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Introduction : a glimpse to quantum gravity

Why Quantum Gravity ?

Gravitation vs. Quantum Physics : the two infinities
. Gravitation : large scales of the Universe via General Relativity
• Gravity is geometry and space-time is a dynamical entity

. Quantum physics : microscopic interactions via QFT
• Particles and gauge fields live in a flat fixed Minkowski space-time

. Very successful theories but they do not see each other !

However, gravity and the quantum world meet in some situations
. At the origin of the Universe
• initial singularity where gravity fails to be predictive
• it corresponds to the Planck scale `p ∼

√
rsλc ∼

√
~G/c3

. Near black holes
• at the core singularity where the curvature diverges
• at the horizon where there is a thermal radiation (gravitons ?)

. In general at all unavoidable space-time singularities
• Penrose-Hawking singularity theorem
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Introduction : a glimpse to quantum gravity

How quantum gravity ?

Standard (old-fashion) techniques for quantizing gravity fail
. Path integral quantization around the flat Minkowski metric
• gravity is perturbatively non-renormalizable

. Canonical or Hamiltonian quantization
• technically too complicated : too much quantum ambiguities

. Deep reasons behind these frustrating no-go theorems
• we do not understand the meaning of quantizing space-time
• quantizations break general covariance : what is the role of time ?
• how to deal with the enormous symmetry group (diffeomorphisms) ?

Some paths towards quantum gravity BUT no experiments
. Search for non-perturbative renormalization
. Gravity is not a fundamental theory but it is effective (law energy)
• it has to be modified at Planck scale : new structure of space-time

. Quantization rules have to be adapted to gravity
• the Fock space quantization is not suitable for general relativity
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Introduction : a glimpse to quantum gravity

Loop quantum gravity in a nutshell

Gravity is a fundamental theory
. General Relativity could be quantized as it is
. If one respects the main features of the classical theory :
• background independence, general covariance etc...

. The quantization should resolve the space-time singularities
• as quantum mechanics resolves the classical instability of atoms
• one does not modify the electrostatic potential V (r)
• one shows the existence of a fundamental level and then stability

Main characteristics of Loop Quantum Gravity
. Starting point : Einstein-Hilbert action in Ashtekar-Barbero variables
. Canonical or Hamiltonian quantization of pure gravity
• locally space-time looks like M = Σ× [0, 1] and Σ is space
• X is an SU(2) connection and P the corresponding electric field

. Non-perturbative and background independent quantization
• no-background metric needed (no-trivial vacuum)
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Introduction : a glimpse to quantum gravity

Success and failure of LQG

A beautiful and mathematically well-defined kinematic
. Kinematical states are one-dimensional excitations
• they form a Hilbert space with an unique diff-invariant measure

. Geometric operators (area and volume) are kinematical observables
• with a discrete spectrum : space is discrete at the Planck scale !

. The discreteness of quantum geometry is fundamental to
• resolve the big-bang singularity : loop quantum cosmology (bounce)
• understand black holes thermodynamics : entropy and radiation

Failure and open issues
. Quantum dynamics is certainly the most important open issue
• Spin-Foams : most promising attempts to define the dynamics

. Semi-classical limit still poorly understood
• what is the quantum analogue of Minkowski, de Sitter etc... ?

. What about matter fields and other interactions ? `p ∼ 10−20`proton ?
• emergence of particles at classical limit : phase transition (tensors) ?
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Overview of the course

1. Classical framework: Ashtekar-Barbero connection

• Why does ADM canonical quantization fail ?
• From complex Ashtekar connection to Ashtekar-Barbero connection
• The holonomy-flux algebra : the polymer hypothesis
• Classical gravity in three space-time dimensions

2. Loop Quantum Gravity

• A view in 3 dimensions where the program works
• Kinematics : discreteness of space
• Dynamics from Spin-Foam models

3. Black Hole thermodynamics from LQG

• Heuristic Rovelli’s model
• Black Hole partition function : counting microstates
• Back to complex variables : area law and thermal radiation
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Why does ADM canonical quantization fail ?

