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Abstract

We consider the problem of optimizing the shape and position of the damping

set for the internal stabilization of the linear wave equation in R
N , N = 1, 2. In a

first theoretical part, we reformulate the problem into an equivalent non-convex

vector variational one using a characterization of free divergence vector fields.

Then, by means of gradient Young measures, we obtain a relaxed formulation

of the problem in which the original cost density is replaced by its constrained

quasi-convexification. This implies that the new relaxed problem is well-posed

in the sense that there exists a minimizer and, in addition, the infimum of the

original problem coincides with the minimum of the relaxed one. In a second

numerical part, we address the resolution of the relaxed problem using a first

order gradient descent method. We present some numerical experiments which

highlight the influence of the over-damping phenomena and show that for large

values of the damping potential the original problem has no a minimizer. We

then propose a penalization technique to recover the minimizing sequences of

the original problem from the optimal solution of the relaxed one.

1 Introduction

Let us consider the following damped wave equation

(1)







utt − ∆u+ a (x)Xω (x)ut = 0 in (0, T ) × Ω,
u = 0 on (0, T ) × ∂Ω,
u(0, ·) = u0, ut(0, ·) = u1 in Ω,

where Ω ⊂ C2(RN ), N = 1, 2, is a bounded domain. Xω designates the characteristic
function of ω, a subset of Ω of positive Lebesgue measure and independent of the time
t ∈ (0, T ). Moreover, the damping potential a ∈ L∞ (Ω; R+) is such that

(2) a (x) ≥ α > 0 a. e. x ∈ ω.
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We assume that the initial data (u0, u1) are in H1
0 (Ω)×L2 (Ω) and are independent of

both ω and a. System (1) is then well-posed and there exists a unique weak solution
[10] such that

(3) u ∈ C
(

[0, T ] ;H1
0 (Ω)

)

∩ C1
(

[0, T ] ;L2(Ω)
)

.

It is also well-known that system (1) models, for instance, the stabilization of
an elastic string (resp. membrane) when N = 1 (or resp. N = 2) by an internal
dissipative mechanism located on the subset ω. The unknown u (t, x) represents the
transversal displacement of the string (resp. membrane) at the point x and at time
t, while u0 and u1 designate the initial position and velocity, respectively.

The energy associated with system (1) is given by

(4) E(t) =
1

2

∫

Ω

(|ut(t, x)|
2 + |∇u(t, x)|2) dx, ∀t > 0

and fulfills the following dissipation law

(5)
dE(t)

dt
= −

∫

ω

a (x) |ut (t, x) |2dx < 0, ∀t > 0.

Subsequently, the energy E is a decreasing function of the time variable t.
In this work, we address the very important in practice question of determining

the best location and shape of the domain ω in order to minimize some cost related
to the energy E. More precisely, we consider the following nonlinear optimal shape
design problem :

(6) (P ) : inf
ω∈ΩL

J(Xω) where J(Xω) =
1

2

∫ T

0

∫

Ω

(|ut|
2 + |∇u|2) dxdt

with

(7) ΩL = {ω ⊂ Ω : |ω| = L |Ω| , 0 < L < 1} ,

|ω| and |Ω| being the Lebesgue measures of ω and Ω, respectively. Problem (P )
consists in finding the location and shape of ω which minimizes the integral of the
energy over the time interval (0, T ).

In the literature, the problem of optimal stabilization for the wave equation has
been extensively from different perspectives, but mainly for N = 1 and using spectral
analysis (see for instance [2, 3, 4, 6, 7]). The mathematical attraction (and difficulty!)
on this problem lies in the fact that, with respect to damping,“more is not better”.
This is the so-called over-damping phenomena. For instance, for a constant in Ω =
ω = (0, 1), the exponential rate (and similarly the energy) is not a strictly decreasing
function of a and reaches its minimum for a = π. Thus, returning to problem (P ), this
non-monotony may lead, for a large, to non intuitive optimal position of the subset
ω (loss of symmetry of ω with respect to the symmetry of (u0, u1) and Ω) [8]. In the
same spirit, it is known since the work [6] that a locally negative damping function
may lead to a better dissipation (we refer to [12] for some numerical illustrations of
this fact).

A second source of difficulty is the possible non well-posedeness character (non
existence of minimizer in the class of characteristic functions) of the optimal shape
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design problem (P ), if no regularity is assumed on ω. For small and constant value of
a and N = 1, it is proved in [8] that when ω is composed of a number of subintervals
which is not fixed a priori, then an optimal domain does not exist. Similarly, by
minimizing the total energy over a large time interval, it is observed numerically
in [5] that the damping designs do not converge for increasing number of damping
subintervals.

Our approach to tackle from a theoretical point of view the problem (P ) does
not rely on spectral analysis. It consists in a suitable variational reformulation of the
initial problem inspired in an strategy that has been successfully implemented in sev-
eral optimal design problems with steady-state equations (see [15] for a nice account
on this), and recently used for some dynamical cases [11]. Two important features
to take into account in our problem are, on one hand, the nonlinear dependence of
the integrand in the cost function with respect to the gradient ∇u and, on another
hand, the possible non existence of minimizer for (P ). In this context, the use of
gradient Young measures has revealed as a very important tool not only because it
leads to an appropriate relaxation of the original problem, but also because it gives
the information contained in some minimizing sequences.

We emphasize that we only make on ω the above two constraints, namely, ω is
independent of time and its Lebesgue measure is strictly less than the measure of
Ω. In particular, ω may be composed of an infinite number of subsets. It is also
important to note that in the problem we are dealing with, the damping potential a
is fixed. That is, we minimize only in ω for a given a. Other problems would be to
optimize in a for a fixed ω or to minimize in (a, ω) jointly, but these issues will not
be addressed here.

The rest of the paper is organized as follows. In Section 2, we deal with the theo-
retical part of the problem. Our main result in this section concerns a full relaxation
of (P ). Precisely, consider the optimization problem

(8) (RP ) : inf
s∈L∞(Ω)

1

2

∫ T

0

∫

Ω

(u2
t + |∇u|

2
) dx dt

where u (function of s) is the unique solution of

(9)















utt − ∆u+ a (x) s(x)ut = 0 in (0, T ) × Ω,
u = 0 on (0, T ) × ∂Ω,
u(0, ·) = u0, ut(0, ·) = u1 in Ω,
0 ≤ s(x) ≤ 1,

∫

Ω
s(x) dx = L |Ω| in Ω.

Then we have the following main result.

