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Abstract

We address the nonlinear optimal design problem which consists in finding

the best position and shape of the internal viscous damping set for the sta-

bilization of the linear system of elasticity. Non-existence of classical designs

are related to the over-damping phenomenon. Therefore, by means of Young

measures, a relaxation of the original problem is proposed. Due to the vector

character of the elasticity system, the relaxation is carried out through div-curl

Young measures which let the analysis be direct and dimension independent.

Finally, the relaxed problem is solved numerically and a penalization technique

to recover quasi-optimal classical designs from the relaxed ones is implemented

in several numerical experiments.
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1 Introduction

Let Ω be a bounded open subset of R
N with boundary Γ = Γ0 ∪ Γ1 of class C2. For

a given function u = (u1, u2, · · · , uN ) : [0, T [ × Ω → R
N , depending on time t and

position x = (x1, · · · , xn) , partial derivatives with respect to t will be denoted by ′

and derivatives with respect to xj by ,j , i.e.,

u′
i =

∂ui

∂t
, u′′

i =
∂2ui

∂t2
and ui,j =

∂ui

∂xj
.

We will also use the vector notation

u′ = (u′
1, · · · , u′

N ) , u′′ = (u′′
1 , · · · , u′′

N ) and ∇xu = (ui,j) , 1 ≤ i, j ≤ N.
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1 INTRODUCTION 2

We introduce the classical symmetric tensors of linear elasticity, namely, the linearized
strain tensor

ε = ε (u) =
1

2

(

∇xu + (∇xu)
T
)

(1)

and the stress tensor
σ = σ (u) = (σij = aijklεkl) (2)

where the coefficient of elasticity aijkl ∈ W 1,∞ (Ω), i, j, k, l = 1, · · · , N, are such that

aijkl = aklij = ajikl and aijklεijεkl ≥ αεijεij in Ω (3)

for some fixed α > 0.
Then, we consider the following damped system:















u′′ −∇x · σ + a (x)Xω (x)u′ = 0 in (0, T ) × Ω,
u = 0 on (0, T ) × Γ0,
σ · n = 0 on (0, T ) × Γ1,
u(0, ·) = u0, u′(0, ·) = u1 in Ω,

(4)

where ω ⊂ Ω is a subset of positive Lebesgue measure, Xω is the characteristic function
of ω, ∇x· is the divergence operator considered with respect to the spatial variable
x, n = (n1, · · · , nN ) is the outward unit normal vector to Γ1, 0 < T ≤ ∞, and
a = a (x) ∈ L∞ (Ω; R+) is a damping potential satisfying

a (x) ≥ a0 > 0 a. e. x ∈ ω.

It is known (see [1, 7, 13]) that system (4) is well posed in the following sense: if we
introduce the space

V0 =
{

u ∈
(

H1 (Ω)
)N

: u = 0 on Γ0

}

and take (u0,u1) ∈ V0×
(

L2 (Ω)
)N

, then there exists a unique weak solution u of (4)
in the class

u ∈ C ([0, T [ ;V0) ∩ C1
(

[0, T [ ;L2 (Ω)
N

)

.

The energy at time t of this solution is given by

E (t) =
1

2

∫

Ω

(

|u′|
2

+ σ(u) : ε(u)
)

dx.

where σ : ε designates the trace
∑

i,j=1,N σijεij . Multiplying the first vector equation
in (4) by u′ and integrating by parts one easily deduces that

dE(t)

dt
= −

∫

Ω

a (x)Xω(x) |u′|
2
dx, ∀t > 0.

Therefore, the energy is a non increasing function of time.
As for the physical meaning of system (4), the dissipative term a (x)Xω (x) u′ is

usually referred in the literature as a viscous damping because it is caused for the
viscosity of the medium in which the vibrations of the system take place. From an
engineering viewpoint, this term may also be seen as a feedback control mechanism
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which measures the velocity of vibrations, through use of sensors, and acts on the sys-
tem accordingly to these measures by means of actuators. In this sense, Xω indicates
the place and shape of sensors and actuators.

It is then natural and very important in practise to analyze the question of deter-
mining the best position and shape of sensors and actuators that minimize the energy
of the system over a time interval (see [6, 10] and the references therein). This is
the main problem we address in this work. In mathematical words, we consider the
following nonlinear optimal design problem:

(P ) inf
ω∈ΩL

J (Xω) =

∫ T

0

E (t) dt (5)

where for a fixed 0 < L < 1,

ΩL = {ω ⊂ Ω : |ω| = L |Ω|} ,

|ω| and |Ω| being the Lebesgue measure of ω and Ω, respectively.
The same optimization problem for the damped wave equation has been recently

considered by the authors in [15, 16] where the possible non-well-posedeness character
of (P ) was observed, that is, the non-existence of a minimizer in the class of charac-
teristic functions. Then, a full relaxation of the original problem was carried out by
means of Young measures (which are a powerful tool to understand the limit behav-
ior of minimizing sequences in nonlinear functionals), and a suitable representation
of divergence-free vector fields which enables to transform the original problem into
a non-convex, vector variational one.

