0}^{\prime}\right|>0$ outside ω.
We introduce

$$
\begin{equation*}
P_{0}=\left\{q \in C^{2}\left(\bar{Q}_{T}\right): q=0 \text { on } \Sigma_{T}\right\} . \tag{4}
\end{equation*}
$$

In this linear space, the bilinear form

$$
(p, q)_{P}:=\iint_{Q_{T}} \rho^{-2} L^{*} p L^{*} q d x d t+\iint_{q_{T}} \rho_{0}^{-2} p q d x d t
$$

with $L^{*} p=-p_{t}-\left(a(x) p_{x}\right)_{x}$, is a scalar product (unique continuation property).
Let P be the completion of P_{0} for this scalar product.

Carleman estimates

Lemma (Fursikov-Imanuvilov'96)
Let ρ and ρ_{0} be given by (??). Let us also set

$$
\begin{equation*}
\rho_{1}(x, t)=(T-t)^{1 / 2} \rho(x, t), \quad \rho_{2}(x, t)=(T-t)^{-1 / 2} \rho(x, t) . \tag{5}
\end{equation*}
$$

Then there exists $C>0$, only depending on ω, T, a_{0} and $\|a\|_{C^{1}}$, such that

$$
\left\{\begin{align*}
\iint_{Q_{T}}\left[\rho_{2}^{-2}\right. & \left.\left(\left|q_{t}\right|^{2}+\left|q_{x x}\right|^{2}\right)+\rho_{1}^{-2}\left|q_{x}\right|^{2}+\rho_{0}^{-2}|q|^{2}\right] d x d t \tag{6}\\
& \leq C\left(\iint_{Q_{T}} \rho^{-2}\left|L^{*} q\right|^{2} d x d t+\iint_{q_{T}} \rho_{0}^{-2}|q|^{2} d x d t\right), \forall q \in P
\end{align*}\right.
$$

Lemma (Fursikov-Imanuvilov 96, Fernández-Cara-Guerrero 06)
Under the same assumptions, for any $\delta>0$, one has

$$
P \hookrightarrow C^{0}\left([0, T-\delta] ; H_{0}^{1}(0,1)\right),
$$

where the embedding is continuous. In particular, there exists $C>0$, only depending on ω, T, a_{0} and $\|a\|_{C^{1}}$, such that

Carleman estimates

Lemma (Fursikov-Imanuvilov'96)

Let ρ and ρ_{0} be given by (??). Let us also set

$$
\begin{equation*}
\rho_{1}(x, t)=(T-t)^{1 / 2} \rho(x, t), \quad \rho_{2}(x, t)=(T-t)^{-1 / 2} \rho(x, t) . \tag{5}
\end{equation*}
$$

Then there exists $C>0$, only depending on ω, T, a_{0} and $\|a\|_{C^{1}}$, such that

$$
\left\{\begin{align*}
\iint_{Q_{T}}\left[\rho_{2}^{-2}\right. & \left.\left(\left|q_{t}\right|^{2}+\left|q_{x x}\right|^{2}\right)+\rho_{1}^{-2}\left|q_{x}\right|^{2}+\rho_{0}^{-2}|q|^{2}\right] d x d t \tag{6}\\
& \leq C\left(\iint_{Q_{T}} \rho^{-2}\left|L^{*} q\right|^{2} d x d t+\iint_{q_{T}} \rho_{0}^{-2}|q|^{2} d x d t\right), \forall q \in P
\end{align*}\right.
$$

Lemma (Fursikov-Imanuvilov'96, Fernández-Cara-Guerrero'06)
Under the same assumptions, for any $\delta>0$, one has

$$
P \hookrightarrow C^{0}\left([0, T-\delta] ; H_{0}^{1}(0,1)\right)
$$

where the embedding is continuous. In particular, there exists $C>0$, only depending on ω, T, a_{0} and $\|a\|_{C^{1}}$, such that

$$
\begin{equation*}
\|q(\cdot, 0)\|_{H_{0}^{1}(0,1)}^{2} \leq C\left(\iint_{Q_{T}} \rho^{-2}\left|L^{*} q\right|^{2} d x d t+\iint_{q_{T}} \rho_{0}^{-2}|q|^{2} d x d t\right) \tag{7}
\end{equation*}
$$

for all $q \in P$.

Primal (direct) approach

Let ρ and ρ_{0} be given by (??). Let (y, v) be the corresponding optimal pair for J. Then there exists $p \in P$ such that

$$
\begin{equation*}
y=\rho^{-2} L^{*} p \equiv \rho^{-2}\left(-p_{t}-\left(a(x) p_{x}\right)_{x}\right), \quad v=-\left.\rho_{0}^{-2} p\right|_{q_{T}} . \tag{8}
\end{equation*}
$$

The function p is the unique solution in P of

$$
\begin{equation*}
\iint_{Q_{T}} \rho^{-2} L^{*} p L^{*} q d x d t+\iint_{q_{T}} \rho_{0}^{-2} p q d x d t=\int_{0}^{1} y_{0}(x) q(x, 0) d x, \quad \forall q \in P \tag{9}
\end{equation*}
$$

p solves, at least in \mathcal{D}^{\prime}, the following differential problem, that is second order in time and fourth order in space:

Primal (direct) approach

Let ρ and ρ_{0} be given by (??). Let (y, v) be the corresponding optimal pair for J. Then there exists $p \in P$ such that

$$
\begin{equation*}
y=\rho^{-2} L^{*} p \equiv \rho^{-2}\left(-p_{t}-\left(a(x) p_{x}\right)_{x}\right), \quad v=-\left.\rho_{0}^{-2} p\right|_{q_{T}} . \tag{8}
\end{equation*}
$$

The function p is the unique solution in P of

$$
\begin{equation*}
\iint_{Q_{T}} \rho^{-2} L^{*} p L^{*} q d x d t+\iint_{q_{T}} \rho_{0}^{-2} p q d x d t=\int_{0}^{1} y_{0}(x) q(x, 0) d x, \quad \forall q \in P \tag{9}
\end{equation*}
$$

Remark

p solves, at least in \mathcal{D}^{\prime}, the following differential problem, that is second order in time and fourth order in space:

$$
\left\{\begin{array}{lr}
L\left(\rho^{-2} L^{*} p\right)+\rho_{0}^{-2} p 1_{\omega}=0, & (x, t) \in(0,1) \times(0, T) \\
p(x, t)=0, \quad\left(-\rho^{-2} L^{*} p\right)(x, t)=0 & (x, t) \in\{0,1\} \times(0, T) \tag{10}\\
\left(-\rho^{-2} L^{*} p\right)(x, 0)=y_{0}(x), \quad\left(-\rho^{-2} L^{*} p\right)(x, T)=0, & x \in(0,1)
\end{array}\right.
$$

The "boundary" conditions at $t=0$ and $t=T$ appear in (??) as Neumann conditions.

