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Introduction

The goal of this note is to introduce the Satake category in the “classical” setting of
geometric Langlands theory using the ideas of Fargues and Scholze in [FS] for the p-
adic geometric local Langlands correspondence, transferred to the classical setting, see
Section 2.1.

The Satake category consists of flat (relative) perverse sheaves on the Hecke stack
that are in addition universally locally acyclic. In this note we focus on the notion of
(unbounded, not necessarily constructible) perverse sheaves as needed in this definition.
They have been defined by Gabber in great generality for schemes and we recall that
definition in Section 1.4. Thereafter we generalize this construction to Artin stacks and
to ind schemes. This seems not to be available in the literature although it is rather
straight forward.
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1 Reminder on perverse sheaves

1.1 Derived categories of etale sheaves

Throughout we fix a ring Λ of coefficients. Later on we will have to make some restric-
tions on Λ bur for now let Λ be any (unital, commutative) ring.

For qcqs scheme X we denote by

D(X) := Dét(X,Λ)

the left completion1 of the derived category (viewed as a stable ∞-category with its
natural t-structure) of the category of étale sheaves of Λ-modules. This left completion
again is endowed with a natural t-structure.

For a map of qcqs schemes f : X → Y we have a t-exact colimit preserving functor
f∗ : D(Y )→ D(X) of stable∞-categories. Then X 7→ D(X) is a sheaf for the topology
of universal submersions [HS, 5.7 and the following remark].

We extend D(−) to all (derived) prestacks by right Kan extension, i.e., it is the
unique extension such that if X = colimXi is a colimit of prestacks, then

(1.1.1) D(X )
∼→ limD(Xi),

where lim is the limit in the ∞-category of stable ∞-category with colimit preserving
functors (equivalently, the limit in the ∞-category of ∞-categories).

Moreover, if X is such a prestack and s : X → Xsub is its stackification for the
submersive topology, then we have an equivalence

(1.1.2) s∗ : D(Xsub)
∼→ D(X ).

Example 1.1. Let S be a scheme, let G be a group pre-stack over S acting from the
left on a prestack X over S, e.g. a presheaf of groups on (Aff/S)2 acting on a sheaf of
sets on (Aff/S). Then we have the bar resolution

Bar(G,X) :=

(
. . . // ////// G×S G×S X

////// G×S X
a //
p2
// X.

)
1See [Lu-HA, 1.2.1] for the notion of a left completion.
2Here (Aff/S) denotes the category of affine schemes equipped with a map to S.
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The quotient of X be G is defined as the colimit

G\preX := colim Bar(G,X).

Here we take the (homotopy) colimit in the ∞-category of prestacks. If G and X are
stacks with respect to some chosen topology τ , then the stackification of G\preX with
respect to this topology is denoted by G\τX or simply by G\X.

If G and X are presheaves of sets, then G\X is a presheaf with values in groupoids,
i.e. with values in 1-truncated anima.

By (1.1.1) we obtain

D(G\preX) = lim

(
. . . D(G×S G×S X)oo oo
oooo D(G×S X)oooo

oo D(X).
p∗2

oo
a∗oo

)

If G\X is the stackification for some topology that is coarser than the submersion
topology, then (1.1.2) shows that D(G\preX) = D(G\X).

1.2 Reminder on bounded (perfect) constructible complexes

In this section, Λ will denote a coherent ring (e.g. if Λ is noetherian).
Let X be a qcqs scheme. In D(X) we have the full subcategory

Dbcons(X) = Dbcons(Xét,Λ)

spanned by complexes that are bounded with (classical) constructible3 cohomology
sheaves. Then Dbcons(X) is a stable ∞-category. It is not presentable as it only admits
finite colimits but not arbitrary small colimits. The restriction of the standard t-
structure induces a t-structure on Dbcons(X)4.

There is the full subcategory Dc(X) = Dc(Xét,Λ) of D(X) consisting of perfect
constructible complexes5 which consists of those F in D(X) such that there exists a
finite stratification (Xi)i of X into constructible locally closed subschemes such that
F |Xi is locally constant with perfect values. It is a subcategory of Dbcons(X).

The standard t-structure does in general not restrict to Dc(X) as truncations of
perfect complexes in D(Λ) are in general not perfect. If Λ is a regular noetherian ring,
then the triangulated category of perfect complexes of Λ-modules is the same as the
bounded derived category of finitely generated Λ-modules and in particular is stable
under the standard t-structure. Hence Dc(Xét,Λ) carries an induced t-structure in this
case.

We have the following result [BS, 6.4.8].

3Here we mean the classical definition of constructibility in the sense of [SGA4, IX, 2.3], i.e., an
étale sheaf F on a qcqs scheme X is called constructible if there exists a finite decomposition of X into
locally closed constructible subschemes Yi such that F |Yi is locally constant with values in a finitely
presented Λ-module.

4For this we need that Λ is coherent: we have to ensure that finitely presented Λ-modules form an
abelian category.