The aim of this work is to extend the results in [15, 16] to the case of the system
of linear elasticity. To this end, we consider the relaxed problem

(RP ) inf
s∈L∞(Ω)

J (s) =

∫ T

0

E (t) dt (6)

where as above E (t) is the energy associated with the new system














u′′ −∇x · σ + a (x) s (x) u′ = 0 in (0, T ) × Ω,
u = 0 on (0, T ) × Γ0,
σ · n = 0 on (0, T ) × Γ1,
u(0, ·) = u0, u′(0, ·) = u1 in Ω,

(7)

and now the competing functions s satisfy the pointwise and volume constraints

0 ≤ s (x) ≤ 1 and

∫

Ω

s (x) dx = L |Ω| . (8)

Our main theoretical result reads as follows.

Theorem 1.1 Assume that the initial data of system (4) have the regularity

(u0,u1) ∈
(

(

H2 (Ω)
)N

∩ V0

)

× V0. (9)

Then (RP ) is a full relaxation of (P ) in the sense:

(i) There are optimal solutions for (RP ).
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(ii) The minimum of (RP ) equals the infimum of (P ).

(iii) Minimizing sequences for (P ) are recovered by first-order laminates with any
normal in space and independent of time.

The first part of this work is devoted to the proof of this relaxation result. This
is done in Section 2. As we will see in Lemma 2.3, the assumption (9) on the initial
data is a sufficient condition in order to avoid concentration of energy phenomena
and therefore this will enable us to use the Young measures theory to compute the
cost limit of a minimizing sequence for problem (P ).

A few more comments on Theorem 1.1 are in order. We will show in the second
part of this work that for some values of the damping potential a there is a numerical
evidence that problem (P ) is ill-posed, that is, there is no minimizer in the class of
characteristic functions. This justifies the relaxation stated in points (i) and (ii) above.
In what concerns point (iii), it tells us how the microstructure of the optimal damping
designs looks like. As we will see in the proof of Theorem 1.1, this information is
codified by the optimal Young measure associated with the relaxed problem (RP ).
Moreover, because of the particular form of this optimal measure (see (21)) we will
deduce that if Xωj

is a minimizing sequence for (P ), then the associated displacements
uj converge to the optimal displacement u for the relaxed problem (RP ) in a strong
sense. This is our Theorem 2.1.

Apart from considering a more complicated system than the scalar wave equation,
the main novelty of this work concerns the method of proving Theorem 1.1. It is
different from the one the authors used in [15, 16] for the case of the wave equation.
Our approach here does not require the introduction of auxiliary potentials associated
with divergence-free vector fields. Instead of those, we use div-curl Young measures
as given by [18]. See also [9]. This makes the treatment much more direct and
dimension-independent.

It is also important to mention that the optimal design problem we have considered
in this work could be analyzed by some other different methods. In particular, by the
homogenization method (see [2] for the case of optimal design problems with steady-
state equations) and by using the Trotter-Kato theorem (see [8] for the case of the
wave equation).

In a second part, we address the numerical resolution of the relaxed problem (RP )
by using a first-order gradient descent method. We present several experiments which
highlight the influence of the over-damping phenomenon on the nature of (P ). For
small values of the damping potential a, we obtain that the problem (P ) is well-
posed. On the contrary, when a is large enough, the optimal density is no longer
in L∞(Ω, {0, 1}) but in L∞(Ω, [0, 1]). The influence of the Lamé coefficients (in the
isotropic case) on the optimal shape and position of the optimal damping set is also
briefly analyzed. Finally, we illustrate point (iii) of Theorem 1.1 by extracting for the
optimal density a minimizing sequence of characteristic functions.

2 Proof of the relaxation theorem

As we mentioned in the Introduction, our approach to prove Theorem 1.1 is based
on the use of a class of Young measures associated with a pair of vector fields, the
first one being divergence-free and the second one curl-free. For this reason, these
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measures are called div-curl Young measures. In order to make the paper easier to
read, we first collect the main properties of these measures that we will need later on.
For a proof on this we refer the reader to [9, 18].

2.1 Preliminary on div-curl Young measures

Given a regular bounded domain Ω ⊂ R
N and a sequence of pairs of vector fields

(F j ,Gj) such that

F j : Ω → Mm×N , Gj : Ω → Mm×N

are uniformly bounded in L2
(

Ω;Mm×N
)

, it is well-known [17, Th. 6.2, p. 97]
that we may associate with (a subsequence of) such a pair a family of probability
measures ν = {νx}x∈Ω with the main property that if the sequence of functions
{φ (x,F j (x) ,Gj (x))} weakly converges in L1 (Ω) for some Carathéodory integrand
φ, then the weak limit is given by

φ (x) =

∫

Mm×N×Mm×N

φ (x,A,B) dνx (A,B) .

If, in addition, the pair (F j ,Gj) satisfies

∇x · F j = 0 and curl Gj = 0, (10)

in a weak sense, then the measure ν = {νx}x∈Ω is called the div-curl Young measure
associated with (F j ,Gj) .

Besides the general properties of Young measures, div-curl Young measures satisfy
the following fundamental property which is an immediate consequence of the well-
known div-curl lemma.

Lemma 2.1 If ν = {νx}x∈Ω is a div-curl Young measure, then for a.e. x ∈ Ω,

∫

Mm×N×Mm×N

ABT dνx (A,B) =

∫

Mm×N

Adν(1)
x (A)

∫

Mm×N

BT dν(2)
x (B) (11)

where ν
(i)
x , i = 1, 2, are the marginal on the two components, respectively.

As for concrete examples of div-curl Young measures, a very important in practise
subclass of these measures is the so-called div-curl laminates. These are the analogous
to laminates for gradient Young measures and can be constructed as follows.