Conformal discretization

For large integers N_{x} and N_{t}, we set $\Delta x=1 / N_{x}, \Delta t=T / N_{t}$ and $h=(\Delta x, \Delta t)$. Let us introduce the associated uniform quadrangulations \mathcal{Q}_{h}, with

$$
Q_{T}=\bigcup_{K \in \mathcal{Q}_{h}} K
$$

The following (conformal) finite element approximations of the space P are introduced:

$$
\begin{equation*}
P_{h}=\left\{q_{h} \in P:\left.q_{h}\right|_{K} \in\left(\mathbb{P}_{3, x} \otimes \mathbb{P}_{1, t}\right)(K) \quad \forall K \in \mathcal{Q}_{h}\right\} . \tag{11}
\end{equation*}
$$

Here, $\mathbb{P}_{\ell, \xi}$ denotes the space of polynomial functions of order ℓ in the variable ξ. Notice that

$$
P_{h}=\left\{q_{h} \in C_{x, t}^{1,0}\left(\bar{Q}_{T}\right):\left.q_{h}\right|_{K} \in\left(\mathbb{P}_{3, x} \otimes \mathbb{P}_{1, t}\right)(K) \forall K \in \mathcal{Q}_{h},\left.\quad q_{h}\right|_{\Sigma_{T}} \equiv 0\right\}
$$

where $C_{x, t}^{1,0}\left(\bar{Q}_{T}\right)$ is the space of the functions in $C^{0}\left(\bar{Q}_{T}\right)$ that are continuously differentiable with respect to x in \bar{Q}_{T}.
The variational equality (??) is approximated as follows:

Conformal discretization

For large integers N_{x} and N_{t}, we set $\Delta x=1 / N_{x}, \Delta t=T / N_{t}$ and $h=(\Delta x, \Delta t)$. Let us introduce the associated uniform quadrangulations \mathcal{Q}_{h}, with

$$
Q_{T}=\bigcup_{K \in \mathcal{Q}_{h}} K
$$

The following (conformal) finite element approximations of the space P are introduced:

$$
\begin{equation*}
P_{h}=\left\{q_{h} \in P:\left.q_{h}\right|_{K} \in\left(\mathbb{P}_{3, x} \otimes \mathbb{P}_{1, t}\right)(K) \forall K \in \mathcal{Q}_{h}\right\} \tag{11}
\end{equation*}
$$

Here, $\mathbb{P}_{\ell, \xi}$ denotes the space of polynomial functions of order ℓ in the variable ξ. Notice that

$$
P_{h}=\left\{q_{h} \in C_{x, t}^{1,0}\left(\bar{Q}_{T}\right):\left.q_{h}\right|_{K} \in\left(\mathbb{P}_{3, x} \otimes \mathbb{P}_{1, t}\right)(K) \forall K \in \mathcal{Q}_{h},\left.\quad q_{h}\right|_{\Sigma_{T}} \equiv 0\right\}
$$

where $C_{x, t}^{1,0}\left(\bar{Q}_{T}\right)$ is the space of the functions in $C^{0}\left(\bar{Q}_{T}\right)$ that are continuously differentiable with respect to x in \bar{Q}_{T}.
The variational equality (??) is approximated as follows:

$$
\left\{\begin{array}{l}
\iint_{Q_{T}} \rho^{-2} L^{*} p_{h} L^{*} q_{h} d x d t+\iint_{q_{T}} \rho_{0}^{-2} p_{h} q_{h} d x d t=\int_{0}^{1} y_{0}(x) q_{h}(x, 0) d x \tag{12}\\
\forall q_{h} \in P_{h} ; \quad p_{h} \in P_{h}
\end{array}\right.
$$

Experiment with $\omega=(0.2,0.8)$

$\Delta x=\Delta t$	$1 / 20$	$1 / 40$	$1 / 80$	$1 / 160$	$1 / 320$		
conditioning	1.33×10^{14}	1.76×10^{22}	7.86×10^{32}	2.17×10^{44}	2.30×10^{54}		
$\left\\|p_{h}(\cdot, T)\right\\|_{L^{2}(0,1)}$	2.85×10^{1}	2.04×10^{2}	1.59×10^{3}	4.70×10^{4}	6.12×10^{6}		
$\left\\|y_{h}(\cdot, T)\right\\|_{L^{2}(0,1)}$	4.37×10^{-2}	2.18×10^{-2}	1.09×10^{-2}	5.44×10^{-3}	2.71×10^{-3}		
$\left\\|v_{h}\right\\|_{L^{2}\left(q_{T}\right)}$	1.228	1.251	1.269	1.281	1.288		

Table: $T=1 / 2, y_{0}(x) \equiv \sin (\pi x), a(x) \equiv 10^{-1} .\left\|y_{h}(\cdot, T)\right\|_{L^{2}(0,1)}=\mathcal{O}(h)$.

Figure: $\omega=(0.2,0.8)$. The adjoint state p_{h} and its restriction to $(0,1) \times\{T\}$.

Experiments with $\omega=(0.2,0.8)$

Figure: $\omega=(0.2,0.8)$. The state y_{h} (Left) and the control v_{h} (Right).

Experiments with $\omega=(0.3,0.4)$

$\Delta x=\Delta t$	$1 / 20$	$1 / 40$	$1 / 80$	$1 / 160$	$1 / 320$		
conditioning	3.06×10^{14}	5.24×10^{22}	2.13×10^{33}	5.11×10^{44}	4.03×10^{54}		
$\left\\|p_{h}(\cdot, T)\right\\|_{L^{2}(0,1)}$	1.37×10^{3}	5.51×10^{3}	5.12×10^{4}	2.16×10^{6}	3.90×10^{6}		
$\left\\|y_{h}(\cdot, T)\right\\|_{L^{2}(0,1)}$	1.55×10^{-1}	9.46×10^{-2}	6.12×10^{-2}	3.91×10^{-2}	2.41×10^{-2}		
$\left\\|v_{h}\right\\|_{L^{2}\left(q_{T}\right)}$	5.813	8.203	10.68	13.20	15.81		

Table: $T=1 / 2, y_{0}(x) \equiv \sin (\pi x), a(x) \equiv 10^{-1} .\left\|y_{h}(\cdot, T)\right\|_{L^{2}(0,1)}=\mathcal{O}\left(h^{0.66}\right)$.

Figure: $\omega=(0.3,0.4)$. The adjoint state p_{h} in Q_{T} (Left) and its restriction to $(0,1) \times\{T\}$ (Right).

Figure: $\omega=(0.3,0.4)$. The state y_{h} (Left) and the control v_{h} (Right).

Avoiding C^{1} finite element in space : Mixed formulation

We keep the variable $y=\rho^{-2} L^{\star} p$ explicit, introduce $z=\rho^{-2} L^{\star} q$ and we transform the formulation : find $p \in P$ s.t.

$$
\iint_{Q_{T}} \rho^{-2} L^{*} p L^{*} q d x d t+\iint_{q_{T}} \rho_{0}^{-2} p q d x d t=\int_{0}^{1} y_{0}(x) q(x, 0) d x, \quad \forall q \in P
$$

into : find $(p, y) \in P \times Z$ s.t.

$$
\left\{\begin{array}{l}
\iint_{Q_{T}} \rho^{2} y z d x d t+\iint_{q_{T}} \rho_{0}^{-2} p q d x d t=\int_{0}^{1} y_{0}(x) q(x, 0) d x \\
\forall(z, q) \text { with } L^{\star} q-\rho^{2} z=0 \text { and } q \in P ; \quad(y, v) \text { with } L^{\star} p-\rho^{2} y=0 \text { and } p \in P .
\end{array}\right.
$$

Avoiding C^{1} finite element in space : Mixed formulation

We keep the variable $y=\rho^{-2} L^{\star} p$ explicit, introduce $z=\rho^{-2} L^{\star} q$ and we transform the formulation : find $p \in P$ s.t.

$$
\iint_{Q_{T}} \rho^{-2} L^{*} p L^{*} q d x d t+\iint_{q_{T}} \rho_{0}^{-2} p q d x d t=\int_{0}^{1} y_{0}(x) q(x, 0) d x, \quad \forall q \in P
$$

into: find $(p, y) \in P \times Z$ s.t.

$$
\left\{\begin{array}{l}
\iint_{Q_{T}} \rho^{2} y z d x d t+\iint_{q_{T}} \rho_{0}^{-2} p q d x d t=\int_{0}^{1} y_{0}(x) q(x, 0) d x \\
\forall(z, q) \text { with } L^{\star} q-\rho^{2} z=0 \text { and } q \in P ; \quad(y, v) \text { with } L^{\star} p-\rho^{2} y=0 \text { and } p \in P .
\end{array}\right.
$$

and then into: find $(p, y, \lambda) \in P \times Z \times Z$ s.t.

