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Throughout, k is a (commutative) field. We denote by ® the tensor product ®; over k. Moreover, an
algebra is an associative k-algebra with unit.

I. INTRODUCTION TO HOPF ALGEBRAS

1. Motivation

Given an algebra A and two left A-modules M and N, we would like to have a left A-module structure
on M ®; N.
There are some algebras A for which we know how to do this.

> Group algebras. Let G be a group. If M and N are two kG-modules, then M ® N is a kG-module for
the action
Vee G, Vm@ne M®N, gm®n)=gm® gn.

1

We have used the diagonal map G — G x G, which induces a k-linear map A : kG — k[G x G]
kG ® kG, and the action is defined by the composition

KCoMaN 25 kGokGo Mo N Y59 koo Mo kG o N ™ Mo N

where T(g®@m) =m®@ gand pp : kG M — Mand puy : kG® N — N are the structure maps of
M and N.

> Enveloping algebras of Lie algebras. Let g be a Lie algebra and let U(g) be its enveloping algebra. If
M and N are left U(g)-modules, then M ® N is a U(g)-module for the action

Vxeg Vm@ne MQN, x(m®n)=xm@n+me xn.



This action is similar to the previous one, for the map A : U(g) — U(g) ® U(g) defined on elements
x€gbyA(x) =x®1+1®x.

Hopf algebras are algebras endowed with a linear map A : H — H ® H that satisfy some extra
properties.

2. Bialgebras

We start by rewriting the axioms of an algebra in terms of commutative diagrams.

An algebra is a k-vector space A endowed with two k-linear maps y : A ® A — A (multiplication)
and 77 : k — A (unit: #(1) = 1,) that satisfy:

Associativity Unit
AoAeA e Asa keAlPS A0 ALY Ak
id@”l 5 ly . o ly o .

A®A— A A

where k ® A E) Aand AQ®k i A are the natural isomorphisms, which we view as identifications, so
that po (7 ®id) = id and p o (id ®7).

We shall now define bialgebras by formally dualising the structure maps and commutative diagrams.

Definition 1.1. A bialgebra is an algebra (B, i, ) endowed with algebra maps A : B— B®@ Band e : B — k,
respectively called the comultiplication and the counit, that satisfy

Coassociativity Counit
BoB®B A®idB®B k® B s®idB®Bid®sB®k
SN
id ®A O A o A ~
B® B A B B

that is, (A ®id) o A = (id ®A) o Aand (e ®id) o A = (id ®e) o A.

Notation 1.2. Given an element b € B, A(b) is an element of B ® B, that is, A(b) = Y_; a; ® b; for some
a;, b; in B. We shall use the Sweedler notation for this:

A(b) = Zb(l) &® b(z).
(b)

The coassociativity and counit axioms then become:
> Counit: Z(b) 8(17(1))17(2) =b= Z(b) b(1)£<b(2))

> Coassociativity:

(X)lbu) ® ( Y. (b)) ® <b(2>)<2>> =), ((
b

(b)) (b)
and we shall denote this by } ;) b(1) ® b(p) ® b(3).

)3
by

(b)) ) ® (b<1>><2>) ®Db(y),
)

Example I.3. (1) kis a bialgebra (with A =id = ¢).

(2) If G is a group, then the k-vector space kG with basis the elements of G is a bialgebra, in which the
multiplication extends the group law, and whose comultiplication and counit are determined by

A(g) =g®gande(g) =1 forallg e G.

(3) Let G be a finite group and let k© be the set of maps from G to k. This is a vector space (if f and
f'arein k® and A € k, then (f + f')(g) = f(g) + f'(g) and (Af)(g) = Af(g) forall g € G), with
basis {J4;¢ € G} with 6g(h) = 1if h = gand 6¢(h) = 0if h # g. (If f € kC then f = Yeec f(8)dg.)

In fact k© is a bialgebra, whose structure is determined by

o ifg=nh 1 ifg=e
5,0, =4 8 A(S,) = 5, 6, =Y 8, ®6,_ de(s,) =
5Oh {O otherwise, (dg) th:g h © O heZG h & Op-1¢ an e(dg) {0 ifg 4o

forall ¢ € G. The unit element is } o< Jg-



(4) Let V be any finite dimensional vector space. Then the tensor algebra T; (V) is a bialgebra, whose
comultiplication and counit are determined by

AD)=1®0v+0®1ifveV,A(l)=1®1
¢(v) = 01if v has positive degree, ¢(1) = 1.

There is a closed formula for A(x) with x = 11 ® --- ® v, € V®", given in terms of (p,n — p)-
shuffles in the symmetric group &, that is, permutations ¢ such that o(1) < --- < o(p) and
cp+1)<---<on):

M=) T (o @ ® ) @ (Uufprn) © D)
p=00€Shyn—p

Definition 1.4. Let B be a bialgebra and let T : B® B — B ® B be the isomorphism that sends a @ b to b ® a.
Set AP :=TtoA:B — B®B.
The bialgebra B is cocommutative if AP is equal to A.

Example L.5. The bialgebras k, kG and T;(V) are cocommutative. The bialgebra kC is cocommutative if
and only if G is abelian. If G is not abelian, then the bialgebra kG ® kG (see Lemma 1.6 below) is neither
commutative nor cocommutative.

Lemma L.6. Let (B,y,1,A,¢€) and (B', 1, n', N, €") be bialgebras. Then B ® B’ is a bialgebra, with structure
maps givenby 7 = e® ¢, 7(1) = (1) @71'(1),
i=pou)o(dor®id): (@@d)® (b)) — (axd)(beb)=abxadt

A=(d®T®id)o(ARA):bb = ) (ba)® b)) @ (ba) @by)
(0),(b")

where T : BB — B'®@Bsendb@0b' tob’ @ b.

Proof. Tt is well known that (B ® B/, fi, 7j) is an algebra. Let us check the counit axiom and the coassoci-
ativity axiom.

(E@id)oAbab) = (b%/) &(b(r) ® b{1))b(z) ® by = (b%/) e(b(1))€ (b{y))ba) @ biyy = bV’
(ideg) o A(b @ ') = (b%) &(b() ® big))b(a) ® by = (b%/) e(bia))e (bp))bay @ biyy = b@ b’
(A®id) o A(b®b') = o (hz » )((b(l))(l) ® (b(1)) 1)) ® (1)) 2) @ (b{1))(2)) @ (b)) @ (b]3)))
ATIATM) AT )

- o (; » )((b(l)) ® (b(1))) @ (b)) 1) @ (bla)) 1) @ ((b2)) 2) @ (b2)) 2))
(), (b2)). (b

= (id®A) oAb V)
using the counit and coassociativity axioms for B and B'.
We must finally show that £ and A are algebra maps. We have £(1® 1) = ¢(1)¢/(1) = 1and A(1®

1) = (1®1) ® (1®1), the unit in the algebra (B ® B") ® (B ® B’). Moreover, since ¢, ¢/, A and A’ are
algebra maps, we have

E(a@d)(bab)) = (e@e)(ab@a'b) = e(ab)d (a'b') = e(a)e' (a')e(b)e(V) = e(a®a )e(b@ b')

A(@@a)(beb)) =Aabed't’) = ( ); )((ab)u) ® (a't") 1)) ® ((ab) ) ® (a'0) ()
ab),(a't!



Lemma L7. Let (B, u,1,A,¢€) be a bialgebra. Then B°? = (B,u°?,n,A,€), B°P = (B, u,n,A“F,¢) and
BoP<oP = (B, u°?,n, AP €) are also bialgebras.

Proof. Exercise. O

We now introduce a new product, useful later on.

Definition 1.8. Let A be an algebra and let B be a bialgebra. Define a bilinear map

*: Homy(B,A) x Homy(B,A) — Homy (B, A)
(f8) — frg=pac(fwg)os
With the Sweedler notation, the definition becomes
(fxg)(b Zf )&(b(ay) forall b € B.

Lemma 1.9. The triple (Homy(B, A),*,1j4 o €p) is an algebra. The product  is called the convolution
product.

Proof. The product and unit are k-linear.
The product is associative:

(f % (g% h)) Zf )& *1)(b) Zf b)) (8(ba))h(bs))
:% b(1))8(b2))h(b(z) :(Xb)j(f*g)( 1))h(by) = ((f x8) < 1) (D).
The map 174 o e is a left and right unit for the product:
(14 0cB) * f)(b %m ep (b)) f (b)) = ZWA(l)f(eB(b(l))b(z>) = f(b)
(f % (14 o)) Zf )1a(en(b Zf 2))14(1) = £(b) O

Definition 1.10. A morphism of bialgebras from (B, u,1,A,¢) to (B',y',y', A, €') is a morphism of algebras
f : B— B’ that satisfies
"of=(f®f)oA:B—B @B andeof =e

that is, the diagrams

S

B® B B'® B
®W®

commuite.
Remark I.11. We denote by V* the k-dual Homy (V, k) of V. Given two vector spaces V and W, there is

a k-linear map A : V* @ W* — (V@ W)* whichsendsa ® B € V* @ W* to [v ® w +— a(v)B(w)]. This
map is injective but not surjective unless V or W is finite dimensional.

Proposition 1.12. Let (B, u, 1, A, €) be a finite dimensional bialgebra. Then B* is a bialgebra, with multiplica-
tion
U : B*® B* 4 = (B® B)

unit yp= = €" : k — B*, counit eg« = n* and comultiplication given by
-1
Ap-:B* 5 (B®B) — B* ® B”,

that is, Ag«(a) : a ® b — a(ab).
Moreover, if f : B — B’ is a morphism of bialgebras then f* : B’ — B* is a morphism of bialgebras.




Remark L.13. Using the Sweedler notation, we have pp:(a ® B)(x) = (aB)(x) = Ly) a(x(1))B(x(2))- In
fact, up- is the convolution product of the algebra B* = Homy (B, k).

Moreover, we have identified k with k* by sending 1 to idy in defining 7+ and eg+. With this identi-
fication, the unit element in B* is 57p+ (1) = ¢*(idy) = e and ep- (&) = a(1).

Moreover, we can multiply an element v in k* and an element « in B* as follows:

ya:B 5 koB S kek 03 k
H

a — 1®a — v1)®a(a) y(1)a(a).
The product a7y is defined similarly.

Proof of Proposition 1.12. From the remark above, it is clear that B* is an algebra (for the convolution
product, equal to yp+). The unit element is #; 0 € = idy oe = .

The maps ep+ and Ap-« are k-linear. We now check the counit axiom. For a« € B*, the map ((ep+ ®
id) o Ap+) (&) = Yoy ep(2a))a2) = L(a)(@@) o 1B)a(p) sends b € B to Y (1) 0 17)(Da(y) (b) =
Ap+(a)(1®b) = a(b) using the remark made before this proof. Therefore (ep- ® 1d) o Ap+ = id. Simil-
arly, (ld ®SB*) @) AB* =id.

Next, we prove that the coassociativity axiom is satisfied. For & € B*, the map ((Ap- ®1id) o
Ap+)(a) = Z(“)/(lx(l))(“(l))(l) X (0((1))(2) & &(2) sendsa®b®c € BRB® Bto Z(a),(uc(1>) a(1) (le)lk(z) (c) =
a(abc) and the map ((id ®(Ap+) o Ap«)(a) = X)) (1) © (2(2)) (1) ® (&(2))(2) sends a @ b® ¢ €
B® B®Bto Z(,X),(a(z)) a(1)(a)a(z) (be) = a(abe) so that (Ap+ ®id) o Ap+ = (id ®(Ap+) 0 Aps.

Finally, we must prove that e« and Ap- are algebra maps. For «, B in B,

eps(ap) = (ap) onp: 1— (ap)(1) = 06(1)[3(1) ( Jep+ (B)

Ap«(af): a®@b+— (ap)(ab) Za ((ab) (1) Z a(amybay)Blap)b))
(ab) (a),(b)

= Y agyag))ae)(ba)Ba)(ae)Be) (be)
(a),(b),(a),(B)

Y amy(aa)Bayae)ae) (ba)Be) (b))

(a) (0),(a),(B )
Z ( (“(2),3(2))(17)
(2).(B)
( @) (B @ B)) (@2 b)
a) (B)

= (Ap+(a)Ap+(B)) (a®b)

hence Ap- (aB) = Ap-(a)Ap+(B).
Now let f : B — B’ be a morphism of bialgebras. Then
(f*(ap)) (x) = (ap)(f(x)) = (f(z))w((f(?f))@))ﬁ((f(?f))(z))
= (Z);W(f(xu)))ﬁ(f(x(z))) = 2 (@)(xa) (7 (B) (x2) = (F (@)f*(B)) (x)

so that f*(ap) = f*(«)f*(B). Moreover, f*(nz+(1)) = f*(¢') = € o f = ¢, so that f* is a morphism of
algebras. We also have
ep o f'(w) = ep(aof) =aofonp: 1= a(f(1) =a(l) = ep=(a)(1)
Ap+(f*(x)) = Ap=(ao f):a®b > awo f(ab)
(ff®f7)ohp(a) = g(“(l) o f) @ (ap)of):a®b—a(f(a)f(b)) = a(f(ab))

so thatep- o f* = ep+ and Ap+ o f* = (f* ® f*) o Ap+. Therefore, f* is a morphism of bialgebras. O

Remark I.14. Note that the dual of a bialgebra is always an algebra (even if the bialgebra is note finite
dimensional).

Proposition 1.15. Let B be a finite dimensional bialgebra. Then the canonical isomorphism i : B — B** is an
isomorphism of bialgebras.




Proof. Let a, b be elements in B and let &, B be elements in B*. Write i, for i(a) (so that i,(«) = a(a)).
Then

igp(a) = a(ab) Zoc Zlg ))ip(2)) = (iaip) (@)

in(a) = a(l) = EB*( )= (773**(1))(04) = (1p+)(a)
Apes(ia) (0 @ B) = in(aB) = (xp)(a) = (Z):“( Blaw) Zla lagy = (Z):(ia(1>ia(2))(“ ®pB)
= (i) (A(a))) (¢ @ B)
ege (i) = ia(1p+) = i

and the result follows. O

Example 1.16. Let G be a finite group. Then the bialgebras kG and k© are dual to each other (up to
isomorphism).

Proof. The set {g;¢ € G} is a basis for kG, whose dual basis is {es; ¢ € G} where e : kG — k is defined
1 ifh=g

0 ifh#eg. Define a k-linear isomorphism ¢ : (kG)* — jXe by

on the given basis of kG by eg(h) = {

¢(eg) = dg forall g € G.
We must now prove that ¢ is an isomorphism of bialgebras.