5The category Dc(X) can be defined for an arbitrary ring.
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Proposition 1.2. Suppose that X is locally of finite Λ-cohomological dimension. Then
D(Xet,Λ) is already left complete (and hence equal to Dét(X,Λ)). Dét(X,Λ) is com-
pactly generated6 and the full subcategory of compact objects is Dc(Xét,Λ). In par-
ticular, the inclusion Dc(X) → D(X) induces an equivalence of stable ∞-categories
Ind(Dc(X))

∼→ D(X).

The hypothesis on X is for instance satisfied if X is of finite type over a separably
closed field k and if Λ is a torsion ring as we have H i(Uet,Λ) = 0 for i > dim(U) if U
is an affine scheme of finite type over k by Artin’s vanishing theorem.

If f : X → Y is a map of qcqs schemes, then the functor f∗ : D(Y )→ D(X) preserves
colimits. In particular, it is exact7. It induces exact functors f∗ : Dbcons(Y )→ Dbcons(X)
and f∗ : Dc(Y )→ Dc(X) and the first preserves the standard t-structure.

Moreover, there is the following result by Bhatt and Mathew [BM, 5.10 + 5.13] and
Hansen and Scholze [HS, 2.2].

Theorem 1.3. The functors X 7→ Dbcons(X) and X 7→ Dc(X) are finitary8 and are
hypercomplete sheaves for the arc topology.

Recall that a map f : X → Y of qcqs schemes is an arc-cover if for any rank ≤ 1
valuation ring V and any map SpecV → Y there exists an injective local map V →W
of valuation rings of rank ≤ 1 and a map SpecW → X making

SpecW //

��

X

f

��
SpecV // Y

commutative. Every universal submersion9 is an arc cover by [BM, 2.19]. Every faith-
fully flat map between qcqs schemes is a universal submersion [?, 14.43] (note that any
map between qcqs schemes is automatically quasi-compact).

Lemma 1.4. If f : X → Y is surjective and locally of finite presentation and G ∈
D(Y ) such that f∗G is contained in Dbcons(X) (resp. in Dc(X)), then G is contained in
Dbcons(Y ) (resp. in Dc(Y )).

There are similar results for surjective map of small v-stacks in [Sch, 20.5, 20.13]
whose ideas allow to prove the lemma for more general f . Here we follow the classical
proof in [SGA4, IX,2.8].

6in the sense of [Lu-HTT, 5.5.7.1]
7“exact” means, that f∗ commutes with finite limits, finite colimits, and preserves fiber sequences.

In fact each of these compatabilities implies the other two compatabilities for functors of stable ∞-
categories by [Lu-HA, 1.1.4.1].

8“finitary” means that for every filtered projective system of qcqs schemes Xi with affine transition
maps one has an equivalence colimiDbcons(Xi)

∼→ Dbcons(limiXi).
9A map f : X → Y of schemes is called submersion if the underlying continuous map of topological

spaces is a surjective quotient map. It is called a universal submersion if any base change of f is a
submersion.
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Proof. Replacing X by a scheme of the form
∐
iXi for a finite constructible stratifi-

cation (Xi)i of locally closed subschemes of finite presentation of X, we may assume
that f∗(G ) has locally constant finitely presented cohomology sheaves (resp. is locally
constant with perfect values). As these hypotheses are preserved under pullback, we
may assume by [EGA, IV, 17.16.4] that f is surjective and étale (even finite étale).
But then G has locally constant finitely presented cohomology sheaves (resp. is locally
constant with perfect values).

1.3 Perverse bounded constructible sheaves on schemes of finite type
over a field

Let us first introduce the classical theory of perverse sheaves (with respect to the middle
perversity) as defined in [BBDG, §4]. Let k be a field. In this section Λ will be a finite
ring whose order is invertible on X.

Let X be a scheme10 of finite type over k. If ix̄ : x̄ → X is a geometric point, we
denote by x ∈ X its image and set d(x) = dim {x} = trdeg(κ(x)/k). Denoting by
a : X → Spec k the structure map, we denote by KX := a!Λ the dualizing complex on
X.

Recall [BBDG] that there is perverse t-structure on Dbcons(X) by defining

(1.3.1)

pD≤0(X) = {F ∈ Dbcons(X) ; i∗x̄F ∈ D≤−d(x̄)(x̄) }
= {F ∈ Dbcons(X) ; dim SuppH iF ≤ −i },

pD≥0(X) = {F ∈ Dbcons(X) ; i!x̄F ∈ D≥−d(x̄)(x̄) }
= {F ∈ Dbcons(X) ; DX(F ) ∈ pD≤0(X) },

where DX(−) = RHom(−,KX) is the Verdier dual. The heart of this t-structure
is (the nerve of) an abelian category. It is denoted by Pervbcons(X). Elements in
Pervbcons(X) are called bounded constructible perverse sheaves.

Example 1.5 ([Ill, 1.4]). Let X be an lci scheme (e.g. if X is regular) that is equi-
dimensional of dimension n. Then ΛX [n] is a bounded constructible perverse sheaf.

Recall the following fact by [BBDG, 4.1.3] about pushforward of perverse sheaves.