$$
\left\{\begin{array}{l}
\iint_{Q_{T}} \rho^{2} y z d x d t+\iint_{q_{T}} \rho_{0}^{-2} p q d x d t+\iint_{Q_{T}} \lambda\left(L^{\star} q-\rho^{2} z\right) d x d t=\int_{0}^{1} y_{0}(x) q(x, 0) d x \\
\iint_{Q_{T}} \mu\left(L^{\star} p-\rho^{2} y\right) d x d t=0
\end{array}\right.
$$

Avoiding C^{1} finite element in space : Mixed formulation

Let us introduce the space

$$
Z=L^{2}\left(\rho^{2} ; Q_{T}\right)=\left\{z \in L_{\mathrm{loc}}^{1}\left(Q_{T}\right): \iint_{Q_{T}} \rho^{2}|z|^{2} d x d t<+\infty\right\}
$$

the bilinear forms

$$
a((y, p),(z, q))=\iint_{Q_{T}} \rho^{2} y z d x d t+\iint_{q_{T}} \rho_{0}^{-2} p q d x d t \quad \forall(y, p),(z, q) \in Z \times P
$$

and

$$
b((z, q), \mu)=\iint_{Q_{T}}\left(L^{*} q-\rho^{2} z\right) \mu d x d t \quad \forall(z, q) \in Z \times P, \quad \forall \mu \in Z
$$

and the linear form

$$
\langle\ell,(z, q)\rangle=\int_{0}^{1} y_{0}(x) q(x, 0) d x \quad \forall(z, q) \in Z \times P
$$

Then $a(\cdot, \cdot), b(\cdot, \cdot)$ and ℓ are well-defined and continuous and the announced mixed formulation is the following:

Avoiding C^{1} finite element in space : Mixed formulation

Let us introduce the space

$$
Z=L^{2}\left(\rho^{2} ; Q_{T}\right)=\left\{z \in L_{\mathrm{loc}}^{1}\left(Q_{T}\right): \iint_{Q_{T}} \rho^{2}|z|^{2} d x d t<+\infty\right\}
$$

the bilinear forms

$$
a((y, p),(z, q))=\iint_{Q_{T}} \rho^{2} y z d x d t+\iint_{q_{T}} \rho_{0}^{-2} p q d x d t \quad \forall(y, p),(z, q) \in Z \times P
$$

and

$$
b((z, q), \mu)=\iint_{Q_{T}}\left(L^{*} q-\rho^{2} z\right) \mu d x d t \quad \forall(z, q) \in Z \times P, \quad \forall \mu \in Z
$$

and the linear form

$$
\langle\ell,(z, q)\rangle=\int_{0}^{1} y_{0}(x) q(x, 0) d x \quad \forall(z, q) \in Z \times P
$$

Then $a(\cdot, \cdot), b(\cdot, \cdot)$ and ℓ are well-defined and continuous and the announced mixed formulation is the following:

$$
\left\{\begin{array}{rlrl}
a((y, p),(z, q))+b((z, q), \lambda) & =\langle\ell,(z, q)\rangle & & \forall(z, q) \in Z \times P \tag{13}\\
b((y, p), \mu) & =0 & & \forall \mu \in Z \\
(y, p) \in Z \times P, \quad \lambda \in Z & &
\end{array}\right.
$$

Theorem

There exists a unique solution (y, p, λ) to (??). Moreover, y is, together with $v=\left.\rho_{0}^{-2} p\right|_{q_{T}}$, the unique solution to (??).

Proof: Let us introduce the space

$$
V=\{(z, q) \in Z \times P: b((z, q), \mu)=0 \quad \forall \mu \in Z\}
$$

- $a(\cdot, \cdot)$ is coercive on V, that is:

$$
a((z, q),(z, q)) \geq \kappa\|(z, q)\|_{Z \times P}^{2} \quad \forall(z, q) \in V, \quad \kappa>0 .
$$

- $b(\cdot$,$) satisfies the usual "inf-sup" condition with respect to Z \times P$ and Z, i.e.

There exists a unique solution (y, p, λ) to (??). Moreover, y is, together with $v=\left.\rho_{0}^{-2} p\right|_{q_{T}}$, the unique solution to (??).

Proof: Let us introduce the space

$$
V=\{(z, q) \in Z \times P: b((z, q), \mu)=0 \quad \forall \mu \in Z\}
$$

- $a(\cdot, \cdot)$ is coercive on V, that is:

$$
\begin{equation*}
a((z, q),(z, q)) \geq \kappa\|(z, q)\|_{Z \times P}^{2} \quad \forall(z, q) \in V, \quad \kappa>0 \tag{14}
\end{equation*}
$$

- b(.,.) satisfies the usual "inf-sup" condition with respect to $Z \times P$ and Z, i.e.

There exists a unique solution (y, p, λ) to (??). Moreover, y is, together with $v=\left.\rho_{0}^{-2} p\right|_{q_{T}}$, the unique solution to (??).

Proof: Let us introduce the space

$$
V=\{(z, q) \in Z \times P: b((z, q), \mu)=0 \quad \forall \mu \in Z\}
$$

- $a(\cdot, \cdot)$ is coercive on V, that is:

$$
\begin{equation*}
a((z, q),(z, q)) \geq \kappa\|(z, q)\|_{Z \times P}^{2} \quad \forall(z, q) \in V, \quad \kappa>0 . \tag{14}
\end{equation*}
$$

- $b(\cdot, \cdot)$ satisfies the usual "inf-sup" condition with respect to $Z \times P$ and Z, i.e.

$$
\begin{equation*}
\beta:=\inf _{\mu \in Z} \sup _{(z, q) \in Z \times P} \frac{b((z, q), \mu)}{\|(z, q)\|_{Z \times P}\|\mu\|_{Z}}>0 \tag{15}
\end{equation*}
$$

Mixed formulation : a non conformal approximation

For any $h=(\Delta x, \Delta t)$ as before, let us consider again the associated uniform quadrangulation \mathcal{Q}_{h}. We now introduce the following finite dimensional spaces:

$$
\begin{aligned}
z_{h} & =\left\{z_{h} \in C^{0}\left(\bar{Q}_{T}\right):\left.z_{h}\right|_{K} \in\left(\mathbb{P}_{1, x} \otimes \mathbb{P}_{1, t}\right)(K) \forall K \in \mathcal{Q}_{h}, \quad z_{h} \in Z\right\} \\
Q_{h} & =\left\{q_{h} \in C^{0}\left(\bar{Q}_{T}\right):\left.q_{h}\right|_{K} \in\left(\mathbb{P}_{1, x} \otimes \mathbb{P}_{1, t}\right)(K) \forall K \in \mathcal{Q}_{h},\left.\quad q_{h}\right|_{T} \equiv 0\right\}
\end{aligned}
$$

We have $Z_{h} \subset Z$ but, contrarily, $Q_{h} \not \subset P$. Let us introduce the bilinear form

$$
\left\{\begin{array}{l}
b_{h}\left(\left(z_{h}, q_{h}\right), \mu_{h}\right)=\iint_{Q_{T}}\left(-\left(q_{h}\right)_{t} \mu_{h}+a(x)\left(q_{h}\right)_{x}\left(\mu_{h}\right)_{x}-\rho^{2} z_{h} \mu_{h}\right) d x d t \\
\forall\left(z_{h}, q_{h}\right) \in z_{h} \times Q_{h}, \forall \mu_{h} \in Z_{h} .
\end{array}\right.
$$

