Uniformly Controllable Schemes for the
Wave Equation on the Unit Square

M. ASCH * and A. MUNCH T

Communicated by R. Glowinski

*LAMFA, UMR CNRS 6140, Université de Picardie Jules Verne, 33 rue St. Leu, 80039 Amiens, France,
(mark.asch@u-picardie.fr).

TLaboratoire de Mathématiques de Besancon, UMR CNRS 6623, Université de Franche-Comte, 16 route de Gray 25030
Besancon cedex, France, (arnaud.munch@univ-fcomte.fr).



Abstract

The paper deals with the numerical approximation of the HUM control of the 2-D wave equation.
Most of the discrete models obtained with classical finite difference or finite element methods do not
produce convergent sequences of discrete controls, as the mesh size h and the time step At go to zero.
We introduce a family of full-discrete schemes, nondispersive, stable under the condition At < h/+/2 and
uniformly controllable with respect to h and At. These implicit schemes differ from the usual explicit
one (obtained with leapfrog time approximation and five point spatial approximations) by the addition
of terms proportional to h? and At?. Numerical experiments for nonsmooth initial conditions on the unit
square using a conjugate gradient algorithm indicate the excellent performance of the schemes.

Keywords : Uniformly exact controllability, 2D wave equation, Numerical approximation.



1 Introduction

Let Q = (0,1)% and Ty(z0) = {z € 9Q, (x — x¢) - ¥ > 0} for all o € R? where 77 is the outward normal vector.
In the context of exact controllability, the following result is well-known [1]: given a time T" > T*(Q) large
enough and (y°,y') € L?(Q) x H~(Q), there exists a control v € L*(Ty x (0,7)) such that the solution y of

(S) y'—Ay=0, in Qx(0,7),
y =vA&r,, on 00 x (0,7),
(y<'70>7y/<'70)) = (y(]?yl)v in Q? (1)

satisfies (y(T, ),y (T,-)) = (0,0) in Q, where A, € L>®(09;{0,1}) denotes the characteristic function of T'y.
This controllability problem has been studied and solved some decades ago. We mention the most successful
moments theory [2] and more recently the Hilbert uniqueness method (HUM). The exact controllability

is related to the observability inequality for the homogeneous solution w with initial condition (w° w') €
Hy () x L*(92),

T
" gayersio < Cr [ [ wlo. v o)
0

We address the numerical approximation of this problem, known to be extremely delicate since the pioneering
work of Glowinski-Li-Lions [3]. Using the HUM approach and usual finite difference schemes, say (Sp )
consistent with (S) and stable under the condition At < h/+/2, these authors have observed the noncon-
vergence of the associate discrete controls {vh,m}(mm) toward the control v when the mesh size h and the
time step At go to zero. This by now well-known phenomenon (see [4] for a review) is due to the fact that
(Sh,at) generates spurious high-frequency oscillations that do not exist at the continuous level. Moreover, the
interaction of waves with the grid produces a dispersion phenomenon and the velocity of propagation of the
high frequency numerical waves may converge to zero with the mesh size. Therefore, for these frequencies, the
uniform controllability properties of the discrete model may disappear for a fixed time 7" > T* independent
of h and At.

Several techniques have been proposed as cures of the spurious oscillations: Tychonoff regularization pro-
cedure in [3], multigrid strategy in [5, 6], mixed finite-element methods in |7], filtering of the high frequency
modes in [8]. From a theoretical viewpoint, this problem has been analyzed at the semidiscrete level (dis-
cretization in space) highlighting the role of the semidiscrete spectrum of (Sp). In [9], a semidiscrete finite
element scheme for the 2-D wave equation, uniformly controllable with respect to h, was introduced. A dis-
crete multiplier technique permits one to obtain a uniform semidiscrete observability inequality and then to
prove the convergence of the semidiscrete sequence {vs } x>0y A step forward was recently made in [10] where
the second author introduces and studies a full-discrete 1D implicit scheme. This scheme is a modification
of the usual scheme (S), A;) by the addition of some viscosity terms of order (h? — At?), in the spirit of [11].
The proof of the uniform controllability under the condition At < h4/T/2 is obtained by means of a discrete
Ingham inequality.

In the numerical experiments, we observe that the additional approximation in time (usually a centered
leapfrog scheme) does not perturb the property of any uniformly controllable, semidiscrete scheme. As a
consequence, the developments at the semidiscrete level permit one to design several full-discrete schemes
leading to convergent sequences of controls {Uh7At}(h7At>0). However a challenging task still remains: how
to obtain not only a uniformly controllable but also an efficient scheme in terms of execution time and rate
of convergence. This difficulty is explained by the balance between the stability property and the group
velocity property. The uniform controllability may be obtained, roughly, by increasing the dispersion (for
high frequency components). However, this has the effect of deteriorating dramatically the stability condition.
Thus, the semidiscrete scheme that we have recently introduced and thoroughly analyzed in [9] is uniformly
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controllable and has a group velocity, for high frequencies, of order of h=3. However, at the full-discrete level,
the corresponding scheme is stable under the condition At = O(h3).