Proposition 1.6. Let f : X → Y be a quasi-finite and affine map of schemes of finite
type over k. Then f∗ and f! are exact for the perverse t-structure. In particular, they
induce functors f∗, f! : Pervbcons(X)→ Pervbcons(Y ).

By [BBDG, 4.2.5], the proof of [LO, 4.1], and ??? we have the following properties
about pullback of perverse sheaves via smooth maps.

Proposition 1.7. Let f : X → Y be a smooth map of schemes of finite type over k of
relative dimension d = dim(f) (considered as locally constant function on X).

10In [BBDG] perverse schemes are only defined for separated schemes of finite type over k, but
separatedness is unnecessary, see [Ill].

5



(1) Then f∗[d] is exact for the perverse t-structure and in particular induces a functor
f∗[d] : Pervbcons(Y )→ Pervbcons(X).

(2) If f is in addition surjective, and G is in D(Y ) such that f∗G [d] is in pD≤0(X)
(resp. in pD≥0(X)), then G is in pD≤0(Y ) (resp. pD≥0(Y )).

(3) Suppose that f has in addition geometrically connected fibers. Then the functor
f∗[d] : Pervbcons(Y ) → Pervbcons(X) is fully faithful and its essential image consists
of those perverse sheaves F such that there exists an isomorphism p∗1F

∼= p∗2F in
Db

cons(X ×Y X), where pi : X ×Y X → X are the projections.

For smooth maps f we have f ! = f∗[2 dim(f)](dim f)11.

1.4 Unbounded perverse sheaves on schemes

The above results can be extended to define a perverse t-structure for arbitrary schemes
and for unbounded complexes without any constructibility hypothesis. We essen-
tially follow [Ga]. Although we work systematically with derived ∞-categories, the
t-structures on them only depend on their homotopy categories which allows us to ap-
ply the results of [Ga]. In the end, for us it will be only important to define perverse
sheaves for schemes of finite type over an algebraically closed field but without any
constructibility or boundedness assumption on the underlying objects in D(X).

To define a perverse t-structure one has to fix a (weak) perversity function in the
following sense.

Definition 1.8. Let X be scheme with underlying topological space |X|. A function
p : |X| → Z ∪ {∞} is called a weak perversity function if for all n ∈ Z the set {x ∈
X ; p(x) ≥ n } is ind-constructible12.

If |X| is locally noetherian, then p : |X| → Z ∪ {∞} is a weak perversity function if
and only if for every for every x ∈ X and every n ∈ Z one has p(y) ≥ min(p(x), n) for
y in some non-empty open subset of x [EGA, IV, 1.9.10]. This condition is for instance
satisfied y ∈ {x} implies p(y) ≥ p(x).

Remark 1.9. Let f : Y → X be a map of qcqs schemes and let p be a weak per-
versity function on X. As pre-images of ind-constructible sets under f are again ind-
constructible, p ◦ f is a weak perversity function on Y .

Example 1.10. Let X be a noetherian universally catenaire13 scheme. A function
δ : |X| → Z is called dimension function14 if for every immediate specialization y of x

11Here (−) denotes the tate twist which is of no consequence in this note since we ignore Galois
actions.

12A subset E of a locally spectral space Z is called ind-constructible if there exists an open covering
(Ui)i by spectral spaces such that E ∩ Ui is a union of constructible subsets of Ui for all i.

13See e.g. [GW, Section (14.25)] for a definition of a universally catenaire scheme. Most schemes
“arising in pratice” are universally catenaire. For instance, every scheme locally of finite type over a
Cohen Macaulay ring is universally catenaire [Mat, 17.9].

14There exist different definitions of a dimension function in the literature depending on whether one
considers Zariski specializations or étale specializations. They agree under our hypothesis that X is
noetherian and universally catenaire [ILO, XIV, 2.1.4].
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for points x, y ∈ X one has δ(y) = δ(x) − 1, see [ILO, XIV, 2.1.8]. Such a dimension
function always exists Zariski locally on X by [ILO, XIV, 2.2.1] and any two dimension
functions on X differ by a locally constant function [Stacks, 02IB].

If S is a noetherian universally catenaire scheme endowed with a dimension function
δS and f : X → S is a map of schemes of finite type. Then the map δX : |X| → Z given
by δX(x) = δS(f(x)) + trdegκ(f(x)) κ(x) is a dimension function on X [Stacks, 02JW].
In particular, if X is a scheme of finite type over a field k, then δ(x) := trdegk κ(x) =
dim {x} is a dimension function.

If δ is a dimension function on X, then −δ is a weak perversity function.

Let X be a qcqs scheme endowed with the étale topology and let Λ be any sheaf of
rings on Xét, e.g. the locally constant sheaf Z/nZ for some integer n15. Let p : |X| →
Z ∪ {∞} be a weak perversity function. As before, we denote geometric points over
x ∈ X by ix̄ : x̄→ X. Define full subcategories of D(Xét,Λ) by

(1.4.1)
pD≤0 := {F ∈ D(Xét,Λ) ; i∗x̄F ∈ D≤p(x)(Xét,Λ) for all x ∈ X},
pD≥0 := {F ∈ D+(Xét,Λ) ; i!x̄F ∈ D≥p(x)(Xét,Λ) for all x ∈ X}.