Then the mixed finite element approximation of (??) is the following:

$$
\left\{\begin{array}{rll}
a\left(\left(y_{h}, p_{h}\right),\left(z_{h}, q_{h}\right)\right)+b_{h}\left(\left(z_{h}, q_{h}\right), \lambda_{h}\right) & =\left\langle\ell,\left(z_{h}, q_{h}\right)\right\rangle & \forall\left(z_{h}, q_{h}\right) \in Z_{h} \times Q_{h} \tag{16}\\
b\left(\left(y_{h}, p_{h}\right), \mu_{h}\right) & =0 & \forall \mu_{h} \in Z_{h} \\
\left(y_{h}, p_{h}\right) \in Z_{h} \times Q_{h}, \quad \lambda_{h} \in Z_{h} . & &
\end{array}\right.
$$

$$
\begin{align*}
& a((y, p),(z, q))=\iint_{Q_{T}} \rho^{2} y z d x d t+\iint_{Q_{T}} \rho_{0}^{-2} p q d x d t \quad \forall(y, p),(z, q) \in Z \times P \\
& \rho(x, t) \rightarrow \rho_{\eta}(x, t)=\exp \left(\frac{\beta(x)}{T-t+\eta}\right), \quad \rho_{0, \eta}(x, t)=(T-t+\eta)^{3 / 2} \rho_{\eta}(x, t) . \tag{17}
\end{align*}
$$

$\Delta x=\Delta t$	$1 / 40$	$1 / 80$	$1 / 160$	$1 / 320$		
conditioning	1.68×10^{119}	6.55×10^{127}	3.76×10^{117}	1.47×10^{116}		
$\left\\|p_{h}(\cdot, T)\right\\|_{L^{2}(0,1)}$	1.91×10^{43}	2.37×10^{43}	2.14×10^{43}	8.59×10^{43}		
$\left\\|y_{h}(\cdot, T)\right\\|_{L^{2}(0,1)}$	1.84×10^{-12}	7.64×10^{-13}	2.77×10^{-13}	1.36×10^{-11}		
$\left\\|v_{h}\right\\|_{L^{2}\left(q_{T}\right)}$	1.272	1.275	1.282	1.289		

Table: Mixed approach imposing $y_{h}(\cdot, 0)=y_{0 h}, \omega=(0.2,0.8), \eta=10^{-2}$, $y_{0}(x) \equiv \sin (\pi x), a(x) \equiv 10^{-1}$.

Mixed formulation :A nonconstant C^{1} diffusion

$$
\begin{equation*}
y_{0}(x)=\sin (\pi x), T=1 / 2, a \in C^{1}([0,1]), a(x)=1 \text { in }(0,0.45), a(x)=1 / 15 \text { in }(0.55,1) \tag{18}
\end{equation*}
$$

Figure: $\omega=(0.3,0.6)$, nonconstant C^{1} coefficient a; first case. The state y_{h} (Left) and the control v_{h} (Right).

$\Delta x=\Delta t$	$1 / 40$	$1 / 80$	$1 / 160$	$1 / 320$		
conditioning	$1.05 \times 10^{3 /}$	2.02×10^{36}	7.80×10^{35}	2.49×10^{35}		
$\left\\|p_{h}(\cdot, T)\right\\|_{L^{2}(0,1)}$	2.15×10^{8}	3.71×10^{8}	7.56×10^{8}	2.31×10^{9}		
$\left\\|y_{h}(\cdot, T)\right\\|_{L^{2}(0,1)}$	1.97×10^{-9}	2.93×10^{-9}	6.62×10^{-9}	1.21×10^{-8}		
$\left\\|v_{h}\right\\|_{L^{2}\left(q_{T}\right)}$	5.721	6.159	6.4721	6.550		

Mixed formulation : A nonconstant C^{1} diffusion

$$
\begin{equation*}
y_{0}(x)=\sin (\pi x), T=1 / 2, a \in C^{1}([0,1]), a(x)=1 / 15 \text { in }(0,0.45), a(x)=1 \text { in }(0.55,1) \tag{19}
\end{equation*}
$$

Figure: $\omega=(0.3,0.6)$, nonconstant C^{1} coefficient a; second case. The state y_{h} (Left) and the control v_{h} (Right).

$\Delta x=\Delta t$	$1 / 40$	$1 / 80$	$1 / 160$	$1 / 320$		
conditioning	2.82×10^{37}	1.73×10^{36}	7.07×10^{35}	8.31×10^{35}		
$\left\\|p_{h}(\cdot, T)\right\\|_{L^{2}(0,1)}$	3.95×10^{7}	4.28×10^{7}	8.09×10^{7}	2.51×10^{8}		
$\left\\|y_{h}(\cdot, T)\right\\|_{L^{2}(0,1)}$	4.92×10^{-10}	3.26×10^{-10}	7.68×10^{-10}	2.94×10^{-9}		
$\left\\|v_{h}\right\\|_{L^{2}\left(q_{T}\right)}$	1.704	1.796	1.872	1.890		

Table: Mixed approach imposing $y_{h}(\cdot, 0)=y_{0 h}, \omega=(0.3,0.6), \eta=3 \times 10^{-2}, y_{0}(x) \equiv \sin (\pi x)$, nonconstant C^{1} coefficient a. second case: the coefficient is "small" in ω.

Mixed formulation : piecewise constant

[Benabdallah-Dermenjian-Le Rousseau, 2007] ${ }^{6}$

$$
y_{0}(x)=\sin (\pi x), T=1 / 2, \quad, a=a_{1} 1_{D_{1}}+a_{2} 1_{D_{2}} \quad D_{1}=(0,0.5), D_{2}=(0.5,1), \quad\left(a_{1}, a_{2}\right)=(1,1 / 15) .
$$

$$
\omega=(0.1,0.4)
$$

Figure: Piecewise constant diffusion a: The optimal pairs $\left(y_{h}, v_{h}\right)$ for $\omega=(0.1,0.4) .\left\|v_{h}\right\|_{L^{2}\left(q_{T}\right)}=46.56$.

[^6]
Mixed formulation : piecewise constant diffusion

$$
\begin{gathered}
y_{0}(x)=\sin (\pi x), T=1 / 2, \quad, a=a_{1} 1_{D_{1}}+a_{2}{ }^{1} D_{2} \quad D_{1}=(0,0.5), D_{2}=(0.5,1), \quad\left(a_{1}, a_{2}\right)=(1,1 / 15) . \\
\omega=(0.6,0.9)
\end{gathered}
$$

Figure: Piecewise constant diffusion a: The optimal pairs $\left(y_{h}, v_{h}\right)$ for $\omega=(0.6,0.9) .\left\|v_{h}\right\|_{L^{2}\left(q_{T}\right)}=1.35$.
${ }^{7}$ E. Fernandez-Cara, AM Numerical exact controllability of the $1 D$ heat equation: primal algorithms, preprint 2009.

Mixed formulation : non cylindrical situation

Figure: $\Delta x=\Delta t=10^{-2}$ - Null controllability with non cylindrical control domains G_{T} (Top), the computed states y_{h} (Left) and the control v_{h} (Right).

Dual Approach

Use duality to minimize J :

$$
\left\{\begin{array}{l}
\text { Minimize } J(y, v)=\frac{1}{2} \iint_{Q_{T}} \rho^{2}|y|^{2} d x d t+\frac{1}{2} \iint_{q_{T}} \rho_{0}^{2}|v|^{2} d x d t \tag{20}\\
\text { Subject to }(y, v) \in \mathcal{C}\left(y_{0}, T\right)
\end{array}\right.
$$

by

$$
\left\{\begin{array}{l}
\text { Minimize } J_{R, \varepsilon}(y, v)=\frac{1}{2} \iint_{Q_{T}} \rho_{R}^{2}|y|^{2} d x d t+\frac{1}{2} \iint_{Q_{T}} \rho_{0}^{2}|v|^{2} d x d t+\frac{1}{2 \varepsilon}\|y(\cdot, T)\|_{L^{2}}^{2} \\
\text { Subject to }(y, v) \in \mathcal{A}\left(y_{0}, T\right) \tag{21}
\end{array}\right.
$$

where $\rho_{R}=\min (\rho, R)$ and

$$
\mathcal{A}\left(y_{0}, T\right)=\left\{(y, v): v \in L^{2}\left(q_{T}\right), \quad y \text { solves (??) }\right\}
$$