In this paper, we obtain and analyze a uniformly controllable, fully-discrete scheme endowed with a good
stability condition, typically At = O(h). The method used (introduced in [10]) is constructive; it consists of
considering a parameterized family of schemes, consistent with (S), and then selecting, via a spectral analysis,
the parameters leading to optimal uniform controllability and stability properties. This will lead us to a new
scheme that is very efficient, implicit, very slightly dispersive, uniformly controllable and stable under the
condition At < h/+/2. This is done firstly at the semidiscrete level (Section 2) then at the fully discrete one
(Section 3). Section 4 presents numerical experiments for a nonsmooth initial condition.

2  Uniformly (w.r.t. ) Controllable Semidiscrete Schemes

We adapt [12] to the 2D case and introduce a family of semidiscrete schemes (W) in space, consistent
with the homogeneous system in w that we denote by (W). We then determine the possible choices of the
parameters «, 31, 2 leading to uniform controllability properties.

2.1 Semidiscretization of the Wave Equation

Let us introduce N € N* and h = 1/(N + 1). We consider the uniform partition of the square (z,y) €
(wi,y;) = (ih,jh),0 <i,j < N +1 and denote w;; = w(x;,y;). Let us also consider three parameters a, 51, 52
independent of h such that

(, B1,82) € [0,1/4] x R* x R* and 26 + B, # 0.
Using the notation W;; € Msy3(R) defined by

Wi-1,j+1 Wij4+1 Witl,j+1
W= wiiy  wiy  wipy |, V1<4,5 <N,
Wi-1,j—-1 Wij—1 Wit1,j5-1

we introduce the following finite-dimensional (semidiscrete) approximation of (WV):

1

(Wo%2) - M - W) Kg g Wi(t) =0, 1<i,j<N, 0<t<T,

12
wig(t) = win41(t) = wo(t) = wnga;(t) =0, 0<4,j<N+1, 0<t<T,
(wig (T), wi;(T)) = (wij,wiz), 0<4,5<N+1, (3)
where
o? a(l —2a) o? 1 B Ba b
My=| a(l-2a) (1-20)% a(l-2a) |, Kgs = RN By —A(Br+ B2) B
a? a(l —2a) o’ PEE A o b

The inner product in (3) designates component-by-component multiplication. Straightforward formal Taylor
expansions lead to the following proposition.

PROPOSITION 2.1 For all (o, By, 52) € [0,1/4] x RT x RT satisfying 26, + Po # 0, the semidiscrete scheme
(WPP2) s consistent of order 2 with (W).



Remark 2.1
e The case (a, 1, 32) = (0,0,1) corresponds to the usual (explicit) scheme
1
W) wij(t) + 7z (dwi; (1) — wiz15(t) — wim1,;() — Wi (t) — wij1(t)) =0,
1<i,j<N, 0<t<T. (4)
e The implicit semidiscrete scheme (W™%%) = (W>%!) for all 3, > 0 corresponds to the usual finite-
difference discretization of the equation
(I 4+ ah®2)(I + ah?)uw" — Aw =0, in Qx(0,7).
e On the other hand, the implicit semidiscrete scheme (Wﬁ"ﬁl’o) = (W) for all B; > 0 corresponds to
the usual finite-difference discretization of the equation
292 2 2 2 92\ 92 292\92, . _
(I + ah”9;)(I + ah®0,))w" — (I + ah®0;)05w — (I + ah®0;)w =0, Qx (0,T). (5)

e Reference [9] analyzes the scheme (W,i/ 4’1’1) derived from a mixed finite-element approach, that consists
of approximating (w,w’) in (Qq, Qp), where Qy is the space of piecewise polynomials of degree k.

Then, introducing the unknown

Wi (t) = (w11 (£), war (£), ... w1 (E), ooy win (), wan (£), -y wyn ()T € RN, WE > 0,

one associates with (W) the vectorial form (denoted in the same way)
(Wiefb2) - MO () + K2 Wh(t) =0, 0<t<T,

(Wi (0), Wy(0)) = (W, W), (6)

where
2
(Wi, W) = (w)y, wi)i<ijen € RN
are the initial data. The mass and stiffness matrices are denoted by, M, K,’flm € Mpyz24n2(R) respectively.
These matrices are tridiagonal, block-symmetric and positive definite and take the following forms:

A B
B A B (0)
M = b ,
B
(0) B A B
B A N2xN2
C D
D C D (0)
1 D
B1,082
K = o . ,
(0) D C D
D C N2x N2



where A, B,C, D € My«n(R) are tridiagonal matrices as follows:
A = tridiag(a(1 — 2a), (1 — 22)%, a(1 — 20a)),
B = tridiag(a, (1 — 2a), «),
C = (261 + B2)'tridiag(— s, 4(61 + B2), — ),
D = (28, + By) 'tridiag(— By, — B2, —B1).