ADM variables (1961)

Lagrangian formulation : M is the 4D space-time
. Einstein-Hilbert action without matter : functional of the metric g

SEH [g ] =

∫
d4x

√
|g |(R − 2Λ)

. Variational principle leads to Einstein equations in vacuum

δSEH

δgµν
= 0 =⇒ Gµν = Rµν −

1

2
gµνR = 0

Hamiltonian formulation : M = Σ× T with ∂Σ = ∅
. ADM parametrization of the metric :

ds2 = N2dt2 − hab(Nadt + dxa)(Nbdt + dxb)

. hab is induced space metric, N is the lapse and Na the shift

. The ten components of gµν parametrize by hab, N and N
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Why does ADM canonical quantization fail ?

Canonical analysis in ADM variables

The Legendre transformation is non invertible
. the canonical variables are hab and πab = h−1/2(K ab − Khab)

SADM [h, π; N,Na] =

∫
dt

∫
d3x(ḣabπ

ab + NaHa + NH)

. where K ab is the intrinsic curvature and X = X a
a for any tensor

. the lapse and the shift are Lagrange multipliers which enforce

Ha = −2∇(3)
b (h−1/2πab) ' 0 , H = −h−1/2[R(3) +

π2 − 2πabπ
ab

2h
] ' 0

. where the index (3) refers to the 3-metric hab

Symplectic structure and constraints analysis
. Poisson bracket : {πab, hcd} ∝ δabcd the symmetric tensor
. Ha is the vectorial constraint and H is the scalar constraint
. Dirac analysis : no more secondary constraints
. Then 6× 2− 4× 2 = 4 dof in phase space as expected
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Why does ADM canonical quantization fail ?

Too complicated constraints

Constraints and symmetries
. H and H generate space-time diffeomorphisms (on-shell)
. For instance, the action of H[v ] =

∫
d3x vaHa on X

δvX = {H[v ],X} = LvX with L the Lie derivative

Formal physical phase space

{(hab, π
cd)|Ha ' 0 ' H}/Diff

. No explicit parametrization of the phase space

. Enormous symmetry group difficult to deal with

. Highly non linear expression of the constraints

All this leads to the impossibility of the quantization à la ADM
. Simplification : Wheeler-de Witt equation for the Universe
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From complex Ashtekar connection to Ashtekar-Barbero connection

First order gravity in metric variables

The metric g and the connection Γ are independent variables
The Lagrangian point of view

. Hilbert Palatini action SHP [g , Γ] with Γ symmetric

SHP [g , Γ] =

∫
d4x

√
|g | (R[Γ]− 2Λ)

. Γ is torsion free then it is Levi-Civita : equivalence to Einstein-Hilbert

δSHP

δΓ
= 0 =⇒ Γ(g)

The Hamiltonian point of view in ADM parametrization
. Presence of secondary second class constraints ψ ' 0

ψ ' 0 =⇒ Γ(3) = Γ(3)(g)

. Second class constraints must be resolved prior to quantization

. Redundant variables in considering g and Γ independent

. Back to ADM phase space : we gain nothing !
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From complex Ashtekar connection to Ashtekar-Barbero connection

First order gravity in tetrad variables

The tetrad and the spin-connection
. The tetrad e Iµ (4× 4 matrix) such that gµν = e IµeJν ηIJ
. e is defined up to Lorentz transformations : SL(2,C) gauge symmetry
. The so(3, 1) spin-connection ωIJ

µ related to Γ by ωIJ
µ = Γµ(e I , eJ)

Hilbert-Palatini action in terms of tetrad

SHP [e, ω] =

∫
〈?(e ∧ e) ∧ F (ω)〉 =

∫
d4x

1

2
εµνρσεIJKLe IµeJνFKL

νρ (ω)

. The curvature 2-form F (ω) = dω + ω ∧ ω

. The Hodge dual ? : so(3, 1)→ so(3, 1)

. The Killing form 〈; 〉 : so(3, 1)× so(3, 1)→ C s.t. 〈a; b〉 ∝ tr(ab)

Canonical analysis in tetrad formalism
. First class constraints : H, Ha and the Gauss constraint G IJ

. Second class constraints : Tab = 0 =⇒ ωij
a (e)

. This formalism reduces to the ADM formalism : gain nothing again !
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From complex Ashtekar connection to Ashtekar-Barbero connection

The input of Complex Ashtekar variables

Self-dual or anti self-dual complex connection
. The (anti) self-dual action

S±[e,(±) ω] =

∫
〈?(e∧e)∧F ((±)ω)〉 =

1

2

∫
〈?(e∧e)∧F (ω)〉±i〈(e∧e)∧F (ω)〉

Quick Hamiltonian analysis
. Poisson bracket : {E a

i (x),Aj
b(y)} = ±iδabδ

j
i δ(x − y)

E a
i =

1

2
εabcεijke jbekc and Ai

a =(±) ωi
a

. The three families of first class constraints (polynomial)

Gi = DaE a
i , Ha = Eb · Fab , H = E a × Eb · Fab

. No second class constraints. We gain something important !