8

[^7]
Conjugate functions $J_{R, \varepsilon}^{\star}$ of $J_{R, \varepsilon}$

$$
\left\{\begin{align*}
& \text { Minimize } J_{R, \varepsilon}^{*}\left(\mu, \varphi_{T}\right)= \frac{1}{2}\left(\iint_{Q_{T}} \rho_{R}^{-2}|\mu|^{2} d x d t+\iint_{q_{T}} \rho_{0}^{-2}|\varphi|^{2} d x d t\right) \\
&+\int_{0}^{1} \varphi(x, 0) y_{0}(x) d x+\frac{\varepsilon}{2}\left\|\varphi_{T}\right\|_{L^{2}}^{2} \tag{22}\\
& \text { Subject to }\left(\mu, \varphi_{T}\right) \in L^{2}\left(Q_{T}\right) \times L^{2}(0,1) .
\end{align*}\right.
$$

where $\varphi=M^{*} \mu+B^{*} \varphi_{T}$, i.e. φ is the solution to

$$
\left\{\begin{array}{lr}
L^{\star} \varphi=-\varphi_{t}-\left(a(x) \varphi_{x}\right)_{x}=\mu, & (x, t) \in(0,1) \times(0, T) \tag{23}\\
\varphi(x, t)=0, & (x, t) \in\{0,1\} \times(0, T) \\
\varphi(x, T)=\varphi_{T}(x), & x \in(0,1) .
\end{array}\right.
$$

The unconstrained extremal problems (??) is the dual problems to (??) in the sense of the Fenchel-Rockafellar theory. Furthermore, (??) and (??) are stable and possess unique solutions. Finally, if we denote by ($y_{R, \varepsilon}, v_{R, \varepsilon}$) the unique solution to (??), we denote by ($\mu_{R, \varepsilon}, \varphi_{T, R, \varepsilon}$) the unique solution to (??) and we set $\varphi_{R, \varepsilon}=M^{*} \mu_{R, \varepsilon}+B^{*} \varphi_{T, R, \varepsilon}$, then the following relations hold:

$$
\begin{equation*}
v_{R, \varepsilon}=\left.\rho_{0}^{-2} \varphi_{R, \varepsilon}\right|_{q_{T}}, \quad y_{R, \varepsilon}=-\rho_{R}^{-2} \mu_{R, \varepsilon}, \quad y_{R, \varepsilon}(\cdot, T)=-\varepsilon \varphi_{T, R, \varepsilon} \tag{24}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
v_{R, \varepsilon} \rightarrow v \text { strongly in } L^{2}\left(q_{T}\right) \text { and } y_{R, \varepsilon} \rightarrow y \text { strongly in } L^{2}\left(Q_{T}\right) \tag{25}
\end{equation*}
$$

as $\varepsilon \rightarrow 0^{+}, R \rightarrow \infty$ where (y, v) minimizes J.

With and Without weights: $\omega=(0.2,0.8)-y_{0}(x)=\sin (\pi x)$

Evolution of the residue (in $\log _{10}$-scale) and $\varphi_{T, h}$ on $(0,1)$ for $\left(\rho, \rho_{0}\right) \equiv(0,1)$

Evolution of the residue (in $\log _{10}$-scale) and $\varphi_{T, R, \varepsilon, h}$ on $(0,1)$ for Carleman type weights with $R=10^{10}$ and $\varepsilon=10^{-10}$.

\Longrightarrow Very low variation of the cost around the minimizer with respect to the high frequencies of $\varphi_{T, R, \varepsilon}$.

A semi-linear situation (in progress)

$$
\left\{\begin{array}{lr}
y_{t}-\left(a(x) y_{x}\right)_{x}+f(y)=v 1_{\omega}, & (x, t) \in(0,1) \times(0, T) \\
y(x, t)=0, & (x, t) \in\{0,1\} \times(0, T) \\
y(x, 0)=y_{0}(x), & x \in(0,1) .
\end{array}\right.
$$

We assume that

$$
\begin{equation*}
\left|f^{\prime}(s)\right| \leq C\left(1+|s|^{p}\right), \quad \text { a.e., with } p \leq 5 \tag{26}
\end{equation*}
$$

so that the system posseses a local (in time) solution. ${ }^{9}$

(Fernandez-Cara and Zuazua'00)

Let $T>0$. Assume that $f(0)=0$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ is locally Lipschitz-continuous and satisfies (??) and

$$
\begin{equation*}
\frac{f(s)}{|s| \log ^{3 / 2}(1+|s|)} \rightarrow 0 \quad \text { as } \quad|s| \rightarrow \infty \tag{27}
\end{equation*}
$$

Then (??) is null controllable at time T; for any $y_{0} \in L^{2}(0,1)$, there exists a control $v \in L^{\infty}\left(q_{T}\right)$ such that $y(T)=0$.

[^8]
Linearization via Newton Method plus iteration

We consider the Newton method for $F(y, v)=\left(y_{t}-\left(a(x) y_{x}\right)_{x}+f(y)-v 1_{\omega}, y(T)\right)$.
Assuming that $\left(y^{n}, v^{n}\right) \in \mathcal{C}\left(y_{0}, T\right)$ is known, solve $\left(y^{n+1}, v^{n+1}\right)$ over $\mathcal{C}\left(y_{0}, T\right)$ the unique solution of the linear extremal problem

where $v^{n+1} \in L^{2}\left(q_{T}\right)$ is a null control for y^{n+1} solution of the

with $G(y)=f^{\prime}(y) \cdot y-f(y)$.
we take

Linearization via Newton Method plus iteration

We consider the Newton method for $F(y, v)=\left(y_{t}-\left(a(x) y_{x}\right)_{x}+f(y)-v 1_{\omega}, y(T)\right)$.
Assuming that $\left(y^{n}, v^{n}\right) \in \mathcal{C}\left(y_{0}, T\right)$ is known, solve $\left(y^{n+1}, v^{n+1}\right)$ over $\mathcal{C}\left(y_{0}, T\right)$ the unique solution of the linear extremal problem :

$$
\text { Minimize } J\left(y^{n+1}, v^{n+1}\right)=\frac{1}{2} \iint_{Q_{T}} \rho^{2}\left|y^{n+1}\right|^{2} d x d t+\frac{1}{2} \iint_{q_{T}} \rho_{0}^{2}\left|v^{n+1}\right|^{2} d x d t
$$

where $v^{n+1} \in L^{2}\left(q_{T}\right)$ is a null control for y^{n+1} solution of the

$$
\left\{\begin{array}{lr}
y_{t}^{n+1}-\left(a(x) y_{x}^{n+1}\right)_{x}+f^{\prime}\left(y^{n}\right) \cdot y^{n+1}=v^{n+1} 1_{\omega}+G\left(y^{n}\right), & (x, t) \in(0,1) \times(0, T) \\
y^{n+1}(x, t)=0, & (x, t) \in\{0,1\} \times(0, T) \\
y^{n+1}(\cdot, 0)=y_{0}, & x \in(0,1) .
\end{array}\right.
$$

with $G(y)=f^{\prime}(y) \cdot y-f(y)$.
We take

$$
f(y)=K y \log ^{\alpha}(1+|y|), \alpha>0 \Longrightarrow G(y)=K \alpha|y|^{2} \frac{\log ^{\alpha-1}(1+|y|)}{1+|y|}
$$

semi-linear situation

$$
\omega=(0.2,0.8), T=1 / 2, a(x)=1 / 2, f(s)=-5 s \log ^{\frac{3}{2}}(1+|s|), y_{0}(x)=16 \sin (\pi x)
$$

$\left\|y_{h}(\cdot, t)\right\|_{L^{2}(0,1)}$ - norm vs. $t \in(0, T)$ of the uncontrolled and controlled solution.

