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Motivation :

Does a process in a inhomogeneous but “regular” medium behave
roughly the same as in a homogeneous medium.

Inhomogeneous ↔ Random

Regular ↔ Space-translation invariant, Ergodic, i.i.d...
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0 1 2 3 4 5−1−2−3−4−5

w01− w0 w31− w3

the wi are i.i.d. [0, 1]−valued random variables.
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0 1 2 3 4 5−1−2−3−4−5

w01− w0 w31− w3

the wi are i.i.d. [0, 1]−valued random variables.











X0 = 0

Pw [Xn+1 = x + 1|Xn = x ] = wx

Pw [Xn+1 = x − 1|Xn = x ] = 1− wx
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On the line Z

On trees

Standard RWRE on the line.

0 1 2 3 4 5−1−2−3−4−5

w01− w0 w31− w3

the wi are i.i.d. [0, 1]−valued random variables.











X0 = 0

Pw [Xn+1 = x + 1|Xn = x ] = wx

Pw [Xn+1 = x − 1|Xn = x ] = 1− wx

µ→ distribution of the environment w ,

Pw → quenched probability,

P = µ⊗ Pw → annealed probability.

Under P, Xn is not a Markov Chain.
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Main Results

Theorem (Recurrence/transience; Solomon 1975)

If Eµ[log( 1−w0

w0
)] < 0, then P-a.s, Xn → +∞,

if Eµ[log( 1−w0

w0
)] > 0, then P-a.s, Xn → −∞,

if Eµ[log( 1−w0

w0
)] = 0, then P-a.s, lim supXn = +∞ and

lim inf Xn = −∞.
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Main Results

Theorem (Recurrence/transience; Solomon 1975)

If Eµ[log( 1−w0

w0
)] < 0, then P-a.s, Xn → +∞,

if Eµ[log( 1−w0

w0
)] > 0, then P-a.s, Xn → −∞,

if Eµ[log( 1−w0

w0
)] = 0, then P-a.s, lim supXn = +∞ and

lim inf Xn = −∞.

- The slow regime

Theorem (Sinai 1982)

Suppose Eµ[log( 1−w0

w0
)] = 0, δ < w0 < 1− δ, µ−a.s. for some δ > 0 and

Eµ[(log( 1−w0

w0
))2] <∞, then Xn

(log(n))2 converges to some non-degenerate

distribution.
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-The “ballistic/diffusive” regime.

Theorem (Solomon 1975; Kesten, Kozlov, Spitzer 1982)

If Eµ[
1−w0

w0
] < 1, then Xn

n
→ 1−E [

1−w0
w0

]

1+E [
1−w0

w0
]

P− a.s.

If Eµ[
w0

1−w0
] < 1, then Xn

n
→ 1−E [

w0
1−w0

]

1+E [
w0

1−w0
]

P− a.s.

If 1/Eµ[
1−w0

w0
] ≤ 1 ≤ Eµ[

w0

1−w0
], then Xn

n
→ 0.

Furthermore, in the last case, if κ > 0 is such that Eµ

[(

1−w0

w0

)κ]

= 1,

Eµ

[(

1−w0

w0

)κ

log+ 1−w0

w0

]

<∞, and the distribution of log 1−w0

w0
is

non-lattice, then

If 0 < κ < 1 then Xn

nκ
converges to an explicit non-degenerate

distribution,

If κ = 1, then Xn log n

n
converges to an explicit non-degenerate

distribution.
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Notations:

Let T be a tree rooted at some vertex e. We call
←−x the father of x ,

|x | the distance, or number of edges between x and e,

moreover we say that x ∼ y if x is a neighbor of y

we call Nx the number of the children (x1, x2, ...xNx
) of x .
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On the line Z

On trees

Notations:

Let T be a tree rooted at some vertex e. We call
←−x the father of x ,

|x | the distance, or number of edges between x and e,

moreover we say that x ∼ y if x is a neighbor of y

we call Nx the number of the children (x1, x2, ...xNx
) of x .

Let (w(x , y))x,y∈T be a family of random variables such that

w(x , y) = 0 unless x ∼ y

∀x ∈ T ,
∑

y∈T

w(x , y) = 1.
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On the line Z

On trees

Notations:

Let T be a tree rooted at some vertex e. We call
←−x the father of x ,

|x | the distance, or number of edges between x and e,

moreover we say that x ∼ y if x is a neighbor of y

we call Nx the number of the children (x1, x2, ...xNx
) of x .

Let (w(x , y))x,y∈T be a family of random variables such that

w(x , y) = 0 unless x ∼ y

∀x ∈ T ,
∑

y∈T

w(x , y) = 1.

We call Random Walk on (T ,w) the Markov Chain defined by

{

X0 = e

PT [Xn+1 = y |Xn = x ] = w(x , y).
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Assumptions

We call A(x) := w(←−x ,x)

w(←−x ,
←−←−x )
. Note that knowing the {w(x , y), y ∼ x} is

equivalent to knowing the A(xi ), 1 ≤ i ≤ Nx .

Proposition (Neveu, 1986)

given a probability measure q on N⊗ R
∗N∗

+ , there exists a probability
measure MT on the space of marked trees, T such that

the distribution of the random variable (Ne ,A(e1),A(e2), . . . ) is q,

given Gn, the random variables (Nx ,A(x1),A(x2), . . . ), for x ∈ T,
|x | = n are independent and their conditional distribution is q.

