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AN OPTIMAL BI-DESIGN PROBLEM FOR A DAMPED WAVE

EQUATION

FAUSTINO MAESTRE ∗, ARNAUD MÜNCH † , AND PABLO PEDREGAL ‡

Abstract. We analyze in this work a 2-D optimal design problem governed by a linear damped
1-D wave equation. The problem consists in seeking simultaneously the time-dependent optimal
layout of two isotropic materials and the static position of the damping set in order to minimize a
functional depending quadratically on the gradient of the state. The lack of classical solutions for
this kind of non linear problems is well-known. We examine a well-posed relaxation by using the
representation of 2-D divergence free-vector as rotated gradient. We transform the original optimal
design problem into a non-convex vector variational problem. By means of gradient Young measures
we compute an explicit form of the “constrained quasi-convexification ” of the cost density. Moreover,
this quasi-convexification is recovered by first order laminates which gives the optimal distribution
of materials and damping set at every point. Finally, we analyze the relaxed problem and some
numerical experiments are performed. The novelty here lies in the optimization with respect to two
independent sub-domains and our contribution consists in understanding their mutual interaction.
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1. Introduction - Problem Statement. Let us consider the following damped
wave equation posed in (0, T ) × Ω





utt − div([αXω1
+ β(1 −Xω1

)]∇u) + d(x)Xω2
ut = 0 in (0, T ) × Ω,

u = 0 on (0, T ) × ∂Ω,
u(0, x) = u0(x), ut(0, x) = u1(x) in Ω,

(1.1)

for any bounded interval Ω of R and any positive time T . Xω1
and Xω2

designate
respectively the characteristic function of two subsets ω1 ⊂ Ω × (0, T ) and ω2 ⊂ Ω,
both of positive Lebesgue measure |ω1| and |ω2|. We assume that 0 < α < β and that
the damping potential d ∈ L∞(Ω; R+) is such that d(x) ≥ d > 0 for all x ∈ ω2. At last,
we assume that the initial data (u0, u1) are in H1

0 (Ω)×L2(Ω) and are independent of
ω1, ω2 and d. System (1.1) is then well-posed and there exists a unique weak solution
such that u ∈ C

(
[0, T ] ;H1

0 (Ω)
)
∩ C1

(
[0, T ] ;L2(Ω)

)
(see [15]).

As is well-known, system (1.1) models the stabilization of an elastic string made
of two materials α and β located on (0, T ) × ω1 and (0, T ) × (Ω\ω1) respectively, by
an internal dissipative mechanism located on ω2. The unknown u(t, x) represents the
transversal displacement of the string at the point x and at time t, while u0 and u1

designate the initial position and velocity, respectively.

Following similar works [9, 14], we address the very important question of deter-
mining the best space-time layout of material α and β in Ω×(0, T ) and the best space
distribution of damping material in order to minimize some cost depending on the
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square of the gradient of the underlying state u. Precisely, introducing the functions
aα, aβ ∈ L∞((0, T ) × Ω; R?

+) and

a(t, x,Xω1
) = Xω1

aα(t, x) + (1 −Xω1
)aβ(t, x) (1.2)

we consider the following non linear optimal shape design problem:

(P ) inf
Xω1

,Xω2

I(Xω1
,Xω2

) =

∫ T

0

∫

Ω

(u2
t + a(t, x,Xω1

)|∇u|2)dxdt (1.3)

subject to





u fulfills (1.1),

Xω1
∈ L∞(Ω × (0, T ); {0, 1}), Xω2

∈ L∞(Ω; {0, 1}),
∫

Ω

Xω1
(t, x)dx ≤ Lα|Ω|, ∀t ∈ (0, T ), Lα ∈ (0, 1),

∫

Ω

Xω2
(x)dx ≤ Ld|Ω|, Ld ∈ (0, 1).

(1.4)

The constraint (1.4)3 requires, that for all t ∈ (0, T ) the volume fraction of α-material
is lower than Lα given in (0, 1). The constraint (1.4)4 requires that the volume fraction
of damping material is lower than Ld given in (0, 1).

Optimal design problems in conductivity and elasticity have been extensively
studied in the last decade from various perspectives ( Homogenization approach [1],
Shape derivative [6, 7], Topological derivative [26], Variational formulation [5, 25],
Simulation-oriented approaches [4, 11], etc). Under the hyperbolic laws, much less
are known. A pioneer work in this direction is [17], where the author analyzes the
hyperbolic G-closure for a similar optimal control problem (see also [16] for a general
report on dynamic materials). On the other hand, an interesting analysis for optimal
control problems under the wave equation in greater dimensions is described in [8],
where the control is a time dependent coefficient. Let us also mention [3] where the
authors examine time-harmonic solutions of the wave equation, prove a relaxation
result for the corresponding design problem and obtain existence of classical solutions
for some particular cases. Finally, shape analysis for non cylindrical evolution problem
is considered in [7] (and the references therein).

More recently, a 1-D hyperbolic optimal control design problem with designs
depending both on x and t has been addressed in [19]. This corresponds to the problem
(P ) with ω2 = ∅ and a minimization with respect to ω1 only. A full relaxation of the
associated problem is given and numerically justified if the gap β − α > 0 is large
enough. On the other hand, the pure damping case (corresponding to ω1 = ∅ and a
minimization with respect to ω2 only) has been studied similarly in [20, 21]. Once
again, it appears that the well-posed character of the problem is rely on the amplitude
of the function d. In this work, we aim at mixing these two cases and minimize I
with respect to ω1 and ω2 simultaneously. In this respect, we derive and analyze
a well-posed relaxation of (P ). The approach is based on an equivalent variational
reformulation of the original problem as a non-convex vector variational problem:
following [2, 25], we transform our scalar problem with differential constraints by
a vector variational problem with integral constraints (where the state equation is
implicit in the new cost function). It is well-known that the non existence of optimal
solution for vector variational problem is related to the lack of quasi-convexity of
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the cost functional I (see [10]). Therefore, by using gradient Young measures as
generalized solutions of variational problems, we compute an explicit relaxation of the
original problem in the form of a relaxed (quasi-convexificated) variational problem.

To the knowledge of the authors, this work is the first considering a bi-design
problem. Our contribution consists first in adapting relaxation techniques in this
case, and then in studying the interaction between the two optimal designs ω1 and
ω2.

The rest of the paper is organized as follows. In Section 2, we describe in detail the
equivalent variational reformulation (denoted by (V P )) as well as a general relaxation
result when integrands are not continuous and may take on infinite values abruptly.
Section 3 presents the computation of the constrained quasi-convexification of the
underlying integrand of (V P ). The first part is concerned with the computation of
a lower bound - the constrained poly-convexification - by using in a fundamental
way the weak continuity of the determinant. The second part is concerned with the
search for laminates furnishing the precise value of the lower bound in an attempt
to show equality of the three convex hulls (poly-, quasi- and rank-one convex hulls).
This provides the well-posed relaxation (RP ) stated in Theorem 3.4. In addition, the
optimal Young measure permits to describe precisely the optimal microstructure (see
Theorem 3.5). Section 4 is devoted to the analysis of the relaxed formulation. In
section 5, we present some numerical experiments which justify the introduction of
the relaxed formulation (RP ) and present a simple penalization technique to obtain
some elements of a minimizing sequence for (P ) from the relaxed optimal solution of
(RP ).