> (P(l(kG)*) = ¢(€kG) = (P(ZgGG eg) = deG 5g = 1kc-

. 1 ifk=g=h
> For g,h,kin G, we have egey, (k) = ¥ eg(k))en(k)) = eg(k)en(k) = 0 otherwise hence

Sy ifg=h

0 otherwise.

eq ifg=nh
egly = {Og otherwise. Therefore ¢(egey,) = {

1 ifg=1
0 otherwise

1 ifg=1

~ so that
0 otherwise

> go(9leg)) = &cldg) = {

and )+ (eg) = eg(1) = {
gc(pleg)) = 8(kG)*(‘fg)~

> We have Ac(p(eg)) = DMa(dg) = Likecih—g On ® . Moreover Ayg)-(eg) sends a @ b to

eq(ab) = YhkeGuk—gen @ex ifab=g

0 otherwise so that (¢ © q))(A(kG)* (63)> = AkG(¢(eg))- O]

Proposition 1.17. Let B be a bialgebra. Then B is a bimodule over the algebra B*, where the left and right
actions are defined by

a—b=(idoa)oAb sz and b+ a=(a®id)oA(b sz
Proof. > Recall that the unit element in B* is €. Clearly,e =~ b=b=0b —¢.
> (af) = b = Lu)(aB)(b))bay = L) «(b2)B(bi))bay = L) Bbp)) (e — byy) = a —

():(b) ,B(b(z))b(l)) =a—(p— b)~
Similarly, b ~— (ap) = (b~ a) — B.

> (o = b) = B =YL abo)ba) — B =L x(b3)bo)Bba)) = Lepy« = boBbe)) =a —
(b — B). O

Definition 1.18. Let B be a bialgebra. An element x € B is called grouplike if x # 0 and A(x) = x ® x. The
set of grouplike elements in B is denoted by G(B).

Remark I.19. If x is a grouplike element in B, then ¢(x) = 1. Indeed, we have x = (e®id)(A(x)) = e(x)x
with x # 0.

Example 1.20. > In any bialgebra B, 1 is grouplike (since A is an algebra map).
> Let G be a group. Then G(kG) = G.



Proof. By definition of A, the elements in G are grouplike elements in kG.
Let x = Y occ Agg, with Ay € k for all g, be a grouplike element in kG. The identity A(x) = x ® x
becomes ) occ A8 ® g = Y nec AgAng ® h. In particular, /\z, = Agforallg € Gsothat Ay € {0;1}.

Moreover, £(x) = 1 so that },cgAg = 1. Therefore precisely one Ay is equal to 1, the others are
equal to 0, so that x € G. OJ

> Let G be a finite group. Then G (k¥) = Alg, (kG, k).
More generally,

‘ Proposition 1.21. Let B be a finite dimensional bialgebra. Then the set G(B*) is equal to Alg, (B, k). ‘

Proof. Note that both G(B*) and Alg, (B, k) are subsets of B*.
Let a be an element in B*. Then (Ap+(a))(a ® b) = a(ab) by definition of Ap+, (x @ )(a ®b) =

a(a)a(b) and a(1) = ep-(a) so that « is a grouplike element if and only if « is an algebra map. Hence
G(B*) = Alg,(B,k). O

‘ Proposition 1.22. Distinct grouplike elements are linearly independent. ‘

Proof. By induction on the number n of grouplike elements.

> Forn =2,if Myg1 + A2g2 = 0, applying € gives A\, = —Aj so that A1(¢g1 — g2) =0and Ay =0 =
As.

> Assume the result true for n — 1 grouplikes. Suppose that }_' ; A;g; = 0. Then
n n n—1
=AY Aigi ) — ) (Nigi) @ gn =} Aigi @ (8i — &n)-
i=1 i=1 i=1

Since {g1,-..,8n} is linearly independent, there are g7 € H* such that g7 (g;) = 4;. Apply g7 ®id
to the last relation for each j with 1 < j < n — 1. Then Aj(g; — gn) = 0for 1 < j < n —1so that

Aj=0. Finally, A, = 0 also. O
3. Hopf algebras
Definition 1.23. A Hopf algebra is a bialgebra H endowed with a linear map S : H — H that satisfies
S*idH =1no¢ :idH*S

or equivalently

Vx € H, ZS (1))%(2) = &(x 1—Zx
(%)

The map S is called the antipode of H.

Remark 1.24. The antipode is unique. Indeed, S is the inverse of idy for the convolution product, and
the inverse (when it exists) is unique.

Examples I.25. > k is a Hopf algebra, with antipode idy .
> For any finite group G, the bialgebra kG is a Hopf algebra with antipode defined by S(g) = g~
> For any group G, the bialgebra kC is a Hopf algebra with antipode defined by S(J;) = g1

> For any finite dimensional vector space V, the bialgebra T(V) is a Hopf algebra with antipode
determined by S(v) = —v forallv € V.

Proposition 1.26. Let H be a Hopf algebra. Then S : (H,u,1,A,¢) — (H, u°?,n, AP, ¢) is a morphism of
bialgebras. In other words, for all x, y in H, we have

S(xy) = S(y)S(x), S(1) =1, e(S(x) x) and ZS ) ®5(x(2)) = ((Z))(S(x))(z) ® (8(x)))-
S(x




Proof. > Leto,v: H® H — H be the linear maps defined by c(x ® y) = S(xy) and v(x ® y) =
S(y)S(x). Then

(xp)x@y) =Y o((x@y)a)u((x@y) ) = Y, o(xq) @ya)k(xe) @Yo)

(x®y) (x )(y)
= ) Sl 25 xy) 1)) (xy)2) = e(xy)1 = g o epen(x ®y)
(x),(y)
(nxv)(x =) u( ((X®y)( )) Y uxay @ya)v(xe) @y()
(x®y) ()(y)

= Y xymSye)S(xe) ZX 1)S(x(2))e(y) = e(x)e(y)1
(x),(y)

=e(xy)l =ngoegey(x @Yy).

Therefore p is invertible for the convolution product on Homy(H ® H, H), and by uniqueness of
the inverse, ¢ = p as required. Moreover, A(1) = 1® 1so that 1 = (1)1 = 15(1) = S(1) and
therefore S(1) = 1.

> We must prove that A? 0 S = (S® S) o A, which is equivalent to Ao S = (S® S) o AP Set
c=AoSandv = (S®S) o A“P. We have

U*A Z(T (2)) = gA(S(X(l) ZA X(l X(z A(s(x)l)

—5( )1®1—17H®H08H(x)

(Bx1)() = LAl Ju(x@) = LA ((S©9)(x3) ©x2)) = L Ax)(S(x) ®S(x(2))

X

)
= (Z;, X(1) ® x(2)) ($(x(4)) ® S(x(3))) = }_x1)S(x(a)) ® x2)S(x(3))
X

=) x1)S(x3) @e(x2))1 =) _x1)S(x(2)) @1 =e(x)1®1 = ugn o en(x).
X

—

Therefore A is invertible for the convolution product on Homy, (H,H ® H), with inverse o and v so
that ¢ = v as required. Finally,

28 e(x(1))x2))) = (Z):E(x(l))e(s(x(z))) = gﬁ(x(l)s(x(z))) =e(e(x)1) =e(x). O

Definition-Proposition 1.27. A morphism of Hopf algebras is a morphism f : H — H’ of the underlying
bialgebras. It satisfies the identity S’ o f = f o S.

Proof. Fix x € H. We have

((feS)*f)(x) =(Z>:(f05)(x( 1))f(x2)) (ZS ) fe(x)1) = e(x)1 = oe(x)

(f*(Sof))(x) = %f(x(l))(s o f)(x(2)) = (f(z))f X)1)S' (f(%) () = € (f(x))1 = e(x)1 = 7 oe(x).

Therefore f is invertible for the convolution product, with inverse S’ o f = f o S. O

Proposition 1.28. Let H be a finite dimensional Hopf algebra. Then H* is a Hopf algebra, whose antipode is
the transpose S* of the antipode S of H.
Moreover, the canonical isomorphism i : H — H** is an isomorphism of Hopf algebras.

Proof. We already know that H* is a bialgebra. We need only check that S* is the antipode, that is, that
S* xidy+ = - o ep+: & — a(1)e and that idp+ xS* = = o ege.

For any a« € H*, we have (S* xidp+)(a) = L) S*(a(1))a(2) = L) (®) © S)a(y). Forany x € H
we then have ((S* *xidp+)(a)) (x) = L(a),x) (1) (S(x1)))2) (X(2)) = L) 2(S(x(1))x(2)) = a(e(x)1) =
«(1)e(x) as required. The other identity is similar.

We know that i is an isomorphism of bialgebras, therefore it is an isomorphism of Hopf algebras. [



Example 1.29. Let G be a finite group. Then kG and k© are dual Hopf algebras.
Indeed, we already know that they are dual bialgebras. Moreover, the antipode on (kG)* is S* which
sends &y to S*(Jg) = 605 : h > Sg(h™1) = 04-1(h) so that S*(J¢g) = J 1. Therefore S* is the antipode

of kC.

Proposition 1.30. Let H be a finite dimensional Hopf algebra. Then the set G(H*) of grouplike elements in
H* is a group.

Proof. We prove that G(H") is a group for the convolution product a x f : x — ¥y a(x(1)) B(x(2)) of H*.
Recall that G(H*) = Alg, (H, k).

> The law is associative since H* is an associative algebra.

> The counit ¢ is in G(H™*) since it is an algebra map, and it is the unit element in H*, hence it is
the unit element in G(H*).

> Let a be an element in G(H*). Then

((x0S)xa)(h) = (Z);“(S(hu)))“(h(z)) = (Z);“(S(hu))h(z)) = a(e(h)1) = e(h)a(1) = e(h)
h h

so that (x 0 S) x & = €. Similarly, a x (x 0 S) = €. Therefore, « 0 S is the inverse of « in G(H*). O

Theorem 1.31. Let H be a finite dimensional Hopf algebra that is isomorphic to k™ as an algebra. Then there
exists a finite group G such that H = k© as Hopf algebras.

Proof. Set G = G(H") = Alg,(H, k). We know that G is a group, whose law is the restriction of the
product of H* to G.

> Let {ej,...,e,} be the canonical basis of k" = H. Let {¢}, ..., ¢}, } be the dual basis. Then ¢} € G
for all i; we need only check that e} (¢jex) = e} (e;)e; (ex) for all j, k and that e (1) = 1:
<> We have e;‘ (e]-ek) = e;k ((5] ke]') = 51',]'(5]‘,]( and 6;*(61)61* (ek) = (51‘,]'51‘,]( = 51',]'5]'/](.
> ef(1) =e( ;7:1 ej) = 27:1 ej(ej) = 1.

Consequently, span {e},...,e;} C kG C H* = span{e¢j,..., ¢}, so that kG = H* as vector
spaces.

> Since kG and H* have the same unit element and the same product, kG and H* are equal as
algebras. Moreover, they have the same comultiplication and counit (it is enough to check this on
the basis elements e7), therefore they are equal as bialgebras.

> Dualising gives H = kG, O

Definition 1.32. Let H be a Hopf algebra.
A Hopfideal in H is a two-sided ideal I in the algebra H such that

AI)CI®H+H®I, eI)=0 and S(I)CI.
A Hopf subalgebra of H is a subalgebra K of H that satisfies

A(K) CK®K and S(K)CK.

Lemma 1.33. Let H be a Hopf algebra and let E be a subset of H that satisfies A(E) C EQ H+ H®E,
¢(E) = 0and S(E) C E. Then the ideal in H generated by E is a Hopf ideal.

Proof. Let I be the ideal generated by E. Let i be an element in I, then h = } ;- ; uje;v; where [ is a finite
set, the ejarein E and the uj,vj are in H. Clearly, since ¢ is a morphism of algebras such that e(E) = 0,
we have ¢(I) = 0.



By assumption, A(e;) € E® H + H® E so that A(ej) = L crer @ Xyj + Lyer Yij @ er where R, T are
finite sets, the e,, ¢; are in E and the Xyj, Ytj are in H. We then have

A(h) =) Auj)Ae)) Aoy)

icl
=) (Z(”j)a) ® (“f)(2)> (Z er @ Xy + )y ®6t> (Z(vj)u) ® (Uf><z>)
jel \ (u;) reR teT ()

=Y. X X (wayer(®)a) ® (1) @)x(v) )

€1 (u)),(oy) reR
+2 2 X ) a) @ () @)e () )
Jj€J (uj),(vj) teTR

€EeH®I+I®H

and S(h) = ¥jc; S(v;)S(ej)S(u;) isin I since S(e;) is in E by assumption.
Therefore A(I) C I —+ H+ H® I and S(I) C I as required. O

Example I.34. Let g be a Lie algebra and let I be the ideal in T(g) generated by the elements xy — yx —
[x,y] for all x, y in g. Then I is a Hopf ideal in T(g).

Set E = {xy —yx—[x,y|;x € g,y € g} . We need only check that A(E) C EQ H+ H®E, ¢(E) =
0 and S(E) C E. The fact that e(E) = 0 is clear since ¢ vanishes on all elements of positive degree.
Moreover,

Alxy —yx = [x,y]) = A(x)A(y) — Ay)A(x) — A(lx, y])
=1lex+x1)(1ey+yel)—(1y+y®1)(10x+x®1)
—(1ekyl+xylel)
=xyR1—yxR1—[xy®1+10xy —1Qyx —1® [x,y]
=(y—yx—[xvy)®1+1® (xy—yx— [x,y]) EEQRH+ H®E
S(xy —yx = [x,y]) = S(y)S(x) = S(x)S(y) = S([x,y]) = (=y)(=x) = (=x)(=y) = (=[x ¥])
=yx—xy—[y,x] € E

Lemma 1.35. Let f: U — U’ and g: V. — V' be linear maps. Then Ker(f ® g¢) = Ker(f) @ V+U®
Ker(g).

Proof. The inclusion Ker(f) ® V 4+ U ® Ker(g) C Ker(f ® g) is clear.

Let {x;;i € I} be a basis of Ker(f), that we complete to obtain a basis {x;;i € I} U {y;;j € ]} of U.
The restriction of f to W = span {y]-; j €]} is injective. If X € Ker(f ® g), then X can be written
uniquely X = Y1 X ® z; + Ljej yj ® t; for some z;, t; in V. We then have Y ;c; f(y;) ® g(t;) = 0 with
the f(y;) linearly independent, therefore g(t;) = 0 for all j € ] (for j € ], let a; € U* be equal to 1 on
f(y;) and 0 on all other elements of a basis of U containing { f(y;);j € ]}, then apply «; ® idy). Finally
X e Ker(f) @ V+ U ®@Ker(g). O

Proposition 1.36. Let f : H — H' be a morphism of Hopf algebras. Then Ker f is a Hopf ideal in H and Im f
is a Hopf subalgebra of H'.

Proof. Since f is a morphism of algebras, Ker f is an ideal in H and Im f is a subalgebra of H.

Take x € Ker f. Then (f ® f)(A(x)) = A'(f(x)) = A’(0) = 0so that A(x) € Ker(f ® f) = Ker f ®
H + H ® Ker f by Lemma 1.35. Moreover, f(S(x)) = S'(f(x)) = S’(0) = 0 so that S(x) € Ker f. Finally,
e(x) =€ (f(x)) = €(0) = 0, therefore Ker f is a Hopf ideal of H.

