On the numerical computation of controls for the 1-D heat equation

Arnaud Münch

Laboratoire de Mathématiques de Clermont-Ferrand Université Blaise Pascal, France arnaud.munch@math.univ-bpclermont.fr

March. 2011, Sevilla

supported by the project CONUM ANR-07-JC-183284

ヘロト ヘ戸ト ヘヨト ヘヨト

 $\omega \subset (0,1), a \in C^1([0,1], \mathbb{R}^+_*), y_0 \in L^2(0,1), Q_T = (0,1) \times (0,T), q_T = \omega \times (0,T)$

$$\begin{cases} Ly \equiv y_t - (a(x)y_x)_x = v \mathbf{1}_{\omega}, & (x,t) \in Q_T \\ y(x,t) = 0, & (x,t) \in \{0,1\} \times (0,T) \\ y(x,0) = y_0(x), & x \in (0,1). \end{cases}$$
(1)

 $\forall y_0 \in L^2(0,1), \ T > 0 \ \text{and} \ v \in L^2(q_T), \ y \in C^0([0,T];L^2(0,1)) \cap L^2(0,T;H^1_0(0,1)).$

We introduce the linear manifold

 $C(y_0, T) = \{ (y, v) : v \in L^2(q_T), y \text{ solves } (\ref{eq: red}) \text{ and satisfies } y(T, \cdot) = 0 \}.$

non empty (see FURSIKOV-IMANUVILOV'96, ROBBIANO-LEBEAU'95).

The goal is to compute numerically some elements of $C(y_0, T)$, i.e. compute some controls for the heat equation

▲ロト ▲帰 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

1- III-posedness for the control of minimal L²-norm (the "HUM control")

2- Change of norm : framework of Fursikov-Imanuvilov'96 (with ENRIQUE FERNANDEZ-CARA)

3- Transmutation method : from wave to heat (with ENRIQUE ZUAZUA)

4- Without dual variable via a variational approach (with PABLO PEDREGAL)

5- Conclusions / Additional references

・ロト ・ 理 ト ・ ヨ ト ・

3

PART I

Control of minimal $L^2(0, 1)$ -norm assuming that $a(x) = a_0 > 0$

(P)
$$\inf_{(y,v)\in\mathcal{C}(y_0,T)} J(v,y) = \frac{1}{2} \|v\|_{L^2(q_T)}^2$$

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

$L^{2}(0, 1)$ -norm of the HUM control with respect to time

Figure: $y_0(x) = \sin(\pi x) - T = 1 - \omega = (0.2, 0.8) - t \rightarrow ||v(\cdot, t)||_{L^2(0, 1)}$ in [0, T]

L^2 -norm of the HUM control with respect to time: Zoom near T

Figure: $y_0(x) = \sin(\pi x) - T = 1 - \omega = (0.2, 0.8) - t \rightarrow ||v(\cdot, t)||_{L^2(0, 1)}$ in [0.927, T]

Minimal L² norm control

Since it is difficult to construct pairs $(v, y) \in C(y_0, T)$ (*a fortiori* minimizing sequences for J!), it is by now standard to consider the corresponding dual :

$$\inf_{(y,v)\in\mathcal{C}(y_0,T)} J(y,v) = -\inf_{\phi_T\in\mathcal{H}} J^{\star}(\phi_T), \ J^{\star}(\phi_T) = \frac{1}{2} \int_{q_T} \phi^2 dx dt + \int_{\Omega} \phi(0,\cdot) y_0 dx$$

where ϕ solves the backward system

$$\begin{cases} L^{\star}\phi \equiv -\phi' - (a(x)\phi_x)_x = 0 & Q_T = (0,T) \times \Omega \\ \phi = 0 & \Sigma_T = (0,T) \times \partial \Omega, & \phi(T,\cdot) = \phi_T & \Omega. \end{cases}$$

The Hilbert space H is defined as the completion of $\mathcal{D}(0,1)$ with respect to the norm

$$\|\phi_T\|_H = \left(\int_{q_T} \phi^2(t, x) dx dt\right)^{1/2}.$$

From the observability inequality

$$C(T,\omega)\|\phi(0,\cdot)\|_{L^{2}(\Omega)}^{2} \leq \|\phi_{T}\|_{H}^{2} \quad \forall \phi_{T} \in L^{2}(\Omega),$$

 J^* is coercive on H. The HUM control is given by $v = \phi \mathcal{X}_{\omega} \varrho_{\mathbb{R}} \mathcal{Q}_{\mathbb{R}} \mathcal{Q}_{\mathbb{R}$

Minimal L^2 norm control

Since it is difficult to construct pairs $(v, y) \in C(y_0, T)$ (*a fortiori* minimizing sequences for J!), it is by now standard to consider the corresponding dual :

$$\inf_{(y,v)\in\mathcal{C}(y_0,T)} J(y,v) = -\inf_{\phi_T\in\mathcal{H}} J^{\star}(\phi_T), \ J^{\star}(\phi_T) = \frac{1}{2} \int_{q_T} \phi^2 dx dt + \int_{\Omega} \phi(0,\cdot) y_0 dx$$

where ϕ solves the backward system

$$\begin{cases} L^{\star}\phi \equiv -\phi' - (a(x)\phi_x)_x = 0 & Q_T = (0,T) \times \Omega \\ \phi = 0 \quad \Sigma_T = (0,T) \times \partial\Omega, & \phi(T,\cdot) = \phi_T \quad \Omega. \end{cases}$$

The Hilbert space H is defined as the completion of $\mathcal{D}(0, 1)$ with respect to the norm

$$\|\phi_T\|_H = \left(\int_{q_T} \phi^2(t, x) dx dt\right)^{1/2}.$$

From the observability inequality

$$C(T,\omega)\|\phi(0,\cdot)\|_{L^{2}(\Omega)}^{2} \leq \|\phi_{T}\|_{H}^{2} \quad \forall \phi_{T} \in L^{2}(\Omega),$$

 J^* is coercive on H. The HUM control is given by $v = \phi \mathcal{X}_{\omega} \varrho_{\mathbb{R}} \mathcal{Q}_{\mathbb{R}} \mathcal{Q}_{\mathbb{R}$

Minimal L^2 norm control

Since it is difficult to construct pairs $(v, y) \in C(y_0, T)$ (*a fortiori* minimizing sequences for J!), it is by now standard to consider the corresponding dual :

$$\inf_{(y,v)\in\mathcal{C}(y_0,T)} J(y,v) = -\inf_{\phi_T\in\mathcal{H}} J^{\star}(\phi_T), \ J^{\star}(\phi_T) = \frac{1}{2} \int_{q_T} \phi^2 dx dt + \int_{\Omega} \phi(0,\cdot) y_0 dx$$

where ϕ solves the backward system

$$\begin{cases} L^{\star}\phi \equiv -\phi' - (a(x)\phi_x)_x = 0 & Q_T = (0,T) \times \Omega \\ \phi = 0 \quad \Sigma_T = (0,T) \times \partial\Omega, & \phi(T,\cdot) = \phi_T \quad \Omega. \end{cases}$$

The Hilbert space H is defined as the completion of $\mathcal{D}(0, 1)$ with respect to the norm

$$\|\phi_T\|_H = \left(\int_{q_T} \phi^2(t, x) dx dt\right)^{1/2}.$$

From the observability inequality

$$C(T,\omega)\|\phi(\mathbf{0},\cdot)\|_{L^{2}(\Omega)}^{2} \leq \|\phi_{T}\|_{H}^{2} \quad \forall \phi_{T} \in L^{2}(\Omega),$$

 J^* is coercive on H. The HUM control is given by $v = \phi \mathcal{X}_{\omega}$ on $Q_{T_{1}} = \phi \mathcal{X}_{\omega}$ on $Q_{T_{2}} = \phi \mathcal{X}_{\omega}$

- The completed space *H* is huge:

 $H^{-s} \subset H \quad \forall s > 0!$

(*H* may also contain elements which are not distribution !!) and the minimizer is singular [Micu-Zuazua preprint 2010] 1

-Due to the strong regularization effect of the heat operator, the constraint

 $y(\cdot,T)=0,\qquad (0,1)$

can be viewed as an equality in a "very small" space; accordingly, the dual variable ϕ_T which is nothing but the Lagrange multiplier for the constraint may belong to a "large" dual space, much larger than L^2 .

-III-posedness here is therefore related to the hugeness of *H*, poorly approximated numerically.

-This phenomenon is unavoidable (unless $\omega = (0, 1)$!) and is independent of the choice of the norm !

S. Micu, E. Zuazua, Regularity issues for a null-controllability of the linear 1-d heat equation Preprint 2010.

For any $\epsilon > 0$, consider $J_{\epsilon}(y, v) = J(y, v) + \frac{\epsilon^{-1}}{2} \|y(T)\|_{H^{-s}(0,1)}^2$ and

$$\inf_{\phi_{T,\epsilon}\in L^2(0,1)} J^{\star}_{\epsilon}(\phi_{T,\epsilon}), \quad J^{\star}_{\epsilon}(\phi_{T,\epsilon}) = \frac{1}{2} \int_{q_T} \phi^2 dx dt + \int_{\Omega} \phi(0,\cdot) y_0 dx + \frac{\epsilon}{2} \|\phi_{T,\epsilon}\|^2_{H^s(0,1)}$$

and minimize in L^2 the quadratic and strictly convex function J_{ϵ}^* by a conjugate gradient algorithm as initially proposed in Carthel-Glowinski-Lions'94².

$$\phi_T(x) = \sum_{k \ge 1} a_k \sin(k\pi x) \Longleftrightarrow y_T(x) = \sum_{p \ge 1} b_p \sin(p\pi x), \quad x \in \Omega$$

and taking $y_0 = 0$ (for simplicity), we obtain the relation

$$b_{\rho} = \sum_{k \ge 1} \left(c_{\rho,k}(\omega) g_{\rho,k}(T) + \epsilon (k\pi)^{2s} \delta_{\rho,k} \right) a_{k,\epsilon}, \quad s = 0, 1.$$

$$b_{\rho,k}(\omega) = 2 \int_{\omega} \sin(k\pi x) \sin(\rho \pi x) dx, \quad g_{\rho,k}(T) = \frac{1 - e^{-c(\lambda_{\rho} + \lambda_{k})T}}{\lambda_{k} + \lambda_{\rho}}, \quad \lambda_{k} = (k\pi)^{2}$$