2. Variational Reformulation and relaxation. In order to apply suitable
results of calculus of variations ([10, 24]), we first reformulate the problem (P ) into a
classical vector variational one. To this end, following [2, 18, 25], we use a characteriza-
tion of divergence free vector fields. Precisely, since the subset ω2 is time-independent,
the state equation of system (1.1) can be written as

div( ut + d(x)Xω2
u , −[αXω1

+ β(1 −Xω1
)]ux ) = 0 (2.1)

where the operator div is defined as div = (∂t, ∂x). Then, under the hypothesis of
simple-connectedness of Ω and from the characterization of the 2-D free-divergence
vector fields (see for instance [13], chapter I), there exists a potential v ∈ H1(Ω×(0, T ))
such that the above formula is equivalent to the pointwise constraint

(
ut

−(αXω1
+ β(1 −Xω1

))ux

)
−R∇v = −d(x)Xω2

ū (2.2)

where

ū =

(
u
0

)
, ∇v =

(
vt

vx

)
, R =

(
0 −1
1 0

)
. (2.3)

R is the counterclockwise π/2-rotation in the (x, t)-plane. We then introduce the
vector field U = (u, v) ∈ (H1(Ω × (0, T )))2 and the manifolds Λγ,λ as follows

Λγ,λ = {A ∈M2×2 : M−γA
(1) −RA(2) = λe1}, γ = α, β and λ ∈ R

where A(i), i = 1, 2 stands for the i− th row of the matrix and

M−γ =

(
1 0
0 −γ

)
, e1 =

(
1
0

)
. (2.4)
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It is clear that we can identify the design variable (Xω1
,Xω2

) with the vector field
U = (u, v); conversely, a pair U = (u, v) which verifies (2.2) determines characteristic
functions (Xω1

,Xω2
), so that we can consider the new variables U = (u, v), where

U : R
2 → R

2 and ∇U(t, x) ∈ R
2×2. Then, for any 2× 2 matrix A = (aij)(1≤i,j≤2), we

consider the following three functions

W (t, x, U,A) =





a2
11 + aα(t, x)a2

12, if A ∈ Λα,0 ∪ Λα,−d(x)U(1) ,

a2
11 + aβ(t, x)a2

12, if A ∈ (Λβ,0 ∪ Λβ,−d(x)U(1))

\(Λα,0 ∪ Λα,−d(x)U(1))

+∞, else,

Vα(t, x, U,A) =





1, if A ∈ Λα,0 ∪ Λα,−d(x)U(1)

0, if A ∈ (Λβ,0 ∪ Λβ,−d(x)U(1)) \ (Λα,0 ∪ Λα,−d(x)U(1))

+∞, else,

Vd(t, x, U,A) =





1, if A ∈ (Λβ,−d(x)U(1) ∪ Λα,−d(x)U(1))

0, if A ∈ (Λβ,0 ∪ Λα,0) \ (Λβ,−d(x)U(1) ∪ Λα,−d(x)U(1))

+∞, else.

Then, noting that

{x ∈ Ω,Xω1
(x, t) = 1} = {x ∈ Ω, Vα(t, x, U,∇U) = 1}, ∀t ∈ (0, T ) (2.5)

and

{x ∈ Ω,Xω2
(x) = 1} = {x ∈ Ω, Vd(t, x, U,∇U) = 1,∀t ∈ (0, T )} (2.6)

the optimization problem (P ) is equivalent to the following vector variational problem:

(V P ) m = inf
U

∫ T

0

∫

Ω

W (t, x, U(t, x),∇U(t, x))dxdt (2.7)

subject to




U = (U (1), U (2)) ∈ H1((0, T ) × Ω)2,

U (1)(0, x) = u0(x), U
(1)
t (0, x) = u1(x) in Ω,

U (1) = 0, in (0, T ) × ∂Ω,
∫

Ω

Vα(t, x, U(t, x),∇U(t, x))dx ≤ Lα|Ω| ∀t ∈ [0, T ],

∫

Ω

Vd(t, x, U(t, x),∇U(t, x)) × Vd(0, x, U(0, x),∇U(0, x))dx ≤ Ld|Ω| ∀t ∈ [0, T ].

(2.8)
Therefore, this procedure transforms the scalar dynamical problem (P ), with differ-
entiable, integrable and pointwise constraints, into a non-convex, vector variational
problem (V P ) with only pointwise and integral constraints.

We are now going to analyze the non-convex vector problem (V P ) by seeking its
relaxation. We use Young measures (see [24]) as a main tool in the computation of
the suitable density for the relaxed problem. Let us recall the following definition
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Definition 2.1. The constrained quasi-convexification of the functional W is
defined as

CQW (t, x, U,A, s, r) = inf
ν

{∫

M2×2

W (t, x, U,A)dν(A) : ν ∈ A
}

(2.9)

where

A =
{
ν : ν is a homogeneous H1-Young measure,

F =

∫

M2×2

Adν(A),

∫

M2×2

Vα(t, x, U,A)dν(A) = s,

∫

M2×2

Vd(t, x, U,A)dν(A) = r, ∀t ∈ [0, T ]
}
.

(2.10)

and then introduce the following minimization problem :

(RP ) m = inf
(U,s,r)

∫ T

0

∫

Ω

CQW (t, x, U(t, x),∇U(t, x), s(t, x), r(x))dxdt (2.11)

subject to




U = (U (1), U (2)) ∈ H1((0, T ) × Ω)2,

U (1)(0, x) = u0(x), U
(1)
t (0, x) = u1(x) in Ω,

U (1) = 0, in (0, T ) × ∂Ω,

0 ≤ s(t, x) ≤ 1,

∫

Ω

s(t, x)dx ≤ Lα|Ω|, ∀t ∈ [0, T ],

0 ≤ r(x) ≤ 1,

∫

Ω

r(x)dx ≤ Ld|Ω|.

(2.12)

The functions s and r denote the pointwise volume fraction associated to the α-
material and the damping set respectively.

Then, it can be proved the following relaxation result ( initially obtained in the
elliptic case in [2, 25]): (RP ) is a full relaxation of (V P ) we are looking for in the
following sense:

Theorem 2.2. Assume that the initial data of system (1.1) have the regularity

(u0, u1) ∈ (H2(Ω) ∩H1
0 (Ω)) ×H1

0 (Ω) (2.13)

Then, problem (RP ) is well posed and the following equality holds :

m = m (i.e. inf(V P ) = min(RP )). (2.14)

Moreover, the minimum (U, s, r) codifies (in the sense of Young measures) the optimal
micro-structures of the original optimal design problem.