Part III

Computation of control using the transmutation method
with Enrique Zuazua :
AM-EZ, Inverse Problems (2010) ${ }^{10}$
$a(x)=a_{0}>0$
${ }^{10}$ AM-EZ,Numerical approximation of null controls for the heat equation: ill posedeness and remedies $\equiv(2010)$ 를

The control transmutation method (Luc Miller'06)

${ }^{11}$ Let $L>0$ and $y_{0} \in H_{0}^{1}(\Omega)$. IF $f \in L^{2}([0, L] \times \omega)$ is a null-control for w, solution of the wave equation

$$
\left\{\begin{array}{lr}
w_{s s}-w_{x x}=f 1_{\omega} & (s, x) \in(0, L) \times \Omega, \\
w=0 & (0, L) \times \partial \Omega, \\
\left(w(0), w_{s}(0)\right)=\left(y_{0}, 0\right) \Longrightarrow\left(w(L), w_{s}(L)\right)=(0,0) &
\end{array}\right.
$$

AND if $H \in C^{0}([0, T], \mathcal{M}(]-L, L[)$ is a fundamental controlled solution for the heat equation

$$
\left\{\begin{array}{l}
\partial_{t} H-\partial_{s}^{2} H=0 \quad \text { in } \quad \mathcal{D}^{\prime}(] 0, T[\times]-L, L[) \\
H(t=0)=\delta, \quad H(t=T)=0
\end{array}\right.
$$

THEN the fonction

is a null control in $L^{2}\left(q_{T}\right)$ for

[^9]
The control transmutation method (Luc Miller'06)

${ }^{11}$ Let $L>0$ and $y_{0} \in H_{0}^{1}(\Omega)$. IF $f \in L^{2}([0, L] \times \omega)$ is a null-control for w, solution of the wave equation

$$
\left\{\begin{array}{lr}
w_{s s}-w_{x x}=f 1_{\omega} & (s, x) \in(0, L) \times \Omega, \\
w=0 & (0, L) \times \partial \Omega, \\
\left(w(0), w_{s}(0)\right)=\left(y_{0}, 0\right) \Longrightarrow\left(w(L), w_{s}(L)\right)=(0,0) &
\end{array}\right.
$$

AND if $H \in C^{0}([0, T], \mathcal{M}(]-L, L[)$ is a fundamental controlled solution for the heat equation

$$
\left\{\begin{array}{l}
\partial_{t} H-\partial_{s}^{2} H=0 \quad \text { in } \quad \mathcal{D}^{\prime}(] 0, T[\times]-L, L[), \\
H(t=0)=\delta, \quad H(t=T)=0
\end{array}\right.
$$

THEN the fonction

$$
v(t, x)=2 \int_{0}^{L} H(t, s) f(s, x) d s 1_{\omega}(x), \quad(0, T) \times \Omega
$$

is a null control in $L^{2}\left(q_{T}\right)$ for $\quad y(t, x)=2 \int_{0}^{L} H(t, s) w(s, x) d s \quad$ solution of the heat equation

$$
\left\{\begin{array}{lr}
y_{t}-y_{x x}=v 1_{\omega} & (0, T) \times \Omega, \\
y=0 & (0, T) \times \partial \Omega, \\
y(0)=y_{0} & \\
\hline
\end{array}\right.
$$

[^10]
Computation of the fundamental solution for the heat equation

Jones ${ }^{12}$, Rouchon ${ }^{13}$. Let $\delta \in(0, T)$. For $t \in(0, \delta), H$ is taken as the Gaussian :

$$
H(t, s)=\frac{1}{\sqrt{4 \pi t}} e^{-\frac{s^{2}}{4 t}}, \quad(t, s) \in(0, \delta) \times \mathbb{R} .
$$

so that it remains to join $H(\delta, s)$ to 0 at time T. For any $a>0$ and any $\alpha \geq 1$, we consider the bump function

and then the function

so that $p(T)=0 . h \in C_{c}^{\infty}([\delta, T])$ and $p \in C^{\infty}([0, T]) . h$ and p are both Gevrey functions of order
$1+1 / \alpha \in(1,2]$ so that the serie

is convergent. (??) defines a solution of the heat equation and satisfies $H(T, s)=0$ for all $s \in \mathbb{R}$ and

[^11]
Computation of the fundamental solution for the heat equation

Jones ${ }^{12}$, Rouchon ${ }^{13}$. Let $\delta \in(0, T)$. For $t \in(0, \delta), H$ is taken as the Gaussian :

$$
H(t, s)=\frac{1}{\sqrt{4 \pi t}} e^{-\frac{s^{2}}{4 t}}, \quad(t, s) \in(0, \delta) \times \mathbb{R}
$$

so that it remains to join $H(\delta, s)$ to 0 at time T. For any $a>0$ and any $\alpha \geq 1$, we consider the bump function

$$
h(n)=\exp \left(-\frac{a}{((n-\delta)(T-n))^{\alpha}}\right), \quad n \in(\delta, T)
$$

and then the function

$$
p(t)=\frac{1}{\sqrt{4 \pi t}} \begin{cases}1 & t \in(0, \delta) \\ \frac{\int_{t}^{T} h(n) d n}{\int_{\delta}^{T} h(n) d n} & t \in(\delta, T)\end{cases}
$$

so that $p(T)=0$.

is convergent. (??) defines a solution of the heat equation and satisfies $H(T, s)=0$ for all $s \in \mathbb{R}$ and

[^12]
Computation of the fundamental solution for the heat equation

Jones ${ }^{12}$, Rouchon ${ }^{13}$. Let $\delta \in(0, T)$. For $t \in(0, \delta), H$ is taken as the Gaussian :

$$
H(t, s)=\frac{1}{\sqrt{4 \pi t}} e^{-\frac{s^{2}}{4 t}}, \quad(t, s) \in(0, \delta) \times \mathbb{R}
$$

so that it remains to join $H(\delta, s)$ to 0 at time T. For any a >0 and any $\alpha \geq 1$, we consider the bump function

$$
h(n)=\exp \left(-\frac{a}{((n-\delta)(T-n))^{\alpha}}\right), \quad n \in(\delta, T)
$$

and then the function

$$
p(t)=\frac{1}{\sqrt{4 \pi t}} \begin{cases}1 & t \in(0, \delta) \\ \frac{\int_{t}^{T} h(n) d n}{\int_{\delta}^{T} h(n) d n} & t \in(\delta, T)\end{cases}
$$

so that $p(T)=0 . h \in C_{c}^{\infty}([\delta, T])$ and $p \in C^{\infty}([0, T]) . h$ and p are both Gevrey functions of order $1+1 / \alpha \in(1,2]$ so that the serie

$$
\begin{equation*}
H(t, s)=\sum_{k \geq 0} p^{(k)}(t) \frac{s^{2 k}}{(2 k)!} \tag{28}
\end{equation*}
$$

is convergent. (??) defines a solution of the heat equation and satisfies $H(T, s)=0$ for all $s \in \mathbb{R}$ and
$\lim _{t \rightarrow 0^{+}} H(t, s)=\delta_{s=0}$.
${ }^{12}$ B. Jones, A fundamental solution for the heat equation which is supported in a strip, J. Math. Anal. Appl. 1977
${ }^{13}$ B. Laroche, P. Martin and P. Rouchon, Motion planning for the heat equation, Int. Journal of Robust and Nonlinear Control, (2000)

Fundamental solution for the heat equation: example

 $a_{0}=1$ by the change of variable $(\tilde{x}, \tilde{t})=\left(a_{0} t, x\right)$

Figure: $L=0.5-T=0.1-(a, \alpha, \delta)=\left(10^{-2}, 1, T / 5\right)$ - Left: fundamental solution H on $(0, T) \times(0, L)$ - Right: $H(t, L)$ vs. $t \in(0, T)$.

Fundamental solution for the heat equation: example

Figure: $L=0.5-T=0.1-(a, \alpha, \delta)=\left(10^{-2}, 1, T / 2\right)$ - Left: fundamental solution H on $(0, T) \times(0, L)$ - Right: $H(t, L)$ vs. $t \in(0, T)$.