²Carthel-Glowinski-Lions, *On exact and approximate boundary controllabilities for the heat equation: a numerical approach*, JOTA (1994)

3

For any $\epsilon > 0$, consider $J_{\epsilon}(y, v) = J(y, v) + \frac{\epsilon^{-1}}{2} \|y(T)\|_{H^{-s}(0,1)}^2$ and

$$\inf_{\phi_{T,\epsilon}\in L^2(0,1)} J^{\star}_{\epsilon}(\phi_{T,\epsilon}), \quad J^{\star}_{\epsilon}(\phi_{T,\epsilon}) = \frac{1}{2} \int_{q_T} \phi^2 dx dt + \int_{\Omega} \phi(0,\cdot) y_0 dx + \frac{\epsilon}{2} \|\phi_{T,\epsilon}\|^2_{H^s(0,1)}$$

and minimize in L^2 the quadratic and strictly convex function J_{ϵ}^* by a conjugate gradient algorithm as initially proposed in Carthel-Glowinski-Lions'94².

$$\phi_T(x) = \sum_{k \ge 1} a_k \sin(k\pi x) \Longleftrightarrow y_T(x) = \sum_{p \ge 1} b_p \sin(p\pi x), \quad x \in \Omega$$

and taking $y_0 = 0$ (for simplicity), we obtain the relation

$$b_{p} = \sum_{k \geq 1} \left(c_{p,k}(\omega) g_{p,k}(T) + \epsilon(k\pi)^{2s} \delta_{p,k} \right) a_{k,\epsilon}, \quad s = 0, 1.$$

$$c_{p,k}(\omega) = 2 \int_{\omega} \sin(k\pi x) \sin(p\pi x) dx, \quad g_{p,k}(T) = \frac{1 - e^{-c(\lambda_p + \lambda_k)T}}{\lambda_k + \lambda_p}, \quad \lambda_k = (k\pi)^2$$

²Carthel-Glowinski-Lions, *On exact and approximate boundary controllabilities for the heat equation: a numerical approach*, JOTA (1994)

3

Regular perturbation

$$T = 1$$
, $y_T(x) = e^{-a_0 \pi^2 T} \sin(\pi x)$, $a_0 = 1/10$, $\omega = (0.2, 0.8)$

ϵ	10 ⁻¹	10 ⁻³	10 ⁻⁵	10 ⁻⁷	10 ⁻⁹
$\ \phi_{T,\epsilon}^N\ _{L^2(\Omega)}$	$5.47 imes 10^{-1}$	2.52×10^{0}	1.42×10^{1}	$9.20 imes 10^{1}$	$6.66 imes 10^2$
$\ v_{\epsilon}^{N}\ _{L^{2}((0,T)\times\omega)}$	$2.23 imes10^{-1}$	$3.85 imes10^{-1}$	$4.28 imes 10^{-1}$	$4.43 imes10^{-1}$	$4.49 imes 10^{-1}$
$cond(\Lambda_{N,\epsilon})$	$5.44 imes10^{0}$	$5.87 imes10^2$	$7.46 imes 10^4$	$7.45 imes10^{6}$	$7.18 imes10^{8}$

Table: $N = 80 - \|\mathbf{v}^N - \mathbf{v}_{\epsilon}^N\|_{L^2((0,T) \times \omega)} \approx O(\epsilon^{0.295}).$

Figure: L^2 regularization for $\epsilon = 10^{-7}$ and N = 80 -Left: Adjoint solution $\phi_{T,\epsilon}$ -**Right:** L^2 - norm of the control vs. *t*.

ъ

$$\epsilon = 10^{-14}, T = 1, \quad y_T(x) = e^{-c\pi^2 T} \sin(\pi x), \quad c = 0.1$$

	N = 10	N = 20	N = 40	N = 80
$\ \phi_T^N\ _{L^2(\Omega)}$	4.27	3.22×10^{1}	$1.68 imes 10^{3}$	$5.38 imes 10^{6}$
$\ \phi^N \mathcal{X}_\omega\ _{L^2(Q_T)}$	$4.194 imes 10^{-1}$	4.410×10^{-1}	$4.526 imes 10^{-1}$	$4.586 imes 10^{-1}$

Figure: $T = 1 - \omega = (0.2, 0.8) - \phi_T^N$ for N = 80 on Ω (Left) and on ω (Right).

표 · · · · · · · ·

ъ

$$T = 1$$
, $y_0(x) = \sin(\pi x)$, $a(x) = a_0 = 1/10$, $\omega = (0.2, 0.8)$

Figure: $T = 1 - \omega = (0.2, 0.8) - \phi^N(\cdot, 0.8)$ for N = 80 on [0, T] (Left) and on [0.92T, T] (Right).

(E) (E)

< 🗇 🕨

₹ 990

Minimization of J_h^{\star} in $L^2(0, 1)$ using a conjugate gradient method

$$T = 1$$
, $y_0(x) = \sin(\pi x)$, $a(x) = a_0 = 1/10$, $\omega = (0.2, 0.8)$

h	1/20	1/40	1/80	1/160
# Iteration	36	218	574	1588
$\ \mathbf{v}_h\ _{L^2((0,T)\times\omega)}$	$4.05 imes 10^{-1}$	$4.322 imes 10^{-1}$	$4.426 imes 10^{-1}$	$4.492 imes 10^{-1}$
$\ y_h(T,\cdot)-y_{Th}\ _{L^2(\Omega)}$	$2.11 imes 10^{-9}$	$1.58 imes 10^{-9}$	$2.65 imes 10^{-9}$	$2.35 imes 10^{-9}$
$\frac{\ \phi_h(0,x)\ ^2_{L^2(\Omega)}}{\ \phi_h \mathcal{X}_\omega\ ^2_{L^2(Q_T)}}$	$4.072 imes 10^{-1}$	$4.329 imes 10^{-1}$	$4.429 imes 10^{-1}$	$4.439 imes 10^{-1}$

Table: Semi-discrete scheme $\omega = (0.2, 0.8) - \Omega = (0, 1) - T = 1$.

 \implies The conditioning number of the problem blows up exponentially w.r.t. 1/h.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Figure: Semi-discrete scheme - h = 1/80 - Evolution of the residu w.r.t. the iteration of the GC algorithm

$$\begin{split} C_{1h} \|\phi_h(0)\|_{L^2(\Omega)}^2 &\leq \int_0^T\!\!\!\int_\omega \phi_h^2(t,x) dx dt \leq C_{2h} \|\phi_h(0)\|_{L^2(\Omega)}^2, \quad \forall \phi_{Th} \in L^2(\Omega) \\ & \quad cond(\Lambda_h) \leq C_{1h}^{-1} C_{2h} h^{-2} \\ & \quad C_{2h} \to \infty \quad h \to 0 \end{split}$$

(more in [AM-Zuazua, Inverse Problems 2010]).

・ロン ・聞 と ・ ヨ と ・ ヨ と

E 990

Other regularization / perturbation are considered in [AM-Zuazua'10] 1- Replace the heat equation by the hyperbolic equation

 $y_{\epsilon,t} - cy_{\epsilon,xx} + \epsilon y_{\epsilon,tt} = v_{\epsilon} \mathbf{1}_{\omega}, \text{ in } Q_T,$

2- Singular (non uniformly controllable w.r.t. ε) perturbation

$$y_{\epsilon,t} - cy_{\epsilon,xx} - \epsilon y_{\epsilon,txx} = v_{\epsilon} \mathbf{1}_{\omega}$$
 in Q_T .

 \implies The main open issue is to characterize deeper the space $H \parallel$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

$$(P_{\infty}) \quad \inf_{(y,v)\in\mathcal{C}(y_0,T)} J(v,y) = \|v\|_{L^{\infty}(q_T)}$$

 \implies Bang-Bang control (piecewise constant in q_T) [Fabre-Puel-Zuazua,95] ³

Figure: $y_0(x) = \sin(2\pi x) - a_0 = 1/10 - s' = 1 - \omega = (0.2, 0.8)$ - Iso-values of the control function $v_h \in Q_T$.

³C. Fabre, J.-P. Puel and E. Zuazua, *Approximate controllability of the semilinear heat equation*, Proc. Roy. Soc. Edinburgh Sect. A (1995).

$$\implies$$
 Set $v = [\lambda \mathcal{X}_{\mathcal{O}} + (-\lambda)(1 - \mathcal{X}_{\mathcal{O}})]1_{\omega}$

 \implies Reformulate (P_{∞}) as follows :

$$(T_{\infty}) \begin{cases} \text{Minimize } \lambda^2 \\ \text{Subject to } (\lambda, \mathcal{X}_{\mathcal{O}}) \in \mathcal{D}(y_0, T) \end{cases}$$

 $\mathcal{D}(y_0, T) = \{(\lambda, \mathcal{X}_{\mathcal{O}}) \in \mathbb{R}^+ \times L^{\infty}(Q_T, \{0, 1\}) \ y = y(\lambda, \mathcal{X}_{\mathcal{O}}) \text{ solves } (\ref{eq:product}) \text{ and } \|y(T)\|_{L^2(\Omega)} = 0\}$ with

$$\begin{cases} y_t - (a(x)y_x)_x = [\lambda \mathcal{X}_{\mathcal{O}} + (-\lambda)(1 - \mathcal{X}_{\mathcal{O}})]\mathbf{1}_{\omega}, & (x, t) \in Q_T \\ y(x, t) = 0, & (x, t) \in \{0, 1\} \times (0, T) \\ y(x, 0) = y_0(x), & x \in (0, 1). \end{cases}$$
(2)

 \implies Relaxation of the (time dependent) optimal design problem (T_{∞}) and capture of the oscillation near *T* via time-dependent density and (Young) measure ⁴.

⁴ F. Periago, AM, *Approximation of bang-bang controls for the heat equation: dual method versus optimal design approach:* (2010) Preprint

Part II

Change of the norm : framework of Fursikov-Imanuvilov'96 5

Minimize
$$J(y, v) = \frac{1}{2} \iint_{Q_T} \rho^2 |y|^2 dx dt + \frac{1}{2} \iint_{q_T} \rho_0^2 |v|^2 dx dt$$

Subject to $(y, v) \in \mathcal{C}(y_0, T)$. (3)

where ρ , ρ_0 are non-negative continuous weights functions such that ρ , $\rho_0 \in L^{\infty}(Q_{T-\delta}) \quad \forall \delta > 0$.