Then Gabber has shown in [Ga, 6] that this defines a t-structure on D(Xét,Λ),
called the perverse t-structure associated to the perversity function p. It induces a t-
structure on D+(Xét,Λ). If p is finite and bounded, then it also induces a t-structure
on Db(Xét,Λ) and D−(Xét,Λ).

We denote the heart of the perverse t-structure on D(Xét,Λ) by Pervp(X,Λ) or
simply by Perv(X). By [Ga, 7], Perv(X) has small colimits, a small set of generators,
and filtered colimits are exact.

Let us wrap up everything in the case of interest to us.

Remark 1.11 (Essential Case Here). Let X be of finite type over a separably closed
field k. In this case we always choose x 7→ −dim {x} as perversity function (Exam-
ple 1.10). Let Λ be a the constant ring sheaf Z/nZ with n invertible in k. Then one
has Dét(X,Λ) = D(Xét,Λ) since Xét has finite Λ-cohomological dimension ([BS, 6.4],
here we use that k is separably closed). Hence (1.4.1) defines a t-structure on Dét(X,Λ)
that we call the perverse t-structure on Dét(X,Λ). Its heart is denoted by Perv(X).

The perverse truncation functors preserve Dbcons(X) (see also [Ga, 8.2] for a very
general result that is also applicable here) and the above perverse t-structure generalizes
the t-structure defined in (1.3.1), i.e.

Pervbcons(X) = Perv(X) ∩ Dbcons(X).

Moreover, by [Ga, 7.2], the inclusion Pervbcons(X) → Perv(X) induces an equivalence
of abelian categories

(1.4.2) Ind(Pervbcons(X))
∼→ Perv(X),

15An other interesting example, which will not play any role in the sequel, is the structure sheaf OX .

7



where Ind(C) denotes the Ind-category16 of a category C, which is abelian if C is abelian.
Finally, Pervbcons(X) is a finite length abelian category by [Ga, 8.3].

Example 1.12. Let X = Spec k for a separably closed field k, let Λ = Z/nZ with n
invertible in k. Then the perverse t-structure on D(Spec k) = D(Λ) is the standard t-
structure and hence the abelian category of perverse sheaves on Spec k can be identified
with the category of Λ-modules. Then the full subcategory Pervbc(Spec k) is identified
with the category of finitely generated Λ-modules.

The equivalence (1.4.2) allows to extend certain functors from Pervbcons(−) to Perv(X)
using the following general recipe.

Remark 1.13. Let F : C → C′ be a functor of classical categories. Then there exists a
unique functor Ind(F ) : Ind(C) → Ind(C′) that extends F and commutes with filtered
colimits. It is given by

Ind(F )(A) = colim
(U→A)∈C/A

F (U) for A ∈ Ind(C).

If F is fully faithful, then Ind(F ) is fully faithful.

We apply this as follows.

Remark 1.14. Let X and Y be schemes of finite type over a separably closed field k.
Let F : D(X)→ D(Y ) be an exact functor of stable ∞-categories that commutes with
filtered colimits and that sends Pervbcons(X) to Pervbcons(Y ). Then F sends Perv(X)
to Perv(Y ). If F : Pervbcons(X) → Pervbcons(Y ) is fully faithful, then F : Perv(X) →
Perv(Y ) is fully faithful.

We can apply this in particular to the functors f! and f∗ as both have a right adjoint
functor and in particular commute with colimits.

Corollary 1.15. Let X and Y be schemes of finite type over a separably closed field
k.
(1) Let f : X → Y be a quasi-finite and affine map. Then f! induces a functor

Perv(X)→ Perv(Y ).
(2) Let f : X → Y be a smooth map of relative dimension d. Then f∗[d] = f ![−d](−d)

induces a functor Perv(Y ) → Perv(X). If f has in addition geometrically con-
nected fibers, then f∗[d] : Perv(Y )→ Perv(X) is fully faithful with essential image
consisting those F with p∗1F

∼= p∗2F .
(3) If f is smooth and surjective and G is in D(Y ) such that f∗G [d] is in Perv(X),

then G is in Perv(Y ).

16It is the full subcategory of Func(Copp, (Sets)) consisting of (set-valued) presheaves on C that are
isomorphic to a filtered colimit of representable objects. Here the filtered colimit is taken in the category
of presheaves. This is important since the Yonede embedding C → Func(Copp, (Sets)) usually does not
commute with colimits. See [KS, 6] for more details.
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Proof. Assertion (1) (resp. (2)) follows from the principle explained in Remark 1.14
using Proposition 1.6 (resp. Proposition 1.7).

Let us show (3). By hypothesis, we have

f∗pH i(G )[d] = pH i(f∗G [d]) = 0 for i 6= 0.

As f is smooth and surjective, it has étale locally a section. In particular f∗ : D(Y )→
D(X) is faithful. Hence we see pH i(G ) = 0 for all i 6= 0, i.e. G ∈ Perv(Y ).

Remark 1.16. Let f : X → Y be a universal homeomorphism. Then f∗ induces
equivalences D(Y )

∼→ D(X). Hence it induces an equivalence Perv(Y )
∼→ Perv(X).