Lemma 2.2 Suppose that Ai, Bi, i = 1, 2, are four m × N matrices such that

(A2 − A1)
(

BT
2 − BT

1

)

= 0. (12)

Then the measure
ν = sδ(A1,B1) + (1 − s) δ(A2,B2) (13)

is a div-curl Young measure for all 0 ≤ s ≤ 1.

Notice that hypothesis (12) above is a sufficient condition in order for the Young
measure (13) to satisfy the div-curl condition (11). For a concrete (very important in
the context of optimal design in conductivity) example of div-curl laminate and its
associated sequences (F j ,Gj) we refer to [18].
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2.2 Two preliminary key results

In the sequel we will have to deal with the class of homogeneous div-curl Young
measures ν of the form

ν = sδ((M1+C, −σ(M)),M) + (1 − s) δ((M1, −σ(M)),M), (14)

with 0 ≤ s ≤ 1, C ∈ R
N and M =

(

M1,M
)

∈ MN×(N+1). The term M1 stands for

the first column of M and M ∈ MN×N is the rest of the matrix. Moreover, σ
(

M
)

stands for the N × N matrix with components
(

σ
(

M
))

ij
= aijklMkl, with aijkl the

coefficients given in (3).
The following result is essential to avoid undesirable phenomena of concentration

of energy.

Lemma 2.3 Suppose that the initial data of system (4) have the regularity (9) and
that for almost each (t, x) ∈ (0, T )×Ω we have a div-curl Young measure ν of the form
(14) with s = s (x) satisfying (8), C = au and M =

(

M1,M
)

= (u′,∇xu), where u

is the solution of (7) associated with s. Assume also that there exists a divergence-free
vector field

F ∈ L2
(

(0, T ) × Ω;MN×(N+1)
)

such that

F (t, x) =

∫

MN×(N+1)

Adν
(1)
(t,x) (A) .

Then there exists a sequence Xωj
, which is admissible for (P), and such that if

uj is the corresponding solution of (4), then the measure associated with the sequence

Gj =
(

u′
j ,∇xuj

)

is ν
(2)
(t,x). Moreover, ‖Gj‖

2
is equi-integrable.

Proof. Due to the particular form of the measure ν (specifically, ν is div-curl
Young measure), it is known (see for instance [9, 11, 18]) that there exist two vector
fields (Hj ,Rj) such that

∇(t,x) · Hj → 0 in H−1, Rj = ∇(t,x)vj ,

with vj satisfying the initial and boundary conditions of system (4), and whose as-
sociated Young measure is ν. Note that now ∇(t,x)· is the divergence operator with
respect to t and x. Moreover, both

‖Hj‖
2

and ‖Rj‖
2
,

where ‖·‖ stands for the usual norm in the space of matrices MN×(N+1), are equi-
integrable. What is at stake here is the fact that by modifying the pair (Hj ,Rj) a
bit, we can get a new pair denoted in the sequel by (F j ,Gj) admissible for (P ) so
that the underlying Young measure as well as the equi-integrability are preserved.

Since ν is of the form (14) and (Hj ,Rj) is its associated sequence, for j large, the
pair (Hj ,Rj) is closer to Λ1,C than Λ0 in proportion s (x) , where

Λ1,C =
{

(A,B) ∈ MN×(N+1) ×MN×(N+1) : A1 = B1 + C, A = −σ
(

B
)

}
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and

Λ0 =
{

(A,B) ∈ MN×(N+1) ×MN×(N+1) : A1 = B1, A = −σ
(

B
)

}

.

Let us denote by Xωj
the characteristic function indicating this property, that is,

Xωj
(x) =







1 if limj→∞ (Hj ,Rj) ∈ Λ1,C

0 if limj→∞ (Hj ,Rj) ∈ Λ0.

Obviously,

lim
j→∞

∫

Ω

Xωj
(x) dx = L |Ω| .

We aim to modify the pair (Hj ,Rj) in a suitable way to obtain a new pair (F j ,Gj) ,
admissible for (P), whose associated measure is the same ν. To this end, we modify
the sequence Xωj

in a set whose measure converges to zero as j → ∞ and satisfying

∫

Ω

Xωj
(x) dx = L |Ω| .

This new sequence of characteristic functions (not relabelled) is admissible for the
original optimal design problem and satisfies

lim
j→∞

∫ T

0

∫

Ω

[

∣

∣H1
j −

(

v′
j + a (x)Xωj

(x) vj

)
∣

∣

2
+

∥

∥Hj + σ (vj)
∥

∥

2
]

dxdt = 0, (15)

where as before H1
j denotes the first column of Hj and Hj is the N × N matrix

composed of the rest of columns.
Let uj be the solution of (4) associated with the admissible sequence Xωj

and
consider the pair

F j =
(

u′
j + a (x)Xωj

(x)uj ,−σj

)

and Gj =
(

u′
j ,∇xuj

)

.

We claim that the measure associated with this new pair is also ν. To prove this, con-
sider the sequence wj = uj −vj . It is easy to see that wj solves the non-homogeneous
system































w′′
j −∇x · σ (wj) + aXωj

w′
j =

∇(t,x) ·
(

H1
j −

(

v′
j + aXωj

vj

)

, Hj + σ (vj)
)

in (0, T ) × Ω,

wj = 0 on (0, T ) × Γ0,

σ · n = 0 on (0, T ) × Γ1,

wj(0, ·) = 0, w′
j(0, ·) = 0 in Ω.