⁵A.V. Fursikov and O. Yu. Imanuvilov, *Controllability of Evolution Equations*, Lecture Notes Series, number 34. Secul National University, Korea, (1996) 1–163.

Following Fursikov-Imanuvilov'96, we assume Carleman type weights :

$$\begin{cases} \rho(x,t) = \exp\left(\frac{\beta(x)}{T-t}\right), & \rho_0(x,t) = (T-t)^{3/2}\rho(x,t), & \beta(x) = K_1\left(e^{K_2} - e^{\beta_0(x)}\right) \\ \text{where the } K_i \text{ are sufficiently large positive constants (depending on } T, a_0 \text{ and } \|a\|_{C^1}) \\ \text{and } \beta_0 \in C^{\infty}([0,1]), \beta_0 > 0 \text{ in } (0,1), \beta_0(0) = \beta_0(1) = 0, |\beta_0'| > 0 \text{ outside } \omega. \end{cases}$$

$$(4)$$

We introduce

 $P_0 = \{ q \in C^2(\overline{Q}_T) : q = 0 \text{ on } \Sigma_T \}.$

In this linear space, the bilinear form

$$(\rho, q)_{P} := \iint_{O_{T}} \rho^{-2} L^* \rho \, L^* q \, dx \, dt + \iint_{q_{T}} \rho_0^{-2} \rho \, q \, dx \, dt$$

with $L^* p = -p_t - (a(x)p_x)_x$, is a scalar product (unique continuation property). Let *P* be the completion of *P*₀ for this scalar product.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Following Fursikov-Imanuvilov'96, we assume Carleman type weights :

$$\begin{cases} \rho(x,t) = \exp\left(\frac{\beta(x)}{T-t}\right), & \rho_0(x,t) = (T-t)^{3/2}\rho(x,t), & \beta(x) = K_1\left(e^{K_2} - e^{\beta_0(x)}\right) \\ \text{where the } K_i \text{ are sufficiently large positive constants (depending on } T, a_0 \text{ and } \|a\|_{C^1}) \\ \text{and } \beta_0 \in C^{\infty}([0,1]), \beta_0 > 0 \text{ in } (0,1), \beta_0(0) = \beta_0(1) = 0, |\beta_0'| > 0 \text{ outside } \omega. \end{cases}$$

$$(4)$$

We introduce

$$P_0 = \{ q \in C^2(\overline{Q}_T) : q = 0 \text{ on } \Sigma_T \}.$$

In this linear space, the bilinear form

$$(p,q)_P := \iint_{Q_T} \rho^{-2} L^* p \, L^* q \, dx \, dt + \iint_{q_T} \rho_0^{-2} p \, q \, dx \, dt$$

with $L^*p = -p_t - (a(x)p_x)_x$, is a scalar product (unique continuation property). Let *P* be the completion of *P*₀ for this scalar product.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Lemma (Fursikov-Imanuvilov'96)

Let ρ and ρ_0 be given by (??). Let us also set

$$\rho_1(x,t) = (T-t)^{1/2} \rho(x,t), \quad \rho_2(x,t) = (T-t)^{-1/2} \rho(x,t).$$
(5)

Then there exists C > 0, only depending on ω , T, a_0 and $||a||_{C^1}$, such that

$$\iint_{O_{T}} \left[\rho_{2}^{-2} \left(|q_{t}|^{2} + |q_{xx}|^{2} \right) + \rho_{1}^{-2} |q_{x}|^{2} + \rho_{0}^{-2} |q|^{2} \right] dx dt$$

$$\leq C \left(\iint_{O_{T}} \rho^{-2} |L^{*} q|^{2} dx dt + \iint_{q_{T}} \rho_{0}^{-2} |q|^{2} dx dt \right), \forall q \in P.$$
(6)

Lemma (Fursikov-Imanuvilov'96, Fernández-Cara-Guerrero'06)

Under the same assumptions, for any $\delta > 0$, one has

$$P \hookrightarrow C^0([0, T - \delta]; H^1_0(0, 1)),$$

where the embedding is continuous. In particular, there exists C > 0, only depending on ω , T, \mathbf{a}_0 and $\|\mathbf{a}\|_{C^1}$, such that

$$\|q(\cdot,0)\|_{H_0^1(0,1)}^2 \le C\left(\iint_{O_T} \rho^{-2} |L^*q|^2 \, dx \, dt + \iint_{Q_T} \rho_0^{-2} |q|^2 \, dx \, dt\right) \tag{7}$$

for all $q \in P$.

Lemma (Fursikov-Imanuvilov'96)

Let ρ and ρ_0 be given by (??). Let us also set

$$\rho_1(x,t) = (T-t)^{1/2} \rho(x,t), \quad \rho_2(x,t) = (T-t)^{-1/2} \rho(x,t).$$
(5)

Then there exists C > 0, only depending on ω , T, a_0 and $||a||_{C^1}$, such that

$$\int_{Q_{T}} \left[\rho_{2}^{-2} \left(|q_{t}|^{2} + |q_{xx}|^{2} \right) + \rho_{1}^{-2} |q_{x}|^{2} + \rho_{0}^{-2} |q|^{2} \right] dx dt$$

$$\leq C \left(\iint_{Q_{T}} \rho^{-2} |L^{*} q|^{2} dx dt + \iint_{q_{T}} \rho_{0}^{-2} |q|^{2} dx dt \right), \forall q \in P.$$
(6)

Lemma (Fursikov-Imanuvilov'96, Fernández-Cara-Guerrero'06)

Under the same assumptions, for any $\delta > 0$, one has

$$P \hookrightarrow C^0([0, T - \delta]; H^1_0(0, 1)),$$

where the embedding is continuous. In particular, there exists C > 0, only depending on ω , T, a_0 and $||a||_{C^1}$, such that

$$\|q(\cdot,0)\|_{H_0^1(0,1)}^2 \le C\left(\iint_{\mathcal{Q}_T} \rho^{-2} |L^*q|^2 \, dx \, dt + \iint_{\mathcal{Q}_T} \rho_0^{-2} |q|^2 \, dx \, dt\right)$$
(7)

for all $q \in P$.

Primal (direct) approach

Proposition

Let ρ and ρ_0 be given by (??). Let (y, v) be the corresponding optimal pair for J. Then there exists $p \in P$ such that

$$y = \rho^{-2} L^* p \equiv \rho^{-2} (-p_t - (a(x)p_x)_x), \quad v = -\rho_0^{-2} p|_{q_T}.$$
(8)

The function p is the unique solution in P of

$$\iint_{Q_T} \rho^{-2} L^* p \, L^* q \, dx \, dt + \iint_{q_T} \rho_0^{-2} p \, q \, dx \, dt = \int_0^1 y_0(x) \, q(x,0) \, dx, \quad \forall q \in P \quad (9)$$

p solves, at least in D', the following differential problem, that is second order in time and fourth order in space:

$$\begin{aligned} L(\rho^{-2}L^*p) + \rho_0^{-2}p \, \mathbf{1}_{\omega} &= 0, \\ p(x,t) &= 0, \quad (-\rho^{-2}L^*p)(x,t) = 0 \\ (-\rho^{-2}L^*p)(x,0) &= y_0(x), \quad (-\rho^{-2}L^*p)(x,T) = 0, \end{aligned}$$
 (x,t) $\in \{0,1\} \times (0,T)$ (10)
(-\rho^{-2}L^*p)(x,0) = y_0(x), \quad (-\rho^{-2}L^*p)(x,T) = 0, \qquad x \in (0,1). \end{aligned}

The "boundary" conditions at t = 0 and t = T appear in (??) as Neumann conditions.

Primal (direct) approach

Proposition

Let ρ and ρ_0 be given by (??). Let (y, v) be the corresponding optimal pair for J. Then there exists $p \in P$ such that

$$y = \rho^{-2} L^* \rho \equiv \rho^{-2} (-\rho_t - (a(x)\rho_x)_x), \quad v = -\rho_0^{-2} \rho|_{q_T}.$$
(8)

The function p is the unique solution in P of

$$\iint_{Q_T} \rho^{-2} L^* p \, L^* q \, dx \, dt + \iint_{q_T} \rho_0^{-2} p \, q \, dx \, dt = \int_0^1 y_0(x) \, q(x,0) \, dx, \quad \forall q \in P \quad (9)$$

Remark

p solves, at least in \mathcal{D}' , the following differential problem, that is second order in time and fourth order in space:

$$\begin{cases} L(\rho^{-2}L^*p) + \rho_0^{-2}p \mathbf{1}_{\omega} = 0, & (x,t) \in (0,1) \times (0,T) \\ p(x,t) = 0, & (-\rho^{-2}L^*p)(x,t) = 0 & (x,t) \in \{0,1\} \times (0,T) \\ (-\rho^{-2}L^*p)(x,0) = y_0(x), & (-\rho^{-2}L^*p)(x,T) = 0, & x \in (0,1). \end{cases}$$

The "boundary" conditions at t = 0 and t = T appear in (??) as Neumann conditions.

Conformal discretization

For large integers N_x and N_t , we set $\Delta x = 1/N_x$, $\Delta t = T/N_t$ and $h = (\Delta x, \Delta t)$. Let us introduce the associated uniform quadrangulations Q_h , with

$$Q_T = \bigcup_{K \in \mathcal{Q}_h} K.$$

The following (conformal) finite element approximations of the space P are introduced:

$$P_h = \{ q_h \in P : q_h |_K \in (\mathbb{P}_{3,x} \otimes \mathbb{P}_{1,t})(K) \ \forall K \in \mathcal{Q}_h \}.$$
(11)

Here, $\mathbb{P}_{\ell,\xi}$ denotes the space of polynomial functions of order ℓ in the variable $\xi.$ Notice that

$$P_h = \{ q_h \in C^{1,0}_{x,t}(\overline{Q}_T) : q_h|_K \in (\mathbb{P}_{3,x} \otimes \mathbb{P}_{1,t})(K) \ \forall K \in \mathcal{Q}_h, \ q_h|_{\Sigma_T} \equiv 0 \},$$

where $C_{x,t}^{1,0}(\overline{Q}_T)$ is the space of the functions in $C^0(\overline{Q}_T)$ that are continuously differentiable with respect to *x* in \overline{Q}_T .