Remark 2.3. In order to represent the limit of the cost function I associated with
a minimizing sequence, says {Xω1,j ,Xω2,j}j, through its associated Young measure, we
need equi-integrability for the sequence corresponding |ut,j |

2 +a(t, x,Xω1,j)|∇uj |
2 (see

[24]). (2.13) is a sufficient condition to get this equi-integrability. We refer to [21, 22]
for the details.

Therefore, Theorem 2.2 reduces the determination of a relaxed formulation to the
computation of the constrained quasi-convexification CQW associated to W .
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3. Constrained quasi-convexification. In this section, we solve the optimiza-
tion problem (2.9), leading for all (U,F, s, r) to the value of CQW (t, x, U, F, s, r). The
main difficulty is that we do not know explicitly the set of the admissible measures A
defined in (2.10). We then follow the same strategy as in [25]. Consider two classes
of family of probability measures A?,A

? such that

A? ⊂ A ⊂ A?.

We first calculate the minimum over the greater class of probability measures A?,
and then we check that the optimal value is attained by at least one measure over the
narrower class A?. This fact tells us that the optimal value so achieved is the same
in A, and hence we will have in fact computed the exact value CQW (t, x, U, F, s, r).

Following [25], we choose A? as the set of polyconvex measures, which are not
necessarily gradient Young measures, and therefore obtain a lower bound ( the con-
strained poly-convexification). The main property of these measures is that they
commute with the determinant. This constraint can be imposed in a more-or-less
manageable way. We also choose A∗ as the class of laminates which is a subclass
of the gradient Young measures. By working with this class, we would get an upper
bound (the constrained rank-one convexification).

In the sequel, in order to simplify the expression, we note Λγ,1 for Λγ,−d(x)U(1) .

3.1. Lower bound: poly-convexification. We compute the constrained poly-
convexification defined as follows:

Definition 3.1. The constrained poly-convexification CPW of the functional W
is given by the following minimization problem

CPW (U,F, s, r) = min
ν

{ ∫

M2×2

W (U,A)dν(A) : ν ∈ A?
}

(3.1)

where

A?(F, s, r) =
{
ν :ν is a homogeneous Young measure,

ν commutes with the determinant,

F =

∫

M2×2

Adν(A),

s =

∫

M2×2

Vα(U,A)dν(A), r =

∫

M2×2

Vd(U,A)dν(A)
}
.

(3.2)

In this respect, we exploit that ν belongs to the class A?. Firstly, from the volume
constraints (3.2)4, the measure ν have the following decomposition

ν = s(rνα,1 + (1 − r)να,0) + (1 − s)(rνβ,1 + (1 − r)νβ,0) (3.3)

with supp(νγ,λ) ⊂ Λγ,λ, γ = α, β, λ = 0, 1. Therefore, if we introduce

F γ,λ =

∫

Λγ,λ

Adνγ,λ, γ = α, β, λ = 0, 1,

then the first moment constraint (3.2)3 leads to the following expression

F = s(rFα,1 + (1 − r)Fα,0) + (1 − s)(rF β,1 + (1 − r)F β,0). (3.4)
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Now, from the property F γ,λ ∈ Λγ,λ, we have, for γ = α, β,

{
F γ,0

11 + F γ,0
22 = 0

−F γ,0
21 − γF γ,0

12 = 0
and

{
F γ,1

11 + F γ,1
22 = λ

−F γ,1
21 − γF γ,1

12 = 0
. (3.5)

Substituting (3.5) in the system (3.4), we obtain a non-compatible system on F γ,λ

unless the condition

F11 + F22 = rλ (3.6)

holds. Assuming henceforth this compatibility condition, (3.4)-(3.5)-(3.6) lead to





Fα,1
11 = c1, Fα,0

11 = c2, F β,0
11 = c3, Fα,1

12 = c4, F β,1
12 = c5,

F β,1
11 =

F11 − rsc1 − s(1 − r)c2 − (1 − s)(1 − r)c3
(1 − s)r

,

Fα,0
12 =

F21 + βF12 − (β − α)rsc4
(1 − r)s(β − α)

≡ f4(c4),

F β,0
12 =

−F21 − αF12 − (β − α)r(1 − s)c5
(1 − r)(1 − s)(β − α)

≡ f5(c5)

(3.7)

where ci ∈ R, i = 1, ·, 5 are parameters.

On the other hand, if we take a matrix A = (aij)(1≤i,j≤2) ∈ Λγ,λ with γ = α, β
and λ = 0, 1, then the equality

detA = −A(1)M−γA
(1) − λA(1)e1,

and the constraint on the commutation with determinant (3.2)2 yield to

detF =

∫

M2×2

detAdν(A)

= − S1 + λr(sFα,1
11 + (1 − s)F β,1

11 ) + αs(rSα,1 + (1 − r)Sα,0)

+ β(1 − s)(rSβ,1 + (1 − r)Sβ,0)

(3.8)

where

Sγ,λ =

∫

Λγ,λ

a2
12dνγ,λ(A), γ = α, β, λ = 1, 0, S1 =

∫

M2×2

a2
11dν(A) (3.9)

Similarly, the cost function can be written as
∫

M2×2

W (U,A)dν(A) = S1 +aαs(rSα,1 +(1− r)Sα,0)+aβ(1− s)(rSβ,1 +(1− r)Sβ,0).

(3.10)
Finally, using Jensen’s inequality, we obtain

Sγ,λ =

∫

Λγ,λ

a2
12dνγ,λ ≥ |

∫

Λγ,λ

a12dνγ,λ|
2 = |F γ,λ

12 |2 (3.11)

and

S1 ≥ |

∫

M2×2

a11dν(A)|2 = |F11|
2.
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As a conclusion, from (3.8)-(3.10)-(3.11), the poly-convexification problem (3.1) is
reduced to the following mathematical programming problem

(MPP ) min
(S1,Sγ,λ,ci)

S1 + aαs(rSα,1 + (1 − r)Sα,0) + aβ(1 − s)(rSβ,1 + (1 − r)Sβ,0)

subject to





detF = λr(sFα,1
11 + (1 − s)F β,1

11 ) − S1

+ αs(rSα,1 + (1 − r)Sα,0) + β(1 − s)(rSβ,1 + (1 − r)Sβ,0)

Sγ,λ ≥ (F γ,λ
12 )2, γ = α, β, λ = 0, 1; S1 ≥ (F11)

2.