Now let y = f(x) be an element of Im f. Then A'(y) = A'(f(x)) = (f® f)(A(x)) € Im(f ® f) =
Imf®Imfand S'(y) = S'(f(x)) = f(S(x)) € Im f. Therefore Im f is a Hopf subalgebra of H'. O

Proposition 1.37. Let H be a Hopf algebra and let I be a Hopf ideal in H. Then there exists a unique structure
of Hopf algebra on the algebra H/ I such that the natural projection 7t : H — H/I is a morphism of Hopf
algebras.
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Proof. The algebra map (mr® ) oA : H — H/I ® H/I vanishes on the ideal I, therefore it induces a
unique algebramap A: H/I — H/I® H/Isuchthat Ao 7w = (7 ® 71) o A. Similarly, ¢ induces a unique
algebra map & : H/I — k such that £o m = ¢ and S induces a unique algebra map S : H/I — (H/I)%
such that So 7t = o S.

H—A>H®H H$>k H—S>Hop

nl ln@n nl/ nl in
€

H/I‘KH/I@H/I H/I H/I4S_>(H/I)Op

Note that the product and unit maps on H/I satisfy jio (7 ® 71) = mo p and 7 = 7t o 5. We have
(A®id)oAonmr=(A®id)o(m@m)oA=(m@n® )0 (A®id) oA
=(ne@nemn)o(id®A)oA=(id@A)o(m@m)oA=(id®A)oAomn
(®id)ocAonmr = (¢®id)o (m@mM)oA=(eQm)oA=m
(id®g)oAomr=id®(E)o (MR M) oA = (TRe)oA=m
fio(S®id)oAomr=jfio(S®id)o(m@m)oA=jio(m@m)o(S®id)A=mouo(S®id)A
=7onog=7HoEorm
fio(id®S)oAom=jio(id®S)o(m@m)oA=jio(m®m)o(id®S)A = mopuo (id®S)A
=Tmonyoe=1qoEorm
and since 7 is surjective, we get (A®id) oA = (id®A) oA, (E®id) oA = id = (id®E) o A and
fio(S®id)oA =17o&=jio(id®S) o A so that H/I is a bialgebra with structure maps A, € and S.
It is clear from the formulas (or diagrams) above that 7r is a morphism of Hopf algebras. O

Example 1.38. Let g be a Lie algebra. Let U(g) = T(g)/ ({xy —yx — [x,y|;x € g,y € g}). Then U(g) is
a Hopf algebra, whose comultiplication and counit are determined by

Alx) =x®1+1®x forallxe€g
e(x) =0 forallx eg
e(1) =1.

Indeed, we have already seen that ({xy —yx — [x,y];x € g,y € g}) is a Hopf ideal in T(g).

II. INTRODUCTION TO HOPF BIMODULES.

Let A be an algebra. Recall that a left A-module is a vector space M endowed with a k-linear map
M A® M — M that satisfies

®id ®id
AAMZ A0 M k@ M—SAg@M
id®yMl O \L}‘M o © iF‘M
AR M M
UM

and a right A-module is a vector space M endowed with a k-linear map pp; : M ® A — M that satisfies

id ® id®
MRARA—YMe A Mo A< Mok

O
;1M®idl @) lﬂM 2 l ~

M@ATM

Finally, an A-bimodule is a left module and a right module M with structure maps jty : AQ M — M
and p, : M ® A — M that satisfy

®id
AsMo A S Mo A

” @y,l 5 ly,

AR®M W—> M
(that is, the left and right actions commute).

We will now formally dualise these definitions.
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Definition IL.1. Let B be a bialgebra. A left comodule over B is a pair (V, py) where V is a vector space and
pv : V= B® V is a linear map that satisfies

e®id

B®B®V B®V k@ V<—-BRYV
id®pVT @) TPV o © TPV
BRIV<———V \%

v

The map py is called the left coaction. A right comodule over B is a pair (V, py) where V is a vector space and
pv : V. = V ® B is a linear map that satisfies

id ® i
VoB®B - V&B V@B v gk
Pv®idT O TPV PVT © ~

V®B

1%

The map py is called the right coaction. A bicomodule over B is a left comodule and right comodule V with
structure maps pg : V — B® Vand p, : V — V ® B that commute:

B®V®B V®B

id Kpr T O Tpr

B®V<p£—V

Notation II.2. There is also a Sweedler notation for comodules.

> 1If V is a right B-comodule, we put py (v) = ¥.() v(0) ® v(1). The axioms become, forallv € V,

Y, mo®@(ma))a)®(ma)a = Y, (me)o ® (me))w @mp)
(m),(m 1)) (m),(m(o))

Zm ®1’ﬂ()

> If V is a left B-comodule, we put py (v) = ¥(,) v(_1) ® v(g). The axioms become, forallv € V,

Y (m1))a) ® (m1) @) @mg) = Z m(—1) ® (mg))(-1) © (m(0)) o)
(m),(m(_qy) (m),(m )

—Zm 2) @m(_q) @ mg).

Example IL3. > H is a bicomodule over itself, using A.

> k is a bicomodule over H, using #: for any A € k, py(A) = 1y ® A and p;(A) = A ® 1. Using
the identifications k ® H = H = H ® k, both coactions are given by 7. This is called the trivial
bicomodule (or comodule if we forget one of the structures).

Examples of constructions of new H-(co)modules over a Hopf algebra H.
> Let M be a left H-module. Then M is a right H-module via S, that is,
Vhe HVmeM, m<h=S(h)m.
Similarly, every right H-module is a left H-module via S.
> Let M be a left H-module. It is well known that the k-dual M* is a right H-module:
Vo € M ,YVhe HVme M, (h-a)(m)=wa(mh)
Hence M* is a left H-module via S.
> Let M and N be two left H-modules. Then M ® N is a left H-module via A, that is,

Vh € HVm € M,Vn € N, h(m@n) :Zh(l)m®h(2)n.
(1)

This action of H on M ® N is called diagonal.
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> We can dualise the previous construction. Let M and N be two left H-comodules. Then M ® N is
a left H-comodule with coaction

omeN = (1 ®id) o ([d®T®id) o (A® A),

thatis, pmen (M ® 1) = L) (n) M(—1)1(—1) @ M(g) @ n(g). This coaction is called codiagonal.

Definition I1.4. Let M and N be two left comodules over B. A morphism of left comodules from M to N is a
linear map f : M — N such that py o f = (id ®f) o pp, that is,

M——N

PM\L O \LPN

A morphism of right comodules is defined similarly. A morphism of bicomodules is a morphism of left and
right comodules.

We shall now combine module and comodule structures.

Definition I1.5. Let H be a Hopf algebra. A left Hopf module over H is a left H-module M that is also a
left comodule whose structure map ppy : M — H ® M is a morphism of left H-modules, where the left H-
module structure on H ® M is the diagonal structure given above (with the Sweedler notation, this can be written
Yy ) 1) ® (i) o) = L (1 1y 1-1) @ iy o))

A morphism of left Hopf modules is a morphism of left H-modules that is also a morphism of left H-
comodules.

The definitions of a right Hopf module over H and of a morphism of right Hopf modules are similar.

A Hopf bimodule over H is an H-bimodule M that is also a bicomodule whose structure maps p; : M —
H® Mand p, : M — M ® H are morphisms of H-bimodules. A morphism of Hopf bimodules is a morphism
of H-bimodules that is also a morphism of H-bicomodules.

Example II.6. > Let H be a Hopf algebra. Then H is a left (resp. right) Hopf module with coaction
A.

> Let M be any left H-module. Then H ® M is a left H-module for the diagonal action. It is
moreover a left Hopf module with coaction A ® id .

Proof. The fact that H ® M is a left comodule follows from the properties of A. We must check that
p = A ®id is a morphism of left H-modules. Let 4, be elements in H and m be an element of M.
Then

(1), (a)

plath@m)) =pQ amh@agm) =) Aagh) @agm= Y, agha) @aghe) @agm
(a) (a) (h),(a)

so that ap(h @ m) = p(a(h @ m)). O

{Zp(h & m) =a (Zh(l) (9 h(2> & m) = Z a(l)h(l) (9 ﬂ(z)h(z) & 11(3)771
(h)

> Let V be a vector space. Then V is a left H-module via ¢ (that is, 1 - v = ¢(h)v for v € V and
h € H, we say the V is a trivial left H-module). Therefore M = H ® V is a left Hopf module, with
UM = p®idand py = A ®id.
Indeed, a(h ®v) = ¥ aqyh @ e(ap))v = L) ap)e(ap))h®@v =ah®o.
This will be called a trivial Hopf module.

> H is a Hopf bimodule for the multiplication and comultiplication of H.

> Let M and N be Hopf bimodules (eg. M = H = N) and let V be a bicomodule. Then M ® V ® N
is a Hopf bimodule with the following structure maps:

h-(m@o@n) = (hm)@van, pm@oen)= Y  m_yoC i) ® (mg) e @n()),
(m),(v),(n)

(meuven)-h=moo (nh), p(m@oen)= Y  (mg v ng) @ mnqgoa)nm)
(m),(v),(n)
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foranyh € H,m € M, n € N and v € V (the coactions are codiagonal).
In particular, taking V' = k, the tensor product of Hopf bimodules is a Hopf bimodule as above.
For instance, H®" is a Hopf bimodule with codiagonal coactions for any n € IN.

> Let M and N be Hopf bimodules (¢g. M = H = N) and let W be a comodule. Then M ® W ® N
is a Hopf bimodule with the following structure maps:

h-(me@wen) =) (hgym) @ (hgw) @ (hgn),  p(m@wen) = Zm 0 QW n),
()

(mewen)-h=) (mhy) @ (whp) @ (nh),  epm@weon) = Z(m QwRn()) @n)
(h) (n)

foranyh € H,m € M, n € N and w € W (the actions are diagonal).

In particular, taking W = k, the tensor product of Hopf bimodules is a Hopf bimodule as above
(the structure is not the same as in the previous example). For instance, H*" is a Hopf bimodule
for any with diagonal actions n € IN.

We shall now see that every Hopf module is isomorphic to a trivial Hopf module H ® V. For this we
need the following definition.

Definition IL.7. Let B be a bialgebra and let M be a left B-comodule. The space of (left) coinvariants of M is the
vector space TM = {m € M;p(m) =1@m}.

Theorem I1.8 (Fundamental Theorem for Hopf modules). Let H be a Hopf algebra and let M be a left
Hopf module. Then M = H @ " M as left Hopf modules, where H @ ™ M is a trivial Hopf module.
In particular, M is a free left H-module of rank dimy ' M.

Proof. Define ¢ : H® HM — M by ¢o(h®v) = hvand ¢ : M — H® M by y(m) = Y(m) M(—2) @
S(m(-1))m)-
> We first check that (M) C H® M.

(Z)P(S(m(q))m(o)) = (Z)S(m(fl))P(m(O)) = (Z)S(m(fz))(m(fl) ® mg))

= ), (S(mo)aym—1) @ (S(m_2))) )M
(m),(S(m))

=) S(m(_z))m(_1) @ S(m_g))m) = ) e(m(_1))1® S(m(_2))m)
(m)

=2 1®5(m_y))m)

so that S(m(_y))mg) € Hp.
> We now check that ¢ is a bijection.

pooh®v) =y(hv) = ) (hv)_y @ S((ho)(_1))(hv) o) = Y, hayo(—2) @ S(he)v—1))h3)0(0)
(hv) (h),(v)

H
(ve, MZh @ S(h))h v—zh o =h@v
(0
Z 9(m(_2) ® S(m(_1))m(q)) = (Z%”H—z)S m(-1))m(0)
= Z (m1)) )S((m(-1)) @) )m() = ) e(my))m) = m
(), (1) (m)

sothatpop =idand poyp =1id.

> We finally prove that ¢ is a morphism of Hopf modules. It is clearly an H-module morphism,
and, since v € A M,

pop(h®v)=p(hv) = Y hqyo_1)®hoog) = Zh ) @ b0
(h),(v)

=) ha) @ @(hp) @) = (id®e) th oy ®0) = (id@g)(o(h ®v))
)

so thatpo ¢ = (id ®¢) o p. O
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ITI. QUIVER ALGEBRAS

1. Path algebra and identification with a tensor algebra

Definition III.1. Recall from Patrick Le Meur’s lectures that a quiver is an oriented graph I'. We denote by Ty
the set of vertices, I'1 the set of arrows and more generally 'y, the set of paths of length n in I'. We shall always
assume that the quiver is finite, that is, that Ty and Ty are finite sets. There are two maps s,t : I'1 — Ty, which
associate to an arrow in I its source and its target respectively.

The path algebra kI is the k-vector space with basis the set J,en I'n of paths in ', and the product of two
concatenation of p and g if t(p) = s(q)
0 otherwise.
The algebra kT is graded, with (kI'),, = kI'y,.

We will show that kI is isomorphic to a tensor algebra.

paths p and q is given by pq =

Definition II1.2. Let R be a k-algebra and let M be an R-bimodule. The tensor algebra of M over R is the
R-bimodule TR (M) = @pen TR(M) := R & @,en+ MER" in which the product is defined by

(X1 @R+ ®rXp) - (Y1 @R ®RYq) = X1 ®R "+ OR Xp QR Y1 R " * @R Yq
fOI’X] ®R---®Rxp c TIZ(M),yl ®R"'®qu S Tg(M)

First recall the universal property of the tensor algebra Tg(M) (where R is a k-algebra and M is an
R-bimodule).

Proposition I11.3. For any k-algebra A and any homomorphisms g : R — A of k-algebras and ¢p; : M — A
of R-bimodules, where A is an R-bimodule via ¢, there exists a unique homomorphism ® : Tr(M) — A of
k-algebras such that ®|g = g and P |1 = -

If moreover A = @,,cn An is graded, Im pr C Ag and Im @1 C Ay, then O is graded.

Proof. > Uniqueness. If & : Tr(M) — A is an algebra map such that ® g = g and @y = ¢um,
then <I>|R = QR = CID‘R and, forn > 1land xq,...,x, In M,

P(x1 @R+ O Xn) = P(x1) -+ P(xn) = um(x1) - Pum(xn) = P(x1 @R -+ DR Xn)-
Since the x; ®g - - - ®R X, generate TI? (M) as an abelian group, ® is completely determined in a
unique way.

> Existence. Let ® be the additive map defined by ®z = ¢r and D(x; QR+ Qr Xp) =
®(x1) - @(xy) for n > 1and xq,...,x, in M. Then @3y = @ so that we need only prove
that @ is a map of algebras. Note that (1) = ¢r(1) = 1 and, if x and y have degree 0 we have

®(xy) = pr(xy) = ¢r(x)Pr(y) = ®(x)P(y). Morever, if x has degree 0 and y = y; ®g - - Qr Yy
has degree at least 1, we have

@ (xy) = P(xy1 ®r Y2 @R~ @R Yq) = eMm(xy1)Pm(y2) - Pm(¥q) = er(X)Pm(y1) -+ - em(yq)
= O(x)@(y).

Similarly, if y has degree 0 and x has degree at least 1, then ®(xy) = ®(x)P(y). Finally, if both
X=X QR QrXpandy = y; Qg - - - Qg Y4 have degree at least 1, then

D(xy) = P(x1 DR -+ DR Xp DR Y1 DR " DR Yq)
= om(x1) - om(xp)om(y1) - - om(yq) = @(x)D(y).