The variational equality (??) is approximated as follows:

$$\begin{cases} \iint_{Q_T} \rho^{-2} L^* p_h L^* q_h \, dx \, dt + \iint_{q_T} \rho_0^{-2} p_h q_h \, dx \, dt = \int_0^1 y_0(x) \, q_h(x,0) \, dx \\ \forall q_h \in P_h; \quad p_h \in P_h. \end{cases}$$
(12)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Conformal discretization

For large integers N_x and N_t , we set $\Delta x = 1/N_x$, $\Delta t = T/N_t$ and $h = (\Delta x, \Delta t)$. Let us introduce the associated uniform quadrangulations Q_h , with

$$Q_T = \bigcup_{K \in \mathcal{Q}_h} K.$$

The following (conformal) finite element approximations of the space P are introduced:

$$P_h = \{ q_h \in P : q_h |_K \in (\mathbb{P}_{3,x} \otimes \mathbb{P}_{1,t})(K) \ \forall K \in \mathcal{Q}_h \}.$$
(11)

Here, $\mathbb{P}_{\ell,\xi}$ denotes the space of polynomial functions of order ℓ in the variable $\xi.$ Notice that

$$\mathcal{P}_h = \{ q_h \in \mathcal{C}_{x,t}^{1,0}(\overline{\mathcal{Q}}_T) : q_h|_{\mathcal{K}} \in (\mathbb{P}_{3,x} \otimes \mathbb{P}_{1,t})(\mathcal{K}) \ \forall \mathcal{K} \in \mathcal{Q}_h, \ q_h|_{\Sigma_T} \equiv 0 \},$$

where $C_{x,t}^{1,0}(\overline{Q}_T)$ is the space of the functions in $C^0(\overline{Q}_T)$ that are continuously differentiable with respect to *x* in \overline{Q}_T . The variational equality (**??**) is approximated as follows:

$$\begin{cases} \iint_{Q_T} \rho^{-2} L^* p_h L^* q_h \, dx \, dt + \iint_{q_T} \rho_0^{-2} p_h \, q_h \, dx \, dt = \int_0^1 y_0(x) \, q_h(x,0) \, dx \\ \forall q_h \in P_h; \quad p_h \in P_h. \end{cases}$$
(12)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Experiment with $\omega = (0.2, 0.8)$

$\Delta x = \Delta t$	1/20	1/40	1/80	1/160	1/320
conditioning	1.33×10^{14}	1.76×10^{22}	7.86×10^{32}	$2.17 imes 10^{44}$	$2.30 imes 10^{54}$
$\ p_h(\cdot, T)\ _{L^2(0,1)}$	2.85×10^{1}	2.04×10^2	1.59×10^3	4.70×10^4	$6.12 imes 10^{6}$
$ y_h(\cdot, T) _{L^2(0,1)}$	4.37×10^{-2}	$2.18 imes 10^{-2}$	$1.09 imes 10^{-2}$	$5.44 imes10^{-3}$	$2.71 imes 10^{-3}$
$\ v_h\ _{L^2(q_T)}$	1.228	1.251	1.269	1.281	1.288

Table: T = 1/2, $y_0(x) \equiv \sin(\pi x)$, $a(x) \equiv 10^{-1}$. $\|y_h(\cdot, T)\|_{L^2(0,1)} = O(h)$.

Figure: $\omega = (0.2, 0.8)$. The adjoint state p_h and its restriction to $(0, 1) \times \{T\}$.

.⊒ →

Experiments with $\omega = (0.2, 0.8)$

Figure: $\omega = (0.2, 0.8)$. The state y_h (Left) and the control v_h (Right).

Experiments with $\omega = (0.3, 0.4)$

$\Delta x = \Delta t$	1/20	1/40	1/80	1/160	1/320
conditioning	3.06×10^{14}	$5.24 imes 10^{22}$	$2.13 imes 10^{33}$	$5.11 imes 10^{44}$	$4.03 imes 10^{54}$
$\ p_h(\cdot, T)\ _{L^2(0,1)}$	1.37×10^{3}	5.51×10^3	5.12×10^{4}	2.16×10^{6}	$3.90 imes 10^6$
$\ y_h(\cdot, T)\ _{L^2(0,1)}$	1.55×10^{-1}	9.46×10^{-2}	$6.12 imes 10^{-2}$	$3.91 imes 10^{-2}$	$2.41 imes 10^{-2}$
$\ v_h\ _{L^2(q_T)}$	5.813	8.203	10.68	13.20	15.81

Table: T = 1/2, $y_0(x) \equiv \sin(\pi x)$, $a(x) \equiv 10^{-1}$. $||y_h(\cdot, T)||_{L^2(0,1)} = \mathcal{O}(h^{0.66})$.

Figure: $\omega = (0.3, 0.4)$. The adjoint state p_h in Q_T (Left) and its restriction to $(0, 1) \times \{T\}$ (Right).

Arnaud Münch Exact Controllability / Heat Equation / Numerics

Experiments with $\omega = (0.3, 0.4)$

Figure: $\omega = (0.3, 0.4)$. The state y_h (Left) and the control v_h (Right).

Avoiding C^1 finite element in space : Mixed formulation

We keep the variable $y = \rho^{-2}L^*p$ explicit, introduce $z = \rho^{-2}L^*q$ and we transform the formulation : find $p \in P$ s.t.

$$\iint_{Q_T} \rho^{-2} L^* p \, L^* q \, dx \, dt + \iint_{q_T} \rho_0^{-2} p \, q \, dx \, dt = \int_0^1 y_0(x) \, q(x,0) \, dx, \quad \forall q \in P$$

into : find $(p, y) \in P \times Z$ s.t.

$$\begin{cases} \iint_{Q_T} \rho^2 y \, z \, dx \, dt + \iint_{q_T} \rho_0^{-2} p \, q \, dx \, dt = \int_0^1 y_0(x) \, q(x,0) \, dx \\ \forall (z,q) \text{ with } L^* q - \rho^2 z = 0 \text{ and } q \in P; \quad (y,v) \text{ with } L^* p - \rho^2 y = 0 \text{ and } p \in P. \end{cases}$$

and then into : find $(p, y, \lambda) \in P \times Z \times Z$ s.t.

$$\begin{cases} \iint_{Q_T} \rho^2 y \, z \, dx \, dt + \iint_{q_T} \rho_0^{-2} p \, q \, dx \, dt + \iint_{Q_T} \lambda(L^* q - \rho^2 z) \, dx \, dt = \int_0^1 y_0(x) \, q(x,0) \, dx \\ \iint_{Q_T} \mu(L^* p - \rho^2 y) \, dx \, dt = 0 \end{cases}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Avoiding C^1 finite element in space : Mixed formulation

We keep the variable $y = \rho^{-2}L^*p$ explicit, introduce $z = \rho^{-2}L^*q$ and we transform the formulation : find $p \in P$ s.t.

$$\iint_{Q_T} \rho^{-2} L^* p \, L^* q \, dx \, dt + \iint_{q_T} \rho_0^{-2} p \, q \, dx \, dt = \int_0^1 y_0(x) \, q(x,0) \, dx, \quad \forall q \in P$$

into : find $(p, y) \in P \times Z$ s.t.

$$\begin{cases} \iint_{Q_T} \rho^2 y \, z \, dx \, dt + \iint_{q_T} \rho_0^{-2} p \, q \, dx \, dt = \int_0^1 y_0(x) \, q(x,0) \, dx \\ \forall (z,q) \text{ with } L^* q - \rho^2 z = 0 \text{ and } q \in P; \quad (y,v) \text{ with } L^* p - \rho^2 y = 0 \text{ and } p \in P. \end{cases}$$

and then into : find $(p, y, \lambda) \in P \times Z \times Z$ s.t.

$$\begin{cases} \iint_{Q_T} \rho^2 y \, z \, dx \, dt + \iint_{q_T} \rho_0^{-2} p \, q \, dx \, dt + \iint_{Q_T} \lambda(L^* q - \rho^2 z) \, dx \, dt = \int_0^1 y_0(x) \, q(x,0) \, dx \\ \iint_{Q_T} \mu(L^* p - \rho^2 y) \, dx \, dt = 0 \end{cases}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●
Avoiding C^1 finite element in space : Mixed formulation

Let us introduce the space

$$Z = L^{2}(\rho^{2}; Q_{T}) = \{ z \in L^{1}_{loc}(Q_{T}) : \iint_{Q_{T}} \rho^{2} |z|^{2} dx dt < +\infty \},$$

the bilinear forms

$$a((y,p),(z,q)) = \iint_{Q_T} \rho^2 y \, z \, dx \, dt + \iint_{q_T} \rho_0^{-2} p \, q \, dx \, dt \quad \forall (y,p), (z,q) \in Z \times P$$

and

$$b((z,q),\mu) = \iint_{Q_T} (L^*q - \rho^2 z) \, \mu \, dx \, dt \quad \forall (z,q) \in Z \times P, \quad \forall \mu \in Z$$

and the linear form

$$\langle \ell, (z,q) \rangle = \int_0^1 y_0(x) q(x,0) dx \quad \forall (z,q) \in Z \times P.$$

Then $a(\cdot, \cdot)$, $b(\cdot, \cdot)$ and ℓ are well-defined and continuous and the announced mixed formulation is the following:

イロン 不得 とくほ とくほ とうほ

Avoiding C^1 finite element in space : Mixed formulation

Let us introduce the space

$$Z = L^{2}(\rho^{2}; Q_{T}) = \{ z \in L^{1}_{loc}(Q_{T}) : \iint_{Q_{T}} \rho^{2} |z|^{2} dx dt < +\infty \},$$

the bilinear forms

$$a((y,p),(z,q)) = \iint_{Q_T} \rho^2 y \, z \, dx \, dt + \iint_{q_T} \rho_0^{-2} p \, q \, dx \, dt \quad \forall (y,p), (z,q) \in Z \times P$$

and

$$b((z,q),\mu) = \iint_{Q_T} (L^*q - \rho^2 z) \, \mu \, dx \, dt \quad \forall (z,q) \in Z \times P, \quad \forall \mu \in Z$$

and the linear form

$$\langle \ell, (z,q) \rangle = \int_0^1 y_0(x) q(x,0) dx \quad \forall (z,q) \in Z \times P.$$

Then $a(\cdot, \cdot)$, $b(\cdot, \cdot)$ and ℓ are well-defined and continuous and the announced mixed formulation is the following:

$$\begin{cases} a((y,p),(z,q)) + b((z,q),\lambda) &= \langle \ell,(z,q) \rangle & \forall (z,q) \in Z \times P \\ b((y,p),\mu) &= 0 & \forall \mu \in Z \end{cases}$$
(13)
$$(y,p) \in Z \times P, \quad \lambda \in Z \end{cases}$$

・ロト ・ 理 ト ・ ヨ ト ・

ъ

Theorem

There exists a unique solution (y, p, λ) to (??). Moreover, y is, together with $v = \rho_0^{-2} p|_{q_T}$, the unique solution to (??).