Moreover, from (15) it follows that

wj ⇀ 0 weakly in
(

H1 ((0, T ) × Ω)
)N

. (16)

On the other hand, since uj is a solution of (4),

−∇x · σ (wj) = −u′′
j − a (x)Xωj

(x)u′
j + ∇x · σ (vj) .
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Multiplying this equation by wj and integrating by parts, as wj satisfies zero initial
and boundary conditions,

∫ T

0

∫

Ω

aklmnεmn (wj) εkl (wj) dxdt

= −

∫ T

0

∫

Ω

u′′
j wjdxdt −

∫ T

0

∫

Ω

a (x)Xωj
(x) u′

jwjdxdt

−

∫ T

0

∫

Ω

aklmnεmn (vj) εkl (wj) dxdt.

From the assumptions on the initial data it can be proved (see [1, 13]) that

u′
j ∈ L∞ ((0, T ) ;V0) , u′′

j ∈ L∞ (

(0, T ) ; (L2 (Ω))N
)

and both sequences are uniformly bounded with respect to j. This, together with the
weak convergence (16), implies that the two first terms in the right-hand side above
converge to zero. Moreover, since the measure associated with Rj = ∇(t,x)vj is a
delta, εmn (vj) is strongly convergent in L2. Therefore, the third term also converges
to zero. Finally, by using the coercivity condition (3) and the second Korn inequality
([4, p. 192]), we get the convergence

∫ T

0

∫

Ω

‖∇xwj‖
2
dxdt → 0. (17)

As for derivatives with respect to time, from the identity

∣

∣w′
j

∣

∣

2
=

(

w′
j · wj

)′
− w′′

j · wj

and by using similar arguments,

∫ T

0

∫

Ω

∣

∣w′
j

∣

∣

2
dxdt → 0. (18)

From (17) and (18) it follows (see [17, p. 101]) that the sequences Gj and Rj share

the same associated measure. Moreover, since ‖Rj‖
2

is equi-integrable, ‖Gj‖
2

so is.
�

Let us now prove that weak-? convergence in L∞ (Ω) of a sequence of minimizing
sequences for problem (P ) implies strong convergence of the associated displacement
fields.

Theorem 2.1 Suppose that the initial condition (u0,u1) have the regularity (9).
Suppose that Xωj

is a minimizing sequence for the optimization problem (P ) and let
uj be the associated sequence of displacement fields. If

Xωj
⇀ s weak- ? in L∞ (Ω) ,

then
uj → u strong in

(

H1 ((0, T ) × Ω)
)N

,

where u is the corresponding solution of system (7).
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Proof. Let Xωj
be a minimizing sequence for problem (P ). We start by rewriting

the system of PDE’s in (4) as

∇(t,x) ·
(

u′
j + a (x)Xωj

(x) uj ,−σ
)

= 0,

where uj is the sequence of associated displacements,
(

u′
j + a (x)Xωj

(x) uj ,−σ
)

is a
sequence of matrices of order N × (N + 1) which have the term u′

j + a (x)Xωj
(x) uj

in the first column, and the divergence operator ∇(t,x)· now includes the time variable
(as the first variable) too.

We introduce the two sequences of vector fields

F j =
(

u′
j + a (x)Xωj

(x)uj ,−σj

)

and Gj =
(

u′
j ,∇xuj

)

,

so that the pair (F j ,Gj) is div-curl-free (∇(t,x) · F j = 0 and curl Gj = 0). As in
the static case (see [2, 4]), it can be proved that the vector fields F j and Gj are
uniformly bounded in L2, and therefore we may associate with this pair (rather with
a subsequence of the pair) a div-curl Young measure ν =

{

ν(t,x)

}

(t,x)∈(0,T )×Ω
.

Since Xωj
(x) only takes on two values, ν is supported in the union of the two

manifolds Λ0 and Λ1,C introduced in Lemma 2.3. In this case, the vector C ∈ R
N

plays the role of a (x) u and as far as derivatives are concerned is like a constant.
Let ν(2) designate the projection of ν onto the second copy of MN×(N+1) and let

S = S (t, x) be the matrix in MN×N given by

S (t, x) =

∫

MN×(N+1)

[

diag (B1) diag (B1) + σ
(

B
)

B
T
]

dν
(2)
(t,x) (B)

where diag(B1) stands for a N×N diagonal matrix with the vector B1 in the principal
diagonal. Note also that B1 plays the role of u′ and B ≡ ∇xu.

Due to the symmetry properties (3) and the basic property of Young measures
(the weak lower semicontinuity ([17], Th. 6.11, p. 110), it is elementary to check that

lim
j→∞

J
(

Xωj

)

≥
1

2

∫ T

0

∫

Ω

tr S (t, x) dxdt.

Since the trace is a linear operator,

tr (S) =

∫

MN×(N+1)

[

|B1|
2

+ σ
(

B
)

: ε
(

B
)

]

dν(2) (B) ,

where ε
(

B
)

= 1
2

(

B + B
T
)

. By Jensen’s inequality,

tr (S) ≥ |M1|
2

+ σ
(

M
)

: ε
(

M
)

(19)

with M the first moment of ν(2).
If we can show that the right-hand side of (19) can be obtained by a div-curl

laminate, then that value will be optimal and the underlying state law will be encoded
in such a laminate. In addition, we could apply Lemma 2.3. But, this is elementary to
check. It suffices to take into account that due to the strict convexity this minimum
value can only be achieved when

ν(2) = δM (20)
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and hence
ν = sδ((M1+C, −σ(M)),M) + (1 − s) δ((M1, −σ(M)),M), (21)

with 0 ≤ s ≤ 1, is our desired div-curl laminate. Note that the difference of the two
pair of matrices is ((C, 0) , 0) which satisfies (12).