Theorem 1.1 Problem (RP ) is a full relaxation of (P ) in the sense that

• there are optimal solutions for (RP );

• the infimum of (P ) equals the minimum of (RP );

• if s is optimal for (RP ), then

– optimal sequences of damping subsets ωj for (P ) in the 1-d case are exactly
those for which the Young measure associated with the sequence of their
characteristic functions Xωj

is precisely

(10) s(x)δ1 + (1 − s(x))δ0;
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– for the 2-d case, optimal sequences of damping sets are those first-order
laminates with any normal (in space) which may depend on the space vari-
able but independent of time.

Notice that in both situations there is a huge non-uniqueness of the distribution
of the optimal damping sets, not only because of the arbitrariness of the normals in
the 2-d case, but also because first-order laminates can be generated in various length
scales. This non-uniqueness may be the explanation why the numerical results in
Section 3 are dependent on initial densities.

As an immediate consequence of Theorem 1.1, we have that if the optimal solution
s for (RP ) is such that the subset {x ∈ Ω : 0 < s(x) < 1} has positive measure, then
no finite admissible collection of subsets can be optimal for (P ). The physical meaning
of this is that if we want to damp a string (or a membrane), then the best way is to
split the actuators into smaller parts.

Notice also that problem (RP ) basically consists in replacing the space L∞(Ω; {0, 1})
of admissible designs for problem (P ) by its weak * closure L∞(Ω; [0, 1]).

In Section 3, we address the numerical resolution of the relaxed problem (RP ).
In this respect, we first compute analytically the first derivative of J with respect to
s, in terms of the solution u and of the solution of an appropriate adjoint problem
(see eq. 80). We present several experiments which highlight the influence of the
over-damping phenomena on the optimal density. Precisely, for small values of the
damping potential a we obtain that the original problem (P ) is well-posed in the
sense that there is a minimizer in the class of characteristic functions. However, when
a increases we find that the optimal solution is no longer in L∞(Ω; {0, 1}) but in
L∞(Ω; [0, 1]). We then analyze two penalization techniques to obtain some elements
of a minimizing sequence for (P ) from the relaxed optimal density of (RP ).

2 Variational Reformulation and Relaxation

Although the method of proving Theorem 1.1 is based on the same ideas for N = 1
and N = 2, we treat separately both cases because of the different characterization
of the free-divergence vector fields, which is a key fact in our method. We explain in
detail the 1-d case and in 2-d we just point out the main differences with respect to
1-d.

2.1 The one-dimensional case

Throughout this section, we assume that Ω = (0, 1).

2.1.1 Variational Reformulation of problem (P )

First, ω being time independent, we rewrite the main equation in (1) as

(11) div (ut + aXωu,−ux) = 0,

where the div operator is considered with respect to the variables t and x. Then,
from the characterization of the 2-d free-divergence vector fields, there exists an scalar
potential (or stream function) v = v (t, x) ∈ H1 ((0, T ) × Ω) such that

(12) A∇u+B∇v = −aXωu
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where ∇u =

(

ut

ux

)

, ∇v =

(

vt

vx

)

, u =

(

u
0

)

and

(13) A =

(

1 0
0 −1

)

, B =

(

0 −1
1 0

)

.

We introduce the vector field U = (u, v) ∈ (H1 ((0, T ) × Ω))2 and the two sets of
matrices

(14)
Λ0 =

{

M ∈ M2×2 : AM (1) +BM (2) = 0
}

,

Λ1,λ =
{

M ∈ M2×2 : AM (1) +BM (2) = λe1

}

,

where M (i), i = 1, 2 stands for the i-th row of the matrix M, λ ∈ R and e1 =

(

1
0

)

.

Then considering the following functions,

(15) W (x,U,M) =







1
2

∣

∣M (1)
∣

∣

2
, M ∈ Λ0 ∪ Λ1,−a(x)U(1)

+∞, else

and

(16) V (x,U,M) =







1, M ∈ Λ1,−a(x)U(1)

0, M ∈ Λ0 \ Λ1,−a(x)U(1)

+∞, else

the optimization problem (P ) is equivalent to the following vector variational problem

(17) (V P ) m ≡ inf
U

∫ T

0

∫ 1

0

W (x,U(t, x),∇U (t, x)) dx dt

subject to

(18)



















U ∈
(

H1 ((0, T ) × Ω)
)2

U (1) = 0 (0, T ) × ∂Ω

U (1) (0, ·) = u0 (·) , U
(1)
t (0, ·) = u1 (·) , Ω

∫ 1

0
V (x,U(t, x),∇U (t, x)) dx = L, (0, T ).

Therefore, this procedure transforms the scalar optimization problem (P ) , with dif-
ferentiable, integrable and pointwise constraints, into a non-convex, vector variational
problem (V P ) with only pointwise and integral constraints.

2.1.2 Relaxation. Proof of Theorem 1.1

In this section we use the methodology of gradient Young measures (see [14] for the
basic properties of these measures) in order to obtain a relaxed form for problem
(V P ). Our main goal in this section is to prove Theorem 1.1. To this end we follow
the same lines as in the case of optimal design problems for elliptic equations. We
refer the reader to [15] for a more detailed analysis of this procedure, but in order to
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make the paper easier to read and to have a guide for the rest of this section, we now
briefly describe the basic underlying ideas.

The main problem is that since the functional W is not convex, we can not ensure
the existence of solutions for (V P ). A natural thing to do to overcome this difficulty
is to consider a larger class of admissible solutions which includes all the minimizing
sequences for (V P ) and in a way that the resulting functional to be weakly lower
semi-continuous. To this end, we consider

(19) m = inf
U

{

∫ T

0

∫

Ω

CQW (t, x,∇U (t, x) , s (x)) dxdt

}

where the infimum is taken over the fields U ∈
(

H1 ((0, T ) × Ω)
)2

which satisfy the
initial and boundary conditions and the function s satisfies the constraints

(20) 0 ≤ s (x) ≤ 1 ∀x ∈ Ω, and

∫

Ω

s (x) dx = L |Ω| .

Moreover, the expression CQW (t, x,∇U (t, x) , s (x)) stands for the constrained quasi-
convexification of the density W and, for a fixed (F, s) ∈ M2×2 × R, is defined as

(21) CQW (t, x, F, s) = inf
ν

{∫

M2×2

W (t, x,M) dν (M) : ν ∈ A (F, s)

}

,

where

A (F, s) =
{

ν : ν is a homogeneous H1 − Young measure,

F =

∫

M2×2

Mdν (M) and

∫

M2×2

V (M) dν (M) = s

}

.