> In the graded case, gr(r) € Ap and ¢p(x;) € A; for all i so that for n > 1 we have ®(x; ®g
-+ @R Xn) € Ay (since A is graded) so that ®(T{(M)) C A, for all n. O

Corollary IIL.4. Let T be a quiver. Let I'y be the set of vertices in I and let I'y be the set of arrows in kI'. Let
kT'o be the semisimple commutative k-subalgebra of kI" with basis T'y.
Then kT'y is a kT'g-bimodule and the graded k-algebra kT is isomorphic to Tyr, (kT'y).

Proof. Set R := kI'p and M = kI'y. Then the inclusions ¢g : R = kI'y < kI' and ¢ : M = kI'y < kI are
respectively a k-algebra map and an R-bimodule morphism. Therefore there is a unique k-algebra map
® : Tr(M) — kI such that &g = @ and ®|); = ¢;1. Moreover, this map is graded.
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To prove that ® is bijective, we need only prove that the restriction ®;, : Tg(M) — (kI'), = kL', is
bijective. This is clearly true for n = 0 and n = 1. Since I'; is a k-basis of M, we have, for n > 2,

T,R"(M) = M®R" = (kI)**" = P kay Q- - Qg ke = b kay @R -+ g kay
ooy €T ey €T
A= t(zxi):g(locprfé),i:ll,...,n—l

= @ k061®R-"®RkOCn

aq-an €0y
so that B = {a) ®g - - ®r an; 1 - - - &y € Ty} is a basis of T{(M). Since ®(B) = Iy, it is a basis of (kT'),
and ®,, is bijective as required. O

2. Conditions for a tensor algebra to be a graded Hopf algebra
Definition II1.5. A bialgebra H is graded if H = @, o Hy, is graded as an algebra and

€= EH,

n
A(H,) C @ Hy @ Hyyp
p=0

If H is a Hopf algebra, then it is graded if it is graded as a bialgebra and
S(Hy) C H,.

Proposition IIL.6. Let R be a k-algebra and let M be an R-bimodule. If Tr (M) is a graded Hopf algebra, then
R is a Hopf subalgebra of Tr (M) and M is a Hopf bimodule over R.

Proof. Assume that Tr(M) is a graded Hopf algebra with comultiplication A, counit ¢ and antipode S.
These structure maps induce the following k-linear maps:

erR =€ : R=TY(M) — k
AR = Ajg: R=TR(M) — T(M) ® TR(M) = R® R
Sr =Sg : R=TR(M) — TR(M) =R

and the subalgebra R of Tr(M) endowed with these maps is clearly a Hopf subalgebra of Tgr(M).
Moreover, we also have

A+ M = T(M) = T(M) @ Tg(M) & Tg(M) ® TR(M) = (R® M) & (M ® R).

Letp; : (ROM)d (M®R) = R®Mand py : (R®M) B (M®R) - M® R be the natural projections,
and define

pr:M— R Mbypy = p1olny
pr:M— M®Rbypr =proly.
We have (¢g ®id) o p, = 0 and (id ®eR) o p1 = 0 so that
(8R®id)0pg = (€R®id)OA|M—(£R®id)0p20A‘M:idM

and similarly (id ®¢g) o p, = idps.
The maps (A ®id) o A and (id ®A) o A restricted to M take valuesin (R R M) & (ROM®@R) @
(M®R®R). Let
m: (RIRIM)D (RIMRR)® (M®R®R) > RR®M
m: (ROROM)® (ROMER) & (M®R®R) = ROM® R
m3: (RORGM)® (REMOR)® (MOR®R) = M@ R® R

be the natural projections. Then applying 711, 71, and 713 to the identity (A ®id) o A = (id ®A) o A gives,
in that order,

(AR ®@idp) o p, = (idg ®py) © p¢
(o @idR) o pr = (id ®pr) © py
(pr ®1idR) o pr = (idp ®pr) © pr

so that M is a Hopf bimodule over R. O
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The converse is also true. We shall need the following result.

Theorem II1.7 (Takeuchi). Let H = @,,cn Hy be a graded bialgebra such that Hy is a Hopf algebra. Then H
is a graded Hopf algebra.

Proof. We must prove that H has an antipode, that is, that id; is #-invertible.

> Take f € Endi(H) a graded map such that f|p, is the unit of Endy(Hy) for the convolution
product of Hy. Then f is invertible for the convolution product of H.

Indeed, consider h = 5 o¢— f. Then hjy, = 0. By induction, h*" vanishes on @<, H;s so that
noe+ Y ,en+ B is well-defined on H. Moreover, it is the convolution inverse of yoe —h = f,
and it is graded since each #*" is graded.

> Now consider the antipode S of Hy. Let S : H — H be any graded k-linear extension of S to
H. Then idy xS and idy S restrict to 77 o € on Hy, hence are convolution invertible with graded
inverse. Therefore idy has a graded convolution inverse. O

‘ Theorem II1.8 (Nichols). Let R be a Hopf algebra and M a Hopf bimodule. Then Tg (M) is a bialgebra. ‘

Proof. Denoteby py: M — R® M and p, : M - M ® R the R-bicomodule structures on M.

Consider the graded algebra Tg (M) ® T (M), where (Tr (M) ® Tr(M))n = @ Tk (M) @ T~ (M).
The comultiplication Ag : R =+ R ® R of R is a morphism of algebras whose image is contained in
(Tr(M) ® Tr(M))o and the map A : M — Tr(M) ® Tr(M) defined by A1 = p; + p; is a morphism of
R-bimodules whose image is contained in (Tg (M) ® Tr(M))1. Therefore they induce a graded algebra
morphism A : Tg(M) — Tr(M) ® Tr(M).

The field k may be viewed as a graded algebra, concentrated in degree 0. The couniteg : R — kisa
morphism of algebras whose image is contained in the degree 0 part of k and the map ¢ : M — k defined
by ¢ = 0 is a morphism of R-bimodules whose image is contained in the degree 1 part of k. Therefore
they induce a graded algebra morphism ¢ : Tr(M) — k.

Moreover, the R-bimodule maps (A ® id) o A and (id ®A) o A are equal on M:

(A®id) o A(m) = (A®id) o py(m) + (A ®id) o p,(m)

(id ®p¢) 0 pr(m) + (pp ®id) o p,(m) + (or @ id) © pr(m)
(id ®p¢) o pe(m) + (id ®pr) 0 pg(m) + (id ®A) o py(m)
(id ®A) 0 pp(m) + (id ®A) 0 p,(m) = (id ®A) 0 A(m).

Therefore (A ®id) o A and (id ®A) o A are equal on Tgr (M) by the uniqueness in the universal property.
The R-bimodule maps (e ® id) o A, id and (id ®¢) o A are equal on M (eg. (e ®id) o A(m) = (e®id) o
pe(m) + (e ®@id) o pr(m) = m + 0 = m), hence equal on Tg (M) by uniqueness.

Therefore Tg (M) is a graded bialgebra. O

‘ Corollary II1.9. Let R be a Hopf algebra and M a Hopf bimodule. Then Tr (M) is a graded Hopf algebra. ‘

Proof. By Nichols’ theorem, Tg(M) is a graded bialgebra. Since T3(M) = R is a Hopf algebra, by
Takeuchi’s theorem, Tr(M) is a graded Hopf algebra. O

IV. CONDITIONS FOR A PATH ALGEBRA TO BE A GRADED HOPF ALGEBRA.

We follow essentially the paper [GS], and explain at the end of this section how [CR] ties in with this.

First assume that kI is a graded Hopf algebra. Then kI'y (the degree 0 part) is a Hopf algebra. Since
it is isomorphic to k" with n = #I'y as an algebra, it is isomorphic to kG for a group G with #G = #I' by
Theorem 1.31. Therefore we may set I'g = {vg ;9 € G} and the structure maps of kI'y are given by

_ _Jug ifg=h
Avg) = 2 U ® Ui 8 = {0 otherwise

heG
1 ifg=1 @
= 1 =
e(vg) {0 otherwise 1(1) g;’; s
S(vg) = vg1
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Now set R = kT'g and M = kT'y. There is a projection kI' — kI'g = R = kG = (kG)* of Hopf algebras
so that dualising gives an algebra embedding kG = (kG)** < (kI')*. Since kT is a (kI')*-bimodule by
Proposition 1.17, it is also a kG-bimodule via this embedding.

We have § — v, = Yreg §(0k-14)0k = Vg1 and vy = § = Yireg §(0k) V1) = Vg1, (View G as the
dual basis of {vg; g € G}).

Since M is a Hopf bimodule over R by Proposition II1.6, we have A(M) C (R® M) & (M ® R).
Therefore, for x € M we can write A(x) = Yo (vg ® yg + zg ® vg). Therefore,

g—x=Y (s(yn)on+8(vn)zy) = g
heG

X—g= h%(g(vh)yh +&(zn)on) = yg

so that A(x) = Lyeq(og ® (x < g) + (5 = x) @ 0g).
Ford, f in G, set ;M := v;Muy (this is the notation used in [CR], it is denoted by Vjﬁl in [GS]). Then
M =@, fec 4My. Now take x € ;My. we have x = v;xvf so that

A(x) = A(vg)A(x)A(vy)
= Y (@) (0 ®@x —k+k—x@0)(0y ® V1)

hkteG

= Z Oy X Uh—ld(x — I’l)vh—lf + Z U gx—1 (k — .X)'Ufk—l &® Ok
heG keG

_ng (x—=g) (géx)®vg).
g€G

Identifying the terms in R ® M and applying ¢ ® idpy gives x — g = Ug—ld(x — g)vg,lf sothatx — g €

g*ldMgflf‘ Similarly, g — x € dg,]Mfg—l

Therefore, the left action of kG on kI' induces k-linear maps
de(g) . de — dg,] Mfg—l

for g, f,d € G. They are isomorphisms, with de(g)’l = gg Lo (g7h).

Now fix a basis of M}, for each h € G (eg. the set of arrows from 1 to h). Since ;My = 1 L41 (d=1) (1Mgg-1),

we can choose a basis of ;M such that the matrix of ;L¢(g) is the identity matrix for all d, f, g.
In particular, the left action of G on kI' induces an action of G on I': it sends arrow to arrow and, if
p=aj...a,isapath,theng =~ p=(g—ay)--- (g — a,). Indeed,

g — (ab) Z 8(a2)b(2))a)ba)
= Z 8<1>(“<z))8<z>(ﬂ<z>)“<l>b<1>
(),(®),
Z ﬂ(1 ap))amyape) = (g —a)(g —b)
(a),(b

and conclude by induction. Note that ¢ — pis a path from v, o1 t0 0y, yo-1
Similarly, the right action of kG on kI" induces k-linear isomorphisms

de(g) . de — g_ldMg—lf

for g, f,d € G (whose matrices are not the identity in general).
These isomorphisms satisfy the following relations:

ag 1 Rpg1(1) gL () = j14Ln-17(8) aRy () ()

o 1aRg17 (1) aRf(8) = aRs(gh). (©)
Definition IV.1 ([GS]). Let T be a quiver with Ty = {vy; ¢ € G} for some group G. Set M = kI'y and for d, f
in G set y;My = vgMuoy. A kG-bimodule structure on kI is allowable if

- e i o Ay o e
G acts on the vertices via § — v, = Vyg-1 and vy “— g = Vg-1y,

> G acts on the left on T (that is, if & € Ty is an arrow from d to f, then ¢ — a is an arrow from dg™" to
fetandifp = ay---ayisapaththeng — p = (g — ay)--- (g — an)); this induces isomorphisms
de(g) de — dg,]Mfg—l,
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> the right action induces isomorphisms ;R¢(g): ;Ms — g,ldMg—lf,
> Equations (2) and (3) are satisfied.

Remark IV.2. Note that the left action of G on I’ is free.

Theorem IV.3 ([GS]). Let I be a quiver with Ty = {vg;§ € G} for some group G. Then kT is a Hopf algebra
if and only if there is an allowable kG-bimodule structure on kI'.

Proof. We have already proved that if kI" is a Hopf algebra then there is an allowable kG-bimodule
structure on kT".

Conversely, assume that there is an allowable kG-bimodule structure on kI'. Then the formulas (1)
define a Hopf algebra structure on R = kI'y. Moreover, M = kI'; is a Hopf bimodule for the actions
given by the multiplication in kI" and coactions

pe(x) =) vg@(x+g) and pr(x) =} (§—x)®0g
8cG geG

for x € M. Therefore kI = Tr(M) is a Hopf algebra by Corollary IIL9. O

Proposition IV.4. [GS, Proposition 3.5] Let I be a quiver whose vertex set is indexed by a finite group G and
assume that there is an allowable kG-bimodule structure on kI'. Then

(i) kT @ kI is a kG-bimodulevia g — (x®y) =x® (g —~y)and (xQy) —g=(x —g)Qyforg € G
and x,y € kI;

(ii) the comultiplication A: kI’ — kI' ® kI is a kG-bimodule morphism;
(iii) the antipode S : kI — kI is determined by
Vx € 4(kI'1)s, S(x) = —d = x~ f

and satisfies S(x ~— g) = g1 — S(x) and S(g — x) = S(x) — g~ forg € Gand x € kT.

Proof. (i) Straightforward verification.

(ii) Note that kI" is a Hopf algebra. Since A is an algebra map, we need only prove the result on the
vertices and arrows. Take /1 € G and let 4 be an arrow in I".

A —vn) =D(Upg1) = ) 0t @011 = ) 0RF = Vpry = g (Z vt ® vt1h>

teG teG teG
=8 — Avy)
Aoy = g) = D(vg1y,) = ) Vg-1pp—1 @ Vp = Y v —g@ U = (Z Upp—1 @ vt> —g
teG teG teG
= A(op) — ¢
Ag—a)=) (tg—a@vu+v,Qg—=a—1t)=) (tgéa@utggfl +vt®g4a/—t)
teG teG
=) (§—(tg—a®@uvg) +8§— (0 ®@a—t))
teG

—g— <2(54a®vs+vs®a/—5)> =g —Aa)
seG

AMa—g) =) (t—a—g@u+v®a+—gt)=) (téagg®vt+0g_1gt®aggt)
teG teG

— Z(:;((a®0t)'_g+(vs®llf—s);g):A(@/_g‘

(iii) Recall that S: kI' — kI is an algebra map. Set M = kI'; and let x be an element in ;M;. Then
S(x) = S(vgxvy) = S(vf)S(x)S(vg) = v4-1S(x)v -1 so that S(x) € f_lMd—l.
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Therefore, given an element § € G we have g — x € dngfgfl/ a+— g€ g*ldMgflf/ S(g —
X) € p1Mggrand S(a = g) €
Yeec(§ ~y®vg+ v, ®y + g) we have

O=e(y)l =) (5(g—=y)vg+S(0g)(y—g) =Y (S(g = y)vg +v,1(y —g))

—1gMd*1g' Now consider y = d — x € {My;1. Since A(y) =

g€G g€G
=Y SE=y+y—g)=YL =y +y—filgT)eD M
g€G 8€G 8€G

sothat S(g —~y) = —y — fd~'g” ..