Once we know that the minimum value |M1|
2

+ σ
(

M
)

: ε
(

M
)

is eligible, it
becomes the cost for the relaxed problem (RP ), and the optimal ν is given as the
convex combination of these two deltas, one in each manifold. The conclusion of
our result in Theorem 2.1 is then a consequence of the fact that the projection onto
the second component of this optimal measure is a delta as expressed in (20). It is
well-known (see [17, Prop. 6.12, p. 11]) that this fact implies the strong convergence
claimed. Notice that this second component corresponds to the gradient variable
(including time). This completes the proof. �

2.3 Proof of Theorem 1.1

We now have all the necessary ingredients to prove Theorem 1.1. The proof is standard
in non-convex optimal control problems (see for instance [17, 18]) and is essentially
contained in the proof of Theorem 2.1, but is included here for completeness.

Proof of Theorem 1.1. To begin with, we put the original problem into the setting
of Calculus of Variations. So, for (u, A,B) ∈ R

N × MN×(N+1) × MN×(N+1), we
introduce the functions

W (u, A,B) =







|B1|
2

+ σ
(

B
)

: ε
(

B
)

if (A,B) ∈ Λ0 ∪ Λ1,au

+∞ else

and

V (u, A,B) =







1 if (A,B) ∈ Λ1,au

0 if (A,B) ∈ Λ0 \ Λ1,au

+∞ else.

Then it is not hard to check that the original problem is equivalent to

Minimize in (u,F ) :
1

2

∫ T

0

∫

Ω

W
(

u (t, x) ,F (t, x) ,∇(t,x)u (t, x)
)

dxdt

subject to

F ∈ L2
(

(0, T ) × Ω;MN×(N+1)
)

, ∇(t,x) · F = 0,

u ∈ H1
(

(0, T ) × Ω; RN
)

satisfies the same initial and boundary conditions as in
system (4), and

∫

Ω

V
(

u (t, x) ,F (t, x) ,∇(t,x)u (t, x)
)

dxdt = L |Ω| for all t ≥ 0.

Relaxation for nonconvex functionals like our case is based on the computation of the
constrained quasi-convexification of W . For fixed (u, A,B, s) it is defined as

CQW (u, A,B, s) = min
ν

∫

MN×(N+1)×MN×(N+1)

W (u, R, S) dν (R,S)
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where ν is a div-curl Young measure of the form

ν = sν1 + (1 − s) ν0,

with 0 ≤ s ≤ 1 and

supp ν0 ⊂ Λ0, supp ν1 ⊂ Λ1,au and (A,B) the first moment of ν.

The relaxation of the original problem is then given by

Minimize in (s,u,F ) :
1

2

∫ T

0

∫

Ω

CQW
(

u (t, x) ,F (t, x) ,∇(t,x)u (t, x)
)

dxdt

subject to






0 ≤ s (x) ≤ 1,
∫

Ω
s (x) dx = L |Ω|

(F, u) are as before.

These computations have been carried out in the proof of Theorem 2.1 where we have
found that the optimal measure furnishing the value of CQW (u, A,B, s) is a first-
order laminate of the form (14). From this, we have also deduced that the relaxed
problem in terms of measures

Minimize in ν the cost function J (ν)

where

J (ν) =
1

2

∫ T

0

∫

Ω

∫

MN×(N+1)

[

|B1|
2

+ σ
(

B
)

: ε
(

B
)

]

dν
(2)
(t,x) (B) dxdt

ν being of the form (14), is equivalent to (RP ). In particular,

inf
ν

J (ν) = inf
s

J (s) .

Now let Xωj
be a minimizing sequence for (P ). Then, as is well-known ([17, Th. 6.11,

p. 110]),
lim

j→∞
J

(

Xωj

)

≥ J (ν) , (22)

where ν is the measure associated with Xωj
as in Theorem 2.1. This proves that

inf
ν

J (ν) ≤ inf
Xω

J (Xω) .

Conversely, if ν is an admissible measure of the form (14), then by Lemma 2.3 there
exists an admissible pair (F j ,Gj) associated with some sequence of admissible char-

acteristic functions Xωj
such that ‖Gj‖

2
is equi-integrable. Thanks to this equi-

integrability we have
lim

j→∞
J

(

Xωj

)

= J (ν) ,

and this implies that
inf
ν

J (ν) ≥ inf
Xω

J (Xω) .
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This proves (ii). For the proof of (i), take a minimizing sequence Xωj
for (P) and

let ν be its associated Young measure. Again by Lemma 2.3 we may find another

sequence, say Xωj
, such that its associated

∥

∥∇(t,x)uj

∥

∥

2
is equi-integrable. Hence,

lim
j→∞

J
(

Xωj

)

= J (ν) ,

but since Xωj
is minimizing,

lim
j→∞

J
(

Xωj

)

≤ lim
j→∞

J
(

Xωj

)

= J (ν) .

From (22) it follows that
lim

j→∞
J

(

Xωj

)

= J (ν) .

This proves that ν is a minimizer for the problem in measures and therefore its
associated function s is a minimizer for (RP ).