The resolution of this problem leads to the following expression of CPW .
Proposition 3.2. The poly-convexification (3.1) is explicitly given by

CPW (U,F, s, r) =





|F11|
2 +

aα

s(β − α)2
|βF12 + F21|

2+

aβ

(1 − s)(β − α)2
|αF12 + F21|

2
if ψ(F, s, r) = 0,

+∞ else.
(3.12)

where

ψ(F, s, r) = −detF − |F11|
2 + λrF11 +

α

s(β − α)2
|βF12 + F21|

2

+
β

(1 − s)(β − α)2
|αF12 + F21|

2.
(3.13)

Proof - From (3.7), we obtain that

r(sFα,1
11 + (1 − s)F β,1

11 ) = F11 − s(1 − r)c2 − (1 − s)(1 − r)c3. (3.14)

Consequently, the problem is

minimize
(S1,Sγ,λ,ci)

S1 + aαs(rSα,1 + (1 − r)Sα,0) + aβ(1 − s)(rSβ,1 + (1 − r)Sβ,0)

subject to,




detF = λ

(
F11 − s(1 − r)c2 − (1 − s)(1 − r)c3

)
− S1

+ αs(rSα,1 + (1 − r)Sα,0) + β(1 − s)(rSβ,1 + (1 − r)Sβ,0)

Sα,1 ≥ c24, Sβ,1 ≥ c25, Sα,0 ≥ f2
4 (c4), Sβ,0 ≥ f2

5 (c5), S1 ≥ (F11)
2.

(3.15)
Since aα and aβ are positive, the minimum is obtained when the equalities hold in
(3.15)2 with a suitable choice of the constant c2 and c3 in (3.15)1. Therefore, the
minimum is

|F 2
11| + aαs(rc

2
4 + (1 − r)f2

4 (c4)) + aβ(1 − s)(rc25 + (1 − r)f2
5 (c5)). (3.16)

The minimization of (rc24 + (1 − r)f2
4 (c4)) with respect to c4 leads to

c4 =
1

s(β − α)
(βF12 + F21) = Fα,1

12 (3.17)
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then

(rc24 + (1 − r)f2
4 (c4)) =

(
1

s(β − α)
(βF12 + F21)

)2

= c24 = Sα,1 (3.18)

Similarly, we obtain

c5 = −
1

(1 − s)(β − α)
(αF12 + F21) = F β,1

12 . (3.19)

Then, writing detF = F11F22 − F12F21 = −F 2
11 + λrF11 − F12F21 from (3.6), the

relation (3.15)1 becomes

λrF11 − F12F21 = λ

(
F11 − s(1 − r)c2 − (1 − s)(1 − r)c3

)
+

α

s(β − α)2
|βF12 + F21|

2

+
β

(1 − s)(β − α)2
|αF12 + F21|

2

and implies the relation λ(1− r)F11 = λ(1− r)(sc2 + (1− s)c3) and then (sc2 + (1−
s)c3) = F11. This leads to the expression of CPW . Moreover, remark that since

c2 = Fα,0
11 and c3 = F β,0

11 , the relation F11 = sFα,0
11 + (1 − s)F β,0

11 implies

Fα,0
11 = F β,0

11 = F11 (3.20)

and then from (3.15)2

Fα,1
11 = F β,1

11 = F11. (3.21)

�

Remark 3.3. From (3.6),−detF − |F11|
2 + λrF11 is simply F12F21 and

ψ(F, s, r) = F12F21 +
α

s(β − α)2
|βF12 + F21|

2 +
β

(1 − s)(β − α)2
|αF12 + F21|

2

=
1

s(1 − s)(β − α)2

[
F21 + F12(αs+ β(1 − s))

][
αβF12 + F21(α(1 − s) + βs)

]

(3.22)
does not depend explicitly on r.

The poly-convexification CPW gives a lower bound of the constrained quasi-
convexification. In the next section, we prove that this bound is in fact attained.

3.2. Upper bound: searching laminates. In order to prove that the lower
bound given by the polyconvexification is in fact the optimal value, we now search a
measure ν in the class A? of laminates which recover it. Precisely, we exhibit a ν with
the decomposition (3.3) and first moment F which satisfies a rank one condition.

First, from the optimality conditions (3.5)-(3.17-3.21) and the strict convexity of
the square function, we deduce that

ν(11) = δF11
, and ν

(12)
γ,λ = δF γ,λ

12

and therefore

νγ,λ = δF γ,λ with γ = α, β, λ = 0, 1

9



F

La,0 La,1

Lb,1

Lb,0

Fig. 3.1. Geometrical decomposition of F .

where the matrices F γ,λ are

F γ,1 =

(
F11 yγ

−γyγ −F11 − λ

)
, F γ,0 =

(
F11 yγ

−γyγ −F11

)

with γ = α, β and

yα ≡
1

s(β − α)
(βF12 + F21), yβ ≡

−1

(1 − s)(β − α)
(αF12 + F21). (3.23)

The unique possible measure ν which admit the decomposition (3.3) is then (ge-
ometrically, see Figure 1)

ν = s(rδF α,1 + (1 − r)δF α,0) + (1 − s)(rδF β,1 + (1 − r)δF β,0). (3.24)

Let us now check that ν is actually a laminate, i.e. we check that there is rank one
connection between the support of deltas. On one hand, for γ = α, β, the relation

F γ,1 − F γ,0 =

(
0 0
0 −λ

)
= b⊗ e2 with b = (0,−λ), e2 = (0, 1)

indicates that the direction of lamination of the set of damping has to be with normal
e2. On the other hand, the relation

(rFα,1 + (1 − r)Fα,0) − (rF β,1+(1 − r)F β,0) =

(
0 yα − yβ

βyβ − αyα 0

)

= (0, yα − yβ) ⊗ e1 + (αyα − βyβ , 0) ⊗ e2

(3.25)

implies that ν is a laminate if and only if

det

(
0 yα − yβ

βyβ − αyα 0

)
= 0 ⇐⇒ (yα − yβ)(βyβ − αyα) = 0.

Furthermore, from (3.22) and (3.23), we obtain that

ψ(F, s, r) = s(1 − s)(αyα − βyβ)(yα − yβ). (3.26)
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Consequently, the above rank one condition is equivalent to ψ(F, s, r) = 0, which is
precisely the necessary condition for the poly-convexification to be finite (see Propo-
sition 3.2). We then conclude that ν is a first order laminate, i.e. belongs to the class
A?. Then, we remark that the conditions yα − yβ = 0 and αyα − βyβ = 0 are not
compatible because imply yα = yβ = 0 and then F12 = F21 = 0. We conclude that
the direction of lamination of the α or β material is e2 = (0, 1) if yα − yβ = 0 or
e1 = (1, 0) if βyβ − αyα = 0.

In conclusion, for the measure (3.24), the quasi-convexification CQW defined by
(2.9) coincides with CPW . Moreover, this provides an explicit expression of the full
relaxation problem (2.11) stated in the following paragraph.