Nowx =d ! =y s0S(x)=Sd ' —~y)=-y+ fdld= -y~ f=—-d—x~— fand
therefore S(g — x) = S(gd™ ' = y) = —y ~— fg ' =S(x)g ..

Moreover, x = g € _1;M,-15 50 that S(x = g) = g ld—(x—g) —glf=¢gt—=(-d—
x 4= f) =gt = S(x).

To conclude, we need only prove that the required property is true on vertices:

S(g = vp) = S(Upg-1) = Vg1 = vy = g = S(vy) — g
S(vp = 8) = S(Vg-1y) = Vp1g =8 =01 =g — S(vp) O
Definition IV.5 ([GS]). Let G be a finite group and let W = {wy, ..., wy } be a sequence of elements of G (there

may be repetitions). Define a quiver T'g(W), called covering quiver, whose vertices are {vq; g € G} indexed by
G and whose arrows are

{(al-,g) P g1 = vwig,l;i =1,...,m;8 € G}.

Remark IV.6. The covering quiver I'c(W) is endowed with a left action of G given by ¢ — v;, = Vpg1
and g — (a;, h) = (a;, gh).
Indeed, we have
1 —0g =1y, § = (h— o) =8 = Vg1 = Upg1g1 = Uppy1 = (8h) — vk
1= (a;,8) = (a;,8), g = (h—(a; k) = g = (ai, hk) = (a;, ghk) = (gh) — (ai, k).
The aim of the rest of this section is to prove that kI is a Hopf algebra if and only if I is G-isomorphic

to I'g(W) for some finite group G and some specific type of W.

Definition IV.7. Let a € Ty be an arrow from v, to vy. Set £(a) = fdlandr(a) =d~1f.

Lemma IV.8. [GS, Proposition 4.1] Let G be a finite group and W = {w1, ..., wn} a sequence of elements
of G. Then there is an allowable kG-bimodule structure on kI (W) extending the left action of G on I'c(W)
above if and only if W is a weight sequence, that is, for all g € G the set {gw1g™1, ..., gwug 1} is equal to
W up to permutation.

Proof. > First assume that there is an allowable kG-bimodule structure on kI'. Then, for any f € G,
let B¢ be a k-basis of (M, and let B = UsccBy. Note that since fg’lRl (g hHo L (g) : My —

gfg—lMl is an isomorphism, we have #Bgfgq =#By forall f,g € G.

Set W = {{(b);b € B} in some order (with repetitions, that is, #W = #B). Then W is a weight
sequence. Indeed, we have

; = [#5/] = B, 1] -
{LopbeBy = U Mg ) U s, {sfs'}
FEGH My £0 fEG; ;1M1 &8
= U s {sfe7'} = {stv)g b € B}
fEG,‘fM17éO

> Conversely, assume that W = {wy,...,w,} is a weight sequence. Then, for any g € G there
is a permutation 0y, € &, such that gw;g~! = W, () for all i. This induces a group morphism

0 : G — &, defined by 6(g) = 0,1. Then wy(g) ;) = ¢ lw;g for all i.
Define a right action of kG on kT as follows: v, <~ § = v,-1; and (ai,h) = g = (ag(g)(i)- hg)- Then

we have an allowable kG-bimodule structure on kI', as shown in Example IV.9 below (with the f;
identically equal to 1). O
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Example IV.9. [GS, Theorem 5.6.(a)] Let G be a finite group and let W = {wy,...,w,} be a non-empty
weight sequence. Choose a group morphism © : G — &, such that wgg);) = ¢ 'w;g and choose

group morphisms f; = fe(¢)(i) : G — k*, foralli=1,...,nand g € G.
Then the formulas
§ = Un = Upg- § — (aj,h) = (aj, gh)
Up = § = Vg1, (ai,h) < g = fi(8)(ae(g) (i), h8)

define an allowable kG-bimodule structure on kI'.

Proof. We have already seen that the left action is indeed a left action on the graph I'(W). It is easy to
check that 1 € G acts trivially on the right. Moreover,

(v) = h = & = Vy1p = § = Vg1-1; = V(pg) -1 = Ok — (hg)
§ = (k= h) =8 = Vp1p = Vg1 = g1 = h = (g = vp) == I
((ai, t) = h) — g = fi(h)(aem) i), th) — & = fi(h) fom) () (&) (ae(s) @ nh)(i)) thS)
= fi(h) fi(8)(ae(ng)( l)rfhg) fi(hg)(aemg) (i), thg) = (ai t) — (hg)
g = ((ai,t) = h) = fi(h)g = (aem)) th) = fi(h)(@em) i) gth) (ai, gt) — h = (g — (a;t)) = h.0

Definition IV.10 ([GS]). We say that two quivers T and T", endowed with free left G-actions, are G-isomorphic
if there is an isomorphism ¢ : T — T’ of quivers such that, for all ¢ € G and all x € Ty UTy, we have

p(g —x) =g — ¢(x).

Proposition IV.11. [GS, Proposition 4.2] Let I" be a quiver with vertex set indexed by a finite group G and
on which G acts freely on the left. Let * denote this action and assume that the action on vertices is given by
8§ % Uy = Upe-1. Then there is a sequence of elements W of G such that I' is G-isomorphic to I'q (W).

Proof. Let {aj,...,a,} be the set of arrows in T starting at v1. Let W be defined as in the proof of
Lemma IV.8, that is, W = {{(a;);i=1,...,n}. Define ¢ : T — T'¢(W) on vertices by ¢(vs) = v,.
Now leta : vy — vy be an arrow in I'. Then d+a:v — Vgg-1 SO that there exists i such that d xa = a;.

Therefore a = d~! * a;. Define ¢(a) = (a;,d~') € Tg(W). Then ¢ is a G-isomorphism of graphs:

> The maps ¢ defined on vertices and on arrows are compatible: if a is an arrow from vg to vy,
then a; = d x a is an arrow from v; to v;-1 so that w; = fd~1, therefore ¢(a) = (a;,d~') goes from
vg = ¢(vg) to vy,q = vf = ¢(vy) as required.

> P(g*vp) = P(vpg1) = Vpg1 = & — V.

> Takege Ganda:v; — Uy an arrow inT. Thend * a = a; for some i and a = d~! « g;, therefore
g*a=gd 'xa;sothatp(gxa) = (a;,gd™!) =g — (a;,d7 ') =g — ¢(a).

> Define ¢ : I'¢(W) — T' by ¢(vg) = vg and 9(a;, h) = h * a;. Then ¢ and ¢ are inverse isomorph-
isms. 0

Corollary IV.12 ([GS]). The path algebra kI is a Hopf algebra if and only if there exist a finite group G and a
weight sequence W such that T is G-isomorphic to Tg(W).

Proof. Assume that kI" is a Hopf algebra. Then we know that the vertex set of I is indexed by a finite
group G and that there is an allowable kG-bimodule structure on kI'. In particular, there is a free left
G-action on I'. Therefore there is a sequence of elements W of G such that I' is G-isomorphic to I'c(W).
Moreover, since there is an allowable kG-bimodule structure on kI extending the free left G-action, W is
a weight sequence.

Conversely, it follows from the proof of Lemma IV.8 that there is an allowable kG-bimodule structure
on kI'c (W) when W is a weight sequence. O

In their paper [CR], C. Cibils and M. Rosso consider the same problem (among other things), which
they prove in terms of category theory.

The diagram below summarises the results in [GS] and [CR] related to the question of when kT is a
Hopf algebra. If H is a Hopf algebra, b(H) denotes the category of Hopf bimodules over H that are finite
dimensional over k. Moreover, ¢ is the set of conjugacy classes in G, u(C) € G is a representative of the
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conjugacy class C € ¢, the group Z,,(c) is the centraliser of u(C) in Gand W : b(kG) — X kZ,(c)-mod
Ce?

is a functor (equivalence of categories).

kI" graded Hopf algebra
\1
kTy = kG,
kTo = kC, kT; € b(k®) I' Cayley graph of G wrt
m cst on conj. classes
[GS] ﬂ
[CR] Prop. IV.14
~ 1G ~ 1.G
e ) kTo = k©, G5 43] llifg;kv,v
kIo =k, (kI'1)* € b(kG) kT has admissible Caisom. - G( )
kG-bimodule structure W weight sequence
[CR] ﬁ[GS 41]
~ 1.G krO = kG/
kLo = k~, secendofappendix  kT'¢(W) has admissible

kG-bimodule structure

b with given left action

Definition IV.13. [CR] The Cayley graph of a group G with respect to a marking map m : G — IN is an oriented
graph T whose vertices are indexed by the elements of the group, Tg = {ve; ¢ € G}, and such that the number of

arrows from vy to vy is m(fd1).

Proposition IV.14. T is the Cayley graph of G with respect to m : G — IN constant on conjugacy classes if
and only if T = T'g(W) for some weight sequence W.

Proof. > Assume that I' is the Cayley graph of G with respect to m : G — IN constant on conjugacy
classes. By definition, Ty = {v,;¢ € G} is indexed by the elements of G and for any (g,h) € G*

we have dimy v, (kI'y)vy = m(fd=1).

Define W = e u(g0) (Hm(g) {g}) =: {wy,...,wy}. In other words, an element ¢ € G occurs
exactly m(g) times in W. Hence m(g) = # {i;w; = g}. Note that m(g) is also the number of arrows
in T from o1 to vg.

The number of w; such that h~! = w;g~! is m(h~1g), that is, the number of arrows from v -1 to

1forge Gand w; € W.

8
v),-1. Therefore the arrows are the (a;,8) : v,-1 = v

4 wig™
Therefore I' = T (W).
Moreover, since m is constant on conjugacy classes, we have W = I ()20 Ly (c) C. Therefore
{gwig™hi=1,...,n} = Ucey m(cy20 Wnic) §C8 1 = Ueew m(c) 0 M) C = W, so that Wis a
weight sequence.
> Assume that I’ = I'g(W) where W = {w,...,w,} is a weight sequence. By definition, Iy =

{vg; g € G} is indexed by the elements of G and I'; = {(ai,g) ‘U, 1 =0 1<i<nge€ G}.

8 wig~1
Define m(g) = dimyv1(kI'1)vy = #{i;w; = g}. Then, for any h € G, we have m(hgh™1) =
#{i;w; = hgh™'} = #{i;h'w;h = g}. Since ¢, : W — W defined by ¢;,(w) = h~lwh is a bijec-
tion, m(hgh™1) = #{i; g, (w;) = ¢} = #{i;w; = g} = m(g). Therefore m is constant on conjugacy
classes.

Finally, the number of arrows from v, to vy, is # { (a;,k); k1= [ wik~ 1= h} =# {i,‘ w; = hgil} =
m(hg™1).
Therefore, I' is the Cayley graph of G with respect to m, and m is constant on conjugacy classes. [

The appendix gives some details on the results in [CR] related to the question of when kI is a Hopf
algebra.
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V. EXAMPLES OF FINITE-DIMENSIONAL HOPF ALGEBRAS DEFINED BY QUIVER AND RELATIONS

1. Quiver of a finite dimensional basic Hopf algebra

In [GS], the authors consider a finite dimensional Hopf algebra H such that H = kI'/I, where I is an
admissible ideal in the path algebra kI'. Let v denote the Jacobson radical of H. They prove that t is a
Hopf ideal in H, so that H/t is a Hopf algebra isomorphic to k" for some n > 1. Therefore, there is a
group G such that H/v = KC.

They then describe the Hopf algebra structure of H modulo t2.

Their final result on finite dimensional basic Hopf algebras is [GS, Theorem 2.3], which states that
there is an admissible sequence W such that I' = I'(W).

We shall now turn to the end of their paper.

2. Construction of finite dimensional Hopf algebras

In the last section of the paper [GS], given a Hopf algebra kI' (W), the authors construct explicit ideals
I'in kI'g(W) such that kI'(W) /I is finite dimensional, and give necessary and sufficient conditions for
this ideal I to be a Hopf ideal.

a) Theideal I,

Definition V.1. [GS] For a and b two distinct arrows in T g (W) with the same source, set

q(a,b) = a(r(a)™ —=b) —b(a — (b))

Z)f Ll_\b) vhd—lf

V 45(!))’1

0 ———— =0
d b h

The ideal 1, in kT'(W) is the ideal generated by the q(a,b) < g where (a, b) are pairs of distinct arrows with
same source and g € G.

Lemma V.2. [GS, Lemma 5.1] The ideal I is a Hopf ideal if, and only if, both conditions below are satisfied.
(i) The subgroup of G generated by W is abelian.

(ii) For any pair (a,b) of distinct arrows with the same source, there exists a scalar c,(a) € k™ such that
a — £(b) = cy(a)r(b) — asatisfying c;(b) = cp(a)~L.

Remark V.3. Note that if we have an admissible kG-bimodule structure on kI' in general, the right action
does not necessarily send an arrow to a scalar multiple of an arrow (there is an example illustrating this
at the end of the paper [GS]). However, if I, is a Hopf ideal, then the right action of £(b) on a, where a
and b are two distinct arrows with same source, is a scalar multiple of an arrow.

Proof of Lemma V.2. > Leta: vy — vpand b : vy — vy, be two distinct arrows in I'c(W) with the
same source. Then ¢(q(a,b) — g) = 0 for all ¢ € G. Moreover,

A(q(a,b)) = A@)A(r(a) ™ = b) = A(B)A(a (b))
(a) (A(6) = r(@)™") = AD) (¢(b) ™ = A(a))

t4ﬂ®0t+0t®ﬂ’—t> (Z(géb@r(a)lvg+vg®r(a)l 4b/—g)>
geG

=A(a
(teG
( Y t—=bQRv+0v;, Qb ) (Z(géa/—ﬁ(b)1®vg+vg;€(b)l®a/—g)>
teG 8cG

r(a) = a)(g = b) @ Vg +(§ = b) ® (a —dg™")
8¢

G

+(E =)@ () b g) +ug@ (a— @)(r(a) T = b —g)
—(g—=b)(g—~a— ) @vg—(g—a—Lb) )@ (b—hg")
~(g7'd = D) ® (2 g) — (vg — £() ) @ (b £(b)g)(a — g)|
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=Y [g=a)gr@) " = b @og+ (g b) @ (a —dg")
8

eG

+( =)@ () b g) + o @ (a— @)(r(a) T = b —g)
— (gD (g—a— b)) Bug—(g—a— (b)) (b hg)

~(g =) ®(a—dg™) —vg® (b= g)(a — ((b)'g)]

(

(g —=ag—b)®vs+v,®q(ab) —g) +X
geG

where

X=Y @ 'f~a)a(fld=b—g) - Y (g—a—di")®(b—hg")

geG geG
=Y (&7 f = a)ug @ (f'd = b= Q)vg 14415
g€G
=Y (@ f —a = dh og @ (b= hf AR T)vg 1y
g€G

We have A(gq(a, b)) — X € I, @ kI'g(W) + kI'c(W) ® I; and, for all g € G, A(q(a,b) — g) =
A(q(a,b)) — g. Therefore, if X = 0 for all distinct arrows a,b with same source, then I, is a
bi-ideal. Conversely, since X € kI'c(W); ® kI'g(W); and I; € kI'g(W)xo, if I, is a bi-ideal then
X =0.