Finally, note that the optimal measure associated with an optimal s of the relaxed
problem is a first-order laminate whose projection on the second component is a delta
in ∇(t,x)u. This implies that the normal to this optimal laminates is independent of
time and can take any direction in space. �

Remark 1 It is also important to note that given an optimal relaxed design s, if Xωj

is an admissible sequence of characteristics functions such that:

(i) Xωj
⇀ s weak-? in L∞ (Ω) , and,

(ii) the associated
∥

∥∇(t,x)uj

∥

∥

2
are equi-integrable,

then Xωj
is a minimizing sequence for (P ). This is again a consequence of the fact

that the optimal measure projects a delta located at ∇(t,x)u on its second component.
The condition on the equi-integrability of ||∇(t,x)uj ||

2 may be obtained by assuming
enough regularity on the initial data.

Remark 2 We also point out that the result we have obtained may be extended to
non homogeneous system of the type:















u′′ −∇x · σ + a (x)Xω (x) u′ = f in (0, T ) × Ω,
u = 0 on (0, T ) × Γ0,
σ · n = 0 on (0, T ) × Γ1,
u(0, ·) = u0, u′(0, ·) = u1 in Ω,

(23)

for any f ∈ L∞((0, T );L2(Ω)N ).

3 Numerical analysis of problems (P ) and (RP )

In this second part, we address the problem of computing numerically the optimal
density for (RP ). Based on this optimal relaxed density, we propose a penalization
technique to recover quasi-optimal classical designs for (P ). We first describe an
algorithm of minimization and then present some numerical experiments.
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3.1 Algorithm of minimization

We briefly discuss the resolution of the relaxed problem (RP ) using a gradient descent
method. In this respect, we compute the first variation of the cost function J with
respect to s. For any η ∈ R

+, η << 1, and any s1 ∈ L∞(Ω), we associate to the
perturbation sη = s + ηs1 of s the derivative of J with respect to s in the direction
s1 as follows :

∂J(s)

∂s
· s1 = lim

η→0

J(s + ηs1) − J(s)

η
. (24)

Following the proof of [16] in the similar context of the wave equation, we obtain the
following result.

Theorem 3.1 If (u0,u1) ∈
(

(

H2 (Ω)
)N

∩ V0

)

× V0, then the derivative of J with

respect to s in any direction s1 exists and takes the form

∂J(s)

∂s
· s1 =

∫

Ω

a(x)s1(x)

∫ T

0

u′(t, x) · p(t, x) dtdx (25)

where u is the solution of (7) and p is the solution in C([0, T ]; (H1
0 (Ω))N )∩C1([0, T ]; (L2(Ω))N )

of the adjoint problem















p′′ −∇x · σ(p) − a(x)s(x)p′ = u′′ + ∇x · σ(u), in (0, T ) × Ω,
p = 0, on (0, T ) × Γ0,
p · n = 0, on (0, T ) × Γ1,
p(T, ·) = 0, p′(T, ·) = u′(T, ·) in Ω.

(26)

Notice that the integral (25) is well defined, i.e. u′ · p ∈ C([0, T ], L1(Ω)) since from
the regularity assumed on (u0,u1), we have u′′ + ∇x · σ(u) ∈ C([0, T ]; (L2(Ω))N )
and hence p ∈ C([0, T ]; (L2(Ω))N ).

In order to take into account the volume constraint on s, we introduce the Lagrange
multiplier γ ∈ R and the functional

Jγ(s) = J(s) + γ||s||L1(Ω). (27)

Using Theorem 3.1, we obtain that the derivative of Jγ is

∂Jγ(s)

∂s
· s1 =

∫

Ω

s1(x)

(

a(x)

∫ T

0

u′(t, x) · p(t, x)dt + γ

)

dx (28)

which permits to define the following descent direction :

s1(x) = −

(

a(x)

∫ T

0

u′(t, x) · p(t, x)dt + γ

)

, ∀x ∈ Ω. (29)

Consequently, for any function η ∈ L∞(Ω, R+) with ||η||L∞(Ω) small enough, we have
Jγ(s + ηs1) ≤ Jγ(s). The multiplier γ is then determined so that, for any function
η ∈ L∞(Ω, R+) and η 6= 0, ||s + ηs1||L1(Ω) = L|Ω| leading to

γ =
(
∫

Ω
s(x)dx − L|Ω|) −

∫

Ω
η(x)a(x)

∫ T

0
u′(t, x) · p(t, x) dtdx

∫

Ω
η(x)dx

. (30)
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At last, the function η is chosen so that s(x) + η(x)s1(x) ∈ [0, 1], for all x ∈ Ω. A
simple and efficient choice consists in taking η(x) = εs(x)(1− s(x)) for all x ∈ Ω with
ε a small real positive.

Consequently, the descent algorithm to solve numerically the relaxed problem
(RP ) may be structured as follows : let Ω ⊂ R

N , (u0,u1) ∈ ((H2(Ω))N ∩ V0) × V0,
L ∈ (0, 1), T > 0, and ε < 1, ε1 << 1 be given :

• Initialization of the density function s0 ∈ L∞(Ω; ]0, 1[);

• For k ≥ 0, iteration until convergence (i.e. |J(sk+1) − J(sk)| ≤ ε1|J(s0)|) as
follows :

– Computation of the solution usk of (7) and then the solution psk of (26),
both corresponding to s = sk.

– Computation of the descent direction sk
1 defined by (29) where the multi-

plier γk is defined by (30).