PROOF: Let us introduce the space

$$V = \{ (z,q) \in Z \times P : b((z,q),\mu) = 0 \ \forall \mu \in Z \}.$$

• $a(\cdot, \cdot)$ is coercive on *V*, that is:

 $a((z,q),(z,q)) \ge \kappa \|(z,q)\|_{Z\times P}^2 \quad \forall (z,q) \in V, \quad \kappa > 0.$ (14)

• $b(\cdot, \cdot)$ satisfies the usual "inf-sup" condition with respect to $Z \times P$ and Z, i.e.

$$\beta := \inf_{\mu \in \mathbb{Z}} \sup_{(z,q) \in \mathbb{Z} \times P} \frac{b((z,q),\mu)}{\|(z,q)\|_{\mathbb{Z} \times P} \|\mu\|_{\mathbb{Z}}} > 0.$$
(15)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Theorem

There exists a unique solution (y, p, λ) to (??). Moreover, y is, together with $v = \rho_0^{-2} p|_{q_T}$, the unique solution to (??).

PROOF: Let us introduce the space

$$V = \{ (z,q) \in Z \times P : b((z,q),\mu) = 0 \ \forall \mu \in Z \}.$$

• $a(\cdot, \cdot)$ is coercive on *V*, that is:

$$a((z,q),(z,q)) \ge \kappa \|(z,q)\|_{Z\times P}^2 \quad \forall (z,q) \in V, \quad \kappa > 0. \tag{14}$$

• $b(\cdot, \cdot)$ satisfies the usual "inf-sup" condition with respect to $Z \times P$ and Z, i.e.

$$\beta := \inf_{\mu \in \mathbb{Z}} \sup_{(z,q) \in \mathbb{Z} \times P} \frac{b((z,q),\mu)}{\|(z,q)\|_{\mathbb{Z} \times P} \|\mu\|_{\mathbb{Z}}} > 0.$$
(15)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Theorem

There exists a unique solution (y, p, λ) to (??). Moreover, y is, together with $v = \rho_0^{-2} p|_{q_T}$, the unique solution to (??).

PROOF: Let us introduce the space

$$V = \{ (z,q) \in Z \times P : b((z,q),\mu) = 0 \ \forall \mu \in Z \}.$$

• $a(\cdot, \cdot)$ is coercive on *V*, that is:

$$a((z,q),(z,q)) \ge \kappa \|(z,q)\|_{Z\times P}^2 \quad \forall (z,q) \in V, \quad \kappa > 0.$$
(14)

• $b(\cdot, \cdot)$ satisfies the usual "inf-sup" condition with respect to $Z \times P$ and Z, i.e.

$$\beta := \inf_{\mu \in Z} \sup_{(z,q) \in Z \times P} \frac{b((z,q),\mu)}{\|(z,q)\|_{Z \times P} \|\mu\|_{Z}} > 0.$$
(15)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Mixed formulation : a non conformal approximation

For any $h = (\Delta x, \Delta t)$ as before, let us consider again the associated uniform quadrangulation Q_h . We now introduce the following finite dimensional spaces:

$$Z_h = \{ z_h \in C^0(\overline{Q}_T) : z_h|_K \in (\mathbb{P}_{1,x} \otimes \mathbb{P}_{1,t})(K) \ \forall K \in \mathcal{Q}_h, \ z_h \in Z \},\$$

$$Q_h = \{ q_h \in C^0(\overline{Q}_T) : q_h|_K \in (\mathbb{P}_{1,x} \otimes \mathbb{P}_{1,t})(K) \ \forall K \in \mathcal{Q}_h, \ q_h|_{\Sigma_T} \equiv 0 \}.$$

We have $Z_h \subset Z$ but, contrarily, $Q_h \not\subset P$. Let us introduce the bilinear form

$$\begin{cases} b_h((z_h, q_h), \mu_h) = \iint_{Q_T} (-(q_h)_t \, \mu_h + a(x)(q_h)_x(\mu_h)_x - \rho^2 z_h \mu_h) \, dx \, dt \\ \forall (z_h, q_h) \in Z_h \times Q_h, \ \forall \mu_h \in Z_h. \end{cases}$$

Then the mixed finite element approximation of (??) is the following:

$$\begin{array}{l} a((y_h,p_h),(z_h,q_h)) + b_h((z_h,q_h),\lambda_h) &= \langle \ell,(z_h,q_h) \rangle \quad \forall (z_h,q_h) \in Z_h \times Q_h \\ b((y_h,p_h),\mu_h) &= 0 \qquad \forall \mu_h \in Z_h \\ (y_h,p_h) \in Z_h \times Q_h, \quad \lambda_h \in Z_h. \end{array}$$

$$(16)$$

(個) (日) (日) (日)

$$a((y,p),(z,q)) = \iint_{Q_T} \rho^2 y \, z \, dx \, dt + \iint_{q_T} \rho_0^{-2} p \, q \, dx \, dt \quad \forall (y,p), (z,q) \in Z \times P$$

$$\rho(x,t) \to \rho_{\eta}(x,t) = \exp\left(\frac{\beta(x)}{T-t+\eta}\right), \quad \rho_{0,\eta}(x,t) = (T-t+\eta)^{3/2}\rho_{\eta}(x,t).$$
(17)

$\Delta x = \Delta t$	1/40	1/80	1/160	1/320
conditioning	$1.68 imes 10^{119}$	$6.55 imes 10^{127}$	$3.76 imes 10^{117}$	$1.47 imes 10^{116}$
$\ p_h(\cdot, T)\ _{L^2(0,1)}$	$1.91 imes10^{43}$	$2.37 imes10^{43}$	$2.14 imes10^{43}$	$8.59 imes10^{43}$
$\ y_h(\cdot, T)\ _{L^2(0,1)}$	$1.84 imes 10^{-12}$	$7.64 imes 10^{-13}$	$2.77 imes 10^{-13}$	$1.36 imes 10^{-11}$
$\ v_h\ _{L^2(q_T)}$	1.272	1.275	1.282	1.289

Table: Mixed approach imposing $y_h(\cdot, 0) = y_{0h}$, $\omega = (0.2, 0.8)$, $\eta = 10^{-2}$, $y_0(x) \equiv \sin(\pi x)$, $a(x) \equiv 10^{-1}$.

(ロ) (同) (目) (日) (日) (の)

Mixed formulation : A nonconstant C^1 diffusion

 $y_0(x) = \sin(\pi x), T = 1/2, a \in C^1([0, 1]), a(x) = 1 \text{ in } (0, 0.45), a(x) = 1/15 \text{ in } (0.55, 1)$ (18)

Figure: $\omega = (0.3, 0.6)$, nonconstant C^1 coefficient *a*; first case. The state y_h (Left) and the control v_h (Right).

$\Delta x = \Delta t$	1/40	1/80	1/160	1/320	
conditioning	1.05×10^{37}	$2.02 imes10^{36}$	$7.80 imes 10^{35}$	$2.49 imes 10^{35}$	
$\ p_h(\cdot, T)\ _{L^2(0,1)}$	2.15×10^{8}	3.71×10^8	$7.56 imes 10^8$	$2.31 imes 10^9$	
$\ y_h(\cdot, T)\ _{L^2(0,1)}$	1.97×10^{-9}	$2.93 imes10^{-9}$	$6.62 imes 10^{-9}$	$1.21 imes 10^{-8}$	
$\ v_h\ _{L^2(q_T)}$	5.721	6.159	6.4721	6.550	

Mixed formulation : A nonconstant C^1 diffusion

 $y_0(x) = \sin(\pi x), T = 1/2, a \in C^1([0, 1]), a(x) = 1/15 \text{ in } (0, 0.45), a(x) = 1 \text{ in } (0.55, 1)$ (19)

Figure: $\omega = (0.3, 0.6)$, nonconstant C^1 coefficient *a*; second case. The state y_h (Left) and the control v_h (Right).

$\Delta x = \Delta t$	1/40	1/80	1/160	1/320
conditioning	2.82×10^{37}	$1.73 imes 10^{36}$	$7.07 imes 10^{35}$	8.31×10^{35}
$\ p_h(\cdot, T)\ _{L^2(0,1)}$	$3.95 imes 10^7$	4.28×10^7	$8.09 imes 10^7$	2.51×10^8
$\ y_h(\cdot, T)\ _{L^2(0,1)}$	4.92×10^{-10}	$3.26 imes10^{-10}$	$7.68 imes 10^{-10}$	$2.94 imes10^{-9}$
$\ v_h\ _{L^2(q_T)}$	1.704	1.796	1.872	1.890

Table: Mixed approach imposing $y_h(\cdot, 0) = y_{0h}$, $\omega = (0.3, 0.6)$, $\eta = 3 \times 10^{-2}$, $y_0(x) \equiv \sin(\pi x)$, nonconstant C^1 coefficient a. second case: the coefficient is "small" in ω .

Mixed formulation : piecewise constant

[Benabdallah-Dermenjian-Le Rousseau, 2007] 6

 $y_0(x) = \sin(\pi x), T = 1/2, \quad , a = a_1 \mathbf{1}_{D_1} + a_2 \mathbf{1}_{D_2} \quad D_1 = (0, 0.5), D_2 = (0.5, 1), \quad (a_1, a_2) = (1, 1/15).$

 $\omega = (0.1, 0.4)$

Figure: Piecewise constant diffusion *a*: The optimal pairs (y_h, v_h) for $\omega = (0.1, 0.4)$. $\|v_h\|_{L^2(q_T)} = 46.56$.

⁶Carleman estimates for the 1D heat equation with a discontinuous coefficient and applications to controllability and an inverse problems,JMAA (2007).

