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Outline

◮ Introduction : financial modeling, option pricing under
stochastic volatility.

◮ Underlying processes are solutions of SDEs.

◮ Asymptotic (in space) estimates of probability laws useful
for option modeling and pricing problems.

◮ Our main tool: Itô processes around deterministic curves.
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The Option Pricing problem

◮ Risky asset modeled by a continuous-time martingale (St , t ≥ 0)
(the “underlying” ).

◮ Specifications of S through SDEs, e.g.

dSt = σ(t , St)dWt .

The option (at some T > 0):

φ(ST ), ex. φ(s) = (s − K )+ (option “Call”)

The price of the option:
E[φ(ST )]

◮ Historical exemple: Black-Scholes model

St(σ) = σStdWt , σ > 0

E[(ST (σ) − K )+] = CBS(K , T , σ).

Explicit formulae for CBS.
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Stochastic volatility models

The model:
dSt = f (Vt)StdW 1

t

dVt = β(t , Vt)dt + γ(t , Vt)dW 2
t

d < W 1, W 2 >t= ρ

ex. f (v) =
√

v . (St , t ≥ 0) satisfies

St =

∫ t

0
f (Vs)SsdW 1

s

(St ; t ≥ 0) a positive local martingale −→ always an integrable
supermartingale (apply Fatou’s lemma to St∧τn ).
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Stochastic volatility models

The model:
dSt = f (Vt)StdW 1

t

dVt = β(t , Vt)dt + γ(t , Vt)dW 2
t

d < W 1, W 2 >t= ρ

ex. f (v) =
√

v . (St , t ≥ 0) satisfies

St =

∫ t

0
f (Vs)SsdW 1

s

(St ; t ≥ 0) a positive local martingale −→ always an integrable
supermartingale (apply Fatou’s lemma to St∧τn ).

But, complications may arise:

◮ Moments of order p > 1 may become infinite (Andersen &
Piterbarg (07), Keller-Ressel (09)) −→ Manipulate variances
with care.

◮ S not a true martingale (Lions & Musiela (05), Jourdain (05), ...)
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Local-stochastic volatility (LSV) models

The model:
dSt = f (Vt)Stη(t , St)dW 1

t

dVt = β(t , Vt)dt + γ(t , Vt)dW 2
t

d < W 1, W 2 >t= ρ

(St ; t ≥ 0) satisfies

St =

∫ t

0
f (Vs)Ssη(s, Xs)dW 1

s

(St ; t ≥ 0) a positive local martingale −→ always an integrable
supermartingale.

But, complications may arise:

◮ Moments of order p > 1 may become infinite.

◮ S not a true martingale.

Lower bounds for stock price probability distributions in stoc



Explosion of E[Sp
t ]

Related to :

◮ Well-posedness of the model (manipulate variances and do
Monte Carlo simulation)

◮ Shape of the Implied Volatility curve

The implied volatility: the unique σ(T , k) such that

E[(ST − S0ek )+] = CBS(S0ek , T , σ(T , k)).

Exemple of σ(T , ·)2 for fixed T :
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Explosion of E[Sp
t ] and shape of implied volatility

The critical exponents:

p∗
T (S) = sup{p : E[Sp

T ] < ∞}, q∗
T (S) = sup{q : E[S−q

T ] < ∞}.
In some particular models, can be computed explicitly as functions of
model parameters.

The Moment Formula (Lee (04)):

lim sup
k→∞

Tσ(T , k)2

k
= g(p∗

T (S) − 1), lim sup
k→−∞

Tσ(T , k)2

k
= g(q∗

T (S)),

(1)

for a known function g: g(x) = 2 − 4
(√

x2 + x − x
)

, g(∞) = 0.
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Explosion of E[Sp
t ] and shape of implied volatility

The critical exponents:

p∗
T (S) = sup{p : E[Sp

T ] < ∞}, q∗
T (S) = sup{q : E[S−q

T ] < ∞}.
In some particular models, can be computed explicitly as functions of
model parameters.