3.3. Well-posed full relaxation (RP ). From Proposition 3.2 and by putting
λ = −d(x)U (1)(t, x) = −d(x)u(t, x) and F = ∇U in (3.6), we obtain that the following
optimization problem

(RP ) min
U,s,r

Î (U) =

∫ T

0

∫

Ω

CQW (t, x, U(t, x),∇U(t, x), s(t, x), r(x)) dxdt (3.27)

subject to





U = (u, v) ∈ (H1([0, T ] × Ω))2, ψ(t, x,∇U(t, x), s(t, x), r(x)) = 0,

ut + vx = d(x)r(x)u(t, x) in Ω × (0, T )

U (1)(0, x) = u0(x), U
(1)
t (0, x) = u1(x) in Ω,

U (1) = 0, in ∂Ω × [0, T ],

0 ≤ s(t, x) ≤ 1,

∫

Ω

s(t, x) dx ≤ Lα|Ω| ∀t ∈ [0, T ],

0 ≤ r(x) ≤ 1,

∫

Ω

r(x) dx ≤ Ld|Ω|

where

CQW (U,F, s, r) = |F11|
2 +

aα

s(β − α)2
|βF12 + F21|

2 +
aβ

(1 − s)(β − α)2
|αF12 + F21)|

2

(3.28)
and

ψ(F, s, r) = −detF − |F11|
2 + λrF11 +

α

s(β − α)2
|βF12 + F21|

2

+
β

(1 − s)(β − α)2
|αF12 + F21|

2,

(3.29)
for any

F =

(
F11 F12

F21 F22

)
, s, r ∈ R,

is a full well-posed relaxation of (V P ) in the following sense.
Theorem 3.4. The variational problem (RP ) is a relaxation of the initial opti-

mization problem (V P ) in the sense that
a) the infima of both problems coincide;
b) there are optimal solutions for the relaxed problem;

11



c) these solutions codify ( in the sense of the Young measures) the optimal micro-
structures of the original optimal design problem (see next Theorem).

Moreover, we can compute explicitly optimal micro-structures :
Theorem 3.5. Optimal Young measures leading to the relaxed formulation are

always first order laminates which can be given in a completely explicit form:
• for the damping case the optimal micro-structures are

r(x)δ1 + (1 − r(x))δ0 (3.30)

with direction normal of lamination e2 = (0, 1);
• for the material case, the optimal micro-structure are always

s(x, t)δα + (1 − s(x, t))δβ (3.31)

with direction normal of lamination e2 = (0, 1) (if yα − yβ = 0) or e1 = (1, 0)
(if αyα − βyβ = 0), depending on each point.

Remark 3.6.

• The direction of lamination of the set of damping equal to e2 = (0, 1) is in
full agreement with the time independence of the subset ω2, support of the
dissipative term.

• It is interesting to remark the influence of the damping term Xω2
d(x)ut on

the order of the laminates associated to the optimal Young measure. Without
this damping term (i.e. when ω2 = ∅), the analysis of the relaxation of
(P ) (see [19]) reveals that the constrained quasi-convexification is recovered
by either first or second order laminates, obtained when ψ(∇U, s) ≤ 0 and
ψ(∇U, s) > 0 respectively . Here, even for arbitrarily small positive value of
||d||L∞(Ω) or |ω2|, the optimal laminates are always of first order, obtained on
the set ψ(∇U, s) = 0. This clearly highlights the smoother effect of this term.

4. Interpretation of the relaxed problem (RP ) in term of u. The quasi-
convexified density depends on the gradient of U , verifies pointwise constraints and
may take the value +∞ abruptly. For these reasons, the numerical approximation
of the problem (RP ) is not standard and a priori tricky. In this section, taking
advantage of the compatibility conditions, we analyze deeper the relaxed formulation
(RP ) and eliminate the auxiliary variable v = U (2) introduced in Section 2.

From the relation (3.26), the set {F ;ψ(F, s) = 0} is decomposed into two disjoints
set {F ; yα − yβ = 0} and {F ;αyα − βyβ = 0}. Then, noticing that





yα − yβ = 0 ⇐⇒ F21 + F12(αs+ β(1 − s)) = 0,

αyα − βyβ = 0 ⇐⇒ F21 + F12
1

α−1s+ β−1(1 − s)
= 0.

(4.1)

we may eliminate the variable F21 (i.e. vt ) and write the quasi-convexifed in term of
F11 and F12 only as follows:

CQW (U,F, s, r) =





|F11|
2 + (aαs+ aβ(1 − s))|F 2

12| if yα − yβ = 0,

|F11|
2 +

aαβ2s+aβα2(1−s)
(α(1−s)+βs)2 |F 2

12| if αyα − βyβ = 0,

+∞ else.

(4.2)

Therefore, from the following lemma (we refer to [11] for the proof),
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Lemma 4.1. For all s ∈ (0, 1) and 0 < α < β, we have

aβ

aα
≤

2β

α+ β
=⇒ aαs+ aβ(1 − s) ≤

aαβ
2s+ aβα

2(1 − s)

(α(1 − s) + βs)2
,

aβ

aα
≥
α+ β

2α
=⇒ aαs+ aβ(1 − s) ≥

aαβ
2s+ aβα

2(1 − s)

(α(1 − s) + βs)2
.

(4.3)

we are lead to introduce the following problem

(R̃P ) : inf
s,r

Ĩ(s, r) =

∫ T

0

∫

Ω

(
ut(t, x)

2 +G(s)ux(t, x)2
)
dxdt (4.4)

subject to





utt − div(H(s)∇u) + d(x)r(x)ut = 0 in (0, T ) × Ω,

u = 0 on (0, T ) × ∂Ω,

u(0, x) = u0(x), ut(0, x) = u1(x) in Ω,

0 ≤ s(t, x) ≤ 1,
∫
Ω
s(t, x) dx ≤ Lα|Ω| in [0, T ],

0 ≤ r(x) ≤ 1,
∫
Ω
r(x) dx ≤ Ld|Ω|

(4.5)

where

G(s) = aαs+ aβ(1 − s); H(s) = αs+ β(1 − s) if
aβ

aα
≤

2β

α+ β
(4.6)

and

G(s) =
aαβ

2s+ aβα
2(1 − s)

(α(1 − s) + βs)2
; H(s) =

1

α−1s+ β−1(1 − s)
if

aβ

aα
≥
α+ β

2α
.

(4.7)
We assume henceforth that the positive functions aα and aβ fulfill for all x ∈ Ω either
the property aβ/aα ≤ 2β/(α+ β) either aβ/aα ≥ (α+ β)/2α.

Problem (R̃P ) with (4.6) (resp. (4.7)) is obtained from (RP ) assuming that
CQW is given by (4.2)1 (resp. (4.2)2), then putting F = ∇U and λ = −d(x)u(t, x)
and finally by eliminating the auxiliary variable v. Remark that in the first case, H
is the arithmetic mean of (α, β), while in the second case, H is the harmonic mean.