1.5 Perverse sheaves on Artin stacks

Let k be a a separably closed field. Let Λ = Z/nZ for n invertible in k.
Corollary 1.15 implies that the following definitions of perverse sheaves on Artin

stacks is reasonable.

Definition 1.17. Let X be an Artin stack of finite type over k. An element F of
D(X ) = Dét(X ,Λ) is called perverse if there exists a smooth surjective map f : X → X
from a scheme X such that f∗F [dim f ]17 is in Perv(X).

Equivalently, f∗F [dim f ] is perverse for every smooth atlas f .

Remark 1.18. Let X be an Artin stack of finite type. Let f : X → X be an atlas
of relative dimension d and let X•/X be its Čech nerve. Then X is the colimit (in
the ∞-category of stacks for the fppf topology) of X•/X . As X → X is a universal
submersion we get D(X ) = limD(X•/X ).

All projections Xn+1/X → Xn/X are smooth of relative dimension d and all diagonal
maps Xn/X → Xn+1/X are regular immersion of codimension d. We can now modify
D(X•/X ) by shifting all pullback maps via their relative dimensions. In other words, we
shift pull back maps via projections D(Xn/X )→ D(Xn+1/X ) by d and we shift pullback
maps via diagonals D(Xn+1/X )→ D(Xn/X ) by −d. We obtain a new simplicial system
of stable∞-categories that we denote by D′(X•/X ). We still have limD′(X•/X ) = D(X )
and this equivalence induces an equivalence

Perv(X ) = lim Perv(X•/X ).

Corollary 1.15 (2),(3) imply that one has:

Proposition 1.19. Let g : Y → X be a smooth map of Artin stacks (not necessarily
representable). Then g∗[dim g] induces a functor Perv(X )→ Perv(Y).

This functor is fully faithful if g is in addition representable with geometrically con-
nected fibers. In this case its essentially image consists of those perverse sheaves F on
Y such that p∗2F

∼= p∗1F , where pi : Y ×X Y → Y are the projections.

17As before, we view the relative dimension of f as locally constant function on X.
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Proof. Choosing an atlas X → X and an atlas Y → X ×X Y we obtain a commutative
diagram

(*) Y
g̃ //

��

X

��
Y g // X ,

where the vertical maps are smooth and surjective, X and Y are schemes and g̃ is
smooth. Now the first assertion follows formally.

To see the second assertion, one can assume that (*) is cartesian since g is repre-
sentable. Then g̃ is smooth with geometrically connected fibers and dim g̃ = dim g. The
map g̃ induces a map g̃• : Y •/Y → X•/X such that g̃n : Y n/X → Xn/X is a smooth map
of relative dimension dim g between schemes and has geometrically connected fibers.
Hence it is fully faithful on perverse sheaves. We conclude by Remark 1.18.

Example 1.20. Let G be a smooth algebraic group over k and let BG be its classifying
stack.

The quotient map π : Spec k → BG is representable smooth of relative dimension
g := dimG. Hence π∗[g] yields a functor Perv(BG)→ Perv(k).

If G is connected, then π∗[g] yields an equivalence Perv(BG)→ Perv(k) = (Λ-Mod).
Indeed, we apply Proposition 1.19. It shows that π∗[g] is fully faithful. We have
Spec k ×BG Spec k = G and the projections to Spec k can be both identified with the
structure map. Hence the functor π∗[g] is also essentially surjective.

The structure map σ : BG→ Spec k is smooth of relative dimension −dim(G) and
σ∗[−g] defines a section of π∗[g], which is an inverse if G is connected.

A special case of Proposition 1.19 easily implies the following description of perverse
sheaves on quotient stacks.

Corollary 1.21. Let X be a scheme of finite type over k, let H be a connected smooth
algebraic group acting on X. Denote by a, p2 : H ×X → X the action and the projec-
tion, respectively. Let π : X → [H\X] the canonical map. Then π∗[dimH] induces an
equivalence of abelian categories

Perv([H\X]) ∼= {F ∈ Perv(X) ; a∗F ∼= p∗2F },

where a, p2 : H ×k X → X are the action map and the second projection, respectively.

This is the classical definition of H-equivariant perverse sheaves on X (at least for
bounded constructible perverse sheaves).

If H acts trivially on X in the situation of Corollary 1.21, then a = p2 and one
obtains an equivalence

Perv(H\X) ∼= Perv(X).

This is a special case of the following more general corollary.
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Corollary 1.22. Let X be a scheme of finite type over k, let G be smooth connected
affine group scheme that acts on X. Let H ⊆ G be a normal smooth connected subgroup
scheme of G that acts trivially on X. Let

π : G\X −→ (G/H)\X

be the canonical map of Artin stacks. The functor π∗[− dimH] yields an equivalence

Perv(G\X) ∼= Perv((G/H)\X).

Proof. This follows from Corollary 1.21.

Functoriality for certain pushforwards can also be transferred to Artin stacks.