Hence I; is a bi-ideal if and only if X = 0 for all distinct arrows a, b with same source. Now X = 0
if, and only if, for all g € G, we have

(g f~a)e(fld=beg) —(g7hd  f ~a—dh™)@ (b= hf ldh~g) =0
(multiply on the right by vg ® v4-1),4-1 for each ¢ € G). Now multiplying on the left by v;¢-1, ®
0417 shows that we must have df ' =hf'dh~!, thatis, £(b) f = fr(b).

Therefore, if I, is a bi-ideal, then we must have £(b)t(a) = t(a)r(b) for every pair of distinct arrows
a, b with same source.

> We now prove that ¢(b)t(a) = t(a)r(b) for every distinct arrows a, b with same source if, and
only if, the subgroup of G generated by W is abelian.

Assume that the subgroup of G generated by W is abelian. Let a and b be two distinct arrows
in T (W) with same source v;. Then there exist distinct i and j such that a = (a;,d"!) and b =
(aj,d~') so that f = w;d and h = wjd. Hence ((a) = fd' =w; € Wand ¢(b) = hd~' = wj €W
commute. Therefore

((b)f = £(b)fd'd = £(b)l(a)d = £(a)l(b)d = fd *hd~'d = fr(b).

Conversely, let w; and w; be distinct elements in W. Then a = (a;,1) and b = (a;,1) are two
distinct arrows with same source v;. Therefore wjw; = ¢(b)t(a) = t(a)r(b) = w;w;. All elements
in W commute, therefore they generate an abelian subgroup of G.

Therefore, if I; is a bi-ideal, then W generates an abelian subgroup of G.
> Now assume that (i) and (ii) hold. Then
hd'f ~a—dh'@b—hfldnt =4(b)f ~a— L) @b~ hf 1)}
=fr(b) ~a— L)' @b~ hr(b) L f1
=f—-ca)lawb—df?
— ca(b)f —~ a@cy(a)r(a) =~ b
=f—a®f'd—b

Therefore, for any g € G, we have
g f~aefld-b—g=g¢hdld—~a—dh @b~ hf ldnlg

so that X = 0.
Therefore, if (i) and (ii) hold, then I; is a bi-ideal.
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> Now assume that I, is a bi-ideal, that is, X = 0 for any pair of distinct arrows a, b with same
source. We then know that (i) holds. Replacing g by f¢~! in X and using (i) gives, forall ¢ € G,

g—a@r(a) "t —=b— fgTl=gfHUO)f —~a—Ub) @b hf () fg!
=gf fr(b) ~a— L) @b hr(b) ' f T g
=gr(b) ~a~— (b)) '®@b~— hhldg™!
=gr(b) ~a— () '®b—dg!

For ¢ = d this gives
d—a@r(a) ™t = b l(a) =dr(b) —a~L(b) @b ©)

Since a — £(b)~! € o(pyaMe(p)f We can write a — ((b)~! = Y5, a;a; for some scalars a; where
{a1,..., a5} is part of a basis of arrows of ;) ;M. Similarly, b — £(a) = Y!_, Bib; for some
0(a)

scalars B; where {by,...,b;} is part of a basis of arrows of ~1;My(q)-1,- Hence equation (7) is

equivalent to
t

Y Bild — a@r(a)” Za (dr(b) = a; D b). ®)

i=1
Since d — a, r(a)~'b;, dr(b) — a; and b are all arrows (using the running assumption on the left
action of G), they can be chosen as part of a basis of kI'c(W). This implies that for all i we have
r(a)™' — b; = bsothat by = r(a) — b and therefore, up to reordering, b; = r(a) — b and
Bi = 0 fori > 1. Similarly, a; = r(b)~! — aand a; = 0 for j > 1. Replacing in equation (f) gives
B1d = a®b = ajd — a® b so that a; = . It then follows that b < ¢(a) = a1b; = a1(r(a) — b)
so that we may set c,(b) = ay, and a «— ¢(b) ™' = aja; = c,(b)r(b)~! — a hence c,(b) = c,(a)~!
as required.

Therefore (ii) is satisfied.

> We have now proved that I; is a bi-ideal if and only if (i) and (ii) hold. It remains to be shown
that, assuming (i) and (ii) are satisfied, I; is a Hopf ideal, that is, S (Iq) C I;. Let a and b be two
distinct arrows with the same source as before. We have

47 = S(q(a,b)) = fH() T =71 = ((S(b) « £(a))S(a) — (£(b) = S(a))S(b)) ~ Fe(b) !
=i = ((~d = b hr(@)(~d = a - f)

(= (Wié%;f)(—ﬂl—‘b’—h))’—f‘lf(b)_1
= (b= hr(a)f (b)) (a — £(b) 1)

— (d7M(b)d — a = €(b) ") (b = hf (b))
=b(a—£b)") = (r(b) = a = L£(b)") (b= hr(b)"'f)
=b(a— £(b)") = ca(b)a(b — £(a)")
=b(a—£(b)"") —a(r(a)”! = b)
= —q(a,b).

Therefore S(q(a,b) ~ g) = ¢! — S(q(a,b)) = —g~'d — q(a,b) — L(b)f = —q(g7'd —
a,g 'd —b) — ((b)f € I, forall g € G, so that S(I;) C I, as required. O

Remark V.4. Note that once we know that I, is a Hopf ideal, then using (ii) we have q(b, a) = —c,(a)q(a, b).

b) Theideal I,

Definition V.5. For every arrow a in (W), choose an integer m, > 2, in such a way that m, = mq_, for all
g€G.

my—1 )

> Ifais not aloop, set p(a) = a(r(a)*l —a)--- (r(a)*ma‘Fl —a) = H (r(a)~ = a).
i=0

> Ifaisaloop, set p(a) = a™

The ideal I, in kT'(W) is the ideal generated by the p(a) ~— g where a is an arrow and g € G.
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Remark V.6. Note that a(¢ — a) is a non-zero path if, and only if, ¢ = r(a)~!. Indeed, if the arrow a
goes from v, to vf, then ¢ — a starts at v;,-1, so that we require dg=! = f,thatis, ¢~ ! =d~1f = r(a).

Note also that if a is a loop then r(a) = 1.

Therefore p(a) is the non-zero path of length m, starting with a which is the product of successive
arrows in the —-orbit of a.

In particular, any product of m, arrows in the orbit of a is either 0 or an element of I,,.

Let Ts(n) denote the set of all subsets of {0,1,...,n — 1} consisting of s elements.

Lemma V.7. [GS, Lemma 5.3] Assume that a ~— {(a) = c,(a)r(a) — a for some c,(a) € k* and all arrows
ainTc(W). Then 1, is a Hopf ideal in kT' (W) if, and only if,

(i) for all arrows a in ' (W) that are not loops, and for any s € {1,2,...,n, — 1} where n, is the order of

L(a) in G, we have '
Z Hca(a)l =0,

c€Ts(my,) i¢o

(ii) for all loops a in Tg(W) and all i € {1,2,...,mg — 1}, the number (") is zero in k.

Proof. Clearly, (1) C &(r) = 0.
Let a € ;My be an arrow that is not a loop. Note that for any integer i, we have r(a)™ = a =
ca(a)'a — £(a)~" by assumption. We then have

my—1 mg—1

p(a) = l} (r(a)™" —a) = ]jo ca(a)(a — £(a)™")
so that
my—1 . .
S(p(a)) = ]1 ca(a)'S(a = £(a)™")
my—1 )
= 11 ca(a)'(a)' — S(a)

:(—1)m”C —mg(ma— 1/21—[6 déa/_f)
— (—1)m”C —mga(mg—1)/2 H Z z ma+l€ )mﬂfldéa /_f
= (=1)"cq(a) "2 ]‘[ )7 = (f(a)"'d —a) — f

= (=1)"ca(a) """ V(T r(a) T —a') — f

Ma—1
= (=1)"ca(a)™"" " p(a) — f € 1
where a’ = ¢(a)"™~'d — a. If a is a loop at v4, then
S(p(a)) = S(a)™ = (=)™ (d = a—d)™ = (=1)"(d = a)" —d = (=1)"p(d = a) —d €I

Moreover, for g € G, S(x — g) = ¢~ ' — S(x) and g~! — p(b) = p(¢g~! — b) for any arrow b, we have
S(Ip) C Ip.
We now consider A(I). Leta € ;M be an arrow that is not a loop. Then

mg—1 )
A(p(a)) = r(a)~" — A(a)
i=0
my—1
= r(a)” = Y (8 = a) ©@ug + g @ (a = &)
i=0 gi€G
mg—1

® (r(a) ™" = vg,) + 05, ® (r(a) " = (a = 81)))

I
e

%
m
Q

3
L

= ® (Vg,r(a)i) + Vg @ (r(a)™ —a+g))

I\
)
%
m
C]
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The product above can be written as a sum of elements of the form xgx1 - - - X, —1 ® Yoy1 - * * Y, -1,
where v, @y; = g — a® Vg.r(a)i (type (D) or x; ®y; = v, ® (r(a)~" — a) — g; (type (ID) for all
i=01,...,m;—1.

Now given an element x; ® y; of type (I), then

> if Xj11 ® yit is also of type (I) we have vgiv1, i1 = Yig1 = Yi = Vg SO that gi g = gir(a)~!
is uniquely determined; note that s(x;;1) = v dgt = Var(a)yg ! = Vpg! = t(x;) so that the product
i+1 i i

(x; @ y;)(xir1 @ yiv1) is well defined.

> if x; 11 ® yiq1 is of type (II) we have x; 11 = vg,,, = t(x;) = Vfg-1 80 that g;11 = fgl._l; note that
s5(Yir1) = Vg1 dr(a)itt = Vgir(a)’ = Yi SO that the product (x; ® y;)(x;j11 ® yi1+1) is well defined.

Given an element x; ® y; of type (II), then

> if x;11 ® yi41 is also of type (I) we have x; 1 = vg,,, = x; = vy, so that g;11 = g;; note that
s(Yit1) = Vel dr(a) = Vg fr(a)i = t(y;) so that the product (x; ® y;)(x;1+1 ® yi41) is well defined.

> if ;41 ®y;11 is of type (I) we have s(x; 1) = Ugg— 1 = Xi = Ug; 0 that gj11 = gi_lf; note that
i+

Vil = Vg, r(aytt = Vg ()i = t(y;) so that the product (x; ® y;)(xj+1 ® yi11) is well defined.

Assume that yoy1 - - - Yy, —1 starts at vg. Then s5(yo) = vg. If X9 ® Yo is of type (I), then yg = vy, so that
8o =gand xo = go — a = g — astarts at v.1. If xo @ yo is of type (II), then yo = a +— gy starts at Ugild
so that gg = dg~! and xo = Ugy = Ugq-1 starts at vo1. In both cases, the source of xgx7 - - - xy,,—1 is Vg1

Therefore, given a subset o of {0,1,--- ,m,; — 1} and an element g in G, there is a uniquely determ-
ined element in the product above, namely xox1 - - - X, 1 ® Yoy1 - - - Ym,—1, Where the path xox1 - - - x, 1
starts in vertex v -1, Yoy1 - - - Ym,—1 starts in vertex vg, x; ® y; is of type (I) for i € 0, and x; ® y; is of type
(II) fori ¢ o.

Moreover, if iy = 0 then yg = vg, = vg so that g;; = go = g, and if iy > 0, the x; ® y; with i < iy are of
type (II) so that v;, 1 = xo = xjy—1 = s(x;,) = Vggt and g;, = . Next, the x; ® y; with iy < i < iy are of

o
type (II) so that v, 1 = t(xj,) = Xjg41 = xi—1 = s(x;,) = Vgt and g1 = gr(a)~!. Inductively, we have
. ]1

8i; = gr(a)forj=0,...,s =1

Similarly, for each t = 0,...,m, —s —1wehave g;, = E(a)jf’tdg’l.

Therefore,

my—1 s—1 ) my—s—1 ) )
A(p(a)) = < (gr(a)7 —=a)® ] (rla) —a~ K(ﬂ)’”dgl)>
oeTs(mg) \j=0 t=0

mg—1 s—1 Mg —s—1
-y r (Hcm)") <H<gr<a>f4a>® I1 <a;€<a>tdg1>>

=0 t=0

since r(a) 7/ — a = c,(a)la — £(a) 7.
If a is a loop, we have d = f and r(a) = 1 = {(a), and a similar argument shows that

my—1 s—1 my—s—1
Ap(@) —a@ - Y5 ¥ (H(g%)@ i <a;dgl>)

8€G =0 veTs(m,) \j=0 t=0
ny—1 "

=Y L) (@—ayre@—dg ).
s=0 geG

Foreachs =0,...,my, the term X ¢ := Hj;é (gr(a)~" — a), or X5 4 := (¢ — a)° in the case of a loop,
is a sub-path of length s of p(g — a) starting at v;,-1, and the term Y ¢ := 17 (a — £(a)~tdg™?),
or Yo := (a < dg~')™~* in the case of a loop, is a (non-zero scalar multiple of a) sub-path of length
mg — s of p(a — dg™!) starting at v,.

Multiplying by 0,1 ® vg shows that A(p(a)) € I, ® kI'g(W) + kI'c(W) ® I if, and only if, for any
g € G theterm "' Yot (me) ([Tuge Ca(a)") Xsg @ Ys g isin I @ kT (W) + kT (W) @ I

Now for s = 0 and s = m, and for all g € G, we have ¥ycr,(m,) ([Tugoca(a)") Xsg ® Ysg €
I, @ k['g(W) +kI'g(W) ® I. Recall that kI'c(W) ® kI'g(W) = @, , k(Tg(W))t ® k(T'g(W))u, therefore
y et YecG LoeTy(my) ([Tuge ca(@)) Xsg ® Ysg is not in I, @ kT'g(W) + kT'g(W) @ I,, unless it is zero.
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Each X ® Y g is ink(Tg(W))s @ k(§W)m,—s so that Z;n:“l_l Y oG LoeT, (ma) (Hu@ ca(a)") Xs,g ® Ys g van-
ishes if and only if for each 1 <'s < m, —1 we have Y, c1, (s, (]—Iugg ca(a)") Xsg ® Ys g =0, that s,

[Tigoca(a) =0 ifaisnotaloop, 0
(M) =0 if a is a loop.

¢) The quotient kI'c(W)/ (I, I)

Theorem V.8. [GS, Theorem 5.6(b)] Let G be a finite group and let W = {wy,...,w,} be a non-empty
weight sequence generating an abelian subgroup of G. Let I, and I, be the ideals defined above for some choices
of integers m, associated to the arrows a in Tg(W). Assume that the allowable kG-bimodule structure on
kTG (W) is given by group homomorphisms © : G — &y and f; = fo(q)i) : G — k* fori=1,...,nasin
Example IV.9. Assume moreover that

> fi(w;) = fi(w;) " forall i and j with i # j,
> for any arrow a that is not a loop and forall s = 1,...,ma — 1, Xser,(m,) Ijzo fi(w;)l =0,

> if there is a loop in T (W), then char(k) = p > 0 and for any loop a and anys = 1,...,mz — 1, p
divides (") .