Mixed formulation : piecewise constant diffusion

 $y_0(x) = \sin(\pi x), T = 1/2, \quad , a = a_1 \mathbf{1}_{D_1} + a_2 \mathbf{1}_{D_2} \quad D_1 = (0, 0.5), D_2 = (0.5, 1), \quad (a_1, a_2) = (1, 1/15).$

 $\omega = (0.6, 0.9)$

Figure: Piecewise constant diffusion *a*: The optimal pairs (y_h, v_h) for $\omega = (0.6, 0.9)$. $||v_h||_{L^2(q_T)} = 1.35$.

⁷ E. Fernandez-Cara, AM *Numerical exact controllability of the 1D heat equation: primal algorithms*, preprint 2009.

Mixed formulation : non cylindrical situation

Figure: $\Delta x = \Delta t = 10^{-2}$ - Null controllability with non cylindrical control domains G_T (**Top**), the computed states y_h (**Left**) and the control v_h (**Right**).

Use duality to minimize J:

$$\begin{cases} \text{Minimize } J(y, v) = \frac{1}{2} \iint_{Q_T} \rho^2 |y|^2 \, dx \, dt + \frac{1}{2} \iint_{q_T} \rho_0^2 |v|^2 \, dx \, dt \\ \text{Subject to } (y, v) \in \mathcal{C}(y_0, T). \end{cases}$$
(20)

by

$$\begin{cases} \text{Minimize } J_{R,\varepsilon}(y,v) = \frac{1}{2} \iint_{Q_T} \rho_R^2 |y|^2 \, dx \, dt + \frac{1}{2} \iint_{q_T} \rho_0^2 |v|^2 \, dx \, dt + \frac{1}{2\varepsilon} ||y(\cdot,T)||_{L^2}^2 \\ \text{Subject to } (y,v) \in \mathcal{A}(y_0,T) \end{cases}$$

$$(21)$$

where $\rho_R = \min(\rho, R)$ and

$$\mathcal{A}(y_0, T) = \{ (y, v) : v \in L^2(q_T), y \text{ solves } (\ref{eq: solves}) \}.$$

8

⁸E. Fernández-Cara, AM, Numerical exact controllability of the 1D heat equation: dual algorithm, Preprint 2010. 🤄 <

Conjugate functions $J_{R,\varepsilon}^{\star}$ of $J_{R,\varepsilon}$

$$\begin{aligned} \text{Minimize } J_{R,\varepsilon}^{*}(\mu,\varphi_{T}) &= \frac{1}{2} \left(\iint_{O_{T}} \rho_{R}^{-2} |\mu|^{2} \, dx \, dt + \iint_{q_{T}} \rho_{0}^{-2} |\varphi|^{2} \, dx \, dt \right) \\ &+ \int_{0}^{1} \varphi(x,0) \, y_{0}(x) \, dx + \frac{\varepsilon}{2} \left\| \varphi_{T} \right\|_{L^{2}}^{2} \end{aligned} \tag{22}$$

$$\text{Subject to } (\mu,\varphi_{T}) \in L^{2}(O_{T}) \times L^{2}(0,1).$$

where $\varphi = M^* \mu + B^* \varphi_T$, i.e. φ is the solution to

$$\begin{array}{ll} L^{*}\varphi = -\varphi_{t} - (a(x)\varphi_{x})_{x} = \mu, & (x,t) \in (0,1) \times (0,T) \\ \varphi(x,t) = 0, & (x,t) \in \{0,1\} \times (0,T) \\ \varphi(x,T) = \varphi_{T}(x), & x \in (0,1). \end{array}$$

$$(23)$$

Propositior

The unconstrained extremal problems (**??**) is the dual problems to (**??**) in the sense of the Fenchel-Rockafellar theory. Furthermore, (**??**) and (**??**) are stable and possess unique solutions. Finally, if we denote by $(y_{R,\varepsilon}, v_{R,\varepsilon})$ the unique solution to (**??**), we denote by $(\mu_{R,\varepsilon}, \varphi_{T,R,\varepsilon})$ the unique solution to (**??**) and we set $\varphi_{R,\varepsilon} = M^* \mu_{R,\varepsilon} + B^* \varphi_{T,R,\varepsilon}$, then the following relations hold:

$$v_{R,\varepsilon} = \rho_0^{-2} \varphi_{R,\varepsilon} |_{q_T} , \quad y_{R,\varepsilon} = -\rho_R^{-2} \mu_{R,\varepsilon} , \quad y_{R,\varepsilon}(\cdot, T) = -\varepsilon \varphi_{T,R,\varepsilon} .$$

Moreover,

$$v_{R,\varepsilon} \to v \text{ strongly in } L^2(q_T) \text{ and } y_{R,\varepsilon} \to y \text{ strongly in } L^2(Q_T)$$
 (25)

as $\varepsilon \to 0^+$, $R \to \infty$ where (y, v) minimizes J.

With and Without weights: $\omega = (0.2, 0.8) - y_0(x) = \sin(\pi x)$

Evolution of the residue (in log₁₀-scale) and $\varphi_{T,h}$ on (0, 1) for $(\rho, \rho_0) \equiv (0, 1)$

Evolution of the residue (in \log_{10} -scale) and $\varphi_{T,R,\varepsilon,h}$ on (0, 1) for Carleman type weights with $R = 10^{10}$ and $\varepsilon = 10^{-10}$.

 \implies Very low variation of the cost around the minimizer with respect to the high frequencies of $\varphi_{T,R,\varepsilon}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

$$\begin{cases} y_t - (a(x)y_x)_x + f(y) = v \mathbf{1}_{\omega}, & (x,t) \in (0,1) \times (0,T) \\ y(x,t) = 0, & (x,t) \in \{0,1\} \times (0,T) \\ y(x,0) = y_0(x), & x \in (0,1). \end{cases}$$

We assume that

$$|f'(s)| \le C(1+|s|^p), \text{ a.e., with } p \le 5.$$
 (26)

so that the system posseses a local (in time) solution. 9

Theorem (Fernandez-Cara and Zuazua'00)

Let T > 0. Assume that f(0) = 0 and $f : \mathbb{R} \to \mathbb{R}$ is locally Lipschitz-continuous and satisfies (??) and

$$\frac{f(\mathbf{s})}{|\mathbf{s}|\log^{3/2}(1+|\mathbf{s}|)} \to 0 \quad as \quad |\mathbf{s}| \to \infty.$$
(27)

Then (**??**) is null controllable at time *T*; for any $y_0 \in L^2(0, 1)$, there exists a control $v \in L^{\infty}(q_T)$ such that y(T) = 0.

э.

⁹Fernández-Cara, Zuazua, Null and approximate controllability for weakling blowing up semilinear heat equation, Ann. Inst. Poincaré (2000).

Linearization via Newton Method plus iteration

We consider the Newton method for $F(y, v) = (y_t - (a(x)y_x)_x + f(y) - v \mathbf{1}_{\omega}, y(T)).$

Assuming that $(y^n, v^n) \in C(y_0, T)$ is known, solve (y^{n+1}, v^{n+1}) over $C(y_0, T)$ the unique solution of the linear extremal problem :

Minimize
$$J(y^{n+1}, v^{n+1}) = \frac{1}{2} \iint_{Q_T} \rho^2 |y^{n+1}|^2 \, dx \, dt + \frac{1}{2} \iint_{Q_T} \rho_0^2 |v^{n+1}|^2 \, dx \, dt$$

where $v^{n+1} \in L^2(q_T)$ is a null control for y^{n+1} solution of the

$$\begin{cases} y_t^{n+1} - (a(x)y_x^{n+1})_x + f'(y^n) \cdot y^{n+1} = v^{n+1} \mathbf{1}_\omega + G(y^n), & (x,t) \in (0,1) \times (0,T) \\ y^{n+1}(x,t) = 0, & (x,t) \in \{0,1\} \times (0,T) \\ y^{n+1}(\cdot,0) = y_0, & x \in (0,1). \end{cases}$$

with $G(y) = f'(y) \cdot y - f(y)$.

We take

$$f(y) = K y \log^{\alpha}(1+|y|), \alpha > 0 \Longrightarrow G(y) = K\alpha |y|^2 \frac{\log^{\alpha-1}(1+|y|)}{1+|y|}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Linearization via Newton Method plus iteration

We consider the Newton method for $F(y, v) = (y_t - (a(x)y_x)_x + f(y) - v \mathbf{1}_{\omega}, y(T)).$

Assuming that $(y^n, v^n) \in C(y_0, T)$ is known, solve (y^{n+1}, v^{n+1}) over $C(y_0, T)$ the unique solution of the linear extremal problem :

Minimize
$$J(y^{n+1}, v^{n+1}) = \frac{1}{2} \iint_{Q_T} \rho^2 |y^{n+1}|^2 \, dx \, dt + \frac{1}{2} \iint_{q_T} \rho_0^2 |v^{n+1}|^2 \, dx \, dt$$

where $v^{n+1} \in L^2(q_T)$ is a null control for y^{n+1} solution of the

$$\begin{cases} y_t^{n+1} - (a(x)y_x^{n+1})_x + f'(y^n) \cdot y^{n+1} = v^{n+1} \mathbf{1}_{\omega} + G(y^n), & (x,t) \in (0,1) \times (0,T) \\ y^{n+1}(x,t) = 0, & (x,t) \in \{0,1\} \times (0,T) \\ y^{n+1}(\cdot,0) = y_0, & x \in (0,1). \end{cases}$$

with $G(y) = f'(y) \cdot y - f(y)$.