– Update the density function in Ω:

sk+1 = sk + εsk(1 − sk)sk
1 (31)

with ε ∈ R
+ small enough in order to ensure the decrease of the cost

function and sk+1 ∈ L∞(Ω, [0, 1]).

3.2 Numerical experiments

In this section, we present some numerical simulations for N = 2 and the unit square
Ω = (0, 1)2. Moreover, for simplicity, we consider the case Γ0 = ∂Ω and assume that
Ω is composed of an isotropic homogeneous material for which

aijkl = λδijδkl + µ (δikδjl + δilδjk) .

λ > 0 and µ > 0 are the Lamé coefficients and δ designates the Kronecker symbol.
The stress tensor becomes simply: σ(u) = λtr(∇x · u)IN×N + 2µε(u).

Systems (7) and (26) are solved in space using a C0-finite element method with
mass lumping (we refer to [5, 14]). Precisely, introducing a triangulation Th of Ω (h =
maxT∈Th

|T |), we approximate L2(Ω) and H1(Ω) by the following finite-dimensional
spaces Vh = {vh|vh ∈ C0(Ω), vh|T ∈ P1 ∀T ∈ Th} where P1 designates the space of
the polynomials of degree ≤ 1. The time discretization is performed in a standard
way using centered finite differences of order two. At last, without loss of generality,
we consider a constant damping function a(x) = aXΩ(x) in Ω since the dependence
in x is contained in the density s.

In the sequel, we treat the following simple conditions in ((H2(Ω))N ∩ V0) × V0,
sufficient to illustrate the complexity of the problem :

u0 = (sin(πx1) sin(πx2), sin(πx1) sin(πx2)), u1 = (0, 0). (32)

Results are obtained with h = 10−2, ε1 = 10−5, L = 10−1, T = 1, s0(x) = L on Ω
and ε = 10−2 (see the algorithm).

We highlight that the gradient algorithm may lead to local minima of J . For this
reason, we consider constant initial density s0 as indicated above which permit to
privilege no location for ω.
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3.2.1 Influence of the damping constant value a

Similarly to the wave equation case considered in [15, 16], numerical simulations
exhibit a bifurcation phenomenon with respect to the value of the damping constant
a. When this value is small enough, say a < a?(Ω, L, λ, µ,u0,u1), depending on the
data, the optimal density is always a characteristic function, which suggests that the
original problem (P ) is well-posed. On the other hand, when the critical value a?

is reached, it appears that the optimal density takes values strictly in (0, 1). This
suggests that (P ) is no more well-posed and fully justifies the introduction of the
relaxed problem (RP ). For (λ, µ) = (1/2, 1), Figure 1 depicts the iso-values of the
optimal density sopt - obtained at the convergence of the algorithm - for several values
of a: for a = 5, sopt ∈ {0, 1}, while for example for a = 10, sopt ∈ [0, 1].

The well-posedness when a is small may be explained as follows: from (25), one
may write that (we introduce the notation J(s, a) = J(s(a)))

J(s + ηs1, a) = J(s, a) + η

∫

Ω

a(x)s1(x)

∫ T

0

u(s)
′ · p(s)dtdx + η2aO(u(s)

′,p(s)) (33)

such that for the conservative case s = 0 and a(x) = aXΩ(x),

J(ηs1, a) =J(0, a) + ηa

∫

Ω

s1(x)

∫ T

0

ut(0) · p(0)dtdx + η2aO(u(0),p(0))

=J(s1, 0) + ηa

∫

Ω

s1(x)

∫ T

0

u(0)
′ · p(0)dtdx + η2aO(u(0)

′,p(0))

(34)

where u(0),p(0) are the solutions of (7) and (26) in the conservative case. Then,
writing that J(ηs1, a) = J(s1, ηa), one get

J(s1, ηa) = J(s1, 0) + ηa

∫

Ω

s1(x)

∫ T

0

u(0)
′ · p(0)dtdx + η2aO(u(0),p(0)). (35)

For η small, the last term may be neglected. Therefore, the optimal density asso-
ciated with the damping coefficient ηa (small) is related to the minima in Ω of the

negative function x →
∫ T

0
u(0)

′ · p(0)dt. For the initial condition (32), this function
is strictly convex (see Figure 2) and the minimum is reaches at point (1/2, 1/2). We
conclude that the optimal distribution s1 which minimizes the second term in (35)
is a characteristic function centered on (1/2, 1/2). The conclusion is the same if a
remains small: for a = 5, Figure 1 top left depicts the iso-value of the density sopt for
a = 5.

On the other hand, when a is large enough, the last term in (35) can not be
neglected. In this case, the ill-posedness is related to the over-damping phenomenon:
when minω a(x) goes to infinity, the damping term a(x)Xω acts as penalization term
and enforces the solution u to be constant in time in ω: at the limit, there is no more
dissipation in ω (and so in Ω) and the energy is constant. In order to avoid this
phenomenon (which thus appears if as(x) is too large), the density s must take (at
least locally) values lower than 1 in order to compensate a: consequently, (P ) can
not be well-posed in this case. This is illustrated on Figure 1 for a = 10, a = 25
and a = 50. Table 1 gives the corresponding values of the energy. Remark that the
functions a → J(sopt(a)), a → E(T )/E(0) are decreasing since the subset