Finally, we associate with (6) the semidiscrete energy

B (0) = 2 (w0, W) + (K7 Wi, W)

where (-, -) denotes the canonical inner product in RV,

2.2 Properties of the Semidiscrete Schemes w.r.t. Controllability

We take xy = (0,0) so that the support of the control I'y = {7 = (x,y) € 9Q, (xr — 1)(y — 1) = 0}. We have
the following important result, semidiscrete version of (2).

PROPOSITION 2.2 Uniform Semidiscrete Observability for (W2/4’51’52). Let (a, 1, P2) € {1/4} x RT x R

satisfy 201 + B2 # 0 and let (Wy(t))n=o be the solution of the system (W,iﬂﬂl’ﬁz) associated with the initial
condition (W2, W}h). Given T large enough independent of h, there exists a constant Crj, < C < oo such that
the following inequality holds:

h T
EY48u5 ) SCT@{ /0 [(BWy., Wy.) + (BW! y, W/ )]dt+

1 g

T
L / [<DWN_,.,WN,.>+<DW.,N,W.,N>]dt},
0

where
WN,. = (wN,j>1§j§N S RY  and W’N = (wz‘,N)lgigN S RY,

The technical proof of this result, based on semidiscrete multipliers, has been given in detail in [9] for the
scheme (W,lL/4’1’1). The proof for the schemes (W}/A"ﬁl’&), for all 8y, B> € RY satisfying 203, + 32 # 0, is similar.
In Appendix A.1, we present a simpler proof in the case (a, 81, 52) = (1/4,0, 1), that is important in the sequel.
The uniform semidiscrete observability (7), implies the strong convergence in L? of the discrete sequence of
controls {v;}x>0) associated with (S;M’B“BQ) towards the HUM control v when h goes to zero (assuming
the strong convergence of (Y2, V;!) toward (y°,¢') in L*(Q2) x H~1(Q)). According to this proposition, the
schemes (W;M’O’l), (W;L/A"l’o) and (W;L/A"l’l) (highlighted in Remark 2.1) are uniformly controllable. On the
other hand, when « independent of A is strictly less than 1/4, the uniform observability of (W) does
not hold and one may exhibit initial conditions (W}, W}!) for which the constant Cr, in (7) blows up when
h goes to zero (we refer to [8] for the proof in the case (W,"")).

Beyond the technical proof of Proposition 2.2 using multipliers, let us explain why the semidiscretization
(Wi/ 4000 ?) provides a uniform observability property. In order to have the uniform observability property
(2), it is necessary to consider T sufficiently large. This is due to the fact that the velocity of plane waves is
one and then any perturbation of the initial data will take some time to arrive at the observation zone I'y.
For semidiscrete schemes, we can define plane waves as solutions of the form

—

W = (@) mwnt) - & — (&1,82),

with i2 = —1 leading to a relation between the mode E (or wave number) and the frequency wy,.
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LEMMA 2.1 Let (o, 81, 52) € [0,1/4) x Rt xR* satisfy 261+ 52 > 0. For all € € (—7/h,7/h)?, the frequencies
for schemes (W,?’Bl’BQ) are given by

o 2 \/wms(sl)c(@) + s(&)e(€)) + Ba(s(6) + s(&))

h (201 + B2)(1 — das(§))(1 — das(&2))

where

s(&) = sin?(&h/2),  c(&) = cos*(&h)2), i=1,2.

The group velocity associated with a mode gin the direction v = (v, v2) is given by Vewy, -v. A necessary
condition in order to have a uniform (in h) observability property in finite time 7' > T* is that the group
velocity associated with any mode E is strictly bounded from below by a constant (independent of é’ and h)
for at least one direction v. Otherwise, some solutions of the semidiscrete system would propagate so slowly
in any direction that the observability would require a larger time 7" as h — 0. To guarantee that we have
a group velocity uniformly bounded from below for at least one direction v, it is sufficient to have a uniform
bound from below (in € and h) for

[Vewn] = /10,2 + |Beyeon

— —

For the continuous wave equation, w(§) = || and therefore |Vew| = 1. For the semidiscrete schemes,
computations lead to the following result.

LEMMA 2.2 [Bound on the Semidiscrete Group Velocity for (W) VE € (—x/h,x/h)%]
o V(a, 01, 0) € [0,1/4) x (R*)2,281 + 5 > 0, O(h) < [Vewp ™ ()] < 1;
o (o, B1,3) € {1/4} x R* x Rf, 1 < [Vewp™®(§)] < O(h73),
o (o, B1,5) € {1/4} x Rf x {0}, 1 < [Vewp ™2 (€)] < O(h72).

The group velocity of high frequencies associated with (W™ with o € [0,1/4) is not uniformly
bounded from below so that there exist initial conditions for which a uniform observability inequality does
not hold. On the contrary, the group velocity for a = 1/4 is bounded from below by 1, which is the group
velocity of the continuous case. This explains why these schemes are likely to provide uniform observability
properties. Actually, they do provide the uniform property according to Proposition 2.2, but we do not know
if the above spectral condition on Vwy, is sufficient to guarantee a uniform observability inequality. That is
why the multiplier technique is used to obtain the result.