Then the algebra kT (W) / (I, 1) is a finite dimensional Hopf algebra.

Proof. > We first show that I; is a Hopf ideal using Lemma V.2. Since W generates an abelian
subgroup of G by assumption, we need only show that condition (ii) is satisfied.

Let (a;,h) and (a;, h) be two arrows with the same source v;,-1. Then

r((aj,h)) — (aj, h) = hw«h*1 — (ai,h) = (ai,hwj)
(@i, h) — €((aj, 1)) = (ai, h) — wj = fi(wj)(@e(w,) i) hwj) = fiw;)(ai, hw;)
since We y,) (i) = w]-_lwiw]- = w; because the elements of W commute. Therefore Ca;h) ((a;, h)) =
fi(wj) and by assumption, if i # j, we have c(, ) ((a;,h)) = c(ﬂ/,h)((ai,h))’l. Therefore (ii) in
Lemma V.2 is satisfied.
> From the above, we have c(,, ,y((a;, 1)) = fi(w;) and conditions (i) and (ii) in Lemma V.7 are sat-
isfied by assumption. Therefore I, is also a Hopf ideal, and so is (I, I;). Hence H := kI'c(W) /(Ip, 1)
is a Hopf algebra.
> [t remains to be shown that H is finite dimensional.

Let 2 and b be arrows such that t(a) = s(b). Then a and r(a) — b are arrows with the same source.
Assume that they are different, that is, that b # r(a)_l — b. Then, in H, we have

0=gq(a,r(a) = b) =a(r(a)"" — (r(a) = b)) — (r(a) = b)(a — £(r(a) = b))
=ab— (r(a) = b)(a—£(b)” 1)
cp(a)(r(a) = b)(r(b) ™" — a)
so that, in H, we have ab = cb’a’ where ¢ € k%, a’ is an arrow in the left G-orbit of a and b’ is an
arrow in the left G-orbit of b.
Note that there are 1 left G-orbits in (kI'g(W))1, one for each w; € W (the orbits of the (a;,1)).

Set N = max {mg;a € k(Tg(W))1} = max {m(ulﬂ);i =1,... ,n} . We prove that any path of length
at least nN vanishes in H.

Let z = D1by - - - b be a path of length t > nN. Then at least N of the arrows b; are in the same
left G-orbit. By the first part of the proof that H is finite dimensional, there is a scalar ¢ such that

=Dby---b er . bﬂrNb;JrNJrl -bp + 2/ with b br+N in the same G-orbit and z’ € I;.
Therefore b; ;- - - b,y isin I, by Remark V.6 so that z € (Ip, 1;) as required. O

Remark V.9. Green and Solberg also give, in [GS, Theorem 5.6], the order of the antipode (2 -
lem {|f;(w;)|;i =1,...,n}) as well as necessary and sufficient conditions for kI'c(W)/ (I, I)) to be com-
mutative (w; = 1 for all i) or cocommutative (G abelian and f; = 1 for all i).

Moreover, in Corollary 5.4, they do the case of a general allowable kG-bimodule structure on kI'g (W).
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In Examples V.10, V.12 and V.13, we check separately that I, and I, are Hopf ideals using Lemmas V.2
and V.7, although we do not need to in order to apply Theorem V.8.

Example V.10. Let G = Z/nZ be the cyclic group of order 1, generated by 7. The subset W = {7} isa
weight sequence (G is abelian).
The quiver I'(W) is then an oriented cycle with n vertices (and arrows): the arrows are the (4, g)
from Vg1 to Vo1 forall ¢ € G thatis, a; := (a, 7") is the arrow from Vot 10 V141 Sete; = Vot
Take ©® = id and let f : G — k* be defined by f(y) = ¢ with {" = 1. These determine an allowable
kG-bimodule structure on kI'(W) as in Example IV.9. The corresponding Hopf algebra structure on

kI'c(W) is determined by:

1 ift=0
— — O’
e(er) {0 ift £0, ()

n—1
A(et) = Z es X er—s, S((i‘t) =e_y,
s=0

n—1
A(Dét) = Z(r)/s — U Q Vys + Vs Q 0y “— ’)/s)
s=0
n—1
= Z (“t-&-s Re_s+fes® 06t+5)
s=0
= Z (D‘S K ey + giueu ® le),
s+u=t
S(ar) = =" = =
="y

where the indices are taken modulo 7.

Finally let d > 2 be the order of { and set m, = d for all arrows a € (I'c(W));. Note that d divides
n. We now determine the quotient kI'c(W)/(Ip, I;). Clearly, I, = 0 since no two arrows have the same
source.

Now consider I,. Forall t wehave a; + £(at) = ay + v = {7y — ay = {r(ay) — arsothatcy, (ar) = ¢
for all a;. Since there are no loops in the quiver, we need only check that foralls =1,...,d — 1, we have
Yot (d) [ige € i = 0. This follows immediately from Lemma V.11 below applied to the cyclic group G,
using that f(y°) = ° # 1.

Since vy — & = w41, the path p(a;) is the unique path of length d starting at «;. Note that p(a;) —
7* = {®p(arss) = p(arrs). Hence I, is the ideal generated by all paths of length d.

These algebras are called the generalised Taft algebras. They were studied in detail by Cibils in [C]
and also in [CHYZ]. They are neither commutative nor cocommutative.

Lemma V.11. [GS, Lemma 5.5] Let G be a finite group of order n and let k be a field. Suppose that f : G — k*
is a group morphism. Let s be an integer with 1 < s < n. Assume that there exists an element g € G such that
f(g°) # 1. Let Ts(G) be the set of all subsets of G consisting of s elements. Then

Y, [Ife=0

veT(G) g¢o

Proof. For o € T5(G), set f(0) = [ly¢s f(g) For o € Ts(G) and g € G, set go := {gh;h € o'} . Then
T : Ts(G) — Ts5(G) defined by 7 () = g0 is a bijection, with inverse ,-1. Moreover,

8
flgo) = J;[f(gh) :f(g)s}gf(h) = f(g)°f(0).
Therefore
Y, floy=") flgo)=f() ), flo).
oeTs(G) oeTs(G) oeTs(G)
Since f(g°) # 1, we have },c1, () f(0) = 0. O
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Example V.12. Let G = Z/nZ be the cyclic group of order n, generated by . The subset W =
{wy =, w, = y~!} is a weight sequence (G is abelian). The quiver I'g(W) is then of the form

with n vertices and 2n arrows: if we set ¢; = Vot for 0 < t < n, the a; := (a1, ") go from e; = V-t tO
0.t = e;_1 and the & := (ap,7") go from e; to 0,1+ = ep41 for all  considered modulo 7.

Take © = id and let f; : G — k* for i = 1,2 be defined by f;(y) = ¢ with (" = 1. These determine
an allowable kG-bimodule structure on kI';(W) as in Example IV.9. The corresponding Hopf algebra

structure on kI'g (W) is determined by the formulas in the previous example for the ¢; and the «; and by:

Y

S(Eét) =0,
n—1

Ad) =) (77 = & @0y +0ps @Bt = 7°)
5=0
n—1

=) (At+s ®e—s+Pe—s @ Apis)

Z (&s K ey + giueu ® 545)1
s+u=t

= —'y*t

11—t~
=—¢ tlx—t+1

1

9]
—
Ry
N
|

AN E(t A r),ftf

where the indices are taken modulo n.

Finally let d > 2 be the order of { and set m, = d for all arrows a € k(I'g(W));. Note that d divides
n. We now determine the quotient k' (W) / (I, ;).

The arrows a; and &; are distinct and have the same source ¢;. We have

-1

qloe, @) = ap(r(ae) ™t = &) — @ — (@) 1) = we(y ™! = &) — (o — y) = @ely—q — {Retp 1.
Moreover, q(at, &) < v° = {3q(&tis, ets)-

The subgroup generated by W is G which is abelian, and
Vg = 1

Ky — 6(561}) = ny ’)/_1 = g_lﬂét,1 F(E(t)

“— — &=
0y — E(oq) =0 — Y = (A1 V(D(t) 0=y — A= K
so that ¢y, (#) = { = cgz (a;) ! and the conditions in Lemma V.2 are satisfied. Therefore I, is a Hopf
ideal, generated by all elements of the form a;&; 1 — {&;a;4q for 0 < t < n considered mod n.

Now consider I,. As in the previous example, we have ¢y, (at) = ( for all t. We also have cg, (&) =
g1 Moreover, p(at) = apa; 1 a;_gp1 and p(&:) = &iyqq - &pyg_1, and we have p(a;) — 9° =
0*p(arrs) = p(asrs) and p(&;) < 7° = p(f4s). Hence I, is the ideal generated by all paths of length d
going in the same direction around the circular quiver.

These Hopf algebras are neither commutative nor cocommutative.

In the case where d = 2, that is, { = —1 (and 7 even), the Hopf algebras kI'c(W)/ (I, I,) are iso-
morphic as algebras to some algebras A that occur in the study of the representation theory of the
Drinfeld doubles of the generalised Taft algebras, see [EGST]. These algebra isomorphisms allow us
to define Hopf algebra structures on the algebras A. However, unless char(k) = 2,they are not Hopf
algebras of the form kI'c(W)/(Ip, I5).

Example V.13. Let G = &3 be the symmetric group of order 6; we denote its elements by id, o7 =

(1 2 3), o = 0'12, and 1; the transposition that fixes i fori = 1,2, 3. The subset W = {w; = 09, wy = 0}
is a weight sequence (conjugation by ¢ € G either fixes both ¢; or exchanges them).

30



The quiver I'(W) is then

A AN

UT3 W UTZ

where «; = (al,(f{), Bi = (a1, Tia1), & = (ag, a{fl) and B; = (ap, 7;_1) for i = 0,1,2 (indices considered
mod 3 where necessary).

Take ® : G = &3 — 6y = Z/27Z = (7y) be defined by O(r;) = id and O(t;) = yand let f; : G — k*
fori = 1,2beidentically 1. Clearly, ©(g) fixes each of the w; for any ¢ € G. These determine an allowable
kG-bimodule structure on kI'; (W) as in Example IV.9. The left and right actions on arrows are given in
the following table.

’4“060‘061‘“2‘50‘!31‘[52‘5(0‘561‘0—&2‘50‘51‘52‘
op || a1 |ag [ ag | B1 | B2 | Po| &
o2 || a2 |0 |1 | B2 | Bo | P1| &2
T || Bo| B2 |B1|mo |ar | | B
T || B1 | Bo|B2|m | ao || B
w3 || B2 | B Bo|a|ar || B
| llao [aa [ [ Bo |1 [Bo] a0 [ 7 [ | Bo[Bi] o]
o1 || a1 | @ [ & | B2 | Bo | B1| @ | &2 | & | P2 | Bo| B1
o || a2 | &g | &1 | B1 | Ba | Po | A | & | &1 | B1| B2 | Po
T || Ba | Bo|Bi|® | & & | B2 | Bo|B1| | ar| ag
T || Bo | B1 | B2 | &o | &1 | @ | Bo | B1| B2 | &0 | &1 | ap
B || B B2 | Bo| & | & | @ | B1| B2 Bo|ar| | m

(note that (a1,8) — 7, = (a2,¢7;) and (a2, ¢) — T = (41,87T)-
The corresponding Hopf algebra structure on kI' (W) is determined as before by the actions above.
We get

o
N
2
o
=
i
=
N
=
o

=
(e}
I
=
=
N
=
o
=
P

N

it
I
o
RS
N
&
_

R | TR TR
=
R | TR TR
N
=
=
=
=)
=
N

-
S
v
)
xjA
N
N
<)

Pl

S(Bi) = Bi S(a) = —wifa € {ar,d}
S(Bi) = Bi S(a) = o if {a,a'} = {ag, a1} or {a,a'} = {7, 11}

and, for instance,
Alag) = Y (§ — g ® Vg + g ® g — )
8€G
=0 ®0viq + a1 ® Vgy + a2 ® Vg, + Po ® Vg + P1 ® Vg, + f2 ® Vg
+ Vig ® g + Vg, @ a1 + Vg, @ A + 0 @ B2 + Vg, @ o + v, @ P1
A(B1) = B1 ®@vig + P2 ® Vo, + o ® Vo, + Ay @ gy + & @ Vg, + &1 @ Vg
+ 0iq @ B1 + Vo, @ Bo + Vo, ® B2 + gy @ an + Vg, @ a1 + Vg, ® ap.
Note that £(a;) = r(a;) = €(B;) = r(B;) = 01 and that £(&;) = r(&;) = r(B;) = €(B;) = 0». Itis then
easy, using the table above, to check that Condition (i7) in Lemma V.2 is satisfied. Since W generates an
abelian subgroup of G, I, is a Hopf ideal. It is the ideal generated by

{wi; — @141, BiPi — Bi—1Pi-1:1=0,1,2 (mod 3)} .

Set m, = 3 for all arrows a € (I'g(W));. Using the table above, it is easy to see that ¢,(a) = 1 for
every arrow a. Assume that char(k) = 3. Then Condition (i) in Lemma V.7 is satisfied. Since there are no
loops in T'(W), I, is a Hopf ideal. The left action of ¢; on the set of arrows for i = 1,2 has four orbits,
{a;;i=0,1,2}, {Bi;i =0,1,2}, {a;i =0,1,2}, {B;;i =0,1,2}. Therefore p(;) is the path of length 3
starting at #; and going in one direction, and similarly for the other arrows. The right action of elements
of G permutes these paths. Therefore I, is generated by all paths of length 3 going in one direction:

{wini_10i_2, BiBit1Pito, Miltiz1®it2, PiBi—1Pi—2:1=10,1,2 (mod 3)}.
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This Hopf algebra is neither commutative nor cocommutative. It is also clear that the antipode has order
2.

We conclude with another example which shows that W need not be a subset of G.

Example V.14. Let G = Z/nZ be the cyclic group of order n, generated by 9. The subset W =
{w1 =1, wp =1} is a weight sequence (G is abelian). The quiver I'(W) is then of the form

o C ®c 3 Bo w1 C o 3 B1 s -1 C’enqj Bu-1

with n vertices and 2n arrows: if we set ¢; = Vot for 0 < t < n, the a; := (a1,7") go from e; = V-t tO
01—t = e¢ and the B¢ := (ap,7") go from ¢; to U1+ =eforallt=0,1,...,n— 1.

Take ® = id and let f; : G — k* for i = 1,2 be defined by f;(7y) = {; with ' =1 fori = 1,2. These
determine an allowable kG-bimodule structure on kI'g(W) as in Example IV.9. Since v — a; = a1,

Y — Bt = Pr+1 and

v

ar = = (a1,7") = v = (N (@o(y)a) 1'7) = Ti(aL,Y™) = Qe
Bt — 7 = (a2,7") = v = (1) (@02, v7) = C2(a2,7"") = L2Bria,

the corresponding Hopf algebra structure on kI'g(W) is determined by the formulas in the first two
examples for the e; and by:

e(ar) =0,

8(1815) =0,

Alay) = Z (s @ ey + & Meu @ as),
s+u=t

AB) =), t(ﬁs ® eu + 05 e © Bs),
s+u=

S(ar) ==y = =" = Lty
SB) == =B = = =G B
where the indices are taken modulo #.
Finally let char(k) = p > 0 and set m, = p for all arrows a € k(I'g(W))1. Fix {1 = {» = 1. We now

determine the quotient k' (W) / (I}, I;).
The arrows a; and f; are distinct and have the same source ¢;. We have

qlae, Br) = ar(r(e) ™" = Br) — ar(ar — £(By) ") = Py — Prave.