Then, it can be proved (see [15] and the references therein) that the infimum m is
attained and, in addition, that m = m, that is, the minimum of the relaxed problem
(19) is equal to the infimum of the original one (V P ) .

So, our main task is to compute the constrained quasi-convexification associated
with the density W . The difficulty now is that we do not know explicitly the measures
entering in the class A (F, s) that we need to compute CQW (t, x, F, s) .We then follow
the same strategy as in [15]. First, we consider a larger class of measures A∗, the class
of polyconvex measures, and minimize over this class. Second, we will prove that the
infimum over the class of polyconvex measures is actually attained at a measure which
belongs to a class of measures, say A∗, (the laminates) which is included in A (F, s),
that is, A∗ ⊂ A ⊂ A∗. As a result, we obtain the exact value of the constrained
quasi-convex density CQW (t, x, F, s) .

To sum up, all we have to do in the rest of this section is: (1) to compute the
constrained polyconvexification of the density W, (2) to prove that this new relaxed
density is obtained from a first-order laminate, and (3) to reinterpret all of this infor-
mation in the form of the relaxed problem (RP ). We proceed in different steps.

Step 1: computation of the constrained polyconvexification. The constrained
polyconvexification, CPW, associated with the density W is given by

(22) CPW (x,U, F, s) = min
ν

∫

M2×2

W (x,U,M) dν (M)
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where the measure ν satisfies the constraints

(23)



























ν commutes with det,

F =

∫

M2×2

Mdν (M) ,

s =

∫

M2×2

V (x,U,M) dν (M) .

Note that in computing CPW (x,U, F, s), the variables (x,U) just play the role of
parameters so that they are regarded as constants. Hence, if we take λ as given, put
Λ1 for Λ1,λ for short, and consider the integrands

(24) W (M) =







1
2

∣

∣M (1)
∣

∣

2
, M ∈ Λ0 ∪ Λ1

+∞, else

and

(25) V (M) =







1, M ∈ Λ1

0, M ∈ Λ0 \ Λ1

+∞, else

then we are concerned with the computation of

(26) CPW (F, s) = min
ν

∫

M2×2

W (M) dν (M)

where the measure ν satisfies (23). From the volume constraint we deduce that this
measure has the form

(27) ν = sν1 + (1 − s) ν0, with supp (νj) ⊂ Λj , j = 0, 1,

and hence for each pair (F, s) , the constrained polyconvexification CPW (F, s) is
computed by solving

(28) min
ν

s

2

∫

Λ1

∣

∣

∣M (1)
∣

∣

∣

2

dν1 (M) +
1 − s

2

∫

Λ0

∣

∣

∣M (1)
∣

∣

∣

2

dν0 (M)

subject to

(29)



















ν = sν1 + (1 − s) ν0 commutes with det,

supp (νj) ⊂ Λj , j = 0, 1,

F = s

∫

Λ1

Mdν1 (M) + (1 − s)

∫

Λ0

Mdν0 (M) .

Let us introduce the following variables

(30) Si =

∫

R

(M1i)
2
dν(1i), i = 1, 2,

where ν(1i) stands for the projection of ν onto the (1i)−th component, and

(31) F j =

∫

Λj

Mdνj (M) , j = 0, 1.
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Since F j ∈ Λj , we have

(32)

{

F 0
11 = F 0

22

F 0
12 = F 0

21
and

{

F 1
11 = F 1

22 + λ
F 1

12 = F 1
21

On the other hand, from the third condition in (29) it follows that

(33)















F11 = sF 1
11 + (1 − s)F 0

11

F12 = sF 1
12 + (1 − s)F 0

12

F21 = sF 1
21 + (1 − s)F 0

21

F22 = sF 1
22 + (1 − s)F 0

22

Substituting (32) into (33) we obtain the system

(34)















F11 = sF 1
11 + (1 − s)F 0

11

F12 = sF 1
12 + (1 − s)F 0

12

F21 = sF 1
12 + (1 − s)F 0

12

F22 + sλ = sF 1
11 + (1 − s)F 0

11

which has a solution if and only if the compatibility condition

(35) F12 = F21, F11 = F22 + sλ

holds. In this case, the solution is given by

(36)







F 0
11 = α, F 0

12 = β
F 1

11 = 1
s (F11 − (1 − s)α)

F 1
12 = 1

s (F12 − (1 − s)β)

where (α, β) ∈ R
2 are two parameters. Notice then that there is no restriction on

F 1
11, as it can take on any value. Moreover, the constraint on the commutation with

det yields to

detF = s

∫

Λ1

detMdν1 (M) + (1 − s)

∫

Λ0

detMdν0 (M)

= S1 − S2 − sλF 1
11

since

(37) detM =

{

(M11)
2
− (M12)

2
if M ∈ Λ0

(M11)
2
− λM11 − (M12)

2
if M ∈ Λ1

Finally, from Jensen’s inequality we obtain the conditions

(38) Si ≥ |F1i|
2
, i = 1, 2.

To sum up, we have to solve the mathematical programming problem

(39) Minimize in
(

Sj , F
1
11

)

:
1

2
(S1 + S2)

subject to

(40)

{

S1 − S2 − sλF 1
11 = detF

Si ≥ |F1i|
2
, i = 1, 2.
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We obtain easily that the solution is

(41) Si = |F1i|
2
, i = 1, 2.

This implies that

(42) CPW (F, s) =

{

1
2 |F

(1)|2 if (35) holds

+∞ else.

Step 2: first-order laminates. Notice that the two equalities

(43) Si = |F1i|
2
, i = 1, 2,

imply, by the strict convexity of the 2-norm, that

(44) ν(1i) = δF1i
, i = 1, 2.

It is now straightforward to check that the unique, optimal ν furnishing the value of
CPW (F, s) is

ν = (1 − s)δG0 + sδG1 ,

where

(45) G0 =





F11 F12

F12 F11



 and G1 =





F11 F12

F12 F11 + λ



 .

Note that Gj ∈ Λj , j = 0, 1. Moreover, since G1 −G0 = b⊗ n, with

b = (0, λ) and n = (0, 1) ,

the optimal measure ν is a first-order laminate with normal n. As a matter of fact,
this implies that the constrained quasi-convexification of the density W is also given
by (42).