Once a uniform controllable semidiscrete scheme is known, the first possibility, in order to obtain an
approximation of the control, is to solve exactly in time the finite differential system (6) using a spectral
approach (see [13] in a similar context and Appendix A.2). For the square domain where the eigenfunctions and
eigenvalues of the matrices M“ and K ;?1”6 * are explicitly known, the conjugate gradient method is particularly
efficient and leads to impressive results. The details are presented in Section 4 and Appendix A.2. The second
possibility is to introduce a time approximation that will lead us to the optimal triplet (o, 51, (2).

3 Uniformly Controllable (w.r.t. h and At) Fully-Discrete Schemes

The previous analysis indicates that, with respect to controllability, the relevant choice is a« = 1/4. A priori,
the additional time approximation does not affect the controllability property. However, the effect on the
dispersion property is an important issue in practice; we will now proceed to control it with an appropriate
choice of the parameters 3, and [s.



3.1 Full Discretization of the Wave Equation (W)

A full approximation of (W) is obtained using the leapfrog scheme for the second derivative in time, leading
to
Witt — 2wk + Wit
a»ﬂ ’/H « h
(Wh,A; 2) M & At2 g
WK+1 . WK—I
i — g, W )
consistent of order 2 in time and space, where At designates the time 63step and k the time index in (0, K)
such that KAt = T. The scheme (Wgﬁiﬂ 2 is stable under the so-called Courant-Friedrichs-Levy (CFL)
condition,

+ KWW = o, 0<k<K,

2 B8 ()
At sup (w,f b 2(§)> <4.
£e(0,m/h)?
Straightforward computations then lead to the following stability conditions and illustrate the balance with
the dispersion properties.

LEMMA 3.1 CFL Stability condition for ( sg; P2y,
o V(a,B1,3) €[0,1/4) x (RT)2,28; + B2 > 0, (W,i’fi’ﬂz) is stable under the condition At < Ch.
V(a, B1, B2) € {1/4} x RT x R}, (W,i’gi’@) is stable under the condition At < (7%/v/32)h3
V(o B1, B2) € {1/4} x R} x {0}, (W,jﬁ;ﬁ?) is stable under the condition At < (m/+/8)h?

If we exclude the first case for which (Wﬁgiﬁ ?) is not uniformly controllable, the other cases lead to

restrictive conditions. We remark that the implicit scheme (W}ll/ %) has been studied in [14]. Fortunately,

the conditions may be weakened using a Newmark approach, where we replace the term KflﬁQ W} in (8) by
1/4AK27 (WFL 4 oW + W) in order to obtain the unconditionally stable scheme

At? WEH — 2wk 4 Wit

VAN (M4 =K == + KPPk = o, V0 < k < K,
WK+1 - WK—l

To conclude, let us now analyze whether this fully-discrete system (WK/[ZI fi conserves the observability
properties of the semidiscrete scheme for some value of the triplet («, 1, 52)

3.2 Properties of the Fully-Discrete Schemes w.r.t. Controllability
Following the analysis of Section 2, we study the group velocity of discrete plane waves of the form

wfj — ez(g'(zmxj)*wh,mkﬁt).

For the discrete system (8), the following relation between the mode 5 and the frequency wy a; holds:

2 2 At .
Wf;gjg BQ( ) = At arcsin (7‘*}}? B, 52( )) 7



while for (9), we get

. 9 At a,B1,02 ( &
153( ) — A_t arcsin 7 WA}; oz,ﬁ(l,ﬁ)z =5

The group velocity associated with a mode gin the direction v = (vy, v2) is given by Vewp, a¢-v and a necessary
condition in order to have a uniform (in h and At) observability property in finite time 7" > T is once again
to have a uniform bound from below (in &, h, At) for

|Vewn,at| = \/ |Oe,wn,al® + [Og,wn,acl*
We obtain the following result.

LEMMA 3.2 Bound on the Fully-Discrete Group Velocity

—

\V/((YaﬁhﬁQ) [0 1/4) x Rt x Rt 2ﬁ1 +52 > 0, mlnge( /b /h)? |v§wh o1, 52( )|

O(h);

(e 51, B2) € {1/4) x R x RE, ming e Ve %5 (6)] = O(h*2A87);

o V(a, B, B2) € {1/4} x R x {0}, ming. __p po [ Vel R2 ()] = min(1, $h2A472) + O(RPAL~2).