Proposition 1.23. Let f : X → Y be a quasi-finite affine representable map of Artin
stacks of finite type over k. Then f! induces a functor Perv(X )→ Perv(Y).

If f is finite, then f! = f∗ and hence f∗ sends perverse sheaves to perverse sheaves.

Proof. Choose an atlas g : Y → Y and let d be the relative dimension of g. Form the
cartesian diagram

X
f̃ //

h
��

Y

g

��
X f // Y.

Then h is an atlas of relative dimension d. Hence if F ∈ Perv(X ), then h∗F [d] ∈
Perv(X) and hence

f̃!h
∗F [d] = g∗f!F [d] ∈ Perv(Y ),

where the equality holds by proper base change. But this means that f!F ∈ Perv(Y).

1.6 Perverse sheaves on ind-schemes

We continue to denote by k a separably closed field and by Λ = Z/nZ with n invertible
in k. By Remark 1.16 perverse sheaves do not see nilpotent elements. This leads us to
the following definition.

Definition 1.24. Let X be an ind-scheme and let Xred = colimiXi be a representa-
tion, where Xi are reduced schemes of finite type over k. For i ≤ j one has closed
immersions Xi → Xj which induce by push forward functors Perv(Xi) → Perv(Xj)
(Proposition 1.6). We define

Perv(X) := colim
i

Perv(Xi).

A standard argument shows that this is well defined, i.e., independent of the pre-
sentation Xred = colimiXi.

11



1.7 Flat perverse sheaves

If X is any geometric object for which we defined the notion of Perv(X) = Perv(X,Λ) ⊆
Dét(X,Λ). Then there is usually no good functoriality of Perv(X,Λ) in Λ as the fol-
lowing trivial example shows.

Example 1.25. Let X = Spec k for a separably closed field k. Then Perv(X,Λ)
is the category of Λ-modules. Hence if Λ → Λ′ is a map of noetherian rings (e.g.,
Z/`n → Z/`m for m ≤ n) and F ∈ Perv(X,Λ), then F ⊗L

Λ Λ′ will be in Perv(Λ′) if
and only if TorΛ

i (Λ′,F ) = 0 for i > 0, which is usually not the case. It is the case for
all maps Λ→ Λ′ if and only if F is flat as a Λ-module.

Therefore we have the following definition that ensures preservation of perversity
under change of coefficients.

Definition 1.26. We call F ∈ Perv(X,Λ) flat perverse if F ⊗L
Λ M ∈ Perv(X,Λ) for

all Λ-modules M .

Then F ∈ Perv(X,Λ) is flat perverse if and only if for every map Λ → Λ′ of
noetherian rings one has F ⊗L

Λ Λ′ ∈ Perv(X,Λ′).

2 Perverse Sheaves on the Hecke stack

2.1 Reminder on notation

To define perverse sheaves on the Hecke stack and define the Satake category we use
the following notation. We fix an algebraically closed field k. For any k-algebra R we
set DR := SpecR[[t]] and D∗R := SpecR((t)).

We fix a (connected) reductive group G over k. We choose a Borel subgroup and a
maximal torus T ⊆ B ⊆ G and we denote by X∗(T )+ the monoid of all B-dominant
coharacters of T . If S is any k-scheme we denote the trivial G-bundle over S by E triv

S .
Recall that there are defined (groupoid-valued) fpqc stacks

HkG,GrG : (k-Alg)→ (Grpd).

Here HkG is the (local) Hecke stack and HkG(R) is the groupoid of triples (E0,E1, α),
where E0 and E1 are G-bundles on DR and where α : E0|D∗R

∼→ E1|D∗R is an isomorphism
of G-bundles on D∗R. There is the obvious notion of an isomorphism of such triples.

The (local) affine Grassmannian GrG is given by defining GrG(R) the groupoid of
tuples (E0,E1, α, β) with (E0,E1, α) ∈ HkG(R) and where β : E1

∼→ E triv
DR is a trivializa-

tion of E1 over DR. Here the isomorphisms are given by those isomorphism of objects in
HkG(R) which induce on E triv the identity. Then GrG(R) is a static groupoid, i.e., it is
equivalent to a groupoid defined by a set. Hence we can consider GrG as an fpqc-sheaf.
There is an obvious forgetful map

GrG −→ HkG .
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We have seen that there is a commutative diagram, where the horizontal maps are
isomorphisms,

LG/L+G
∼ //

��

GrG

��
[L+G\LG/L+G] // HkG,

in particular, GrG → HkG is an L+G-torsor.
We fix a prime ` which is invertible in k and a finite ring Λ which is annihilated by

some power of `.

2.2 Perverse sheaves on the affine Grassmannian

We have seen that we can write the underlying reduced ind-scheme of each connected
component GrG,γ for γ ∈ π1(G) of the affine Grassmannian as GrG as filtered colimit
of Schubert varieties

GrG,γ,red = colim
{µ∈X∗(T )+ ; µ#=γ }

GrG,≤µ .

Thus we obtain
Perv(GrG,γ) = colim

µ,µ#=γ
Perv(GrG,≤µ).

Altogether we set18

Perv(GrG) :=
⊕

γ∈π1(G)

Perv(GrG,γ).