Moreover, one can not affirm, a priori, that problem (R̃P ) is equivalent to (RP )
because the couple U = (u, v) which solves (RP ) does not necessarily fulfill for all
(t, x) ∈ (0, T ) × Ω the relation vt + ux(αs+ β(1 − s)) = 0 (i.e. yα − yβ = 0, see (4.1)
with F = ∇U) or for all (t, x) the relation vt + ux(α−1s + β−1(1 − s))−1 = 0 (i.e.
αyα −βyβ = 0). However, we may conjecture this equivalence thanks to the following
property:

Lemma 4.2. The equality inf(R̃P ) = min(RP ) holds.
Proof- Let us consider the first case in Lemma 4.1, i.e. aα/aβ ≤ 2β/(α+β) leading

to the arithmetic situation (4.6). In this case, (R̃P ) is simply derived from (V P ) by
replacing the set of characteristic functions Xω1

∈ L∞((0, T )×Ω, {0, 1}) by the larger

set of density functions s ∈ L∞((0, T )×Ω, (0, 1)). Therefore inf(R̃P ) ≤ inf(V P ) and
the conclusion follows from min(RP ) = inf(V P ) (see Theorem 2.2) and min(RP ) ≤
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inf(R̃P ). In the harmonic situation, we obtain the result using same arguments and
Lemma 4.1. �

We have transformed the problem (RP ) into the problem (R̃P ) where the aux-
iliary variable v does not appear anymore and much easier to solve numerically. We
observe however that, since (R̃P ) is not convex, one can not ensure the existence of

solutions. The next section aims at investigating the numerical resolution of (R̃P ).

5. Numerical Analysis of the relaxed problem. We address in this sec-
tion the numerical resolution of the problem (R̃P ) in the quadratic case for which
(aα, aβ) = (1, 1) and in the compliance case for which (aα, aβ) = (α, β). We first
describe an algorithm of minimization and then present some numerical experiments.
In order to simplify the presentation, we replace the volume constraint inequalities
(4.5)4 and (4.5)5 by constraints equalities.

5.1. Algorithm of minimization. We present the resolution of the relaxed
problem (R̃P ) using a gradient descent method. In this respect, we compute the first
variation of the cost function with respect to s and r.

For any η ∈ R
+, η << 1, and any s1 ∈ L∞((0, T ) × Ω), we associate with the

perturbation sη = s + ηs1 of s the derivative of Ĩ with respect to s in the direction
s1 as follows :

∂Ĩ(s, r)

∂s
· s1 = lim

η→0

Ĩ(s+ ηs1, r) − Ĩ(s, r)

η
.

Theorem 5.1. If (u0, u1) ∈ (H2(Ω) ∩H1
0 (Ω)) ×H1

0 (Ω), then the first derivative

of Ĩ with respect to s in any direction s1 exists and takes the form

∂Ĩ(s, r)

∂s
· s1 =

∫ T

0

∫

Ω

(
G,s(s)u

2
x +H,s(s)uxpx

)
s1 dxdt (5.1)

where u is the solution of (4.5) and p is the solution in C1([0, T ];H1
0 (Ω))∩C1([0, T ];L2(Ω))

of the adjoint problem




ptt − div(H(s)∇p) − d(x)r(x)pt = utt + div(G(s)∇u) in (0, T ) × Ω,

p = 0 on (0, T ) × ∂Ω,

p(T, x) = 0, pt(T, x) = ut(T, x) in Ω.
(5.2)

Similarly, the first derivative of Ĩ with respect to r in any direction r1 ∈ L∞(Ω) is
given by

∂Ĩ(s, r)

∂r
· r1 =

∫

Ω

d(x)r1(x)

∫ T

0

ut(t, x)p(t, x)dtdx. (5.3)

Proof - We introduce the lagrangian

L(s, φ, ψ) =

∫ T

0

∫

Ω

(φ2
t +G(s)φ2

x) dxdt+

∫ T

0

∫

Ω

[
φtt − div(H(s)φx) + d(x)rφt

]
ψ dxdt

for any s ∈ L∞((0, T ) × Ω), φ ∈ C([0, T ];H2(Ω) ∩ H1
0 (Ω)) ∩ C1([0, T ];H1

0 (Ω)) and
ψ ∈ C([0, T ];H1

0 (Ω)) ∩ C1([0, T ];L2(Ω)) and then write formally that

dL

ds
· s1 =

∂

∂s
L(s, φ, ψ) · s1+ <

∂

∂φ
L(s, φ, ψ),

∂φ

∂s
· s1 > + <

∂

∂ψ
L(s, φ, ψ),

∂ψ

∂s
· s1 > .

14



The first term is

∂

∂s
L(s, φ, ψ) · s1 =

∫ T

0

∫

Ω

(
G,s(s)φ

2
x +H,s(s)φxψx

)
s1 dxdt (5.4)

for any s, φ, ψ whereas the third term is equal to zero if φ = u solution of (4.5).
We then determine the solution p so that, for all φ ∈ C([0, T ];H2(Ω) ∩ H1

0 (Ω)) ∩
C1([0, T ];H1

0 (Ω)), we have

<
∂

∂φ
L(s, φ, p),

∂φ

∂s
· s1 >= 0,

which leads to the formulation of the adjoint problem (5.2). Next, writing that Ĩ(s) =
L(s, u, p), we obtain (5.1) from (5.4). The relation (5.3) is obtained in a similar way.
�

In order to take into account the volume constraint on s and r, we introduce the
Lagrange multipliers γs ∈ L∞((0, T ); R), γr ∈ R and the functional

Ĩγ(s, r) = Ĩ(s, r) +

∫ T

0

γs(t)

∫

Ω

s(t, x)dxdt+ γr

∫

Ω

r(x)dx.

Using Theorem 5.1, we then obtain easily that the first derivatives of Ĩγ are

∂Ĩγ(s, r)

∂s
· s1 =

∫ T

0

∫

Ω

(G,s(s)u
2
x +H,s(s)uxpx)s1 dxdt+

∫ T

0

γs(t)

∫

Ω

s1dxdt,

∂Ĩγ(s, r)

∂r
· r1 =

∫

Ω

d(x)r1(x)

∫ T

0

utp dxdt+ γr

∫

Ω

r1(x)dx,

which permit respectively to define the following descent directions :

s1(t, x) = −(G,s(s)u
2
x +H,s(s)uxpx + γs(t)), ∀(t, x) ∈ (0, T ) × Ω, (5.5)

and

r1(t, x) = −

(
d(x)

∫ T

0

ut(t, x)p(t, x)dt+ γr

)
∀x ∈ Ω. (5.6)

Consequently, for any function ηs ∈ L∞(Ω × (0, T ),R+) with ||ηs||L∞((0,T )×Ω)

small enough, we have Ĩγ(s + ηss1, r) ≤ Ĩγ(s, r). The multiplier function γs is then
determined so that, for any function ηs ∈ L∞((0, T )×Ω,R+), ||s+ηss1||L1(Ω) = Lα|Ω|
for all t ∈ (0, T ) leading to

γs(t) =
(
∫
Ω
s(t, x)dx− Lα|Ω|) −

∫
Ω
ηs(t, x)(G,s(s)u

2
x +H,s(s)uxpx) dx∫

Ω
ηs(t, x)dx

. (5.7)

At last, the function ηs is chosen so that s + ηs1 ∈ [0, 1], for all (t, x) ∈ (0, T ) × Ω.
A simple and efficient choice consists in taking ηs(t, x) = εs(t, x)(1 − s(t, x)) for all
(t, x) ∈ (0, T ) × Ω with ε a small real positive.

