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Bialgebra cohomology of the duals of a class of

generalised Taft algebras

R. Taillefer

Abstract

We compute explicitly the bialgebra cohomology of the duals of the generalised Taft
algebras, which are non-commutative, non-cocommutative �nite-dimensional Hopf alge-
bras. In order to do this, we use an identi�cation of this cohomology with an Ext algebra
(Taillefer, 2004) and a result describing the Drinfeld double of the dual of a generalised
Taft algebra up to Morita equivalence (Erdmann, Green, Snashall, Taillefer, 2006).

Mathematics Subject Classi�cation (2000): 16E40, 16W30.

1 Introduction

The object of this note is to present the computation of the bialgebra cohomology of an explicit
example of a Hopf algebra that is neither commutative nor cocommutative.

The bialgebra cohomology H�b(H;H) for a Hopf algebra H was de�ned by M. Gerstenhaber
and S.D. Schack in [GS] in order to understand deformations of bialgebras and Hopf algebras
(in a similar way that Hochschild cohomology is a tool in the study of deformations of asso-
ciative algebras). This cohomology has also been useful to establish results on classi�cation
or structure of Hopf algebras (see [EG] and [S�]).

The bialgebra cohomology is endowed with a graded algebra structure which is graded
commutative (see [T1, T2]), but it is di�cult to compute in general. Some results are known:
M. Gerstenhaber and S.D. Schack [GS] showed that if G is a discrete group and k is a �eld, then
H�b(kG; kG)

�= H�(G; k) (since kG is coseparable); B. Parshall and J. Wang [PW] established
some results for the function algebras of some a�ne algebraic groups, and various results were
obtained for the enveloping algebra of a Lie algebra (see [GS], [G] and [Sh]) that enabled
the authors to deduce some information on deformations of the enveloping algebra of a Lie
algebra.

In the case of non-commutative non-cocommutative Hopf algebras however, it seems that
no computations are known. In this note, we compute H�b(�n;d;�n;d) where �n;d is the dual of a
generalised Taft algebra, which is a �nite-dimensional Hopf algebra that is neither commutative
nor cocommutative. The dual algebra ��n;d is described as follows: let n and d be integers such
that d divides n, and let k be an algebraically closed �eld whose characteristic does not divide
n; then ��n;d is generated by two elements G and X satisfying the relations Gn = 1, Xd = 0

and GX = !�1XG where ! is a primitive dth root of unity. The element G is grouplike and
�(X) = G 
 X + X 
 1: Note that in the case n = d, ��n;n is the usual Taft algebra, and
it is well known that it is selfdual (as a Hopf algebra), hence �n;n is isomorphic to the usual
Taft algebra. The Taft algebras have been very much studied, as they are small enough to be
manageable, but their structure is rich enough to provide interesting examples against which
to test a theory.
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2 Preliminaries

In this section, we de�ne the algebras �n;d by quiver and relations (we refer to [ARS, III.1]
and [B, 4.1] for de�nitions and properties relating to quivers and relations). Let n and d be
integers, and assume that k is an algebraically closed �eld. The quiver is an oriented cycle,

�
a0

!!
�

an�1 ,,

� a1

��
�

an�2 11

�

�

with n vertices �0; : : : ; �n�1 and n arrows a0; : : : ; an�1, where the arrow ai goes from the vertex
�i to the vertex �i+1; and we factor by the ideal generated by all paths of length d > 2. The
indices are viewed as elements in the cyclic group Zn and are written mod n: Denote by 
mi
the path ai+m�1 : : : ai+1ai (read from right to left), that is, the path of length m starting
at the vertex �i. In particular, 
0i = �i and 
1i = ai: The algebra �n;d is then equal to the
vector space over k whose basis is the set of paths 
mi for i 2 Zn and 0 6 m 6 d� 1; and its

product is de�ned by 
`j

m
i =

(

m+`
i if i+m � j (mod n) and m+ ` < d

0 otherwise
on the paths,

and extended linearly.
When d divides n; this algebra is a Hopf algebra, and in fact the condition d j n is a

necessary and su�cient condition for �n;d to be a Hopf algebra when chark = 0 (see [C,
CHYZ]). This Hopf algebra can actually be considered over more general �elds, and in this
paper, we assume only that the characteristic of k does not divide n (to ensure existence of
roots of unity).

We �x a primitive dth root of unity ! in k: The formulae

"(�i) = �i0 �(�i) =
P

j+`=i �j 
 �` S(�i) = ��i
"(ai) = 0 �(ai) =

P
j+`=i(�j 
 a` + !`aj 
 �`) S(ai) = �!i+1a�i�1;

where � is the Kronecker symbol, determine the Hopf algebra structure of �n;d (the indices
are written in Zn).