Recall that the Schubert varieties GrG,≤µ are projective irreducible varieties of dimen-
sion

d(µ) := 〈2ρ, µ〉,

where, as usual, ρ is the half sum of the positive roots of (G,B, T ).

2.3 Approximation of the Hecke stack by Artin stacks

We recall same facts about Schubert varieties in the affine Grassmannian (e.g. [Zh]).
The closed subschemes GrG,≤µ for µ ∈ X∗(T )+ of GrG are by definition L+(G)-stable
and the L+(G)-action on GrG,≤µ factors through an algebraic quotient Lµ := L+G/Kµ,
where Kµ is a connected normal closed subgroup scheme of L+G. We can arrange the
Kµ in such a way that for µ ≤ λ one has Kλ ⊆ Kµ. Then one has by definition an
isomorphism of smooth connected affine group schemes

Lλ/(Kµ/Kλ) ∼= Lµ,

where Kµ/Kλ is a normal connected smooth algebraic subgroup of Lλ. We may also
assume that limµ Lµ = L+G and hence limµKµ = 1.

18It would have been more conceptual to define ind-schemes as colimits of representable schemes
indexed by a category whose every connected component is filtered.
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We obtain maps of Artin stacks

(*) Lµ\GrG,≤µ
σ←− Lλ\GrG,≤µ

i−→ Lλ\GrG,≤λ .

The left map σ is induced by the projection Lλ → Lµ and hence is smooth of relative
dimension

dµ,λ := dim(Lµ)− dim(Lλ) ≤ 0

Hence σ∗[dµ,λ] induces by Corollary 1.22 an equivalence

Perv(Lµ\GrG,≤µ)
∼−→ Perv(Lλ\GrG,≤µ).

The right map i in (*) is induced by the closed immersion GrG,≤µ → GrG,≤λ and
hence is itself representable and a closed immersion. By Proposition 1.23, i∗ yields a
pushforward functor

i∗ : Perv(Lλ\GrG,≤µ) −→ Perv(Lλ\GrG,≤λ).

Composing σ∗[dµ,λ] and i∗ yields for µ ≤ λ transition functors

Perv(Lµ\GrG,≤µ) −→ Perv(Lλ\GrG,≤λ).

We set

(2.3.1) Perv(HkG) := colim
µ∈X∗(T )+

Perv(Lλ\GrG,≤λ).

This definition and Proposition 2.1 below can be generalized to arbitrary ind-finite-
type schemes endowed with an action by a pro-algebraic group such that the stabilizer
of each geometric point has only finitely many connected components, see [Zh, A.1.4].

2.4 Description of perverse sheaves on the Hecke stack

We now motivate the definition of perverse sheaves on the Hecke stack given in (2.3.1)
and show in particular that it is independent of the choice of the algebraic quotients
Lµ.

Proposition 2.1. Let a, p2 : L+G×GrG → GrG be the action and the second projection.
Then we have an equivalence of abelian categories

Perv(HkG) = {F ∈ Perv(GrG) ; a∗F ∼= p∗2F }

Proof. Consider for µ ≤ λ the commutative diagram, where the square is cartesian,

GrG,≤µ
πµ

ww

ı̃ //

πµ,λ

��

GrG,≤λ

πλ
��

Lµ\GrG,≤µ Lλ\GrG,≤µ
σoo i // Lλ\GrG,≤λ .
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We set `µ := dimLµ. Then the above diagram induces a diagram

Perv(GrG,≤µ)
ı̃∗ // Perv(GrG,≤λ)

Perv(Lµ\GrG,≤µ)

π∗µ[`µ]
44

σ∗[`µ−`λ] // Perv(Lλ\GrG,≤µ)

π∗µ,λ[`λ]

OO

i∗ // Perv(Lλ\GrG,≤λ)

π∗λ[`λ]

OO

which commutes by proper base change. Using Corollary 1.21 and passing to the limit
implies the claim (details omitted).

We have also the following description of Perv(HkG) which is the analogue of the
perversity definition on the Hecke stack in [FS].

Recall that the underlying topological space |HkG | is given by the partially ordered
set X∗(T )+. Let us describe for µ ∈ X∗(T )+ the residual gerbe in HkG. We set

L+Gµ := L+G ∩ tµL+(G)t−µ,

which is the stabilizer in L+G of the Schubert cell GrG,µ. As L+G acts transitively on
each Schubert cell, we have GrG,µ = L+G/L+Gµ. Hence the residual gerbe is given by

L+G\GrG,µ = L+Gµ\ Spec k.

Denote by iµ the locally closed immersion of the residual gerbe at the geometric point
µ of the Hecke stack and set dµ = dim GrG,µ = 〈2ρ, µ〉. Then

Perv(HkG) = {F ∈ D(HkG)bd ; i∗µF ∈ D≤−d(µ), i!µF ∈ D≥−d(µ) },

where for some ind-scheme X = colimXi one sets D(X)bd = colimD(Xi).