The Moment Formula (Lee (04)):

lim sup
k→∞

Tσ(T , k)2

k
= g(p∗

T (S) − 1), lim sup
k→−∞

Tσ(T , k)2

k
= g(q∗

T (S)),

(1)

for a known function g: g(x) = 2 − 4
(√

x2 + x − x
)

, g(∞) = 0.

Useful for:

◮ Model selection: if market implied volatility has “wings”,
moments in the model must explode.

◮ Model calibration : in (1), compare the left hand side (market
data) to the right one (model) −→ gives a guess of model
parameters.
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Approach to moment explosion: lower bounds for the
law of ST

Consider Xt = log(St/S0), so that E[Sp
T ] = Sp

0E[epXT ].

We look for lower bounds in the range:

P(XT > y) ≥ C∗e−c∗y

because this implies E[epXT ] = ∞ for all p > c∗ (apply Markov’s
inequality).

Our main tool : an estimation along the whole trajectory

P(XT > y) ≥ P(|XT − 2y | < y) ≥ P(|Xt − xt | < Rt ,∀t ≤ T )

with the proper curves x and R (x0 = X0 = 0; xT = 2y ; Rt > 0;
RT = y).
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Estimates for Itô processes around deterministic
curves

Consider for a moment:

◮ a stochastic process Yt ∈ R
n;

◮ a deterministic differentiable curve yt ∈ R
n;

◮ a time depending radius Rt > 0

Assume Y satisfies

Yt = x0 +

∫ t

0
b(s, Ys)ds +

d
∑

j=1

∫ t

0
aj(s, Ys)dW j

s, t ≤ τR ,

with τR = inf{t : |Yt − yt | ≥ Rt} (temps de sortie du “tube”).
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Estimates for Itô processes around deterministic
curves

Consider for a moment:

◮ a stochastic process Yt ∈ R
n;

◮ a deterministic differentiable curve yt ∈ R
n;

◮ a time depending radius Rt > 0

Assume Y satisfies

Yt = x0 +

∫ t

0
b(s, Ys)ds +

d
∑

j=1

∫ t

0
aj(s, Ys)dW j

s, t ≤ τR ,

with τR = inf{t : |Yt − yt | ≥ Rt} (temps de sortie du “tube”).
The coefficients a and b are:

◮ Locally bounded: |b(t , Yt∧τR )| +
∑

j |aj(t , Yt∧τR )| ≤ ct

◮ Locally Lipschitz: E

[

|σj(s, Ys) − σj(t , Yt)|21{τR≥s}

]

≤ Lt(s − t);

◮ Locally elliptic: λt In ≤ σσ∗(t , Yt∧τR ) ≤ γt In,
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The lower bound

Consider the rate function:

F (t) =
|y ′

t |2
λt

+ (c2
t + L2

t )
( 1

λt
+

1
R2

t

)

The lower bound: (Bally, Fernandez &Meda (09), under technical
conditions on |y ′

t |, Rt , ct , Lt , λt , γt )

P(|Yt − yt | ≤ Rt ,∀t ≤ T ) ≥ exp
(

−Q
(

1 +

∫ T

0
F (t)dt

))

(2)

with Q a universal constant.

What we do: take (2) and optimize over the curves yt , Rt .

In our model, the process Y is the couple (X , V ) (we need to
estimate V to estimate X ).
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Application to LSV models

A class of models widely employed (f (v) =
√

v ):

dXt = −1
2

η2(t , Xt)Vtdt + η(t , Xt)
√

VtdW 1
t ; X0 = 0

dVt = β(t , Vt)dt + γ(t , Vt)
√

VtdW 2
t ; V0 > 0.

(3)

◮ Hypotheses : η, γ Lipschitz, bounded and bounded away from
zero; β measurable with sub-linear growth.

Consider any couple (Xt , Vt ; t ≤ T ) that satisfies (3) (no discussion
about existence and uniqueness is needed).