Moreover, q(at, Bt) < v = q(a;11, Br+1). Hence I, is the ideal generated by {a;f; — Bra; 0 <t <n —1}.
Now consider I,,. Since all arrows are loops, we have p(a;) = af and p(B;) = BJ. Moreover, p(a;) —
v = p(as41) and p(Bt) = p(Bi+1) so that I, is the ideal generated by {zxf, BLO<t<n— 1} .
Since the subgroup generated by W is {1} which is abelian, all the conditions in Theorem V.8 are

satisfied and therefore kT' (W) / (a:B¢ — Brar, af, BY;0 < t < n — 1) is a finite dimensional Hopf algebra.
It is commutative and cocommutative.
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A. NOTES ON [CR]

Abstract

This appendix gives some extra details for some of the proofs in [CR] (when k is a field). Moreover,
the definition of a Cayley graph has been changed for compatibility with [GS] (Proposition IV.14), with
(trivial) consequences on the statement and proof of Proposition 3.3 below. The section titles and the
numbered results are those in [CR].

3. Bimodules de Hopf d"un groupe

Lemme 3.2. If H is a finite dimensional Hopf algebra, then the category by(H) of finite dimensional
Hopf bimodules over H is anti-equivalent to by (H*).

Proof. Recall that H* is a Hopf algebra whose structure maps are given in Propositions 1.12 and 1.28.
Let M be a Hopf bimodule over H, with structure maps py, yr, 0¢ and p,. Then M* is a Hopf bimodule
over H* with structure maps defined similarly to those of H* in Proposition 1.12

p; - H @ M* — M* oy - M*®@H" — M*
p;:M*— H" @ M* py :M* - M*®@H"
where in each case V* ® W* = (V @ W)* as in Remark L1.11. With this same convention, for k-linear

maps f : Uy — Uy and ¢ : V] — Vo we may identif ® ¢)* and f* ® ¢* via the following diagram
p 8 y y 8 8 g diag

(f®g)"
(UQ®V2)* fes (Lll ®V1)*

mi ig

U @ Vs —— = U 0 V7

We then have for instance

py(id®@p7) = [(id ®pe)p )" = [(A®id)ps] = pj (A" @id)
i (e ®id) = [(e ®id)p,]* = id* = id

so that M* is a left H*-module.

The other properties that need to be checked are similar.

Moreover, it is easy to check thatif f : M — N is a morphism of Hopf bimodules, then f* : N* — M*
is a morphism of Hopf bimodules.

Since all spaces are finite dimensional, dualising again gives a Hopf bimodule over H** canonically
isomorphic to the original Hopf bimodule over H. O

Lemma. Let M be a right comodule over kG. Then M = @eccM? where ME =
{m e M;p(m) =m®g}. Similarly, if M is a left comodule over kG then M = DgccM. Con-

sequently, if M is a bicomodule over kG then M = @¢cgnec M,

Proof. For m € M we can write p(m) = Y.ccmg®g € M® kG. We have (p ® id)(p(m)) =
(id®@A)(o(m)) = Yeecmg ®@g® g and (p ®@id)(p(m)) = Ygegp(mg) ® g. Since M @ kG @ kG =
Dgec M @ kG ® g, we have p(mg) = mg ® g so that my € MS. Moreover, m = (id ®e)(p(m)) =
deG mg € @geG MS.

When M is a bicomodule, each M3 is a left subcomodule of M, therefore M& = @, hMs. Finally
M = @ pec SM". 0

Notation. Let € be the set of conjugacy classes in G and for each conjugacy class C € ¢ choose an
element u(C). Let Z,(¢) denote the centraliser of 1(C). Moreover, if ¢ € G, let Q(g) be the conjugacy
class of g.

Proposition 3.3. The category #(kG) of all Hopf bimodules over kG is equivalent to the cartesian

roduct x Mod-kZ .
p cey u(C)
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Proof. 1) Description of the functor V : x kZ,)-Mod — #(kG).
Ce?

If M = {M(C)}cey with M(C) € kZ,)-Mod, define VM := @y sec M with ‘M =
M(Q(fd1)).
If ¢ = {pctcey : M — Nisamorphismin X kZ,)-Mod, define V§ = @y rec Poa-1)-

Ce? ’

> Hopf bimodule structure on VM.
& If v € "WM/, the coactions are given by py(v) = d ® vand p,(v) = v ® f.
< Ifo € “WM/ and g € G, the right action of g on v sends v to v € WYM/E = M(Q(fd~1))
(g acts by translation of the co-isotypic components).

$ If z € C, there exists t € G such that z = tu(C)t~!. Moreover, s € G also satisfies
z = su(C)s! if and only if (t's)u(C)(t~'s)~!, if and only if t~'s € Z,c). Hence t is
well defined up to multiplication on the right by an element of Z, ).
Therefore there is a bijection

— {tzu(C);t S G}
= E(z) = tZ,(c) wherez = tu(C)t1
—

C
zZ
tu(C)t=1 tZ,(c)-

The left action of ¢ on VM may now be defined. The module M(C) is a left kZ,c)-
module by assumption and kE(z) is a free right Z,,)-module of rank 1 so that M(C) =
kE(z) ®kZy () M(C) as k-vector spaces. The left action of g on VM sends “VM/ to 89V Msf

as follows:
dYMf = M(Q(fd 1)) OKZ, 0 a1 KE(fd™1)

=

M(Q(fd1)  ®  kE(gfd'g7!) == M(Q(gfdg7!)) ® KE(gfd~'g™1) = sTyms/
2. a1 u(Q(gfa—1g1))

where the middle map sends t ® m to gt ® m.

VM is obviously a bicomodule and a bimodule. Moreover, these two structures are compat-
ible. Fix v € “VM/ and g € G. We have gv € 8VM3$/f and vg € BRYM/S.

& pi(vg) = dg @ vg = py(v) - ¢ (the action is diagonal).

& pr(0g) =vg® fg = pr(0) - 8-

> pi(gv) =gd®gr=_g-(d®0) =g-p(0).

¢ pr(gu) =gvRgf =8 - (v®f) =g pr(v).

> V¢ is clearly a morphism of bicomodules by construction. Moreover, if v = t @ m € 9VM/

and g € G,
& Vo(vg) = bafetag-1)(98) = Pasa-1)(v) € BVYN/E so that V(og) = doy(s4-1)(v)8 =
V(v)g.
S VP(go) = (d®Poereay1) (8t @ m) = gt @ Pqpa1gy(m) = g-(t®

Pagrag1y(m)) = gVe(v).
Therefore V¢ is a morphism of Hopf bimodules.

2) Description of the functor W : Z(kG) — X kZ,(cy-Mod.
Cce

If B is a Hopf bimodule over kG, then ' B#(C) is a left kZ,(c)-module, where Z, ¢ acts by conjuga-
tion: if ¢ € Z,(¢), then
q- 1gu(C) ~ 1Bgu(C)g’1 _ 1gu(©)
. _ {1pu(C) ) o s .

Define WB { B }Ce% Ecég kZ,(c)-Mod. Moreover, if ¢ : B — B’ is a morphism of Hopf
bimodules, then ¢(*B*“(©)) C 'B/#(C) since ¢ is a morphism of bicomodules, so that W¢ can be
defined by (W¢)c = @¢|1uc) for C € %. Each (W¢)c is a morphism of kZ,c)-modules since
¢ is a morphism of bimodules (if § € Z,(c) and b € 1Bu(C), then (W¢)c(g-b) = ¢p(ghg™!) =
gPp(b)g™! =g (W)c (b))
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3) VW id.
d ~ -1 1)) o~ -1 1gu(Q(fd1
Recall that “VWB/ = kE(fd ) Kz, gty WB(QfA ) = KE(fdY) @4z, BHO(fd),

Moreover, if b € 9Bf and t € G is such that fd=' = tu(Q(fd=))t~?, then t~'bd~t €
tldd gt fd 1t _ 1gu(Q(fd 1))

. _ -1 _ _ ..
Define 96} : 9Bf — kE(fd~1) Oz, 01 1Bu(Q(fd™") by 99f(b) = t @ t~1bd~1t. This is well

defined, independently of ¢ : if s is another element in G such that fd—1 = su(Q(fd~!))s~!, then
s = tz for some z € Z,(4-1)) and we have

s@s bd s =tz (tz) Wbd Mz =t @z (z7 U bd z) = t@zz W lbd Mz = t @t Tbd 1t

> dGJI; is a bijection with inverse t @ b + tbt~1d.

> d()é is a morphism of bicomodules by construction.

> If b € “Bf and g € G, then bg € “¢Bf8 and (fg)(dg)~' = fd~' so we can choose the same t.
Therefore

0l (bg) = t@ t lbg(dg) Mt =t@t 'bd 't = 6} (b)g
since the right action is the regular action.

> Ifb € “Bf and ¢ € G, then ¢b € $'B8f and (gf)(gd) ™' = gfd'g~! so we can choose gt.
Therefore

991 (gb) = gt (gt) ' gb(gd) " (gt) = gt @ ¢ 'bd 't = g 64 (b).

Therefore dOJl; is an isomorphism of Hopf bimodules.
Now if ¢ : B — B/, define 6(¢p) on “VWB/ by “0(¢)/ = id @ 1¢*(@f4""), Clearly 6(¢) is a morph-
ism of Hopf bimodules (bicomodules by construction and bimodules easy to check).

Finally, 6 is natural:
WB(p) 004 (b) = t@ UYL+ 10d 1) = t @t p(b)d 1t = 0% (p(b))
so that 6(¢) o 0 = O 0 ¢.
4 Wy =id.

IfEM={M(C)}ccy € X kZ,)-Mod, define
Ce?

¥c: M(C) = WYM(C) = 'WM“©) = KE(u(C)) ©kz, ey M(QUU(C))) = kZ,y(c) @k Z,y(c)M(C)

(©)))

which sends m to m @ 1. Then ¥ is an isomorphism of left kZ, ¢ -modules.

If ¢ : M — N is a morphism, then define (¥¢)c : WYM(C) — WVN(C) by (¥¢)c = ¢c ®1id,
which is a morphism of left kZ,c)-modules.

Moreover, ¥ : id — WV is natural: (¥¢)co¥¢c = ¥copc : M(C) - WYM(C). O

Remark. The functors V and W preserve dimensions and therefore induce an equivalence between
bk(kG) and X(/ kZu(C)—mod.
Ce%

Definition. The Cayley graph of a group G with respect to a marking map m : G — N is an oriented
graph I whose vertices are indexed by the elements of the group, Iy = {é,;¢ € G}, and such that the

number of arrows from &, to d¢ is m( fa-1.

Théoreme 3.1. Let I be a quiver. Then kI is a graded Hopf algebra if and only if I is the Cayley
graph of a finite group G with respect to to a marking map m : G — IN constant on conjugacy classes.

Proof. Recall that kI' = Tyr, (kI'1).

1) Assume that kI is a graded Hopf algebra. Then its degree 0 part kI'g is a Hopf subalgebra, iso-
morphic to a product of #I'y copies of k so that kT'y = kC for some group G of order #I'y. Moreover,
kT (the degree 1 part) is a Hopf bimodule over k© so that (kI';)* =: B is a Hopf bimodule over kG.
Set 4(kI'1)f := 64(kI'1)6f where d, f are in G and J;, 05 are the corresponding elements in kG = kT,

By construction, dim Bf = dim 4(kT'1) 7 is the number of arrows from &, to Jy.
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2)

We have B = VM for some M = {M(C)},. and ipf = M(Q(fd1)) so that dim?B/ only
depends on the conjugacy class of fd~!.

Define m : G — N by m(g) = dim M(€Q)(g)). Then m is constant on conjugacy classes by construc-
tion and m(fd ') is the number of arrows from & to dy.

Therefore I is the Cayley graph of G with respect to m.

Assume that I' is the Cayley graph of a finite group G with respect to to a marking map m : G - IN
constant on conjugacy classes. By definition, [y = {v,;¢ € G}, therefore kI'y = kC so that kI' =
TkG (krl).

kT is therefore a Hopf algebra if and only if the k®-bimodule kT'; is a Hopf bimodule over kC, if
and only if the kG-bicomodule B := (kI'1)* is a Hopf bimodule over kG. Note that the number of
arrows from v, to vy is m(fd=1) = dim ;(kT'p) ¢.

For C € €, let M(C) be a vector space of dimension m(C), endowed with a left kZ,c)-module
structure (eg. the trivial one). Then M = {M(C)} ¢ isin X?f kZ,(c)-Mod so that VM € by (kG).

Cet

We have dim ?VM/ = dim M(Q(fd 1)) = m(fd—') = dim?Bf and ?VM/ and 9B/ have the same
bicomodule structure so that “VM/ = B/ as bicomodules. Therefore B is a Hopf bimodule over
kG via this isomorphism, so that kT'; is a Hopf bimodule over k© and kT is a Hopf algebra. O

Remark. Different kZ,-module structures on the M(C) yield different Hopf bimodule structures on
B and kI'1 and hence different Hopf algebra structures on kT".

Explicit description of the comultiplication: link with [GS]. Given a Cayley graph I for a group G
with respect to m constant on conjugacy classes, what is the comultiplication explicitly on kI';?

We know that kT'y = B* for some Hopf bimodule B = VM over kG where M = {M(C)}ccy € X
Ce?

KZy(c

)-Mod with dimy M(C) = m(C) for each C € €. We have 6,;(kI'1)df = (BNY* = (TyM/)*.

Given a kG-bimodule V, the vector space V* is also a kG-bimodule: for « € V* and g € G, set

gra:v—a(vg) and w<g:v— a(go).

Note that if a € ("VM/)* then gba € (B8 VM )" = 6,1 (KT1)6, 1 and aag € (3 1VMS f)* =
(qud(kl"l)égqf.
The kG-bimodule structure on *V M/ (regular on the right and obtained using the left kZ, Fd-1))"

module structure on M(Q(fd!)) on the left) gives a k®-bicomodule structure on &,(kI'; )6 as follows:

pe(a) =) (gra)®s, and pr(a)=) de®(x<g) forae (“vmh)*,
8€G 8€G

Therefore A(a) = Yoec((g>a) ®Ig + g @ (< g)).
Note that since the right action on VM is regular, the left action on kI'; is regular (or trivial as re-

quired /defined in [GS]) and the right action on kI'; satisfies the condition for the kG-bimodule structure
on kI to be allowable.

Conversely, given an allowable kG-bimodule structure on kT, the reverse construction give an object
in x kZ,y-Mod.
Ce¥ u(©)
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