3 The Satake category

3.1 ULA-sheaves on ind-schemes

Definition and Remark 3.1. Let S be a scheme and let X = colimiXi be an ind-
scheme over S such that Xi → S is separated and of finite presentation. Then we call
F ∈ D(X)bd = colimD(Xi) universally locally acyclic over S if there exists Fi ∈ D(Xi)
mapping to F such that Fi is universally locally acyclic over S.

For this to be a decent definition recall that the pushforward of relative ULA-sheaves
under closed immersions (or, more generally, under proper maps of S-schemes) is again
relative ULA.

Example 3.2. Let S = Spec k be a field and X = colimXi an ind-scheme over k such
that Xi are of finite type and separated over k. Then F ∈ D(Xi) is ULA over Spec k
if and only if F is perfect constructible.

Proof missing.
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3.2 Definition of the Satake category

If F is in Perv(HkG) we can view it as a perverse sheaf of GrG by Proposition 2.1. In
particular, we have defined for F to be ULA over Spec k. We now can come to the
main definition.

Definition 3.3. We define the Satake category

SatG(Λ) := {F ∈ Perv(HkG) flat perverse ; F is ULA over Spec k}.

This is not an abelian category since cokernels of maps between flat perverse sheaves
are not necessarily flat perverse.

This is also seen by the following trivial example.

Example 3.4. Let G = 1 be the trivial group. Then GrG = HkG = Spec k and
Perv(HkG) can be identified with the category of Λ-modules. A perverse sheaf F ∈
Perv(HkG) is flat perverse, if and only if it is flat as a Λ-module. It is ULA over Spec k
if and only if F is perfect as a Λ-module. As perfect Λ-modules are in particular
of finite presentation, we see that Sat1(Λ) is the additive category of finite projective
Λ-modules.

If G = T is a torus, then GrT,red =
∐
µ∈X∗(T ) Spec k and this trivial example will be

the starting point for the proof of the geometric Satake equivalence.

3.3 The fiber functor

The Satake category carries a fiber functor

(3.3.1)

F : SatG(Λ)→ (Λ-Mod),

A 7→
⊕
k∈Z

Hk(GrG, A).

4 Convolution

4.1 Convolution on smooth group schemes

Let S be a scheme and let H → S be a smooth group scheme. Then the multiplication
m : H ×S H → H is smooth as well (it is the composition of the isomorphism of
S-schemes H ×S H

∼→ H ×S H, (h, h′) 7→ (hh′, h′) followed by the first projection
H ×S H → H). We define a convolution product on Dét(H,Λ) by

(4.1.1) A ∗B := Rm∗(p
∗
1A ⊗L p∗2B).

This defines a monoidal structure on Dét(H,Λ) (to see the associativity one uses smooth
base change).
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4.2 Convolutions on double quotients of smooth group schemes

More generally, let K ⊆ H be a smooth subgroup scheme and set X := K\H/K, where
we mean the stack quotient. It is an algebraic stack with H/K → K\H/K an atlas
by an algebraic space. Moreover, we let K act from the left on the algebraic space
K\H ×H/K by k · (h, h′) = (hk−1, kh′) and denote the quotient stack as usual by

K\H ×K H/K.

Then the multiplication on H and the projections define a “convolution diagram”

(4.2.1) X ×S X
(p1,p2)←−−−− K\H ×K H/K

m−−−−→ X.

Then (4.1.1) defines again a monoidal structure on Dét(X,Λ).

4.3 Convolution on D(HkG)

Next we imitate the above definition for HkK = L+G\LG/L+G. We set

HkG ×̃HkG := L+G\LG×L+G LG/L+G.

It is the fpqc stack whose R-valued points for a k-algebra R is the groupoid of tuples
(E1,E2,E3, α1, α2), where the Ei are G-bundles over DR and where

αi : Ei|D∗R
∼→ Ei+1|D∗R , i = 1, 2

are isomorphism of G-bundles over D∗R. Then the projections and the multiplication in
the convolution diagram take the form

pi : HkG ×̃HkG → HkG, (E1,E2,E3, α1, α2) 7→ (Ei,Ei+1, αi),

m : HkG ×̃HkG → HkG, (E1,E2,E3, α1, α2) 7→ (E1,E3, α2 ◦ α1).

Then we define again a monoidal structure on D(HkG)bd by (4.1.1). One checks asso-
ciativity by reducing to the finite-dimensional case (details omitted).

In the next talks it will be shown that the convolution preserves SatG(Λ) and that
(SatG(Λ), ∗) can be endowed with a commutativity constraint making it into a sym-
metric monoidal exact category. Moreover, one shows that the fiber functor F (3.3.1)
is compatible with monoidal structures.

If G = 1 (Example 3.4) and hence Sat1(Λ) is the category of finite projective Λ-
modules, the convolution is given by the tensor product of Λ-modules.

5 Variant for the global Hecke stack

For a smooth (geometrically) connected curve X over k and a finite set I one has global
variants of the affine Grassmannian and the Hecke stack

GrG,I −→ HkG,I −→ XI .

Then one defines the corresponding Satake category SatIG(Λ), the convolution, and the
fiber functor as above by replacing the words “perverse” by “relative perverse” and
“ULA over k” by “ULA over XI”.
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