MAIN RESULT: there exist cT , yT such that

P
(

|(Xt , Vt) − (x̃t , ṽt)| ≤ R̃t ,∀t ≤ T
)

≥ exp
(

−cT |y |
)

, ∀ |y | > yT

ṽt = V0

(

√

|y | + V0

V0
φ(t)

)2
; x̃t = sign(y)(ṽt − V0); R̃t =

1
2

√

ṽt ;

φ(t) = sinh(t/2)/ sinh(T/2).

Lower bounds for stock price probability distributions in stoc



Corollaries

The bound for the “tube”:

P
(

|(Xt , Vt) − (x̃t , ṽt)| ≤ R̃t ,∀t ≤ T
)

≥ exp
(

−cT |y |
)

.

The constant cT explicitly depends on model parameters.

The same estimate holds for the terminal cdf:

P(|XT | > y) ≥ exp
(

−cT y
)

.

Consequences are:

◮ The critical exponents are finite:

p∗
T (S) ∨ q∗

T (S) ≤ cT .

◮ In the considered class of models, the implied volatility always
has “wings”:

lim sup
k→±∞

Tσ(T , k)2

k
≥ cT , ∀T > 0.
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Remarks

◮ “Small balls” estimates : We also show that

P

(

|(XT , VT )−(y , |y |+V0)| ≤ R(j)(y)
)

≥ exp
(

−(j +1)dT |y |
)

. (4)

with R(0)(y) =
√

|y |, R(1)(y) = 1, R(2)(y) = 1√
|y|

...

◮ Density estimates : Using (4) and the integration by parts
formula of Malliavin calculus, we also prove that XT admits a
density pXT such that

pXT (y) ≥ 1
M

exp(−eT |y |) (5)

for all y with |y | > M.

Lower bounds for stock price probability distributions in stoc



Ideas of proof

Recall the model:

dXt = −1
2

η2(t , Xt)Vtdt + η(t , Xt)
√

VtdW 1
t , X0 = 0

dVt = β(t , Vt)dt + γ(t , Vt)
√

VtdW 1
t V0 > 0.

(6)

Step 1. Growth of coefficients in (6) mainly determined by Vt .
The local bounds, local Lipschitz constants, local ellipticity constants
in the “tube” around any (xt , vt), provided that vt stays away from zero
and Rt < vt , are

ct = cvt ; Lt = Lvt ;

γt = γvt ; λt = λvt .

The bound P(τR > T ) ≥ exp
(

−Q
(

1 +
∫ T

0 F (t)dt
))

holds with

F (t) =
(x ′

t )
2 + (v ′

t )
2

vt
+ 2(v2

t + vt)
( 1

vt
+

1
R2

t

)

;
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Ideas of proof

Step 2. Choice of curves and radius. Starting from the expression of
F :

F =: Fx,v ,R(t) = +
(x ′

t )
2 + (v ′

t )
2

vt
+ 2(v2

t + Lvt)
( 1

vt
+

1
R2

t

)

,

under the constraints (x0, v0) = (0, V0), xT = y , we choose:

Rt =
1
2
√

vt ; (x ′
t )

2 = (v ′
t )

2, t ∈ [0, T ]

so that vt = |xt | + V0.
Step 3. Lagrangian minimization The rate function reduces to

Fv = L(vt , v ′
t ), L(vt , v ′

t ) =
(v ′

t )
2

vt
+ vt
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Ideas of proof

Step 4. Explicit computations Euler-Lagrange equations for L are
explicitly solved under the constraints (x0, v0) = (0, V0),
(xT , vT ) = (y , |y | + V0), giving

ṽt = V0

(

√

|y | + V0

V0
φ(t)

)2
; x̃t = sign(y)(ṽt − V0); R̃t =

1
2

√

ṽt ;

φ(t) = sinh(t/2)/ sinh(T/2).

◮ Explicit computation of
∫ T

0 Fv (t)dt gives the lower bound.
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