Remark 1 It is important to realize that sequences of gradients associated with the
measure ν have the form

∇U j (t, y) = G0 + Xs (j (t, y) · n) b⊗ n

=





F11 F12

F12 F11 + Xs (jy)λ





with Xs the characteristic function of (0, s) in (0, 1). This means that the sequence
of gradients ∇U j oscillates between the two manifolds Λ0 and Λ1 with a frequency s
and normal n to the layers.
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Step 3: reinterpretation in terms of the initial variables. We now return to
the variables of the original problem (P ). So, we put

(46) λ = −a (x)U (1) (t, x) = −a (x)u (t, x) ,

which, in particular implies that the laminate we have computed depends on (t, x).
However, since the direction of lamination is independent of time, we avoid to mention
explicitly this variable and therefore we write ν = {νx}x∈Ω . We also have to take into
account the compatibility condition on (0, T )×Ω of the first moment of the measure

ν, namely, that the vector field U ∈
(

H1 ((0, T ) × (0, 1))
)2

satisfies

(47) ∇U (t, x) =

∫

M2×2

Mdνx (M) a.e. (t, x) ∈ (0, T ) × Ω

and the volume constraint

(48)

∫

M2×2

V (x,U (t, x) ,∇U (t, x)) dνx = s (x)

with

(49) 0 ≤ s (x) ≤ 1,

∫

Ω

s(x)dx = L|Ω|.

Hence, the compatibility condition (35) reads as

(50) ux (t, x) = vt (t, x) , ut (t, x) = vx (t, x) − a (x) s (x)u (t, x) ,

or equivalently

(51) utt (t, x) − uxx (t, x) + a (x) s (x)ut (t, x) = 0,

and the relaxed integrand of the cost function (42) as

(52) CPW (x,U (t, x) ,∇U (t, x)) =







1
2

(

u2
t (t, x) + u2

x (t, x)
)

if (51) holds

+∞ else
.

Finally, taking into account that the hole minimizing process is complete if we now
minimize in U (t, x) the expression

(53)
1

2

∫ T

0

∫ 1

0

CPW (x,U (t, x) ,∇U (t, x)) dxdt

and noticing that this is equivalent to minimize in all possible functions s ∈ L∞ (0, 1)
satisfying (49) we arrive to the relaxed problem (RP ) .

The existence of optimal solutions for (RP ) is a consequence of the fact that the
new density CPW (x,U (t, x) ,∇U (t, x)) is quasi-convex. Moreover, the minima of
(RP ) coincide with the infima of (V P ) because minimizers for (RP ) are obtained in
the form of a first-order laminate associated with a sequence of gradients of admissible
vector fields U j (t, x) for (V P ) . This is the way in which the information concerning
minimizing sequences for (V P ) is codified in the relaxed problem (RP ) . That is, since
the normal to the layers of all admissible laminates is n = (0, 1) , in the (t, x)−plane
a minimizing sequence for (V P ) looks like horizontal layers, limiting the regions of
damping and in which for each time t the damping region is limited to have a total
length of L.
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2.2 The two-dimensional case

In this section we aim to extend Theorem 1 to the case N = 2. So, from now
on in this section Ω will be a bounded domain in R

2 with smooth boundary ∂Ω
and we note x = (x1, x2). The main novelty with respect to the 1-d case concerns
the characterization of the free-divergence vector fields. These vector fields may be
characterized by using Clebsch’s potentials (see [9, 13, 16] for more information on
these potentials). Precisely, if V ∈ R

3 is such that div(V ) = 0, then there exist two
potentials v1, v2 such that V = ∇v1 × ∇v2. We will apply this result in order to
obtain a variational reformulation of our system.

2.2.1 Variational Reformulation

Similarly to the 1-d case, the wave equation in system (1) may be written as

(54) div (ut + aXωu,−ux1
,−ux2

) = 0 in (0, T ) × Ω

and so there exist two potentials v1 = v1 (t, x1, x2) and v2 = v2 (t, x1, x2) such that

(55) (ut + aXωu,−ux1
,−ux2

) = ∇v1 ×∇v2.

Let us now introduce the vector field U = (u, v1, v2) ∈ (H1((0, T )×Ω))3 and the two
manifolds

(56)
Λ0 =

{

M ∈ M3×3 : AM (1) −M (2) ×M (3) = 0
}

,

Λ1,λ =
{

M ∈ M3×3 : AM (1) −M (2) ×M (3) = λe1

}

,

where λ ∈ R and

(57) e1 =





1
0
0



 , A =





1 0 0
0 −1 0
0 0 −1



 .

Notice that the introduction of the Clebsch’s potentials leads to the fact that the two
manifolds Λ0 and Λ1,λ are nonlinear contrary to the 1-d case where they are linear.
Fortunately, this will add no additional difficulty in the process.

If we define the density function W and the function V appearing in the volume
constraint in the same way as in 1-d, then our optimization problem is equivalent to
the following vector variational problem

(58) min
U

∫ T

0

∫

Ω

W (x,U(t, x),∇U (t, x)) dxdt

subject to

(59)































U ∈
(

H1 ((0, T ) × Ω)
)3

U (1) = 0, (0, T ) × ∂Ω

U (1)(0, ·) = u0(·), U
(1)
t (0, ·) = u1(·), Ω

∫

Ω

V (x,U(t, x),∇U (t, x)) dx = L |Ω| , (0, T ).
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2.2.2 Relaxation. Proof of Theorem 1.1

Next, we prove Theorem 1.1 for the 2-d case. We proceed as in 1-d by computing the
constrained polyconvexification, that is, for a fixed (F, s) we have to minimize in ν
the integral

(60)

∫

M3×3

W (M) dν (M)

where the measure ν satisfies

(61)



























ν commutes with all minors,

F =

∫

M3×3

Mdν (M) ,

s =

∫

M3×3

V (M) dν (M) ,

¿From the volume constraint we have

(62) ν = sν1 + (1 − s) ν0, with supp (νj) ⊂ Λj , j = 0, 1,

and hence the optimization problem to be solved is

(63) Minimize in ν :
s

2

∫

Λ1

∣

∣

∣M (1)
∣

∣

∣

2

dν1 (M) +
1 − s

2

∫

Λ0

∣

∣

∣M (1)
∣

∣

∣

2

dν0 (M)

subject to

(64)



















ν = sν1 + (1 − s) ν0 commutes with all minors,

supp (νj) ⊂ Λj , j = 0, 1,

F = s

∫

Λ1

Mdν1 (M) + (1 − s)

∫

Λ0

Mdν0 (M) .

Let us introduce the following variables

(65) S1 =

∫

R

(M11)
2
dν(11), S2 =

∫

R

(M12)
2
dν(12) +

∫

R

(M13)
2
dν(13),

where ν(1i) stands for the projection of ν onto the (1i)−th component, and

(66) F j =

∫

Λj

Mdνj (M) , j = 0, 1.