Control by the transmutation method

Figure: $y_{0}(x)=\sin (\pi x), L=0.5$ - Controlled wave solution w (Left) and corresponding HUM control f (Right) on $(0, L) \times \Omega$.

Figure: $y_{0}(x)=\sin (\pi x), T=1, a_{0}=1 / 10,(\delta, \alpha)=(T / 5,1)$ - Controlled heat solution y (Left) and corresponding transmutted control v ((ight) on $(0, T) \times \Omega$.

Control by the transmutation method

Figure: $L^{2}(\omega)$ norm of the control v vs $t \in[0, T]$ for $\left(y_{0}(x), T, a_{0}\right)=(\sin (\pi x), 1,1 / 10)$

Transmutation to HUM ?

$\|v\|_{L^{2}\left(q_{T}\right)} \leq 2\|f\|_{L^{2}((0, L) \times \omega)}\|H\|_{L^{2}((0, T) \times(0, L)}$
$\|H\|_{L^{2}((0, T) \times(0, L)}$ is reduced if δ is small (reduce the time period where the dissipation is governed by the gaussian), and $\alpha_{1}>1$ (allows to take δ small) and $\alpha_{2}<1$ (increase the magnitude of the control near T).

$$
h(s)=\exp \left(-\frac{a}{(s-\delta)^{\alpha_{1}}(T-s)^{\alpha_{2}}}\right)
$$

Figure: $\left(y_{0}(x), a_{0}\right)=(\sin (\pi x), 1 / 10)$ - Heat fundamental solution $H(t, L)$ vs.
$t \in[0, \tilde{T}]$ (Left) and $L^{2}(\Omega)$-norm of corresponding control v (Right).
$\alpha_{1}=1.1, \alpha_{2}=0.7\|g\|_{L^{2}\left(Q_{T}\right)} \approx 5.67 \times 10^{-1}$
-The transmuted control $v_{h}=(v)_{h>0}$ ensures that $\left\|y_{h}(T, \cdot)\right\|_{L^{2}(\Omega)} \approx 10^{-5}$
-Once a solution H in the one dimensional is constructed, we can take

$$
H_{n}\left(t, x_{1}, x_{2}, \cdots, x_{n}\right)=H\left(t, x_{1}\right) \times H\left(t, x_{2}\right) \times \cdots \times H\left(t, x_{n}\right)
$$

as a fundamental control solution for $(t, x) \in(0, T) \times[-L, L]^{n}$. Consequently, the transmutation provides also a control in any dimension, provided some geometric condition on the support ω.
-The transmutation method provides uniformly bounded discrete control $\left\{v_{h}\right\}$ discretization of

$$
v(t, x)=2 \sum_{k \geq 0} p^{(k)}(t) \int_{0}^{L} \frac{s^{2 k}}{(2 k)!} f(s, x) d s 1_{\omega}(x)
$$

- The main difficulty is the robust evaluation of $p^{(k)}$.

Part IV
 Numerical null controllability through a variational approach

with Pablo Pedregal, Preprint 2010.

The variational approach - Boundary control

Introduced in [Pedregal, (2010)] ${ }^{14}$
Assume that $y_{0} \in H^{1 / 2}(0,1), y_{0}(0)=0$.

1. Consider the following class of feasible functions that comply with initial, boundary and final conditions :

$$
\mathcal{A}=\left\{y \in H^{1}\left(Q_{T}\right): y(x, 0)=y_{0}(x), y(x, T)=0, x \in(0,1), y(0, t)=0, t \in(0, T)\right\}
$$

2. Find an element $y \in \mathcal{A}$ solution of the heat equation, that is,

$$
\begin{equation*}
\int_{Q_{T}}\left(y_{t} w+a(x) y_{x} w_{x}\right) d x d t=0, \quad \forall w \in L^{2}\left(0, T ; H_{0}^{1}(0,1)\right) \tag{29}
\end{equation*}
$$

3. Define a control v as the trace of y on $\{1\} \times(0, T)$, that is

$$
v(t)=y(1, t), \quad t \in(0, T)
$$

[^13]
The variational approach - Boundary control

Consider the problem

$$
\begin{equation*}
\inf _{y \in \mathcal{A}} E(y)=\frac{1}{2} \iint_{Q_{T}}\left(\left|u_{t}\right|^{2}+a(x)\left|u_{x}\right|^{2}\right) d x d t \tag{30}
\end{equation*}
$$

where $u=u(y) \in H_{0, x}^{1}\left(Q_{T}\right)=\left\{u \in H^{1}\left(Q_{T}\right), u=0\right.$ on $\left.\{0,1\} \times(0, T)\right\}$ is the solution of the elliptic problem over Q_{T} :

$$
\left\{\begin{array}{lr}
-u_{t t}-\left(a(x) u_{x}\right)_{x}=-\left(y_{t}-\left(a(x) y_{x}\right)_{x}\right), & (x, t) \in Q_{T}, \tag{31}\\
u_{t}(x, 0)=u_{t}(x, T)=0, & x \in(0,1), \\
u(0, t)=u(1, t)=0, & t \in(0, T) .
\end{array}\right.
$$

(Pedregal 10)

- The minimizers y of E solve the heat equation (i.e. the corrector u identically vanishes on Q_{T})

The variational approach - Boundary control

Consider the problem

$$
\begin{equation*}
\inf _{y \in \mathcal{A}} E(y)=\frac{1}{2} \iint_{Q_{T}}\left(\left|u_{t}\right|^{2}+a(x)\left|u_{x}\right|^{2}\right) d x d t \tag{30}
\end{equation*}
$$

where $u=u(y) \in H_{0, x}^{1}\left(Q_{T}\right)=\left\{u \in H^{1}\left(Q_{T}\right), u=0\right.$ on $\left.\{0,1\} \times(0, T)\right\}$ is the solution of the elliptic problem over Q_{T} :

$$
\left\{\begin{array}{lr}
-u_{t t}-\left(a(x) u_{x}\right)_{x}=-\left(y_{t}-\left(a(x) y_{x}\right)_{x}\right), & (x, t) \in Q_{T}, \tag{31}\\
u_{t}(x, 0)=u_{t}(x, T)=0, & x \in(0,1), \\
u(0, t)=u(1, t)=0, & t \in(0, T) .
\end{array}\right.
$$

(Pedregal 10)

- $\inf _{y \in \mathcal{A}} E(y)=\min _{y \in \mathcal{A}} E(y)=m$

> The minimizers y of E solve the heat equation (i.e. the corrector u identically vanishes on Q_{T})

The variational approach - Boundary control

Consider the problem

$$
\begin{equation*}
\inf _{y \in \mathcal{A}} E(y)=\frac{1}{2} \iint_{Q_{T}}\left(\left|u_{t}\right|^{2}+a(x)\left|u_{x}\right|^{2}\right) d x d t \tag{30}
\end{equation*}
$$

where $u=u(y) \in H_{0, x}^{1}\left(Q_{T}\right)=\left\{u \in H^{1}\left(Q_{T}\right), u=0\right.$ on $\left.\{0,1\} \times(0, T)\right\}$ is the solution of the elliptic problem over Q_{T} :

$$
\left\{\begin{array}{lr}
-u_{t t}-\left(a(x) u_{x}\right)_{x}=-\left(y_{t}-\left(a(x) y_{x}\right)_{x}\right), & (x, t) \in Q_{T}, \tag{31}\\
u_{t}(x, 0)=u_{t}(x, T)=0, & x \in(0,1), \\
u(0, t)=u(1, t)=0, & t \in(0, T) .
\end{array}\right.
$$

(Pedregal 10)

- $\inf _{y \in \mathcal{A}} E(y)=\min _{y \in \mathcal{A}} E(y)=m$
- The minimizers y of E solve the heat equation (i.e. the corrector u identically vanishes on Q_{T})

The variational approach : remarks

- Reminiscent of a least square approach as introduced by Glowinski'83.
- In practice, for any $\bar{y} \in \mathcal{A}$, for instance $\bar{y}(x, t)=y_{0}(x)(1-t / T)^{2}$, we consider

$$
\min _{z \in \mathcal{A}_{0}} E(\bar{y}+z)
$$

over $z \in \mathcal{A}_{0}=\left\{z \in H^{1}\left(Q_{T}\right): z(x, 0)=z(x, T)=0, z(0, t)=0\right\}$ by a conjugate gradient algorithm.