Clermont - Ferrand ; january 2014 Karim NOUI LQG : 1.Classical framework 12/15



From complex Ashtekar connection to Ashtekar-Barbero connection

The input of Complex Ashtekar variables

Self-dual or anti self-dual complex connection
. The (anti) self-dual action

S±[e,(±) ω] =

∫
〈?(e∧e)∧F ((±)ω)〉 =

1

2

∫
〈?(e∧e)∧F (ω)〉±i〈(e∧e)∧F (ω)〉

Quick Hamiltonian analysis
. Poisson bracket : {E a

i (x),Aj
b(y)} = ±iδabδ

j
i δ(x − y)

E a
i =

1

2
εabcεijke jbekc and Ai

a =(±) ωi
a

. The three families of first class constraints (polynomial)

Gi = DaE a
i , Ha = Eb · Fab , H = E a × Eb · Fab

. No second class constraints. We gain something important !
Clermont - Ferrand ; january 2014 Karim NOUI LQG : 1.Classical framework 12/15



From complex Ashtekar connection to Ashtekar-Barbero connection

The Ashtekar-Barbero connection

Problem with complex variables : non-compact gauge group

. Reality conditions : Ai
a + A

i
a = Γi

a(E ) unsolved at quantum level
Making the connection real : the Barbero-Immirzi parameter

. Holst action with a free parameter γ

Sγ =
1

2

∫
〈?(e ∧ e) ∧ F (ω)〉+

1

γ
〈(e ∧ e) ∧ F (ω)〉

. Classically, γ is totally irrelevant by virtue of Bianchi identity

Hamiltonian analysis in the time gauge
. An su(2)-valued connection : {E a

i (x),Aj
b(y)} = γδabδ

j
i δ(x − y)

E a
i =

1

2
εabcεijke jbekc and Ai

a = Γi
a + γK i

a

. The three families of first class constraints (polynomial)

Gi = DaE a
i , Ha = Eb · Fab , H = E a × Eb · (Fab + (γ2 + 1)Ka × Kb)

. The Hamiltonian constraint is no more polynomial
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The holonomy-flux algebra

The polymer hypothesis

Classical phase space of Ashtekar gravity :
. Phase space : P = T ∗(A) with A = {SU(2) connections}
. Fundamental excitations are one-dimensional : polymer hypothesis
. Holonomy-flux algebra associated to edges e and surfaces S

A(e) = P exp(

∫
e

A) and Ef (S) =

∫
S

Tr(f ? E ) .

. Cylindrical functions : f ∈ Cyl is a function of A(e) with e ⊂ γ

. Ef (S) acts as a vector field on f if S ∩ γ 6= 0.

Action of symmetries : S = G n Diff (Σ) with G = C∞(Σ,SU(2))
. Gauss constraint : f (A(e)) 7−→ f (g(s(e))−1A(e)g(t(e)))
. Diffeomorphisms : f (A(e)) 7−→ f (A(ϕ(e)))
. Similar action for the variables Ef (S)
. Symmetries are automorphisms of classical algebra
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From complex Ashtekar connection to Ashtekar-Barbero connection

Brief summary of the classical

The Ashtekar-Barbero connection
. Hypothesis : time-gauge SL(2,C)→ SU(2)
. Obtained from Holst action with γ irrelevant
. Equivalently from canonical transformation
. A is an su(2)-valued connection
. At the kinematical level : gravity looks like SU(2) Yang-Mills theory
. But the Hamiltonian constraint is no more polynomial...

The polymer hypothesis
. Excitations are one-dimensional
. Fundamental variables are holonomies of A
. Ready for the quantization...

3D gravity as a toy model
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