Since the components of F (2) × F (3) are the second order minors obtained from the
second and third row of F and taking into account the commutation of the measure
ν with these minors we obtain

F (2) × F (3) = s

∫

Λ1

(

M (2) ×M (3)
)

dν1 (M) + (1 − s)

∫

Λ0

(

M (2) ×M (3)
)

dν0 (M)

= s

∫

Λ1

(

AM (1) − λe1

)

dν1 (M) + (1 − s)

∫

Λ0

(

AM (1)
)

dν0 (M)

= s
(

AF 1(1) − λe1

)

+ (1 − s)AF 0(1).
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This, together with the condition on the first moment of the measure ν, that is,

(67) F (1) = sF 1(1) + (1 − s)F 0(1)

leads to the system

(68)

{

sF 1(1) + (1 − s)F 0(1) = A−1
(

F (2) × F (3) + λse1
)

sF 1(1) + (1 − s)F 0(1) = F (1)

which has a solution if and only if the compatibility condition

(69) AF (1) − F (2) × F (3) = λse1

holds. Again the commutation of ν with det implies

detF = s

∫

Λ1

detMdν1 (M) + (1 − s)

∫

Λ0

detMdν0 (M)

= S1 − S2 − λsF 1
11

since

(70) detM =

{

(M11)
2
− (M12)

2
− (M13)

2
, M ∈ Λ0

(M11)
2
− λM11 − (M12)

2
− (M13)

2
, M ∈ Λ1

Finally, from Jensen’s inequality it follows that

(71) S1 ≥ |F11|
2
, S2 ≥ |F12|

2
+ |F13|

2
.

Similarly to the 1-d case, the problem (63) is then reduced to the resolution of the
mathematical programming problem

(72) Minimize in
(

Sj , F
1
11

)

:
1

2
(S1 + S2)

subject to

(73)

{

S1 − S2 − sλF 1
11 = detF

S1 ≥ |F11|
2
, S2 ≥ |F12|

2
+ |F13|

2
.

The solution corresponds to taking

(74) S1 = |F11|
2
, S2 = |F12|

2
+ |F13|

2
.

and implies that

(75) CPW (F, s) =







1
2 |F

(1)|2 if (69) holds

+∞ else

Next, we prove that these extreme points of CPW (F, s) can be attained as the
second moments of some measures νj , j = 0, 1, such that the linear combination
ν = (1 − s) ν0 + sν1 is a laminate, actually a first-order laminate. To this end, we
first note that from the equalities (74) it follows that

ν(1i) = δF1i
, i = 1, 2, 3.



3 NUMERICAL RESOLUTION OF THE RELAXED PROBLEM 14

So, all we have to do is to look for two matrices Gj , j = 0, 1, such that (i) Gj
i1 = F1i,

with i = 1, 2, 3 and j = 0, 1, (ii) F = sG1 + (1 − s)G0, (iii) Gj ∈ Λj , j = 0, 1, and
(iv) G1 − G0 has rank one. This would imply that the measure that we are looking
for is

ν = (1 − s) δG0 + sδG1 .

Condition (iv) above may be also written as

G1 = G0 + b⊗ n

for some appropriate vectors b and n. Hence,

G1 = F + (1 − s)b⊗ n, G0 = F − sb⊗ n.

In order to have condition (i) we necessarily must take n = (0, n2, n3). Moreover,
after some simple algebra, condition Gj ∈ Λj , j = 0, 1, leads to

(76) λe1 = (b3F
(2) − b2F

(3)) × n.

This means that any normal of the form (0, n2, n3) is optimal, and optimal first-order
laminates with such a normal are then obtained by solving the relaxed problem, taking
any normal in space, and building these first-order laminates with volume fraction
given by the optimal s (depending on space).

As a consequence of the fact that the constrained polyconvex density CPW (F, s)
is attained at a first-order laminate, we obtain, as in the 1-d case, the exact value of
the quasi-convex density CQW (F, s) .

3 Numerical resolution of the relaxed problem

In this section, we address the problem of computing numerically the optimal density
for (RP ). To this end, we first describe the algorithm of minimization and then
present some numerical experiments.

3.1 Algorithm of minimization

Next, we briefly discuss the resolution of the relaxed problem (RP ) using a gradient
descent method. In this respect, we compute the first variation of the cost function

(77) J(s) =
1

2

∫ T

0

∫

Ω

(|ut|
2 + |∇u|2) dxdt.

where u = u(s) is a solution of (9). For any η ∈ R
+, η << 1, and any s1 ∈ L∞(Ω),

we associate to the perturbation sη = s+ ηs1 of s the derivative of J with respect to
s in the direction s1 as follows :

(78)
∂J(s)

∂s
· s1 = lim

η→0

J(s+ ηs1) − J(s)

η
.

We obtain the following result.
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Theorem 3.1 If (u0, u1) ∈ (H2(Ω)∩H1
0 (Ω))×H1

0 (Ω), then the derivative of J with
respect to s in any direction s1 exists and takes the form

(79)
∂J(s)

∂s
· s1 =

∫

Ω

a(x)s1(x)

∫ T

0

ut(t, x)p(t, x) dtdx

where u is the solution of (9) and p is the solution in C1([0, T ];H1
0 (Ω))∩C1([0, T ];L2(Ω))

of the adjoint problem

(80)







ptt − ∆p− a(x)s(x)pt = utt + ∆u, in (0, T ) × Ω,
p = 0, on (0, T ) × ∂Ω,
p(T, ·) = 0, pt(T, ·) = ut(T, ·) in Ω.

Sketch of the proof. Let us explain briefly how we obtain the expression (79). We
introduce the lagrangian functional
(81)

L(s, φ, ψ) =
1

2

∫

Ω

∫ T

0

(| φt |
2 + | ∇φ |2) dtdx+

∫

Ω

∫ T

0

(φtt − ∆φ+ a(x)s(x)φt)ψ dtdx

for any s ∈ L∞(Ω), φ ∈ C([0, T ];H2(Ω) ∩ H1
0 (Ω)) ∩ C1([0, T ];H1

0 (Ω)) and ψ ∈
C([0, T ];H1

0 (Ω)) ∩ C1([0, T ];L2(Ω)) and then write formally that
(82)
dL

ds
(s1) =

∂

∂s
L(s, φ, ψ) · s1+ <

∂

∂φ
L(s, φ, ψ),

∂φ

∂s
· s1 > + <

∂

∂ψ
L(s, φ, ψ),

∂ψ

∂s
· s1 >

The first term is

(83)
∂

∂s
L(s, φ, ψ) · s1 =

∫

Ω

a(x)s1(x)