Similarly, the choice

γr =
(
∫
Ω
r(x)dx− Ld|Ω|) −

∫
Ω
ηr(x)d(x)

∫ T

0
ut(t, x)p(t, x) dtdx∫

Ω
ηr(x)dx

. (5.8)
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with ηr(x) = εr(x)(1 − r(x)) for all x ∈ Ω permits to ensure the condition ||r +
ηrr1||L1(Ω) = Ld|Ω|.

Consequently, the descent algorithm to solve numerically the relaxed problem
(R̃P ) may be structured as follows :

Let Ω ⊂ R, (u0, u1) ∈ (H2(Ω)∩H1
0 (Ω))×H1

0 (Ω), Lα, Ld ∈ (0, 1), T > 0, 0 < α <
β, aβ , aα ∈ L∞((0, T ) × Ω; R?

+), and ε < 1, ε1 << 1 be given ;
• Initialization of the densities s0 ∈ L∞((0, T ×Ω; ]0, 1[) and r0 ∈ L∞(Ω; ]0, 1[);

• For k ≥ 0, iteration until convergence (i.e. |Ĩγ(sk+1, rk+1) − Ĩγ(sk, rk)| ≤

ε1|Ĩγ(s0, r0)|) as follows :
– Computation of the solution usk,rk of (4.5) and then the solution psk,rk

of (5.2), both corresponding to (s, r) = (sk, rk).
– Computation of the descent direction sk

1 defined by (5.5) where the mul-
tiplier γk is defined by (5.7). Similarly, computation of the descent
direction rk

1 defined by (5.6) where the multiplier γk is defined by (5.8).
– Update the density sk in (0, T ) × Ω and the density rk in Ω:

sk+1 = sk + εsk(1 − sk)sk
1 , rk+1 = rk + εrk(1 − rk)rk

1

with ε ∈ R
+ small enough in order to ensure the decrease of the cost

function, sk+1 ∈ L∞((0, T ) × Ω, [0, 1]) and rk+1 ∈ L∞(Ω, [0, 1]).

5.2. Numerical experiments. In this section, we present some numerical sim-
ulations for Ω = (0, 1) in the quadratic case - (aα, aβ) = (1, 1) - and in the compliance
case - (aα, aβ) = (α, β)-. Recalling the assumption 0 < α < β, these two cases fall
in the arithmetic (see (4.6)) and harmonic (4.7) case respectively. On a numerical
viewpoint, we highlight that the numerical resolution of the descent algorithm is a
priori delicate in the sense that the descent direction depends on the derivative of
u and p, both solution of a wave equation with space and time coefficients only in
L∞((0, T ) × Ω; R?

+). To the knowledge of the authors, there does not exist any nu-
merical analysis for this kind of equation. We use a C0-finite element approximation
for u and p with respect to x and a finite difference centered approximation with
respect to t. Moreover, we add a vanishing viscosity and dissipative term of the
type (β−α)ε2div(H(s)uxtt) with ε of order of h - the space discretization parameter.
This term has the effect to regularize the descent term (5.5) and to lead to a conver-
gent algorithm. At last, this provides an implicit and unconditionally stable scheme,
consistent with (4.5) and (5.2), and of order two in time and space.

In the sequel, we treat the following simple and smooth initial conditions on
Ω = (0, 1):

u0(x) = sin(πx), u1(x) = 0 (5.9)

and α = 1. Results are obtained with h = ∆t = 10−2 (∆t designates the time
discretization parameter), ε1 = 10−5, Lα = 2/5, Ld = 1/5, T = 1, s0(t, x) = Lα on
[0, T ] × Ω, r0(x) = Ld on Ω and ε = 10−2 (see the algorithm).

We highlight that the gradient algorithm may lead to local minima of Ĩ with
respect to s and r. For this reason, we consider constant initial density s0 and r0 as
indicated above which permit to privilege no location for ω1 and ω2.

We discuss the result obtained with respect to the value of β and of the damping
function d(x) = dXΩ assumed constant in Ω: precisely, for (β, d) = (1.1, 1), (β, d) =
(1.1, 10), (β, d) = (4, 1) and (β, d) = (4, 10).
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5.2.1. The compliance case - (aα, aβ) = (α, β). The compliance choice is the
most usual one, because the corresponding cost function I (see eq. 1.3) coincides
with the energy of the vibrating membrane described by system (1.1). This case falls
into the harmonic situation (4.7), G(s) = H(s) = (α−1s + β−1(1 − s))−1 and we
get easily that G,s(s) = (α − β)G2(s)/(αβ). We present some results obtained with
the following data : Figures 5.1 and 5.2 depict the iso-values of the optimal density
slim and rlim respectively (obtained at the convergence of the descent algorithm). In
agreement with [19] (case ω2 = ∅) and [21] (case ω1 = ∅), results depend qualitatively
on the gap β − α and d. When β − α and d are small enough (function of the data
of the problem), here (α, β, d) = (1, 1.1, 1), we observe that the optimal densities

are characteristic functions. In this case, problem (R̃P ) coincides with the original
problem (P ) ( we check that when slim ∈ L∞((0, T )×Ω, {0, 1}) i.e. slim = Xω1

, then
H(slim) = αslim +β(1−slim) = αXω1

+β(1−Xω1
)). The original problem is therefore

well-posed in the class of characteristic function: Xω1
= slim ∈ L∞((0, T )×Ω; {0, 1})

and Xω2
= rlim ∈ L∞(Ω; {0, 1}).

Precisely, rlim = X[1/2−Ld/2,1/2+Ld/2] = X[0.4,0.6] and the optimal position for
the damping zone is - as expected according to the symmetry of u0 - the centered
one: ω2 = [0.4, 0.6]. Moreover, the optimal distribution of (α, β) material is time
dependent (see Figure 5.1 top left) and we observe that the weaker material α (black
zone on the figure) is located, for each time t, on the point (x, t) where the amplitude
of u(x, t) is the lowest: on the extremities of Ω at time t = 0 and on the middle at
time t ≈ 0.5.

If now we consider a larger gap β − α, for instance (α, β, d) = (1, 4, 1), the limit
density slim is no more a characteristic function and takes values in (0, 1) highlighting
microstructure (Figure 5.1 bottom left). This suggests that the initial problem (P )
is not well-posed in the class of characteristic function and does not coincide with
the relaxed problem (R̃P ). This also fully justifies the search and introduction of a
relaxed well-posed formulation. We observe also that this gap is not larger enough to
influence the density rlim: we still have rlim = X[0.4,0.6].