As expected, the group velocity for o € [0,1/4) vanishes when h and At go to zero. In particular, the

standard five-point scheme (W,?UA} ) is not uniformly controllable. On the other hand, for « = 1/4 and 35 # 0

(in particular the scheme (W}\//i L) recently used in [9]), the group velocity is bounded below only if At is of

order of h*/2. From a practical viewpoint, this condition remains too restrictive. Finally, the group velocity
associated with the scheme (W}\[/iﬁ&t )= (Wj{f/ilot) for all 51 > 0 is uniformly bounded below if At and h are

of the same order. In particular, when At < h/+/2 V2, the group velocity is higher for all components than the
group velocity associated with the continuous wave equation. The corresponding scheme is then expected to
be uniformly controllable with respect to h and At, with T being fixed and large enough.

As a conclusion, the crucial use of the Newmark method leads to the scheme (le\//A;Llet) stable under
the condition At = O(h) and expected to be uniformly controllable, that we are looking for. In addition,

this scheme is very slightly dispersive with a spectrum {w}\ﬁl&( €)} very close to the continuous spectrum

{w?(€ )}ge (0,x/n) defined by w(& ) = |€]. For At = h/v/2, we have

(&) St 5(E) < V2w(E), Ve (=m/h,x/h)’,

and the following remarkable equality for E = (£1,&) :

(&, &) =w i a6, &),

4 Numerical Experiments

We compare now numerically the behavior of the schemes (W}?:&i), (W}lL/A"O’l) (W}v/ilAOt) The HUM method
reduces the controllability problem to an optimal control one, which consists of solving the linear equation
A(w® wh) = (y', —y°) where A designates the HUM operator from Hj(Q) x L*(Q) into H~1(Q) x L*(Q2). The
HUM control (of minimal L?-norm) is given by v = Vw - 7 (see [1]). The linear equation is solved with a



conjugate gradient (CG) algorithm (we refer to [3, 10, 15]). At each iteration, the state and adjoint systems
in y and w are solved using either the semidiscrete scheme (W}lb/ 01y or the fully-discrete one (W}\//il&) The

exact resolution in time for (W}L/Al’o’l) is explained in Appendix A.2. A key point of the CG algorithm is the
choice of a scalar product on the space E = H(Q2) x L*(Q2). At the continuous level, the natural one is

((f1, f2), (91, 92)) £ = /Q(Vfl Va1 + fo-g2)dx, Y(fi, f2),(91,92) € E.

On the discrete space Ej, of E, the scalar product corresponding to ( ﬁ‘/ﬁhlff) is

2 B1,02 « At? 81,82
<(f1h, f2h>> (glhag2h)> E, = h (<—Kh f1h>glh> + <(M + TKh )f2h792h>>-

For («, 1, 32) € {1/4} x RT x R™, 231 + B3 > 0, leading to uniform controllable schemes, this scalar product
leads to an accurate descent direction and fast convergence. From this point of view, the modification of the
usual scheme may be seen as a preconditioning technique for the CG algorithm. In practice, the algorithm is
initialized with (w),, w},) = (0,0) and stopped as soon as the relative residual rj at the kth iteration satisfies
ry < €71g, for some € > 0.

4.1 Discontinuous Initial Condition

We consider the most singular situation where the initial position 1° is discontinuous. Precisely, still on the
unit square (0,1)%, we define the following functions:
40, 7€ (%,2)?
0=y — ) 373
y (%) { 0, elsewhere, ; vy (Z) = 0. (10)
We assume that the control is active only on two consecutive sides, precisely on I'y(0,0) = {7 € 09, (1—z)(1—

y) = 0} and take T' = 3 > 21/2. With this discontinuous initial position, the usual schemes (W;"*"), (W}?OA%)

completely fail for all h > 0. On the contrary, the schemes (W}ll/4’0’1), <W/1\//A/;Ohi/§

rithm after a number of iterations independent of h (see Table 1): the residual varies as 71 /1o ~ O(
with respect to the iterations. The L?*norm of the control converges as h goes to zero (see Table 1) and the
solution of the semidiscrete wave system is driven to rest at time 7. These properties are preserved when the
time approximation is added (see Table 2). We recall that, for any v € H~*(Q2), we have

) provide a convergent algo-
10—0‘9695/%)

lolli-sioy = luliy = (| [VuPdody),
Q

where u € H} () is the solution of the Dirichlet problem: —Au = v in Q, u = 0 on 9. Figure 1 points out
that the initial velocity w; is discontinuous. The exact controllability of the wave equation associated with
(10) is illustrated in Figure 2. Finally, we point out that the Bi-Grid method introduced in [3] fails for the
initial condition (10).