3 Computation of H�

b(�n;d;�n;d)

The proof relies on the two following results:

Theorem 3.1 ([T1] Remark, end of Section 4, and [T2] Remark 3.10) Let H be a �nite-

dimensional Hopf algebra and let D(H) be its Drinfeld double. Denote by k the trivial simple

left module over D(H). Then H�b(H;H) is isomorphic to Ext�
D(H)(k; k) as a graded algebra

(the product on the algebra Ext�
D(H)(k; k) is the Yoneda product).
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Theorem 3.2 ([EGST] Theorem 2.26) Let �n;d be as in Section 2. Then D(�n;d) is Morita

equivalent to the algebra A = k
n2

d � (kQ
I
)
n(d�1)

2 , where Q is the quiver

�
b0

!!
�b

ll�

b ,,

�b
qq

� b1

���b0

aa

�

b 11

��b1

UU

�

(the underlying non-oriented graph is a cycle, and for each edge we put two arrows in opposing

directions) with 2n
d

vertices and 4n
d

arrows indexed by the cyclic group Z 2n
d
. The ideal I is

generated by the elements bi+1bi, �bi�1
�bi and bi�bi � �bi+1bi+1 for all i 2 Z 2n

d
(there are 6n

d

relations on each of these quivers). The vertices in the isolated copies of k correspond to

simple D(�n;d)-modules of dimension n, the vertices in the copies of Q correspond to simple

D(�n;d)-modules of dimensions between 1 and n� 1:

We now have enough information to prove the following result:

Proposition 3.3 There is a graded algebra isomorphism:

H�b(�n;d;�n;d) �=
k[x; y; z]

(z
2n
d � xy)

with x and y of degree 2n
d

and z of degree 2:

Proof: We know from Theorem 3.1 that there is a graded algebra isomorphism H�b(�n;d;�n;d) �=
Ext�

D(�n;d)
(k; k): Moreover, by Theorem 3.2, Ext�

D(�n;d)
(k; k) is isomorphic as a graded algebra

to Ext�A(S; S) where S is a simple A-module to be determined.
The trivial D(�n;d)-module k is a simple D(�n;d)-module of dimension 1: Therefore the

simple A-module S cannot be a simple A-module at an isolated vertex in the quiver of A (they
correspond to simple D(�n;d)-modules of dimension n), so it must be a simple A-module at a
vertex in one of the copies of Q: These are indistinguishable, so we choose S to be any one of
them. Moreover, Ext�A(S; S)

�= Ext�kQ
I

(S; S) (the other components of A act as zero on S; so

that S can be viewed as a module over kQ
I
).

Finally, we have a graded algebra isomorphism H�b(�n;d;�n;d) �= Ext�kQ
I

(S; S); so we only

need to compute the algebra Ext�kQ
I

(S; S):

Let ei be the i
th vertex in Q; with i in the cyclic group of order 2n

d
: We denote by Pi the

projective module kQ
I
ei and by Si =

kQ
I
ei=rad

�
kQ
I
ei

�
the simple module at the vertex ei:

Choose S to be the simple kQ
I
-module S0:

It is easy to check that there is a minimal projective left kQ
I
-module resolution P� of S0

given by Pr =
Lr

`=0 Pr�2` with di�erential @n : Pn ! Pn�1 de�ned on the generators by

@n(en�2`) = bn�2`�1en�2`�1+�bn�2`en�2`+1. Denote by e
(j)
i the generator of the jth copy of Pi

in Pr (�r 6 j 6 r). Applying the functor Hom kQ
I

(�; S0) gives the complex Hom kQ
I

(P�; S0).

3



Using the fact that Hom kQ
I

(Pi; S0) �= Hom kQ
I

(Si; S0) �= �i0k (the radical of Pi must go to 0),

we see in particular that the di�erentials in the complex Hom kQ
I

(P�; S0) are zero and we get:

dimk Ext
r
kQ
I

(S0; S0) =

(
2�+ 1 if r = �2n

d
+ � with 0 6 � < 2n

d
and � even,

0 if r = �2n
d
+ � with 0 6 � < 2n

d
and � odd.

We now choose a basis of cochain maps for ExtrkQ
I

(S0; S0) : for each integer t with �� 6

t 6 �; de�ne

r;t : P

m+r ! Pm

e
(j)
i 7!

(
e
(j�t)
i if t�m 6 j 6 t+m

0 otherwise

for every m 2 N (where e
(p)
i = 0 if p < 0).

It is not di�cult to check that 
r;t is a chain map, and that the set f
r;t j �� 6 t 6 �g is
a basis for ExtrkQ

I

(S0; S0):

The cup-product is then obtained by composing these maps. We can easily see that

r0;t0 � 
r;t = 
r+r0;t+t0 and hence that z := 
2;0; x := 
 2n

d
;�1 and y := 
 2n

d
;1 generate

Ext�kQ
I

(S0; S0): Moreover, the 
r;t commute, and xy = z
2n
d : Therefore Ext�kQ

I

(S0; S0) is iso-

morphic to a quotient of the algebra
k[x; y; z]

(z
2n
d � xy)

. Both are graded algebras, so to prove that

they are isomorphic, it is enough to check that the dimensions for each graded part are equal.
This is easily seen (a basis of the degree �2n

d
+ � part is empty if � is odd, and is given by

fxpz(��p)
n
d
+�

2 ; ypz(��p)
n
d
+�

2 j 0 6 p 6 �g if � is even). �

Corollary 3.4 The dimensions of the Hr
b(�n;d;�n;d) for r 2 N are given by:

dimk H
r
b(�n;d;�n;d) =

(
0 if r is odd

2b rd2nc+ 1 if r is even

where b c denotes the lower integer part.

Remark 3.5 Since the Hr
b(�n;d;�n;d) vanish when r is odd, any Gerstenhaber algebra struc-

ture on H�b(�n;d;�n;d) would have to be trivial (a Gerstenhaber algebra structure includes a
graded Lie bracket: Hr

b(�n;d;�n;d)�Hs
b(�n;d;�n;d)! Hr+s�1

b (�n;d;�n;d) so that if r and s are
even, r+s�1 is odd, and therefore the bracket must be zero). See [GS] and [T2] for questions
and de�nitions relating to Gerstenhaber algebras.
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