∫ T

0

φt(t, x)ψ(t, x) dtdx

for any s, φ, ψ whereas the third term is equal to zero if φ = u solution of (9).
We then determine the solution p so that, for all φ ∈ C([0, T ];H2(Ω) ∩ H1

0 (Ω)) ∩
C1([0, T ];H1

0 (Ω)), we have

(84) <
∂

∂φ
L(s, φ, p),

∂φ

∂s
· s1 >= 0,

which leads to the formulation of the adjoint problem (80). Next, writing that J(s) =
L(s, u, p), we obtain (79) from (83). Moreover, notice that the integral (79) is well
defined, i.e. utp ∈ C([0, T ], L1(Ω)) since from the regularity assumed on (u0, u1), we
have utt + ∆u ∈ C([0, T ];L2(Ω)) and hence p ∈ C([0, T ];L2(Ω)). �

In order to take into account the volume constraint on s, we introduce the Lagrange
multiplier γ ∈ R and the functional

(85) Jγ(s) = J(s) + γ||s||L1(Ω).

Using Theorem 3.1, we obtain that the derivative of Jγ is

(86)
∂Jγ(s)

∂s
· s1 =

∫

Ω

s1(x)

(

a(x)

∫ T

0

ut(t, x)p(t, x)dt+ γ

)

dx
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which permits to define the following descent direction :

(87) s1(x) = −

(

a(x)

∫ T

0

ut(t, x)p(t, x)dt+ γ

)

, ∀x ∈ Ω.

Consequently, for any function η ∈ L∞(Ω,R+) with ||η||L∞(Ω) small enough, we have
Jγ(s + ηs1) ≤ Jγ(s). The multiplier γ is then determined in order that, for any
function η ∈ L∞(Ω,R+) and η 6= 0, ||s+ ηs1||L1(Ω) = L|Ω| leading to

(88) γ =
(
∫

Ω
s(x)dx− L|Ω|) −

∫

Ω
η(x)a(x)

∫ T

0
ut(t, x)p(t, x) dtdx

∫

Ω
η(x)dx

.

At last, the function η is chosen so that s(x) + η(x)s1(x) ∈ [0, 1], for all x ∈ Ω. A
simple and efficient choice consists in taking η(x) = εs(x)(1− s(x)) for all x ∈ Ω with
ε a small real positive.

Consequently, the descent algorithm to solve numerically the relaxed problem
(RP ) may be structured as follows : let Ω ⊂ R

N , (u0, u1) ∈ (H2(Ω)∩H1
0 (Ω))×H1

0 (Ω),
L ∈ (0, 1), T > 0, and ε < 1, ε1 << 1 be given :

• Initialization of the density function s0 ∈ L∞(Ω; ]0, 1[);

• For k ≥ 0, iteration until convergence (i.e. |J(sk+1) − J(sk)| ≤ ε1|J(s0)|) as
follows :

– Computation of the solution usk of (9) and then the solution psk of (80),
both corresponding to s = sk.

– Computation of the descent direction sk
1 defined by (87) where the multi-

plier γk is defined by (88).

– Update the density function in Ω:

(89) sk+1 = sk + εsk(1 − sk)sk
1

with ε ∈ R
+ small enough in order to ensure the decrease of the cost

function and sk+1 ∈ L∞(Ω, [0, 1]).

3.2 Numerical experiments

In this section, we present some numerical simulations for Ω = (0, 1) when N = 1 and
for Ω = (0, 1)2 when N = 2. We use a finite centered difference scheme of order two in
space and time to solve wave systems (9) and (80). We consider uniform meshes and
note h the parameter of discretization in space. Moreover, without loss of generality,
we consider a constant function a in Ω since the dependence in x is contained in the
density s. So, we introduce a > 0 such that a(x) = aXΩ(x). We take ε = 10−1 and
ε1 = 10−5.

3.2.1 Example 1

Let us first consider in Ω = (0, 1) the following simple initial condition :

(90) u0(x) = sin(πx); u1(x) = 0.
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and the data T = 1, L = 1/5. The numerical simulation highlights the important
influence of the value of a on the optimal position of the damping set ω. For small
values of a - for instance here a = 1 - we observe that the limit of the sequence {sk}k≥0

converges to the characteristic function X[1/2−L/2,1/2+L/2] whatever the initialization
s0. The optimal position is therefore ω = [0.4, 0.6] (which is an expected result
according to the symmetry of u0) and is the global minimum for the cost function.
Thus, for this value, the original problem (P ) is well-posed and the infimum is reached.

The situation is completely different when a is large (for instance here a = 10).
The limit of the sequence depends now on the initialization and implies the existence
of several local minima for J . Moreover, the centered position is not the optimal one.
Let us consider the following initialization

(91) s0n(x) = L
nπ(1 + sin(nπx))

nπ + (1 − cos(nπ))
, n ∈ N, x ∈ Ω

which satisfies ||s0n||L1(Ω) = L for all n. Figure 1 presents results for a = 10 and
n = 5, 15, 25, 45. For each value of n, the function s0n is plotted in dash dot (−−)
while the corresponding limit density slim

n of the sk
n sequence is plotted in full line

(−). Table 1 summarizes the value of the cost function for the different cases. We
observe that the limit density slim

n takes its values in [0, 1[ and is strictly positive
in an interval included in Ia = [0.2, 0.8] which depends on a. We also observe that
n→ J(slim

n ) is a decreasing function of n.

n 5 15 25 45 60
J(s0n) 1.3595 1.3065 1.2986 1.2953 1.2921
J(slim

n ) 1.1370 1.1357 1.1354 1.1353 1.1352
J(spen

n ) 1.1671 1.1433 1.1413 1.1395 1.1371
J(spen

n,20) 1.1371 1.1358 1.1355 1.1353 1.1352

Table 1: Example 1 - T = 1 - a(x) = 10X(0,1)(x) - Values of the cost function J -
h = 1/500

Over-damping phenomena - These computations exhibit a value of bifurcation
a?(T,L,Ω, u0, u1) depending on the data of the problem. We have obtained numer-
ically a?(T,L,Ω, u0, u1) ≈ 1.725. This sensitivity with respect to a is related to the
following over-damping phenomena : the function a→ J(s, a) first decreases, reaches
a minimum J(s, a) at a ∈]0,+∞[, and then increases to J(s,∞) = J(s, 0) correspond-
ing to the conservative case. From (79), one may write that

(92) J(s+ ηs1, a) = J(s, a) + η

∫

Ω

a(x)s1(x)

∫ T

0

ut(s)p(s)dtdx+ η2aO(ut(s), p(s))

such that for the conservative case s = 0 and a(x) = aXΩ(x),

(93)

J(ηs1, a) =J(0, a) + ηa

∫

Ω

s1(x)

∫ T

0

ut(0)p(0)dtdx+ η2aO(ut(0), p(0))

=J(s1, 0) + a

∫

Ω

(ηs1(x))

∫ T

0

ut(0)p(0)dtdx+ η2aO(ut(0), pt(0))
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Figure 1: Example 1 - Initialized density s0n (−−), limit density slim
n (−) and penalized

density spen
n ((· · ·)) for n = 5 (top left), n = 15 (top right), n = 25 (bottom left) and

n = 45 (bottom right) - a = 10 - T = 1.