4.2 Behavior of the Schemes (W,}L/4’0’1) and (le\//ilet) with Respect to T’
One may pursue the study of the robustness of the schemes by considering the limit T' " oco. Let us consider

the initial condition (10) and assume that Iy = 02 where € is the unit square domain. Let us denote by Ar
the HUM operator A associated with T'. It is shown in [16] that

Ap —A O]

lim—:2[ 0 7 (11)
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This result is very useful for validating numerical methods, since it provides the relation

lim T'(wp, wy) = (x",x"),

T—o00

where, from Ar(w® w') = (y', —y") and (11), x" and ! are solutions of Ax® = y'/2in Q, x° = 0 on 9 and
x' = 2°/2 in Q. The evaluation of (w%,w}) using the scheme (W/{/ilﬁ) may be costly for large values of T

if At is chosen such that At < h/+/2. Actually, the group velocity of this scheme being bounded from below
by h2At=2/2, all the wave components meet the boundary support 9§ of the control after a time less than

or equal to T if
T(R2At™2/2) > diam(Q) = v/2,

leading to the condition At < hy/T/(2v/2). We refer the reader to [10], where a uniformly controllable

scheme is introduced and justified for the 1D wave equation with the condition At < hy/T/2. Table 3 gives
the difference T'(w9,, wi,) — (x%,x}) obtained with (le\/{ilh(;\/i) The theoretical property (11) is clearly
confirmed numerically. We obtain

7w, = XSlgiey = OT ) and [Tk, — xhl |12y = O(T~0%)

As advocated in [3], these results provide a validation of the numerical methodology introduced here and
show that the scheme (W/{//?A%) is particularly robust, accurate, nondissipative and perfectly able to handle
very long intervals [0,7]. Note that, with the choice At = h//2, the number of iterations needed to reach

convergence decreases with 7. If
At < h/T/(2V?2)

is used, this number is constant and independent of T. Moreover, when we use the semidiscrete scheme
(W,i/ 01y (see Table 4), we obtain similar results for

HTUJ%h - X?LHH&(Q) = O(T_IM)

and a slightly worse result for
| Twiy, — XlleH(%(Q) = O(T~"*%).

This provides additional evidence of the robustness of the scheme (W}\//il&)

As a conclusion, we point out that the schemes (W}lb/ +19y and (W}\//ilﬁf) introduced in this work, uniformly
controllable, very slightly dispersive and numerically robust, may be extended to the 3D case by considering
the following modified equation, a consistent approximation of w” — Aw = 0,

AL AP AL 0" — ARAR 02w — ALAL 02w — ALAD 92w =0, in Q2 x (0,7),

where 12 2 2
h 2 h 2 h 2
AI—I+Z@C, Ay—l+z(‘3y, AZ_]_I_ZaZ'
Following [9], one easily obtains that the associated semidiscrete scheme is uniformly controllable. In addition,
the full scheme associated with a Newmark approach is unconditionally stable and has a group velocity
uniformly bounded by below if At = O(h). We refer the reader to |17] for a detailed version of this work
including several numerical experiments.
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A Appendix

A.1 Uniform Observability of the Scheme (W,/*"")
We prove Proposition 2.2 in the case («, (1, f2) = (1/4,0,1) for which the inequality (7) becomes

N

3 N / / 2 / / 2
1/4,0,1 h Wi N T Wiy N Wy + Wi
B/ 0) <o(T >{2/0 [Z(—Qh ) 3 (g

i=0 =0
T l&
*5/0 .

wN,]wNj+§ :szsz] }
J=1 ‘

dt +

To simplify the notation we write

ki
(l = Wik, + Wy + Wik + Wy,

kl _
b wzk + wzl + w]k + wjl?

kl _ "
cij = Wiy, +wy + wj), +wj,
A owij = 2wij — Wit1,; — Wi—1,4,

A ywij = 2Wi5 — Wi j41 — Wij-1.

When multiplying the discrete system by the discrete version of the usual continuous multiplier (z,y) - Vu,
i.e.

G Wit1,j — Wi—1,5 Wij41 — Wi—15 Wi, — Wi-1,5 Wi 1 — Wig—1 _ My
h,7h) - = =4
and summing over ¢ and j, we obtain
/ Z’Z_T_rll + ng—ﬁ—l + CJ’JJrl :11:3) m”dt +/ Z (A(Lg)’u}ij + A((],l)wij) mi]’ dt (13)
i,j=1 0 ;=1
—C =D
We study separately C' and D. Integration by parts in C allows us to obtain
T
C = / Chdt + [Cy))
0
where
N . .
(C1,Cs) = Z (B2 + 0l + P+ ) (—miy,mg). (14)

We first consider the term C; above. In order to have the common factor b‘ijfll , we change the indices in the
last three terms of C;. Then, taking into account that
Wip = Wi N+1 = Wo,j; = WjiN+1 =0

and after simplification, we obtain

(15)

M 2
2
_.|_
=
s
E,
_.|_
™
o
Z
+
S
=
¥

01—22 (BIHN — (N +1)

2,j=0 i=1 j=1



We now analyze the term D. We provide only details for the first term in D, which becomes

N
Z A(l,O)wijsz = Z A (1,0 wzg wz+1,j wz‘—l,j) +J (wi,j+1 - wi,j—l)] . (16)

i,j=1 1,j=1

We consider separately these two terms. For the second one, we have

N N
A(1,0)wz‘jj (Wijp1 — Wij-1) = Z J(wij — wi—1 ) wijy1 — Z J (i1 — wij) wi i1
i,j=1 ,j=1
N N
Z J (wij - wz‘fl,j) Wi j—1 — Z J (wz'+1,j - wij) Wi, j—-1
i,j=1 6j=1