We take

$$f(y) = K y \log^{\alpha}(1+|y|), \alpha > 0 \Longrightarrow G(y) = K \alpha |y|^2 \frac{\log^{\alpha-1}(1+|y|)}{1+|y|}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Arnaud Münch Exact Controllability / Heat Equation / Numerics

Part III

Computation of control using the transmutation method

with Enrique Zuazua : AM-EZ, Inverse Problems (2010) ¹⁰

 $a(x)=a_0>0$

¹⁰AM-EZ,Numerical approximation of null controls for the heat equation: ill posedeness and remedies (2010) 🤄 🗠 🖓

The control transmutation method (Luc Miller'06)

¹¹ Let L > 0 and $y_0 \in H_0^1(\Omega)$. IF $f \in L^2([0, L] \times \omega)$ is a null-control for *w*, solution of the wave equation

$$\begin{cases} w_{ss} - w_{xx} = f \mathbf{1}_{\omega} & (s, x) \in (0, L) \times \Omega \\ w = 0 & (0, L) \times \partial \Omega \\ (w(0), w_{s}(0)) = (y_{0}, 0) \Longrightarrow (w(L), w_{s}(L)) = (0, 0) \end{cases}$$

AND if $H \in C^0([0, T], \mathcal{M}(] - L, L[)$ is a fundamental controlled solution for the heat equation

$$\begin{cases} \partial_t H - \partial_s^2 H = 0 & \text{in } \mathcal{D}'(]0, T[\times] - L, L[), \\ H(t=0) = \delta, \quad H(t=T) = 0 \end{cases}$$

THEN the fonction

$$v(t,x) = 2 \int_0^L H(t,s) f(s,x) ds \, \mathbf{1}_\omega(x), \quad (0,T) \times \Omega$$

is a null control in $L^2(q_T)$ for $y(t,x) = 2 \int_0^L H(t,s)w(s,x)ds$ solution of the heat equation

$$\begin{cases} y_t - y_{xx} = v \ \mathbf{1}_{\omega} & (0, T) \times \Omega, \\ y = 0 & (0, T) \times \partial \Omega, \\ y(0) = y_0 \end{cases}$$

11 L. Miller, The control transmutation method and the cost of fast controls, SICON 2006 + < = + < = + = =

The control transmutation method (Luc Miller'06)

¹¹ Let L > 0 and $y_0 \in H_0^1(\Omega)$. IF $f \in L^2([0, L] \times \omega)$ is a null-control for *w*, solution of the wave equation

$$\begin{cases} w_{ss} - w_{xx} = f \mathbf{1}_{\omega} & (s, x) \in (0, L) \times \Omega \\ w = 0 & (0, L) \times \partial \Omega \\ (w(0), w_{s}(0)) = (y_{0}, 0) \Longrightarrow (w(L), w_{s}(L)) = (0, 0) \end{cases}$$

AND if $H \in C^0([0, T], \mathcal{M}(] - L, L[)$ is a fundamental controlled solution for the heat equation

$$\begin{cases} \partial_t H - \partial_s^2 H = 0 & \text{in } \mathcal{D}'(]0, T[\times] - L, L[), \\ H(t=0) = \delta, \quad H(t=T) = 0 \end{cases}$$

THEN the fonction

$$v(t,x) = 2 \int_0^L H(t,s) f(s,x) ds \, \mathbf{1}_\omega(x), \quad (0,T) \times \Omega$$

is a null control in $L^2(q_T)$ for $y(t,x) = 2 \int_0^L H(t,s)w(s,x)ds$ solution of the heat equation

$$\begin{cases} y_t - y_{xx} = v \mathbf{1}_{\omega} & (0, T) \times \Omega, \\ y = 0 & (0, T) \times \partial \Omega, \\ y(0) = y_0 \end{cases}$$

11 L. Miller, The control transmutation method and the cost of fast controls, SICON 2006 > < = > < = > - = - - - = - = - - = - - = - - = - - = - = - = - - = - = - - =

Computation of the fundamental solution for the heat equation

Jones ¹², Rouchon ¹³. Let $\delta \in (0, T)$. For $t \in (0, \delta)$, *H* is taken as the Gaussian :

$$H(t,s) = rac{1}{\sqrt{4\pi t}}e^{-rac{s^2}{4t}}, \quad (t,s)\in (0,\delta) imes \mathbb{R}.$$

so that it remains to join $H(\delta, s)$ to 0 at time T. For any a > 0 and any $\alpha > 1$, we consider the *bump* function

$$h(n) = \exp\left(-\frac{a}{((n-\delta)(T-n))^{\alpha}}\right), \quad n \in (\delta, T)$$

$$p(t) = \frac{1}{\sqrt{4\pi t}} \begin{cases} 1 & t \in (0, \delta) \\ \frac{\int_t^T h(n) dn}{\int_\delta^T h(n) dn} & t \in (\delta, T) \end{cases}$$

$$H(t,s) = \sum_{k\geq 0} \rho^{(k)}(t) \frac{s^{2k}}{(2k)!}$$
(28)

¹²B. Jones. A fundamental solution for the heat equation which is supported in a strip, J. Math. Anal. Appl. 1977 ¹³B. Laroche, P. Martin and P. Rouchon, Motion planning for the heat equation, Int. Journal of Robust and ヘロア 人間 アメヨア 人口 ア ъ

Nonlinear Control, (2000)

Computation of the fundamental solution for the heat equation

Jones ¹², Rouchon ¹³. Let $\delta \in (0, T)$. For $t \in (0, \delta)$, *H* is taken as the Gaussian :

$$H(t,s)=rac{1}{\sqrt{4\pi t}}e^{-rac{s^2}{4t}},\quad (t,s)\in(0,\delta) imes\mathbb{R}.$$

so that it remains to join $H(\delta, s)$ to 0 at time T. For any a > 0 and any $\alpha > 1$, we consider the *bump* function

$$h(n) = \exp\left(-\frac{a}{((n-\delta)(T-n))^{\alpha}}\right), \quad n \in (\delta, T)$$

and then the function

$$p(t) = \frac{1}{\sqrt{4\pi t}} \begin{cases} 1 & t \in (0, \delta) \\ \frac{\int_t^T h(n) dn}{\int_\delta^T h(n) dn} & t \in (\delta, T) \end{cases}$$

so that p(T) = 0. $h \in C_c^{\infty}([\delta, T])$ and $p \in C^{\infty}([0, T])$. h and p are both Gevrey functions of order

$$H(t,s) = \sum_{k\geq 0} \rho^{(k)}(t) \frac{s^{2k}}{(2k)!}$$
(28)

¹²B. Jones, A fundamental solution for the heat equation which is supported in a strip, J. Math. Anal. Appl. 1977 ¹³B. Laroche, P. Martin and P. Rouchon, Motion planning for the heat equation, Int. Journal of Robust and ★ Ξ → ★ Ξ → 3

Nonlinear Control, (2000)

Computation of the fundamental solution for the heat equation

Jones ¹², Rouchon ¹³. Let $\delta \in (0, T)$. For $t \in (0, \delta)$, *H* is taken as the Gaussian :

$$H(t,s) = rac{1}{\sqrt{4\pi t}}e^{-rac{s^2}{4t}}, \quad (t,s)\in (0,\delta) imes \mathbb{R}.$$

so that it remains to join $H(\delta, s)$ to 0 at time T. For any a > 0 and any $\alpha \ge 1$, we consider the *bump* function

$$h(n) = \exp\left(-\frac{a}{((n-\delta)(T-n))^{\alpha}}\right), \quad n \in (\delta, T)$$

and then the function

$$p(t) = \frac{1}{\sqrt{4\pi t}} \begin{cases} 1 & t \in (0, \delta) \\ \frac{\int_t^T h(n) dn}{\int_\delta^T h(n) dn} & t \in (\delta, T) \end{cases}$$

so that p(T) = 0. $h \in C_c^{\infty}([\delta, T])$ and $p \in C^{\infty}([0, T])$. h and p are both Gevrey functions of order $1 + 1/\alpha \in (1, 2]$ so that the serie

$$H(t,s) = \sum_{k \ge 0} p^{(k)}(t) \frac{s^{2k}}{(2k)!}$$
(28)

is convergent. (??) defines a solution of the heat equation and satisfies H(T, s) = 0 for all $s \in \mathbb{R}$ and

 $\lim_{t\to 0^+} H(t,s) = \delta_{s=0}.$

¹²B. Jones, A fundamental solution for the heat equation which is supported in a strip, J. Math. Anal. Appl. 1977 ¹³B. Laroche, P. Martin and P. Rouchon, Motion planning for the heat equation, Int. Journal of Robust and

Nonlinear Control, (2000)

Fundamental solution for the heat equation: example

 $a_0 = 1$ by the change of variable $(\tilde{x}, \tilde{t}) = (a_0 t, x)$

Figure: $L = 0.5 - T = 0.1 - (a, \alpha, \delta) = (10^{-2}, 1, T/5) -$ Left: fundamental solution H on $(0, T) \times (0, L)$ - Right: H(t, L) vs. $t \in (0, T)$.

∃⇒

Fundamental solution for the heat equation: example

Figure: $L = 0.5 - T = 0.1 - (a, \alpha, \delta) = (10^{-2}, 1, T/2)$ - Left: fundamental solution H on $(0, T) \times (0, L)$ - Right: H(t, L) vs. $t \in (0, T)$.

Control by the transmutation method

Figure: $y_0(x) = \sin(\pi x), L = 0.5$ - Controlled wave solution *w* (Left) and corresponding HUM control *f* (Right) on $(0, L) \times \Omega$.

Figure: $y_0(x) = \sin(\pi x)$, T = 1, $a_0 = 1/10$, $(\delta, \alpha) = (T/5, 1)$ - Controlled heat solution y (Left) and corresponding transmutted control v (Right) on $(0, T) \times \Omega$.

Figure: $L^2(\omega)$ norm of the control v vs $t \in [0, T]$ for $(y_0(x), T, a_0) = (\sin(\pi x), 1, 1/10)$

프 에 에 프 어

ъ

Transmutation to HUM ?

 $\|v\|_{L^2(q_T)} \le 2\|f\|_{L^2((0,L)\times\omega)} \|H\|_{L^2((0,T)\times(0,L)}$ $\|H\|_{L^2((0,T)\times(0,L)}$ is reduced if δ is small (reduce the time period where the dissipation is governed by the gaussian), and $\alpha_1 > 1$ (allows to take δ small) and $\alpha_2 < 1$ (increase the magnitude of the control near *T*).

Figure: $(y_0(x), a_0) = (\sin(\pi x), 1/10)$ - Heat fundamental solution H(t, L) vs. $t \in [0, \tilde{T}]$ (Left) and $L^2(\Omega)$ -norm of corresponding control v (**Right**). $\alpha_1 = 1.1, \alpha_2 = 0.7 ||g||_{L^2(\Omega_T)} \approx 5.67 \times 10^{-1}$ -The transmuted control $v_h = (v)_{h>0}$ ensures that $\|y_h(T, \cdot)\|_{L^2(\Omega)} \approx 10^{-5}$

-Once a solution H in the one dimensional is constructed, we can take

$$H_n(t, x_1, x_2, \cdots, x_n) = H(t, x_1) \times H(t, x_2) \times \cdots \times H(t, x_n)$$

as a fundamental control solution for $(t, x) \in (0, T) \times [-L, L]^n$. Consequently, the transmutation provides also a control in any dimension, provided some geometric condition on the support ω .