3 NUMERICAL RESOLUTION OF THE RELAXED PROBLEM 19

where ut(0), pt(0) are the solutions of (9) and (80) in the conservative case. Then,
writing that J(ηs1, a) = J(s1, ηa), one get

(94) J(s1, ηa) = J(s1, 0) + ηa

∫

Ω

s1(x)

∫ T

0

ut(0)p(0)dtdx+ η2aO(ut(0), p(0))

For η small, the last term may be neglected. Therefore, the optimal density associated

with the damping coefficient ηa (small) is related to the minima in Ω of
∫ T

0
ut(0)p(0)dt.

With the initial condition (90), we obtain explicitly

(95) u(0)(t, x) = cos(πt)u0(x), p(0)(t, x) = π(T − t) sin(πt)u0(x)

and then

(96)

∫ T

0

ut(0)(t, x)p(0)(t, x)dt = −
1

4

(

(πT )2 − sin(πT )2
)

(u0(x))
2 ≤ 0

We conclude that the second right term of (94) is minimal for s1 = X[1/2−L/2,1/2+L/2].
For large values of the damping coefficient ηa (i.e. when η is not small), the last

term in (94) can not be neglected. The optimal position is not necessarily related to

the minima of the function
∫ T

0
ut(0)(t, x)p(0)(t, x)dt.

Remark 2 For a small damping coefficient, note that the equality (94) may be used
to efficiently initiate the descent algorithm: it suffices to take

(97) s0(x) = L
f(x)

||f ||L1(Ω)
with f(x) = −

∫ T

0

ut(0)(t, x)p(0)(t, x)dt in Ω

which is positive since J(s1, ηa) < J(s1, 0) for all s1 ∈ L∞(Ω; ]0, 1]) (the same argu-
ment implies that the multiplier γ defined by (88) is positive).

Characteristic function associated with the density slim - Associated with
the density slim, local solution of the relaxed problem (RP ), it is very interesting to
determine a bi-valued function characterizing the subset ω, local solution of problem
(P ).

A first approach, used in homogenization theory, is to penalize slim (we refer to
[1], page 381). After the convergence of the algorithm leading to slim, the idea is to
perform a few more iterations with the instruction

(98) spen =
1 − cos(πslim)

2
in Ω.

Results are presents in Figure 1 and Table 1. spen
n associated with slim

n , n = 5, 15, 25, 45
are plotted in dot line (· · ·). For each n, the penalized density spen

n is concentrated
on an interval included in [0.3, 0.7] and we observe that n → J(spen

n ) is a decreasing
function with J(spen

n ) > J(slim
n ) for all n. By taking larger values for n, we have

checked that the function n→ J0(s
pen
n )− J0(s

lim
n ) decreases toward zero. This seems

to indicate that the infimum for the original problem (P ) is equal to the minimum of
the relaxed problem (RP ). This is an illustration of Theorem 1.1. While for a = 1,
the optimal subset is ω = [0.4, 0.6], the optimal one for a = 10 is composed of an
infinity of subintervals concentrated in the region [0.3, 0.7].
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This simple penalization technique which does not strictly preserve the volume
constraint and fails if slim(x) < 1/2 for all x in Ω may be replaced by the following
one. Let us decompose the interval Ω into M > 0 non-empty subintervals such that
Ω = ∪j=1,M [xj , xj+1], . Then, we associate with each interval [xj , xj+1] the mean
value mj ∈ [0, 1] defined by

(99) mj =
1

xj+1 − xj

∫ xj+1

xj

slim(x)dx

and the division into two parts

(100) [xj , (1 −mj)xj +mjxj+1] ∪ [(1 −mj)xj +mjxj+1, xj+1].

At last, we introduce the function spen
M in L∞(Ω, {0, 1}) by

(101) spen
M (x) =

M
∑

j=1

X[xj ,(1−mj)xj+mjxj+1](x)

We easily check that ||spen
M ||L1(Ω) = ||slim||L1(Ω), for allM > 0. The bi-valued function

spen
M takes more advantage of the information codified in the density slim. Figure 2

represents the functions spen
M obtained with M = 21 from the density slim of Figure 1.

We observe that the corresponding values of the cost functions J(spen
21 ) and J(slim)

are very close (see Table 1). A similar approach may be used for the case N = 2.

3.2.2 Example 2

We now consider the 2-d case with the following initial condition :

(102) u0(x) = sin(πx1) sin(πx2); u1(x) = 0, x = (x1, x2) ∈ (0, 1)2.

We take T = 1 and L = 1/10.
The same behavior with respect to the value of a appears. When a is small enough

(here a = 5 for instance), then the centered disc

(103) D =

{

x = (x1, x2) ∈ Ω, (x1 −
1

2
)2 + (x2 −

1

2
)2 ≤

L

π

}

corresponds to the optimal global position of ω. We obtain J(XD) ≈ 1.3619. The
original problem is then well-posed. For larger values of a, the system is not well-
posed, and the numerical simulations exhibit many local minima for the density s,
depending on the initialization. Similarly to (91), we initialize the density function
with the following periodic functions :

(104) s0n(x) = LK sin(nπx1) sin(nπx2), K = 1 +

(

1 − cos(nπ)

nπ

)2

, n ∈ N, x ∈ Ω.