Changing the indices to obtain the common factor w;y;; — w;; in all the terms and taking into account that
Wi = Wi N+1 = Wo,j = Wi N1 = 0,

we obtain

N
>l (wigry — wig) (Wi j1 — Wig1) — J (Wigrj — wis) (Wisr o1 — wij1)]
J=0

N

= - Z (Wi1,j+1 — Wige1) (Wit1,; — Wij) -
i,j=0

An analogous argument allows us to simplify the first term in (16). We finally have

N
D=- Z [(Wit141 = Wiv15) (Wi — wig) + (Wi 41 — Wija1) (Wi — wig)]
i,j=0
N Ny (17)
2 2
+ 3 [(wipry = wig)* + (Wiger — wi)*] = (N+ 1) (wng) = (N+1) ) (win)
i,j=0 3=0 i=0
By the Young inequality we can estimate the first term in this formula,
N
D l(wis1 g1 = wip1g) (W1 — wig) + (Wigr i1 — wij41) (Wigr; — wiy)]
i,5=0
N
<Y [wig —wi)? + (Wi — wig)’]

i,j=0

and then conclude that v v
D> —(N+1) (Z wi; +Zw§N> (18)
=0 i=0

Substituting (15) and (18) into (13), we obtain

,j-‘rl T N / / 2 N / / 2
i h w; y + W Wi + Wy »
/ ( +1> gt Sg/ [Z( N . +1,N) +Z( N.j . N,J-f—l) ]dt
ij—=0 0 - -

=1 =1
W,
E :wNu
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We observe that the term in the left hand side contains only one part of the energy. In order to obtain the full
energy, we make an equipartition of the energy. The following lemma is a discrete version of the well-known
equipartition of energy for the continuous wave equation, which reads

T T
—/ /(]wt|2 + | Vul*)dwdt + / |wtu|2dx} . (20)
0 Ja Q 0

LEMMA A.1 The following holds:
N j Jj+1 b] J+1 T
2 : z 7,+1 1,0+1
1,7=0 0

| N it 2
o:—h2/ > (T+1> dt + I
0
2
g [ e

,7=0
1,7=0

The proof of this lemma is straightforward following the idea of the continuous system. When applying
Lemma A.1 to the identity (19), we obtain

N
2 : J.d+179,9+1
zz+1bzz+1 +C

1,7=0

r 1/4,0,1 h2

/ BV () e

0 4
N

L

i=1

2Jo | R N

=1

0

The following lemma allows us to estimate the second term in the left-hand side of this formula.

LEMMA A.2 [see [9]]. The following result holds:

T

N

4,J=0

0

Then, Lemma A.2 and the conservation of the discrete energy combined with (21) provides

N N
(T _2\/—) 1/401< )Sg/T [Z <w£,N +2w§+1,N)2+Z<w§v,j +2w§v,j+1>2] &t
0

i=1 j=1

/[Z N]wN]—i—Z sz]

A.2 Exact Resolution in Time of (W;/LL’OJ)

We detail the exact resolution of the two semidiscrete wave systems which appear at each iteration of the
conjugate gradient algorithm. The HUM method reduces the exact controllability problem to the deter-
mination of the initial conditions (w® w') of (W) such that the solution 1 of the equation (S) satisfies
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(1(0),v'(0)) = (y°, y').The control is then v = d¢/dv on T'y. We consider the semidiscrete scheme (Wi/4’0’1)
and first present the resolution of the semidiscrete system

MMYAQ) () + Kyl on(t) =0, t€(0,T),
(21(0), ,(0)) = (wy,w,). (22)
Let us designate by Vj,, D, € Mpy2yn2(R) the eigenvector matrix and eigenvalue matrix respectively of

(MY4= K" such that K»'Vj, = MYV, Dy,. The matrix Dj, = (\)i<p<n2 is diagonal whereas the matrix
Vj, is symmetric and orthonormal such that V;> = Iy2,n2. Therefore, the solution ¢, (t) = (;(t))a<i<nz) is

ka(akcos \/_t sm \/_t) 1<i<N%t>0 (23)

where
(an, bp) = (V wha Vi, wh) and ap = (ak)(1§k§N2)> by, = (bk)(1§k§N2)-

On the other hand, the semidiscretization of (S) takes the following form

M1/4¢Z(t) + K}[}lv 7vbh(t) = Fh(gph(t»v te (07 T)>
(¢h(T>v ¢;L(T)) = (Ov 0)7 (24)

where the vector F, € RV’ may be easily deduced of the form

Fu(en(t)) = Alon(t) + Bl (1),

with two matrices A' and B! € Mz, 2. From (22), the variable z;,(¢) = V, '4,(¢) is the solution of

10+ Dian(t) = 01 | 40+ Bef(o)]. te 0.1),
2(T) = 0,2,(T) = 0. (25)
Let us introduce P = (M'/4V},)~! such that the jth component of the vector z, is the solution of
Zi (1) + Ajz(t) = <P {Algoh(t) + Blgo;;(t)D , t>0, 1<j<N2
J

Using (23), the right-hand term is

(P [A1§0h(t) - Blwﬁi(t)} >j = > Pu (A}dep —~ B,ilwpxp> (ap cos(y/Mt) +

1<k,l,p<N?

sin(y/Apt)

N—

bp
vV

Consequently, the component z; is the solution of the following system:

Zi () + XAjz(t) Z B]p(apcos\/_t sm\/_t) 1<j<N?