- The corrector u solution an H^{1}-elliptic problem is approximated by $C^{0}\left(Q_{T}\right)$-finite element.

$$
X_{h}=\left\{\varphi_{h} \in C^{0}([0,1] \times[0, T]):\left.\varphi_{h}\right|_{K} \in\left(\mathbb{P}_{1, x} \otimes \mathbb{P}_{1, t}\right)(K) \forall K \in \mathcal{Q}_{h}\right\}
$$

$$
\begin{aligned}
& X_{0 h}=\left\{\varphi_{h} \in X_{h}: \varphi_{h}(0, t)=\varphi_{h}(1, t)=0 \quad \forall t \in(0, T)\right\}, \\
& X_{y h}=\left\{\varphi_{h} \in X_{h}: \varphi_{h}(0, t)=0 \quad \forall t \in(0, T), \varphi_{h}(x, 0)=y_{0}(x), \varphi_{h}(x, T)=0 \forall x \in(0,1)\right\} .
\end{aligned}
$$

$$
\begin{cases}\text { Minimize } & E_{h}\left(y_{h}\right)=\frac{1}{2} \iint_{Q_{T}}\left(\left|u_{h, t}\right|^{2}+a(x)\left|u_{h, x}\right|^{2}\right) d x d t, \tag{32}\\ \text { subject to } & y_{h} \in X_{y h} .\end{cases}
$$

Experiments

Figure: $y_{0}(x)=\sin (\pi x), T=1 / 2, a_{0}=1 / 4, \Delta x=\Delta t=1 / 100-$ Solution in $y_{h} \in \mathcal{A}_{h}$ (Left) and corresponding corrector u_{h} (Right) along Q_{T}.

$\Delta x=\Delta t$	$1 / 25$	$1 / 50$	$1 / 100$	$1 / 200$		
$\#$ CG iteration	846	2132	2014	2834		
$\left\\|y_{h}\right\\|_{H^{1}\left(Q_{T}\right)}$	6.024	6.658	5.920	6.021		
$\left\\|y_{h}\right\\|_{L^{2}\left(\Sigma_{T}\right)}$	1.369	1.487	1.392	1.418		
$E\left(y_{h}\right)$	4.88×10^{-6}	8.37×10^{-7}	1.22×10^{-6}	8.29×10^{-7}		

Table: $y_{0}(x)=\sin (\pi x), T=1 / 2, a_{0}=1 / 4-\varepsilon=10^{-5}$ - Numerical results with respect to $h=(\Delta x, \Delta t)$.

Experiments

Figure: $y_{0}(x)=\sin (\pi x), T=1 / 2, a_{0}=1 / 4, \Delta x=\Delta t=1 / 100-\log _{10}\left(E_{h}\left(y_{h}^{n}\right)\right.$ and $\log _{10}\left(\left\|g_{h}^{n}\right\|_{\mathcal{A}}\right)$ vs. the iteration n of the conjugate gradient algorithm.

- The control y_{h} ensures that $\left\|\bar{y}_{h}(T, \cdot)\right\|_{L^{2}(\Omega)} \approx 10^{-3}$
- The distributed case is addressed in a similar way by considering the problem

$$
E(u)=\frac{1}{2} \iint_{Q_{T} \backslash q_{T}}\left(\left|v_{t}\right|^{2}+a(x)\left|v_{x}\right|^{2}\right) d x d t
$$

so that v vanishes out of q_{T}.

- Main advantage : The approach does not introduce any dual variable and for instance allows to obtain fundamental solution for the heat eq.
- Main drawback: do not control the norm of the control

Final remarks

- Numerical approximations of exact controls for the heat is severally ILL-POSED, CONSEQUENCE OF THE REGULARIZATION PROPERTY.
- INTRODUCTION OF CARLEMAN TYPE WEIGHTS PROVIDES AN APPROPRIATE (ELLIPTIC) FRAMEWORK, VERY SUITABLE NUMERICALLY.

WORk in progress : A posteriori estimate for $\left\|p_{h}-p\right\|_{p}$ vs. h.

Additional references

F. Boyer, F. Hubert and J. Le Rousseau, Uniform null-controllability properties for space/time-discretized parabolic equations, Preprint 2009.
S. Ervedoza and J. Valein, On the observability of abstract time-discrete linear parabolic equations, Rev. Mat. Comput. (2010).
S. Kindermann, Convergence Rates of the Hilbert Uniqueness Method via Tikhonov regularization, JOTA (1999).
R. Glowinski, J.L. Lions and J. He, Exact and approximate controllability for distributed parameter systems: a numerical approach Encyclopedia of Mathematics and its Applications, 117. Cambridge University Press, Cambridge, 2008.
S. Labbé and E. Trélat, Uniform controllability of semi-discrete approximations of parabolic control systems, Systems and Control Letters (2006).
A. Münch and F. Periago, Optimal distribution of the internal null control for the one-dimensional heat equation, J. Differential Equations (2011).
C. Zheng, Controllability of the time discrete heat equation, Asymptot. Anal. (2008).
E. Zuazua, Control and numerical approximation of the wave and heat equations, ICM2006, Madrid, Spain, Vol. III (2006).

Nada Mas!

Thank you for your attention

[^0]: ${ }^{1}$ S. Micu, E. Zuazua, Regularity issues for a null-controllability of the linear 1-d heat equation, Preprint 2010.

[^1]: ${ }^{2}$ Carthel-Glowinski-Lions, On exact and approximate boundary controllabilities for the heat equation: a numerical approach, JOTA (1994)

[^2]: ${ }^{2}$ Carthel-Glowinski-Lions, On exact and approximate boundary controllabilities for the heat equation: a numerical approach, JOTA (1994)

[^3]: ${ }^{3}$ C. Fabre, J.-P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation, Proc. Roy. Soc. Edinburgh Sect. A (1995).

[^4]: ${ }^{4}$ F. Periago, AM,Approximation of bang-bang controls for the heat equation: dual method versus optimal design approach: (2010) Preprint

[^5]: ${ }^{5}$ A.V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series, number 34. Seoul National University, Korea, (1996) 1-163.

[^6]: ${ }^{6}$ Carleman estimates for the 1D heat equation with a discontinuous coefficient and applications to controllability and an inverse problems,JMAA (2007).

[^7]: ${ }^{8}$ E. Fernández-Cara, AM, Numerical exact controllability of the 1D heat equation: dual algorithm, Preprint 2010.

[^8]: ${ }^{9}$ Fernández-Cara, Zuazua, Null and approximate controllability for weakling blowing up semilinear heat equation, Ann. Inst. Poincaré (2000).

[^9]: ${ }^{11}$ L. Miller, The control transmutation method and the cost of fast controls, SICON 2006

[^10]: ${ }^{11}$ L. Miller, The control transmutation method and the cost of fast controls, SICON 2006

[^11]: ${ }^{12}$ B. Jones, A fundamental solution for the heat equation which is supported in a strip, J. Math. Anal. Appl. 1977
 ${ }^{13}$ B. Laroche, P. Martin and P. Rouchon, Motion planning for the heat equation, Int. Journal of Robust and Nonlinear Control, (2000)

[^12]: ${ }^{12}$ B. Jones, A fundamental solution for the heat equation which is supported in a strip, J. Math. Anal. Appl. 1977
 ${ }^{13}$ B. Laroche, P. Martin and P. Rouchon, Motion planning for the heat equation, Int. Journal of Robust and Nonlinear Control, (2000)

[^13]: ${ }^{14}$ P. Pedregal, A variational perspective on controllability, Inverse Problems(2010)