Figure 3 depicts in Ω the isovalues of slim
n obtained with n = 15, a = 15 and

the corresponding bi-value function spen
n ∈ {0, 1}. We obtain J(slim

p ) ≈ 0.8881 and
J(spen

n ) ≈ 0.9411 respectively. We check that the centered disc D such that |D| = L
is not optimal : J(XD) ≈ 0.9743. Similarly, figure 4 displays the results for a = 50.
We obtain J(slim

n ) ≈ 0.7839, J(spen
n ) ≈ 0.8543 and J(XD) ≈ 1.3109. In both cases,

the results are in agreement with [12] where the level set method is used.
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Figure 2: Example 1 - Limit density slim (from Figure 1) and corresponding bi-valued
density spen

21 - a(x) = 10XΩ(x) - T = 1.
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Figure 3: Example 2 - T = 1 - n = 15 - a(x) = 15XΩ(x) - density function
slim ∈ L∞(Ω; [0, 1]) (left) and penalized density function spen

n ∈ L∞(Ω; {0, 1}) (right)
- J(slim

n ) ≈ 0.8881 and J(spen
n ) ≈ 0.9411
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Figure 4: Example 2 - T = 1 - n = 15 - a(x) = 50XΩ(x) - density function
slim

n ∈ L∞(Ω; [0, 1]) (left) and penalized density function spen ∈ L∞(Ω; {0, 1}) (right)
- J(slim

n ) ≈ 0.7839 and J(spen
n ) ≈ 0.8543 - h = 1/102

3.2.3 Example 3

Let us now consider the following simple initial condition
(105)

u0(x) = exp−100(x1−0.3)2−100(x2−0.3)2 XΩ; u1(x) = 0, x = (x1, x2) ∈ (0, 1)2,

and L = 0.2, a(x) = 5XΩ(x). The initial position is concentrated around the point
(0.3, 0.3). Therefore, according to the finite speed of propagation, the optimal position
is expected to be concentrated around the point (0.3, 0.3), for small values of T .

Figures 5-left depicts the density limit slim,T
0 (initialized with s0(x) = LXΩ(x)) for

T = 1. For L = 0.2, we obtain a laminate. Moreover, the zone of pure damping
material ω = {x ∈ Ω, slim(x) = 1} is such that |ω| ≈ 0.094. Thus, for L ≤ 0.094 and
T = 1, we check that the optimal density is a characteristic function and the original
problem (P ) is well-posed. Figures highlight also the reflection of the waves on the
corner (0, 0) of the unit square. Figures 5-right depicts the corresponding penalized
density which provides a slightly higher value of the cost function.

Figures 6 and 7 displays the results obtained for T = 2 and T = 4 respectively.
For these larger values of T , the optimal density is less concentrated and take into
account the propagation of the wave during the whole interval of time. Observe that
for symmetry reason, the first diagonal of Ω plays an important role. Moreover,
for values T > 4, the corresponding limit density slim,T have a weak variation with
respect to T . This is due to the fact that almost all the energy is dissipated at
time T = 4. Finally, we give in figure 8 the evolution of the energy E with respect
to time for slim,1, slim,2 and slim,4. The decay is exponential. Moreover, we check
(Table 2) that for instance, on the interval of time t ∈ [0, 1], J(slim,1, T = 1) ≤
J(slim,2, T = 1) ≤ J(slim,4, T = 1). In what concern the energy, we observe however
that E(slim,2, T = 1) ≤ E(slim,1, T = 1).

This example highlights the influence of the value T on the optimal position.
Moreover, although we have assumed the time independence of the density s and of
the subset ω, it would be easy to obtain numerically a time dependent density. It
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suffices to discretize the interval of time [0, T ] = ∪i[ti, ti+1] and then solve on each
interval [ti, ti+1] the problem (RP ) with initial data (u(ti, ·), ut(ti, ·)) associated to the
optimal density slim,i−1 for t ∈ [ti−1, ti]. This would permit to obtain a discretized
time sequence of density (slim(t)){t∈[0,T ]} and then increases the dissipation of the
system.
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Figure 5: Example 3 - T = 1 - n = 0 - a(x) = 5XΩ(x) - density function
slim

n ∈ L∞(Ω; [0, 1]) (left) and penalized density function spen ∈ L∞(Ω; {0, 1}) (right)
- J(slim,T

n ) ≈ 0.5334 and J(spen,T
n ) ≈ 0.5501
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Figure 6: Example 3 - T = 2 - n = 0 - a(x) = 5XΩ(x) - density function slim,T
n ∈

L∞(Ω; [0, 1]) (left) and penalized density function spen,T ∈ L∞(Ω; {0, 1}) (right) -
J(slim,T

n ) ≈ 0.7296 and J(spen,T
n ) ≈ 0.7415

4 Concluding remarks

The nonlinear optimal design problem which consists in finding the optimal shape and
position of the internal damping set for the stabilization of the linear wave equation in
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Figure 7: Example 3 - T = 4 - n = 0 - a(x) = 5XΩ(x) - density function slim
n ∈

L∞(Ω; [0, 1]) (left) and penalized density function spen,T ∈ L∞(Ω; {0, 1}) (right) -
J(slim,T

n ) ≈ 0.8053 and J(spen,T
n ) ≈ 0.8257.
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Figure 8: Example 3 - Evolution of the energy E vs. t ∈ [0, 4] of the dissipative wave
system associated to the density Slim,T , T = 1, 2, 4

J(slim,1, T ) E(slim,1, T ) J(slim,2, T ) E(slim,2, T ) J(slim,4, T ) E(slim,4, T )
T = 1 0.5323 0.3020 0.5570 0.2740 0.5853 0.2767
T = 2 0.7624 0.1649 0.7294 0.1028 0.7434 0.0812
T = 4 0.9457 0.0401 0.8220 0.0142 0.8053 0.0073

Table 2: Example 3 - Value of the cost function J(slim,T ) and of the energy
E(slim,T , T ) for T = 1, 2, 4.
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1-d and 2-d has been solved both theoretically and numerically. Only independence
with respect to time and a volume constraint is assumed on the damping set.

For the theoretical part, our approach is based on a characterization of the free-
divergence vector fields. This methodology, which may be only used when the state
equation has a particular free-divergence form, has, for the contrary, two important
advantages:

• On one hand, no additional regularity hypotheses on the initial data are needed
to carry out the method. In fact, we only assume the regularity which is needed
for the state equation to be well-posed and for the cost function to make sense.

• On the other hand, the computation of the relaxed optimal solutions in the form
of Young measures which in fact are first-order laminates leads to a numerical
penalization technique to recover the quasi-optimal classical designs from the
relaxed ones.

It would be very interesting to check this approach in some other more complicated
systems such as the elasticity system.

For the numerical part, it is worthwhile to emphasize the influence of the value
of the damping potential a on the well/ill-posedeness character of the optimization
problem. The numerical simulations seem to indicate that when a is small the problem
is well-posed, that is, there is a minimizer in the class of characteristic functions, but if
a is large, then the problem is ill-posed and it is necessary to relax it. The computation
of this bifurcation value of the potential is an interesting open problem.
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