1<p<N2

\/_

where

B - P(Alvh - Blthh).
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Some computations lead to

zi(t) = O cos(y/Ajt)+C3 sin(y/Ajt) + Z )\jB_jp)\p (ap cos(y/Apt) + b sin(\//\_pt))

1<p<N2 Ap#); VA

% > % ((ap — byt) cos(v/Apt) + apy /Mt sin(\/)\_pt)) (26)

1<p<N22,=x; P
= Cf COS(\/}\jt)"—C% sin(y/A;t) + Fj(1).

We then use the condition at time 7" in (25) to fix the constants C and CJ, for 1 < j < N?;

i o SETVET) 2 SBWAT)
O = — cos(v/NT)F5(T) + oy FJ(T),

04 = —sin(\/\T)F;(T) — L\/\//\ET)F;(T).

Finally, we obtain the vector ¢, (t) = V2, () for all ¢t € (0,7T). Then, putting ¢ = 0 in (26), we obtain

. B. 1 B.
z;(0) = CY + Z /\A_j)\ ap+ 5 Z %ap
J P

1<p<N2 Ap#); 1<pSNZM\=2; P

and a similar relation for 27(0). This provides the explicit linear relation between the initial condition
(W, w}) = (Vian, Viby) and (¢4,(0),45(0)) = (V4zr(0), Vi2;,(0)) = (y9,v5). The resulting linear system
Ap(w?,wi) == (yp,y}) is efficiently solved using a conjugate gradient algorithm initialized by (w),w}) = (0,0).
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(W70 h=1/8 h=1/16  h=1/32  h—1/64

CQG iterations 8 8 8 8
w3 ey 0.99x10"!  1.036 1.185 1.177
llwk || 2200 5.563 5.507 5.019 4914

l|0n]| L2(rox (0.1)) 1.407x100  1.396x10" 1.271x10' 1.246x10"
EONTY/EYYN0) | 2.25%1077 6.89%x1077  5.94x1077  5.60x1077

Table 1: Results obtained with (W,/**") where Ty(0,0) C 9, T =3, ¢ = 10"
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h=1/16  h=1/32  h=1/64  h=1/128

(W) h=1/8
CQ iterations 35 20 18 17 16
_ .0
%w 1.30x10~2 1.14x10~2 1.14x10~2 1.09x10~2 9.76x 103
L2(Q) -
14,(0) = y'||g-1(q) | 1.04x1072 1.51x1072 8.55x107* 6.24x107* 5.56x107?
w1230 1.942 1.959 1.233 1.234 1.232
w2 5.526 5.199 1.919 4.482 4.847
onl | 2rox oy | 1.338x101 1.284x101 1.224x10' 1.238x10' 1.213x10"

Table 2: Results obtained with (Wy/y's}) with At = 2/v/2, Ty = Tp(0,0) € 99, T =3, ¢ = 1075, [|i4},(0) —

: [19n(0) =]l L2
ylHH_l(Q) = O<h0.394)7 h”yoHLQ(—;) SO O(h0'167).
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| Time T=3 T=5 T =10 T =20 T = 40
# of CG iterations 13 9 8 8 5
[Tw)y, — xpll miy) | 715 x 107" [ 34x 107" [ 1.40 x 107" | 1.11x 107" | 3.3 x 107
| Twhy, — X}l 22 | 412 x 1071 | 221 x 107! | 1.55 x 107! | 8.46 x 102 | 2.47 x 1072

C Al/41,0
Table 3: ()/Vj\/,h’h/\/5

21

) - [[TwYy, — X012 and ||Twhy, — x4 |l22@) vs. T with e = 1078, h = 1/64.




| Time T=3 T=5 T =10 T=20 | T=40 |
# of CG iterations 6 6 5 5) 4
I Twyy, — Xhll mi) | 6:63 x 107" | 348 x 107" | 1.23 x 107" | 1.21 x 107" | 1.97 x 10~*
[Twh, — xill 2 | 3.70x 1071 [ 227 x 1071 | 1.69 x 1071 | 1.27 x 101 | 1.09 x 10!

Table 4: (W}/*M0) - ||Tw?, — Xollr2) and ||[Twyy, — xpllr2@) vs. T with e = 1078, h = 1/64.
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Figure 2: (W,i/zl’o’l) - Stabilization of initial condition defined by (10): Approximation y(¢) on Q for
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