Va =

{

a(x) = as(x), 0 ≤ s(x) ≤ 1,

∫

Ω

s(x)dx = L|Ω|

}

(36)
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Figure 1: T = 1, (λ, µ) = (1/2, 1), a(x) = aXΩ(x) - Iso-value of the optimal density
sopt on Ω for a = 5 (top left), a = 10 (top right), a = 25 (bottom left) and a = 50
(bottom right).
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of admissible damping functions is increasing with a. Without any upper bound on
a, one may dissipate totally the system in finite time as proved in [3] for the 1-D wave
equation with a(x) = x−1XΩ(x) and Ω = (0, 1).
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Figure 2: T = 1, (λ, µ) = (1/2, 1),
a(x) = 0XΩ(x) - Iso-values of x →
∫ T

0
u(0)

′ · p(0)dt.
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Figure 3: T = 1, (λ, µ) = (1/2, 1),
a(x) = aXΩ(x) - Energy E(t) vs. t ∈
[0, 1] for several values of a.

a = 5 a = 10 a = 25 a = 50
J(sopt) 4.7640 3.5004 2.3534 2.0883

E(T )/E(0) 1.644 × 10−1 4.488 × 10−2 4.933 × 10−3 1.186 × 10−3

Table 1: (λ, µ) = (1/2, 1), T = 1 - Value of the cost function and energy ratio with
respect to a: J(sopt) ≈ O(a−1/2) and E(T )/E(0) ≈ O(a−2).

We have also observed that for a < a?, the optimal density is independent of
the initialization s0, which suggests a unique minimum. For a ≥ a?, we may obtain
several minima although their corresponding cost are very similar.

3.2.2 Influence of the Lamé coefficients

The nature of (P ) depends strongly on the data of the problem: thus, for a fixed value
of a, we obtain that (P ) is well-posed as soon as L (or equivalently |Ω| − L) is small
enough (in other words, a? is a decreasing function of L). We examine in this section
the influence of the Lamé coefficient λ. We recall that when λ is arbitrarily large
(or equivalently when the Poisson coefficient is near to 1/2), we obtain the nearly
incompressible situation. At the limit, the solution u fulfills the relation div u(t) = 0
on Ω for all t > 0 (assuming divu0 = 0) (see for instance [12], chapter 2). The system
(7) is then more constrained and the structure Ω more rigid.

For finite increasing values of λ, we observe on Table 2 that the ratio E(T )/E(0)
which quantifies the stabilization of the system, increases. As an effect of this addi-
tional rigidity, large value of λ leads to a reduction of the stabilization. As shown
on Figure 4, the effect on the optimal position of the damping set is notable (to be
compared with Figure 1 top left). At last, if large values of λ change the dynamic of
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Figure 4: T = 1, µ = 1, a(x) = 5XΩ(x) - Iso-value of the optimal density sopt on Ω
for λ = 5 (left) and λ = 50 (right).

the system, it seems that the nature of (P ) is unchanged: for the damping constant
a = 5 considered here, optimal densities are characteristic functions.

λ = 0.5 λ = 2.5 λ = 5 λ = 25 λ = 50
E(T )/E(0) 0.1644 0.2603 0.3249 0.3979 0.3991

Table 2: µ = 1, T = 1 - Value of the energy ratio with respect to λ

The incompressible limit will be examined both theoretically and numerically in
a future work.

3.2.3 Penalization of the optimal density

In the case where the optimal density sopt is not in L∞((0, T ) × Ω; {0, 1}), one
may associate to sopt a characteristic function spen ∈ L∞((0, T ) × Ω; {0, 1}) whose
cost J(spen) is arbitrarily near to J(sopt). Following [16], one may proceed as fol-
lows: we first decompose the domain (0, 1) × (0, 1) into M × N cells such that
Ω = ∪i=1,M [xi, xi+1] × ∪j=1,N [yj , yj+1] where {xi}(i=1,M+1) and {yj}(j=1,N+1) des-
ignate two uniform subdivisions of the interval (0, 1). Then, we associate to each cell
the mean value mi,j ∈ [0, 1] defined by

mi,j =
1

(xi+1 − xi)(yj+1 − yj)

∫ xi+1

xi

∫ yj+1

yj

sopt(x, y)dx dy (37)

At last, we define the function spen
M,N in L∞(Ω, {0, 1}) by

spen
M,N (x, y) =

M
∑

i=1

N
∑

j=1

X[xi,(1−√
mi,j)xi+

√
mi,jxi+1]×[yj ,(1−√

mi,j)yj+
√

mi,jyj+1](x, y).

(38)
We easily check that ||spen

M,N ||L1(Ω) = ||sopt||L1(Ω), for all M,N > 0. Thus, the charac-

teristic function spen
M,N takes advantage of the information codified in the density sopt,

as discussed in Remark 1.
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Let us illustrate this point with the optimal density obtained for (λ, µ) = (1/2, 1)
and a = 50 (see Figure 1 bottom right). The corresponding value of the cost function
is J(sopt) ≈ 2.0883. Table 3 collects the value of J(spen

M,N ) for several values of M = N

and suggests the convergence of J(spen
M,N ) toward J(sopt) ≈ 2.0883 as N increases.

N 1 2 3 4 5 6 7 16
J(spen

N,N ) 3.824 3.261 2.446 2.238 2.161 2.137 2.109 2.096

Table 3: (λ, µ) = (1/2, 1), T = 1 - a = 50- Value of the cost function for the penalized
characteristic density.
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Figure 5: T = 1, (λ, µ) = (1/2, 1), a(x) = 50XΩ(x) - Iso-value of the penalized density
for N = 2, N = 5 and N = 16 - Bottom right: E(t) vs. t associated to spen

N,N .
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