Similarly, when we increase the value of the damping function d (and therefore
the dissipation of the system), the limit density rlim is no more a characteristic func-
tion (see Figure 5.2 for (α, β, d) = (1, 1.1, 10) (left) and (α, β, d) = (1, 4, 10) (right))
but remains symmetric with respect to x = 1/2. The optimal domain is no more
the centered position, but an infinite union of disjoints intervals (see Section 5.2.3).
This damping term with d = 10 changes significantly the dynamic of u and per-
turb the optimal dynamical distribution of (α, β)-material (see Figure 5.1 right). For
(α, β, d) = (1, 1.1, 10), the function slim remains a characteristic function.

Finally, we plot the integrand of the cost function Ĩ, i.e. the energy E(t) ≡∫
Ω
(|ut|

2 +G(slim)|ux|
2)dx with respect to time (Figure 5.3). Although the system is

not necessarily dissipative when ω2 = ∅ - we have the relation

dE(t)

dt
= 2

∫

Ω

Ht(s)u
2
xdx− 2

∫

Ω

d(x)r(x)u2
tdx

= 2αβ(α− β)

∫

Ω

st

(α(1 − s) + βs)2
u2

xdx− 2

∫

Ω

d(x)r(x)u2
tdx,

(5.10)

- we observe that the optimal (α, β) distribution leads to a dissipative system and
that the dissipation is monotonous with respect to (β − α).

5.2.2. The quadratic case - (aα, aβ) = (1, 1). This case falls in the arithmetic

situation (see eq. 4.6) and the relaxed problem (R̃P ) is then simply derived from the
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Fig. 5.1. (aα , aβ) = (α, β) - Optimal density slim on (0, T )×Ω for (α, β, d) = (1, 1.1, 1) (top
left), (α, β, d) = (1, 1.1, 10) (top right), (α, β, d) = (1, 4, 1) (bottom left) and (α, β, d) = (1, 4, 10)
(bottom right).
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Fig. 5.2. (aα , aβ) = (α, β) - Solid line : Optimal density rlim for (α, β, d) = (1, 1.1, 10)
(left) and (α, β, d) = (1, 4, 10) (right); Dashed line : Optimal density rlim = X[0.4,0.6] for (α, β, d) =
(1, 1.1, 1) and (α, β, d) = (1, 4, 1).

original one by replacing (Xω1
,Xω2

) by (s, r).
Once again, the optimal distribution of (α, β) and damping material strongly

depends on the gap of the coefficients. Moreover, the numerical results still suggest
that the original problem is not well-posed if these gap exceed critical values depending
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Fig. 5.3. (aα , aβ) = (α, β) - Evolution of
∫
Ω(|ut|2 + G(slim)|ux|2)dx vs. t ∈ [0, T ].

on the data (see Figure 5.4). The main difference with respect to the compliance case
is observed for (α, β, d) = (1, 4, 10): it appears that the density rlim is a characteristic
function: rlim = X[0.4,0.6] (see Figure 5.5). A greater value of d (for instance d = 15)
is necessary to obtain values in (0, 1). This phenomena is due to the dissipative effect
of the optimal (α, β)-distribution and highlights the interaction between s and r (or
equivalently between ω1 and ω2).

5.2.3. Extraction of a minimizing sequence (Xωk
1
,Xωk

2
) from the optimal

density (slim, rlim). Once we have the optimal microstructure of the (α, β)- material
and damping material codified by the optimal density s and r, it remains (from a
practical viewpoint) to extract from (slim, rlim), a sequence of characteristic functions

(Xωk
1
,Xωk

2
) such that limk→∞ Ĩ(Xωk

1
,Xωk

2
) = Ĩ(slim, rlim).

Recalling that rlim(x) is the volume fraction of the damping material at point
x, we proceed as follows. Let us decompose the interval Ω into M > 0 non-empty
subintervals such that Ω = ∪j=1,M [xj , xj+1]. Then, we associate with each interval
[xj , xj+1] the mean value mj ∈ [0, 1] defined by

mj =
1

xj+1 − xj

∫ xj+1

xj

rlim(x)dx (5.11)

and the division into two parts

[xj , (1 −mj)xj +mjxj+1] ∪ [(1 −mj)xj +mjxj+1, xj+1]. (5.12)

At last, we introduce the function rpen
M in L∞(Ω, {0, 1}) by

rpen
M (x) =

M∑

j=1

X[xj ,(1−mj)xj+mjxj+1](x) (5.13)

We easily check that ||rpen
M ||L1(Ω) = ||rlim||L1(Ω), for allM > 0. The bi-valued function

rpen
M takes more advantage of the information codified in the density rlim. Similarly,

using that s(t, x) is the volume fraction of the α-material at point (t, x), we associate
to slim a sequence of bi-valued functions spen

N ∈ L∞((0, T ) × Ω, {0, 1}) (see [19]).
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Fig. 5.4. (aα , aβ) = (1,1) - Optimal density slim(t, x) on Ω× (0, T ) for (α, β, d) = (1, 1.1, 1)
(top left), (α, β, d) = (1, 1.1, 10) (top right), (α, β, d) = (1, 4, 1) (bottom left) and (α, β, d) = (1, 4, 10)
(bottom right).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

Fig. 5.5. (aα , aβ) = (1,1) - Solid line : Optimal density rlim for (α, β, d) = (1, 1.1, 10);
Dashed line : Optimal density rlim = X[0.4,0.6] for (α, β, d) = (1, 1.1, 1), (α, β, d) = (1, 4, 1) and
(α, β, d) = (1, 4, 10).

For (α, β, d) = (1, 4, 10) and (aα, aβ) = (α, β), Figure 5.7 represents the function
rpen
M=30 associated to the density rlim of Figure 5.2 -right. Similarly, Figure 5.8 repre-

sents the function spen
N=30 associated to the optimal density slim of Figure 5.1 bottom
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Fig. 5.6. (aα , aβ) = (1,1) - Evolution of
∫
Ω(|ut|2 + G(slim)|ux|2)dx vs. t ∈ [0, T ].

right. Finally, we report on Table 5.1 values of Ĩ(spen
N , rpen

M ) for several values of N

and M . For M = N = 40, we obtain Ĩ(spen
40 , rpen

40 ) ≈ 2.9803 which is very near from
the minimal value I(slim, rlim) ≈ 2.9116. These numerical results suggest the effi-
ciency of this procedure to build optimal domains ω1, ω2 composed of a finite number
of disjoints components and arbitrarily near the optimal distributions.
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Fig. 5.7. (aα , aβ) = (α, β) - Characteristic function associated to the optimal density rlim

for (α, β, d) = (1, 4, 10) - Ĩ(slim, rlim) ≈ 2.9116 - Ĩ(slim, r
pen

M=30) ≈ 3.0360.
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