-The transmutation method provides uniformly bounded discrete control $\{v_h\}$ discretization of

$$v(t,x) = 2\sum_{k\geq 0} p^{(k)}(t) \int_0^L \frac{s^{2k}}{(2k)!} f(s,x) ds \, \mathbf{1}_\omega(x)$$

- The main difficulty is the robust evaluation of $p^{(k)}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

PART IV Numerical null controllability through a variational approach

with Pablo Pedregal, Preprint 2010.

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Introduced in [Pedregal, (2010)] 14

Assume that $y_0 \in H^{1/2}(0, 1)$, $y_0(0) = 0$.

1. Consider the following class of feasible functions that comply with initial, boundary and final conditions :

$$\mathcal{A} = \left\{ y \in H^1(Q_T) : y(x,0) = y_0(x), y(x,T) = 0, x \in (0,1), y(0,t) = 0, t \in (0,T) \right\}$$

2. Find an element $y \in A$ solution of the heat equation, that is,

$$\int_{Q_T} (y_t w + a(x) y_x w_x) \, dx dt = 0, \quad \forall w \in L^2(0, T; H_0^1(0, 1))$$
(29)

3. Define a control v as the trace of y on $\{1\} \times (0, T)$, that is

$$v(t) = y(1,t), \quad t \in (0,T)$$

¹⁴ P. Pedregal, A variational perspective on controllability, Inverse Problems(2010)

Consider the problem

$$\inf_{y \in \mathcal{A}} E(y) = \frac{1}{2} \iint_{Q_T} \left(|u_t|^2 + a(x)|u_x|^2 \right) \, dx \, dt, \tag{30}$$

where $u = u(y) \in H^1_{0,x}(Q_T) = \{u \in H^1(Q_T), u = 0 \text{ on } \{0,1\} \times (0,T)\}$ is the solution of the elliptic problem over Q_T :

$$\begin{cases}
-u_{tt} - (a(x)u_x)_x = -(y_t - (a(x)y_x)_x), & (x,t) \in Q_T, \\
u_t(x,0) = u_t(x,T) = 0, & x \in (0,1), \\
u(0,t) = u(1,t) = 0, & t \in (0,T).
\end{cases}$$
(31)

Theorem (Pedregal 10)

4

- $\inf_{y \in \mathcal{A}} E(y) = \min_{y \in \mathcal{A}} E(y) = m$
- The minimizers y of E solve the heat equation (i.e. the corrector u identically vanishes on Q_T)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Consider the problem

$$\inf_{y \in \mathcal{A}} E(y) = \frac{1}{2} \iint_{Q_T} \left(|u_t|^2 + a(x)|u_x|^2 \right) \, dx \, dt, \tag{30}$$

where $u = u(y) \in H^1_{0,x}(Q_T) = \{u \in H^1(Q_T), u = 0 \text{ on } \{0,1\} \times (0,T)\}$ is the solution of the elliptic problem over Q_T :

$$\begin{cases}
-u_{tt} - (a(x)u_x)_x = -(y_t - (a(x)y_x)_x), & (x,t) \in Q_T, \\
u_t(x,0) = u_t(x,T) = 0, & x \in (0,1), \\
u(0,t) = u(1,t) = 0, & t \in (0,T).
\end{cases}$$
(31)

Theorem (Pedregal 10)

4

• $\inf_{y \in \mathcal{A}} E(y) = \min_{y \in \mathcal{A}} E(y) = m$

 The minimizers y of E solve the heat equation (i.e. the corrector u identically vanishes on Q_T)

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Consider the problem

$$\inf_{y \in \mathcal{A}} E(y) = \frac{1}{2} \iint_{Q_T} \left(|u_t|^2 + a(x)|u_x|^2 \right) \, dx \, dt, \tag{30}$$

where $u = u(y) \in H^1_{0,x}(Q_T) = \{u \in H^1(Q_T), u = 0 \text{ on } \{0,1\} \times (0,T)\}$ is the solution of the elliptic problem over Q_T :

$$\begin{cases}
-u_{tt} - (a(x)u_x)_x = -(y_t - (a(x)y_x)_x), & (x,t) \in Q_T, \\
u_t(x,0) = u_t(x,T) = 0, & x \in (0,1), \\
u(0,t) = u(1,t) = 0, & t \in (0,T).
\end{cases}$$
(31)

Theorem (Pedregal 10)

- $\inf_{y \in \mathcal{A}} E(y) = \min_{y \in \mathcal{A}} E(y) = m$
- The minimizers y of E solve the heat equation (i.e. the corrector u identically vanishes on Q_T)

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで
- Reminiscent of a least square approach as introduced by Glowinski'83.
- In practice, for any $\overline{y} \in A$, for instance $\overline{y}(x, t) = y_0(x)(1 t/T)^2$, we consider

$$min_{z\in\mathcal{A}_0}E(\overline{y}+z)$$

over $z \in A_0 = \{z \in H^1(Q_T) : z(x, 0) = z(x, T) = 0, z(0, t) = 0\}$ by a conjugate gradient algorithm.

- The corrector u solution an H^1 -elliptic problem is approximated by $C^0(Q_T)$ -finite element.

$$X_h = \{\varphi_h \in C^0([0,1] \times [0,T]) : \varphi_h|_{\mathcal{K}} \in (\mathbb{P}_{1,x} \otimes \mathbb{P}_{1,t})(\mathcal{K}) \ \forall \mathcal{K} \in \mathcal{Q}_h\}.$$

 $\begin{aligned} X_{0h} &= \{ \varphi_h \in X_h : \varphi_h(0,t) = \varphi_h(1,t) = 0 \ \forall t \in (0,T) \}, \\ X_{yh} &= \{ \varphi_h \in X_h : \varphi_h(0,t) = 0 \ \forall t \in (0,T), \varphi_h(x,0) = y_0(x), \varphi_h(x,T) = 0 \ \forall x \in (0,1) \}. \end{aligned}$

$$\begin{cases} \text{Minimize} \quad E_{h}(y_{h}) = \frac{1}{2} \iint_{Q_{T}} (|u_{h,t}|^{2} + a(x)|u_{h,x}|^{2}) \, dx \, dt, \\ \text{subject to} \quad y_{h} \in X_{yh}. \end{cases}$$
(32)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Experiments

Figure: $y_0(x) = \sin(\pi x)$, T = 1/2, $a_0 = 1/4$, $\Delta x = \Delta t = 1/100$ - Solution in $y_h \in A_h$ (Left) and corresponding corrector u_h (**Right**) along Q_T .

$\Delta x = \Delta t$	1/25	1/50	1/100	1/200
# CG iteration	846	2 132	2014	2 834
$\ y_h\ _{H^1(Q_T)}$	6.024	6.658	5.920	6.021
$\ y_h\ _{L^2(\Sigma_T)}$	1.369	1.487	1.392	1.418
$E(y_h)$	4.88×10^{-6}	8.37×10^{-7}	1.22×10^{-6}	8.29×10^{-7}

Table: $y_0(x) = \sin(\pi x)$, T = 1/2, $a_0 = 1/4 - \varepsilon = 10^{-5}$ - Numerical results with respect to $h = (\Delta x, \Delta t)$.

프 🕨 🗆 프

Figure: $y_0(x) = \sin(\pi x)$, T = 1/2, $a_0 = 1/4$, $\Delta x = \Delta t = 1/100 - \log_{10}(E_h(y_h^n))$ and $\log_{10}(||g_h^n||_{\mathcal{A}})$ vs. the iteration *n* of the conjugate gradient algorithm.

프 🕨 🛛 프

- The control y_h ensures that $\|\overline{y}_h(T, \cdot)\|_{L^2(\Omega)} \approx 10^{-3}$
- The distributed case is addressed in a similar way by considering the problem

$$E(u) = \frac{1}{2} \iint_{Q_T \setminus q_T} \left(|v_t|^2 + a(x)|v_x|^2 \right) dx dt$$

so that v vanishes out of q_T .

- Main advantage : The approach does not introduce any dual variable and for instance allows to obtain fundamental solution for the heat eq.

- Main drawback: do not control the norm of the control

ヘロン 人間 とくほ とくほ とう

э.

- NUMERICAL APPROXIMATIONS OF EXACT CONTROLS FOR THE HEAT IS SEVERALLY ILL-POSED, CONSEQUENCE OF THE REGULARIZATION PROPERTY.

- INTRODUCTION OF CARLEMAN TYPE WEIGHTS PROVIDES AN APPROPRIATE (ELLIPTIC) FRAMEWORK, VERY SUITABLE NUMERICALLY.

Work in progress : A posteriori estimate for $||p_h - p||_P$ vs. *h*.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

F. Boyer, F. Hubert and J. Le Rousseau, *Uniform null-controllability properties for space/time-discretized parabolic equations,* Preprint 2009.

S. Ervedoza and J. Valein, *On the observability of abstract time-discrete linear parabolic equations*, Rev. Mat. Comput. (2010).

S. Kindermann, *Convergence Rates of the Hilbert Uniqueness Method via Tikhonov regularization*, JOTA (1999).

R. Glowinski, J.L. Lions and J. He, *Exact and approximate controllability for distributed parameter systems: a numerical approach* Encyclopedia of Mathematics and its Applications, 117. Cambridge University Press, Cambridge, 2008.

S. Labbé and E. Trélat, *Uniform controllability of semi-discrete approximations of parabolic control systems*, Systems and Control Letters (2006).

A. Münch and F. Periago, *Optimal distribution of the internal null control for the one-dimensional heat equation*, J. Differential Equations (2011).

C. Zheng, Controllability of the time discrete heat equation, Asymptot. Anal. (2008).

E. Zuazua, *Control and numerical approximation of the wave and heat equations*, ICM2006, Madrid, Spain, Vol. III (2006).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

NADA MAS !

THANK YOU FOR YOUR ATTENTION

Arnaud Münch Exact Controllability / Heat Equation / Numerics

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで