
CONSTANT TERM FUNCTORS AND TENSOR STRUCTURES

THIBAUD VAN DEN HOVE

These are notes for a talk given by the author during a workshop on Geometric Satake in
Clermont-Ferrand, in January 2022. Due to time constraints, a lot of details, proofs and lem-
mas were omitted in this talk, which have been added here. Almost all of the arguments below
come from [FS21, Chapter VI], although translated into the setting of schemes. In particular, any
mistakes in this translation are entirely due to the author.

Throughout these notes, we fix an algebraically closed field k, a reductive k-group G along with
a maximal torus T and Borel B, a coefficient ring Λ “ Z{ℓnZ for some prime ℓ ‰ charpkq, and

the projective line X “ P1
k. Our main goal is to give the Satake category SatIG,Λ a Tannakian-type

structure. (Recall that this Satake category is the full subcategory of flat relatively perverse ULA
sheaves in DétpHkG,I ,Λqbd.) In particular, we want to equip it with the structure of a symmetric
monoidal category, and find a symmetric monoidal fibre functor. The main tools we will use are the
constant term functors, to reduce to the easier case of tori.

I thank all the participants of the workshop, and especially the organizers Arnaud Mayeux, Timo
Richarz, and Simon Riche. I also thank Simon Riche for helpful comments on an earlier version of
these notes.

1. Constant term functors

Let I be a finite index set, and S Ñ XI a morphism of schemes. For a regular dominant
cocharacter λ P X˚pT q`, for which the associated parabolic is just the Borel, there is a Gm-action
on the affine Grassmannian GrG,I , where Gm acts through L`

I G, using the cocharacter λ. Since
the fixed points of this Gm-action are exactly GrT,I , and sheaves on HkG,I are automatically L`

I G-
equivariant, and in particular Gm-equivariant, hyperbolic localization gives an exact functor

CTI
B,S : DétpHkG,I ˆXI S,Λqbd Ñ DétpGrT,I ˆXI S,Λq,

which we call the constant term functor. Aside from preserving both limits and colimits, as after
forgetting the equivariance it can be described by either a left or a right adjoint, it has some other
very useful properties:

Lemma 1.1. The constant term functor CTI
B,S is conservative.

Proof. As we already know CTI
B,S is exact, it is enough to show that for A P DétpHkG,I ˆXI S,Λqbd,

if CTI
B,SpAq “ 0, then already A “ 0. This can be checked on geometric fibres, so we may assume

that S is a geometric point; here we use that hyperbolic localization is compatible with base change.
Reducing the index set I if necessary, we may also assume that the points pxiqiPI determined by
S Ñ X are distinct. In this case, HkG,I ˆXI S admits a stratification, indexed by pX˚pT q`qI , with
the stratum corresponding to pµiqi being isomorphic to rS{p

ś

iPIpL`Gqµi
ˆX Sqs, where pL`Gqµi

is
the stabilizer of µi inside L

`G. If A ‰ 0, then boundedness of A implies that there is some maximal
stratum on which it is nonzero, say pµiqi. Let ´µ be the anti-dominant representative of pµiqi, with
corresponding semi-infinite orbit S´µ. Then, using that GrG,I,pµiqi X S´µ – S, one sees that the

restriction of CTI
B,SpAq to r´µs P GrT is just the pullback of A|rS{p

ś

iPIpL`Gqµi
ˆXSqs to S, which is

nonzero. □

Another useful property of the constant term functors, is that they preserve and reflect universal
local acyclicity and perversity (up to a shift), as the following two propositions show. For a reductive
group G, let πG : GrG,I Ñ XI , or more generally πG,S : GrG,I ˆXI S Ñ S, be the natural projection.
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Proposition 1.2. Let A P DétpHkG,I ˆXI S,Λqbd. Then the following are equivalent:

(1) A is ULA over S,

(2) CTI
B,SpAq P DétpGrG,I ˆXI S,Λq is ULA over S,

(3) RπT,S,˚ CTI
B,SpAq P DétpS,Λq is locally constant with perfect fibres.

Proof. As hyperbolic localization preserves universal local acyclicity in general, we immediately get
p1q ñ p2q. For the converse p2q ñ p1q, it is enough to show that if CTI

B,SpAq is ULA over S, then

the natural map p˚
G,1RHompA,Rπ!

G,SΛq bL p˚
G,2A Ñ RHompp˚

G,1A,Rp
!
G,2Aq is an isomorphism. By

conservativity, it is enough to prove this after applying the constant term functor associated to the
Borel B´ ˆ B Ď G ˆ G. But then we can use a similar isomorphism for CTI

B,SpAq, the fact that
hyperbolic localization preserves exterior tensor products and inner Hom’s, and some properties of
the six-functor formalism to get a sequence of isomorphisms

CTI
B´ˆB,Spp˚

G,1RHompA,Rπ!
G,SΛq bL p˚

G,2Aq – p˚
T,1 CT

I
B´,SpRHompA,Rπ!

G,SΛqq bL p˚
T,2 CT

I
B,SpAq

– p˚
T,1q

`
˚ Rpp`q!pRHompA,Rπ!

G,SΛqq bL p˚
T,2 CT

I
B,SpAq

– p˚
T,1q

`
˚ RHomppp`q˚pAq, pp`q!Rπ!

G,SΛq bL p˚
T,2 CT

I
B,SpAq

– p˚
T,1q

`
˚ RHomppp`q˚pAq, pq`q!Rπ!

T,SΛq bL p˚
T,2 CT

I
B,SpAq

– p˚
T,1RHompq`

! pp`q˚pAq, Rπ!
T,SΛq bL p˚

T,2 CT
I
B,SpAq

– p˚
T,1RHompCTI

B,SpAq, Rπ!
T,SΛq bL p˚

T,2 CT
I
B,SpAq

– RHompp˚
T,1 CT

I
B,SpAq, Rp!T,2 CT

I
B,SpAqq

– CTI
B´ˆB,SpRHompp˚

G,1A,Rp
!
G,2Aq,

where p` : GrB Ñ GrG and q` : GrB Ñ GrT are the maps coming from hyperbolic localization,
pG,1, pG,2 are the two projections GˆG Ñ G, and similarly for pT,1 and pT,2.

Finally, the equivalence between (2) and (3) follows from the fact that, up to reductions, which
does not change the category of étale sheaves, GrT,I ˆXI S is the disjoint union of copies of S. □

Consider the locally constant map

deg : GrT,I Ñ X˚pT q
x2ρ,´y

ÝÝÝÝÑ Z,

where the first map is given by summing the relative positions.

Proposition 1.3. The constant term functor CTI
B,S is t-exact for the perverse t-structure on the

source, and the standard t-structure on the target (which is the same as the perverse t-structure).
In particular, for some A P DétpHkG,I ˆXI S,Λqbd, we have

A P
p{SDď0

pHkG,I ˆXI S,Λqbd ðñ CTI
B,SpAq P Dď0

pGrT,I ˆXI S,Λq.

Remark 1.4. Before we give the proof, let us note that this proposition is the analogue of [FS21,
Proposition VI.7.4]. However, at that point in their manuscript, Fargues and Scholze have not

yet proved that relative perversity is preserved by base change, or that the p{SDě0 parts of the
t-structure can be determined on geometric fibres; in fact they use this proposition to show these
properties. On the other hand, since we have access to the machinery of [HS21], we do already know
these properties hold in this situation, by Theorem 6.1 of loc. cit.

Proof. By conservativity, the first statement implies the second. By Remark 1.4 and the fact that
hyperbolic localization commutes with base change, we may assume that S is a geometric point.
We will also only show that CTI

B,SpAqrdegs preserves the ď 0 part, the similar assertion for the
ě 0 part can be proven in the same way, by replacing the ˚’s by !’s and vice versa, and using the
semi-infinite orbits for the opposite Borel instead of the usual semi-infinite orbits.

Reducing I, we may assume S Ñ XI maps into the open locus where xi ‰ xi1 for i ‰ i1. In this
case, there is again a stratification jpµiqi : HkG,I,pµiqi ˆXI S ãÑ HkG,I ˆXI S, indexed by pX˚pT q`qI .
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Note that we have A P
p{SDď0 if and only if j˚

pµiqi
A P Dď´dpµiqi for all pµiqi P pX˚pT q`qI , where

dpµiqi “
ř

iPIx2ρ, µiy. In particular, using excision triangles, we may assume that A “ jpµiqi,!Apµiqi

for some Apµiqi P D
ď´dpµiqi

ét pHkG,I,pµiqi ˆXI S,Λq. Moreover, using the truncation functors we get
a filtration of Apµiqi into complexes concentrated in a single degree; in particular, we may assume
Apµiqi is concentrated in degree ´dpµiqi .

Now, recall that HkG,I,pµiqi ˆXI S “ rS{p
ś

iPIpL`Gqµi ˆX Sqs, and that pullback along the
corresponding quotient map is fully faithful for complexes concentrated in a single degree. And
since this quotient map is a morphism over S, we may assume Apµiqi is the pullback of some
C P DétpS,Λq, also concentrated in degree ´dpµiqi . By a dévissage argument, we may assume that
Λ “ Fℓ and C “ Fℓrdpµiqis, and by the Künneth formula that I “ t˚u contains only a single
element. In particular, we are reduced to showing that if A “ jµ,!Fℓrx2ρ, µys, then CTB,SpAqrdegs

lies in degrees ď 0.
To show this last part, let ν P X˚pT q be a cocharacter, with corresponding semi-infinite orbit

Sν ˆX S. Recall that dimppSν ˆX Sq X pGrG,t˚u,µ ˆX Sqq ď xρ, µ` νy. In particular, the restriction
of CTB,Spjµ,!Fℓrx2ρ, µysq to rνs P GrT,t˚u ˆX S, which is just

RΓcppSν ˆXI Sq X pGrG,t˚u,µ ˆXI Sq,Fℓqrx2ρ, µys,

sits in degrees ď 2xρ, µ ` νy ´ x2ρ, µy “ x2ρ, νy. Shifting by the degree map, we see that the result
indeed lies in degrees ď 0, and this is what we wanted. □

From this point on, we will only use the case where S “ XI . So even though most results will
hold in more generality, we restrict ourselves to this case for simplicity.

The previous proposition gives the following corollary, which we will use quite a few times later
on.

Corollary 1.5. A complex A P DULA
ét pHkG,I ,Λqbd is flat perverse if and only if RπT,˚ CTI

BpAqrdegs P

DétpX
I ,Λq is isomorphic to a finite projective Λ-module, concentrated in degree 0.

Proof. By Proposition 1.2, RπT,˚ CTI
BpAqrdegs is locally constant with perfect fibres. By Proposi-

tion 1.3, we have that A is relatively perverse if and only if RπT,˚ CTI
BpAqrdegs is concentrated in

degree 0. Finally, A being flat perverse is equivalent to RπT,˚ CTI
BpAqrdegs having Tor-amplitude

in r0, 0s. And since we are working over the simply connected base XI , this is in turn equivalent

to RπT,˚ CTI
BpAqrdegs being isomorphic (not just locally) to a finite projective Λ-module in degree

0. □

We mentioned earlier that we want to equip the Satake category with the fibre functor. This is
the following result:

Corollary 1.6. Taking direct sums of cohomology induces a functor

F I “
à

mPZ
RmπG,˚ : SatIG,Λ Ñ LocSyspXI ,Λq.

This functor is exact, conservative and faithful, and has the property that if f : A Ñ B is a morphism
in SatIG,Λ such that kerpF Ipfqq is a direct summand of F IpAq, then f has a kernel in SatIG,Λ. A
similar assertion also holds for cokernels.

Proof. We will show in Lemma 1.7 below that F I – H0pRπT,˚ CTI
Brdegsq, so that F I takes values

in local systems by Corollary 1.5. Moreover, F I is exact by Proposition 1.3, using the fact that, up
to reductions, πT is the disjoint union of isomorphisms. Similarly, we see that F I is conservative,
using Lemma 1.1. Now, let f : A Ñ B be a morphism in SatIG,Λ such that kerpF Ipfqq is a direct

summand of F IpAq, and consider its kernel in PervpHkG,I ,Λq; we have to show this kernel is ULA
and flat perverse. But this follows by Proposition 1.2 and Corollary 1.5, as kerpF Ipfqq is a direct
summand of F IpAq. The similar assertion for cokernels can be proven in a similar way. Finally, to
prove faithfulness, let f, g : A Ñ B map to the same morphism in LocSyspXI ,Λq, and consider the

morphism f ´ g in SatIG,Λ. As this maps to the zero morphism, the kernel of F Ipf ´ gq is a direct
3



summand, so that f ´ g has a kernel in SatIG,Λ. But the natural inclusion of this kernel into A is an

isomorphism after F I by exactness, so that faithfulness follows from conservativity. □

Lemma 1.7. For A P SatIG,Λ, we have
à

iPZ
HipRπG,˚pAqq – H0pRπT,˚ CTI

BpAqrdegsq.

Proof. Using the stratification into semi-infinite orbits pGrB,Iqred “
š

νPX˚pT q Sν , we see that

(1.1) CTBpAq “
à

νPX˚pT q

Rpqνq!pA|Sν
q,

where qν : Sν Ñ X Ñ GrT,I is the restriction of q`. On the other hand, the same decomposi-
tion into semi-infinite orbits, gives a filtration on the complex RπG,˚pAq, with associated graded
À

ν Rpqνq!pA|Sν
q. Now, we can decompose GrG,I into the unions of Schubert cells GrG,I,pµiqiPI

, ac-
cording to the parity of

ř

iPIx2ρ, µiy; as the Bruhat ordering can only compare cocharacters with the
same such parity, this is a decomposition into clopen subsets. Finally, we note that when restricted
to these clopen subsets,

À

ν Rpqνq!pA|Sν
q is concentrated in either even or odd degrees, so that the

spectral sequence associated to our filtered complex degenerates. After shifting by the degree map,
this, along with (1.1), gives the desired isomorphism. □

Remark 1.8. Although the (shorter) spectral sequence argument we have given only gives a non-
canonical isomorphism, it is possible to construct a canonical isomorphism, by adapting [BR18,
Theorem 5.9] to the setting of Beilinson-Drinfeld affine Grassmannians. We omit details.

As a final result in this section, we want to show that constant term functors induce functors on
the Satake categories. While for CTI

B this follows from previous results, the assertion actually holds
more generally, replacing the Borel B by certain parabolics P Ď G.

Fix a cocharacter λ P X˚pT q, inducing a parabolic P Ď G, the opposite parabolic P´, and the
Levi subgroup M “ P X P´ Ď G. Moreover, let M be the maximal torus quotient of M , i.e., the
cocenter. As this is a torus, there is a natural locally constant function GrM,I Ñ X˚pMq, obtained
by summing the relative positions. In particular, composing this with the map GrM,I Ñ GrM,I

induced by the projection, and pairing with 2ρG ´ 2ρM , we get a degree map

degP : GrM,I Ñ GrM,I Ñ X˚pMq Ñ Z.

On the other hand, λ induces a Gm-action on GrG,I , where Gm acts through L`
I λ. So similarly to

CTI
B , hyperbolic localization gives a functor

CTI
P : DétpHkG,I ,Λqbd Ñ DétpHkM,I ,Λqbd,

by dividing out L`
I M from the diagram

GrG,I Ð GrP,I Ñ GrM,I ,

and first pulling back along GrG,I Ñ L`
I MzGrG,I .

Lemma 1.9. The functor CTI
P induces a functor

CTI
P rdegP s : SatIG,Λ Ñ SatIM,Λ.

Proof. As hyperbolic localization preserves ULA sheaves, we have to check that CTI
P rdegP s preserves

flat perverse sheaves. For this, note that if P 1 Ď P is another parabolic of G with image Q Ď M ,
then the functors

CTI
P 1 rdegP 1 s and CTI

QrdegQs ˝ CTI
P rdegP s

are naturally isomorphic; this follows from p´q!-p´q˚- base change for the fibre product GrP 1,I –

GrP,I ˆGrM,I
GrQ,I , cf. Lemma 1.10. Now Corollary 1.5 tells us that CTI

P rdegP s preserves flat
perverse sheaves. □

The following lemma was used in the proof:
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Lemma 1.10. Let K,L,M be smooth affine group schemes, and K Ñ M and L Ñ M group
homomorphisms, with L Ñ M surjective. Assume that K ˆM L is also smooth. Then there is a
natural isomorphism GrKˆML,I – GrK,I ˆGrM,I

GrL,I for any finite set I.

Proof. First, there is a morphism ψ : GrKˆML,I Ñ GrK,I ˆGrM,I
GrL,I by the universal property

of the fibre product. Conversely, let x : R Ñ XI be any scheme. Let us denote by E?,0 the trivial
torsor. An element of pGrK,I ˆGrM,I

GrL,IqpRq can be represented by a pair pEK , βKq, with EK
an KR-torsor on XR and βK : EK|XR´Γx

– EK,0|XR´Γx
, a similar pair pEL, βLq for L, and an

isomorphism α : EK ˆKM – EL ˆLM , commuting with βK and βL under the natural identifications
E0,K ˆK M – E0,M – E0,L ˆL M . Let us denote EK ˆK M – EL ˆL M by EM .

Using the natural morphisms EK – EK ˆK K Ñ EK ˆK M – EM and EL Ñ EM , we can
consider the fibre product EK ˆEM

EL. We claim this is an K ˆM L-torsor. Indeed, we can choose
a cover U of XR trivializing both EK and EL, and hence also EM . More specifically, we want
to choose equivariant isomorphisms EK ˆXR

U – K ˆ U and EL ˆXR
U – L ˆ U , which induce

the same trivialization of EM ; this is possible by surjectivity of L Ñ M . It is then clear that
EK ˆEM

EL is a K ˆM L-torsor. Moreover, the isomorphisms βK and βL induce an isomorphism
βKˆML : pEK ˆEM

ELq|XR´Γx
– pE0,KˆMLq|XR´Γx

.
This gives a map GrK ˆGrM GrL Ñ GrKˆML, which is readily seen to be inverse to ψ. □

2. Convolution

In this section, we show that the convolution product preserves the Satake category. Recall that
it was given as

‹I “ Rm˚q
˚p´ b ´q : DétpHkG,I ,Λqbd ˆ DétpHkG,I ,Λqbd Ñ DétpHkG,I ,Λqbd,

for the maps

HkG,I ˆXI HkG,I
q

ÐÝ HkG,I ˜̂HkG,I
m

ÝÑ HkG,I .

Consider a k-algebra R and points pxiqi P XIpRq. Then, as usual for the definition of Beilinson-
Drinfeld Grassmannians and Hecke stacks, we denote by DxI ,R the ring of regular functions of the
formal affine scheme obtained by completing XI along ΓxI

, where ΓxI
“ YiPIΓxi ,

Proposition 2.1. The convolution product induces a functor

‹I : SatIG,Λ ˆ SatIG,Λ Ñ SatIG,Λ.

Proof. First, we note that m is proper and that the exterior product of ULA sheaves remains ULA,
as follows by the definition of ULA sheaves as dualizable objects in a certain category. In particular,
the convolution product preserves ULA sheaves. Let A1, A2 P SatIG,Λ; we have to show A1 ‹I A2 is
flat perverse. Since A1 and A2 are already ULA, we can reduce to the case I “ t˚u by using the
Künneth formula.

Over X2, consider the stack H̃k, parametrizing the following data, for a k-algebra R:

‚ Two points px1, x2q P X2pRq,
‚ Three G-torsors E0, E1, E2 on Dxt1,2u,R,
‚ An isomorphism E0 – E1 away from Γx1

, and
‚ An isomorphism E1 – E2 away from Γx2 .

Note that away from the diagonal ∆ Ď X2, this torsor corresponds to the usual hecke stack:

H̃k ˆX2 pX2z∆q – HkG,2 ˆX2 pX2z∆q,

where for some integer m P Zě0, we denote by HkG,m the Hecke stack associated to an unnamed

index set of cardinality m. On the other hand, over the diagonal ∆ – X, the stack H̃k agrees with
the convolution Hecke stack HkG,1 ˜̂HkG,1 used to define the convolution product. Moreover, there
are natural maps

p1, p2 : H̃k Ñ HkG,1
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and

m : H̃k Ñ HkG,2,

respectively forgetting the torsors E2, E0 and E1. Note that the torsors classified by H̃k and HkG,1

do not live on the same disk. However, there are always maps between those disks, so pulling back
the torsors gives the desired morphism of stacks.

Now, consider the complex C :“ Rm˚pp˚
1A1bLp˚

2A2q on HkG,2, which is ULA as both A1 and A2

are. Moreover, away from the diagonal, m is an isomorphism, so that C is just the exterior product
of A1 and A2, which is hence concentrated in degree 0. As C is ULA, RπT,˚ CT2

BpCqrdegs is locally
constant with perfect fibres. But since away from the diagonal, this is concentrated in degree 0, the
complement of the diagonal being open dense implies that RπT,˚ CT2

BpCq is concentrated in degree
0 over the whole X2. In particular, the restriction of C to the diagonal is also isomorphic to a finite
projective Λ-module concentrated in degree 0. But this restriction is exactly A1 ‹A2, so we conclude
by Corollary 1.5. □

3. Fusion

We would like to use the convolution product to make SatIG,Λ into a symmetric monoidal category.

To construct the commutativity constraint, we will define a more general fusion product on SatIG,Λ,
which comes with natural commutativity and associativity constraints (although we will need to
modify them), and show that this fusion product specializes to the convolution product.

More precisely, for any surjective map χ : I Ñ J of finite sets, there are morphisms

HkG,I ÐÝ HkG,I ˆXI XJ ÝÑ HkG,J .

Here, the morphism XJ Ñ XI is defined on R-valued points as pxjqj ÞÑ pxαpiqqi whose base change
to HkG,I is the left morphism. On the other hand, the right morphism is the closed immersion defined
by sending a tuple ppxiqiPI , E0, E1, αq, with xi “ x1

i if χpiq “ χpi1q, to the tuple ppxχ´1pjqqjPJ , E0, E1, αq

(using a slight abuse of notation, as again the torsors are defined over different disks, this time
because the graphs appearing differ). In particular, as base change preserves relative notions such
as ULA and relative perverse, and because pushforward along closed immersions also preserves these
two properties, pull-push along this diagram defines a functor

ΨG : SatIG,Λ Ñ SatJG,Λ.

Lemma 3.1. The functor ΨG is compatible with the fibre functor and constant term functors.

Proof. For the constant term functors CTI
P , we want to see that CTJ

P ˝ΨG and ΨM ˝ CTI
P are

naturally isomorphic. But this follows from base change, using the p´q!p´q˚-description of constant
terms and the fact that HkG,I ˆXI XJ Ñ HkG,J is a closed immersion, so that *- and !-pushforward
agree.

In particular, for the compatibility with the fibre functor, we are reduced to the case G “ T by
Lemma 1.7. In that case, we are again done by base change, using that πT is ind-proper. □

Now, for any decomposition I “ I1 \ . . . \ Ik of an index set I, let j : XI;I1,...,Ik Ď XI be the
open dense subset consisting of those points pxiqi such that xi ‰ xi1 whenever i and i1 do not lie in
the same Ij . Over this open dense subset, we have a variant of the Satake category:

Definition 3.2. The Satake category SatI;I1,...,IkG,Λ is the full subcategory of DétpHkG,IˆXIXI;I1,...,Ik ,Λqbd

spanned by the flat relatively perverse and ULA objects.

In particular, the restriction j˚ preserves Satake categories. It turns out this restriction is very
well behaved:

Lemma 3.3. The two restriction functors j˚ : SatIG,Λ Ñ SatI;I1,...,IkG,Λ and j˚ : LocSyspXI ,Λq Ñ

LocSyspXI;I1,...,Ik ,Λq are fully faithful.
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Proof. Note that the restriction j˚ : PervpHkG,Iq Ñ DétpHkG,I ˆXI XI;I1,...Ik ,Λqbd admits a right
adjoint pH0Rj˚. To show the restriction on Satake categories is fully faithful, it is enough to show
that A Ñ

pH0Rj˚j
˚A is an isomorphism for all A P SatIG,Λ (even though its right adjoint might not

preserve ULA objects). For this, let i : Z Ă XI be the reduced closed complement of XI;I1,...,Ik , and

choose some A P SatIG,Λ. It suffices to show that i˚i
!A P

pDě2
ét pHkG,I ,Λqbd. By (a suitable variant

of) Corollary 1.5, we can check this after RπT,˚ CTI
Brdegs, where we get a local system of finite

projective Λ-modules. We conclude by noting that i˚i
!Λ P Dě2

ét pXI ,Λq, as Z admits a stratification
by smooth codimension ě 1 strata, by pulling back the partial diagonals of XI .

This last argument also shows that the restriction on local systems is fully faithful. □

Now, over XI;I1,...,Ik we have an isomorphism

HkG,I ˆXI XI;I1,...,Ik – p
ź

j

HkG,Ij q ˆXI XI;I1,...,Ik ,

so that exterior products gives a functor

Φ : SatI1G,Λ ˆ . . .ˆ SatIkG,Λ Ñ SatI;I1,...,IkG,Λ .

Proposition 3.4. The functor Φ takes values in the full subcategory SatIG,Λ Ď SatI;I1,...,IkG,Λ .

Proof. Define the stack HkG,I;I1,...,Ik over XI , parametrizing the following data, for a k-algebra R:

‚ pxiqiPI P XIpRq,
‚ G-torsors E0, . . . , Ek on DxI ,R,
‚ Isomorphisms Ej´1 – Ej away from

Ť

hPIj
Γxh

.

In particular, there are natural maps

pj : HkG,I;I1,...,Ik Ñ HkG,Ij

remembering only one isomorphism, and

m : HkG,I;I1,...,Ik Ñ HkG,I

obtained by composing all isomorphisms. Similarly as in the proof of Proposition 2.1, note that the
torsors classified by the different Hecke stacks don’t lie on the same disks, but again there is always
a map between those disks along which we can pull back the torsors.

Now, given objects Aj P Sat
Ij
G,Λ for each j, consider the object C “ Rm˚pp˚

1A1bL . . .bLp˚
kAkq on

HkG,I , which is ULA, so that RπT,˚ CTI
BpCqrdegs is locally constant with perfect fibres. Moreover,

one readily checks that m is an isomorphism over XI;I1,...,Ik , so that over this open subset, C is just
the exterior product. In particular, over XI;I1,...,Ik , RπT,˚ CTI

BpCqrdegs is concentrated in degree 0.

As XI;I1,...,Ik is open dense in XI , this implies that RπT,˚ CTI
BpCqrdegs is concentrated in degree 0

everywhere, so that C P SatIG,Λ by Corollary 1.5. Finally, since C is exactly ΦpA1, . . . , Akq, we see

that ΦpA1, . . . , Akq P SatIG,Λ. □

Remark 3.5. The functor Φ above will be used to get a monoidal structure on SatIG,Λ. As its
definition involves an exterior product, it is equipped with natural commutativity and associativity
constraints. However, this naive commutativity constraints will lead to certain sign issues, so we
modify this constraint by hand. Decompose the Hecke stack as HkG,I “ HkevenG,I

š

HkoddG,I , where a
Schubert cell HkG,I,pµiqi is contained in the even or odd part according to whether

ř

iPIx2ρ, µiy is
even or odd; note that the dominance order can only compare elements with the same such parity, so
that we actually get a decomposition into clopen substacks. Then, when commuting two complexes
concentrated on HkoddG,I , we change the naive commutativity constraint by adding a minus sign.
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Another way to phrase this is that the diagram

(3.1)

SatI1G,Λ ˆ . . .ˆ SatIkG,Λ SatI;I1,...,IkG,Λ

LocSyspXI1 ,Λq ˆ . . .ˆ LocSyspXIk ,Λq LocSyspXI;I1,...,Ik ,Λq

Φ

pF Ij qj F I;I1,...,Ik

b

naturally commutes, and functorially in I1, . . . , Ik. This follows from the implicit shifts in the fibre
functors. Moreover, faithfulness of these fibre functors already determines the signs.

We conclude that, for any decomposition I “ I1 \ . . .\ Ik, we get the fusion product

˚ : SatI1G,Λ ˆ . . .ˆ SatIkG,Λ Ñ SatIG,Λ.

In particular, for any index set I, the composite

SatIG,Λ ˆ . . .ˆ SatIG,Λ
˚

ÝÑ SatI\...\I
G,Λ

ΨG
ÝÝÑ SatIG,Λ

makes SatG,Λ into a symmetric monoidal category, by the previous remark. Moreover, one readily
checks that this agrees with the convolution product.

Now, by commutativity of (3.1), we see that the induced diagram

SatI1G,Λ ˆ . . .ˆ SatIkG,Λ SatIG,Λ

LocSyspXI1 ,Λq ˆ . . .ˆ LocSyspXIk ,Λq LocSyspXI ,Λq

˚

pF Ij qj F I

b

also naturally commutes. In particular, the fibre functor F I is naturally symmetric monoidal for
the fusion product, and hence also for the convolution product by Lemma 3.1.

Finally, let us go back to the setting of Lemma 1.9 and before, which attached to certain parabolics
P Ď G with Levi M the constant term functor

CTP rdegP s : SatIG,Λ Ñ SatIM,Λ.

It turns out these also have a symmetric monoidal structure.

Proposition 3.6. For any decomposition I “ I1 \ . . .\ Ik, the diagram

SatI1G,Λ ˆ . . .ˆ SatIkG,Λ SatIG,Λ

SatI1M,Λ ˆ . . .ˆ SatIkM,Λ SatIM,Λ

˚

´

CT
Ij
P r degP s

¯

j
CTI

P r degP s

˚

naturally commutes.

Proof. Over the open subset XI;I1...,Ik , this follows from the Künneth formula. We conclude by
Lemma 3.3 □

Again using Lemma 3.1, we conclude that the constant term functors are also symmetric monoidal
for the convolution product.
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