Note that the tree T is then a Galton-Watson tree, we will always
assume EMT[Nx ] > 1. We introduce the (convex, well defined) function

ψ(t) = logEMT

[

Ne
∑

i=1

A(ei )
t

]

.

and we call as before P the annealed law.
Gabriel Faraud Random Walks in Random environment on trees.
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Let p := inf0≤t≤1 ψ(t),

Theorem (Lyons/Pemantle 1992a, F. 2008)

aunder the additional assumptions that the A(ei ) are i.i.d. and independent of Ne

If p < 0 then the walk is MT-a.s. positive recurrent,

if p = 0 then the walk is MT-a.s. recurrent,

if p > 0 then the walk is MT-a.s. transient, conditionally on the
event {T is infinite }.

Gabriel Faraud Random Walks in Random environment on trees.



Introduction: Random Walks in Random Environment
Results

An associated Branching Random Walk.
The slow regime

The Central Limit Theorem

Recurrence/Transience Criterion
The slow regime
The subdiffusive case.

Let p := inf0≤t≤1 ψ(t),

Theorem (Lyons/Pemantle 1992a, F. 2008)

aunder the additional assumptions that the A(ei ) are i.i.d. and independent of Ne

If p < 0 then the walk is MT-a.s. positive recurrent,

if p = 0 then the walk is MT-a.s. recurrent,

if p > 0 then the walk is MT-a.s. transient, conditionally on the
event {T is infinite }.

To precise the critical case we must distinguish several cases.

0 00

ψ(t) ψ(t) ψ(t)

t t t

ψ′(1) < 0 ψ′(1) = 0 ψ′(1) > 0

1 1 1

κ
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Proposition

Suppose p = 1 and ψ′(1) = EMT

[

∑N(e)
i=1 A(ei ) log(A(ei ))

]

is finite. Then,

under some technical assumptions,

if ψ′(1) < 0, then the walk is a.s. null recurrent, conditionally on the
system’s survival.

If ψ′(1) = 0 and for some δ > 0,

EMT[N(e)1+δ] <∞,

then the walk is a.s. null recurrent, conditionally on the system’s
survival.

If ψ′(1) > 0, and if for some η > 0, ω(x ,←−x ) > η almost surely, then
the walk is almost surely positive recurrent.
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The case ψ′(1) = 0

We first study the slow regime, corresponding to the case ψ′(1) ≥ 0.

Theorem (F., Hu, Shi 2009)

Assume ψ(1) = ψ′(1) = 0. On the set of non-extinction,

lim
n→∞

max0≤k≤n |Xk |
(log n)3

=
8

3π2σ2
, P− a.s.,

where

σ2 := E

{

Ne
∑

i=1

A(ei )(log A(ei ))
2

}

.
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The case ψ′(1) > 0

Unexpectedly, the case ψ′(1) > 0 turns out to be slightly different from
the case ψ′(1) = 0.

Theorem (F., Hu, Shi 2009)

Assume inft∈[0, 1] ψ(t) = 0 and ψ′(1) > 0. On the set of non-extinction,

lim
n→∞

max0≤k≤n |Xk |
(log n)3

=
2 θ

3π2ψ′′(θ)
, P− a.s.,

where θ ∈ (0, 1) is such that ψ′(θ) = 0 and

ψ′′(θ) = E

{

∑Ne

i=1 A(ei )
θ (log A(ei ))

2
}

.
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The case ψ′(1) < 0

In this case, the behavior depends on κ := inf{t > 1; ψ(t) > 0}.

Theorem (Hu, Shi, 2006a)

aFor i.d. A(x), under ellipticity assumptions.

Suppose p = 0 and ψ′(1) < 0, then

max
0≤k≤n

|Xk | = nν+o(1), P− a.s.,

where

ν = 1− 1

2 ∧ κ.

The problem of wether |Xn|
nν

converges in distribution is still open,
however we are able to improve this result when κ is large.
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The central limit theorem

We suppose

∃ǫ0; ǫ0 < A(ei ) <
1
ǫ0
∀i , a.s.

∀α ∈ [0, 1], E
[(

∑N(e)
0 A(ei )

α
)

log+
(

∑N(e)
0 A(ei )

α
)]

<∞,
“N(e) and the A(ei ) a not too dependent”

Theorem (F. 2009)

Suppose p = 1, and ψ′(1) < 0, then, if κ > 5, then there is a
deterministic constant σ > 0 such that, under P, the process
{|X⌊nt⌋|/

√
σ2n} converges in law to the absolute value of a standard

brownian motion, as n goes to infinity. Moreover, if κ > 8, the same
holds under PT , for almost every tree T .
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Definition

A particle e is initially situated at 0.
At time 1 it dies and gives birth to a random number Ne of particle
ei , each one having a position V (ei ),
then each living particle x dies at time 2 and give birth to a random
number Nx of particles xi , with positions V (xi ), in such a way that
(Nx ,V (xi )− V (x))1≤i≤Nx

has the same distribution as
(Ne ,V (ei ))1≤i≤Ne

.
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ei , each one having a position V (ei ),
then each living particle x dies at time 2 and give birth to a random
number Nx of particles xi , with positions V (xi ), in such a way that
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At time 1 it dies and gives birth to a random number Ne of particle
ei , each one having a position V (ei ),
then each living particle x dies at time 2 and give birth to a random
number Nx of particles xi , with positions V (xi ), in such a way that
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Definition

A particle e is initially situated at 0.
At time 1 it dies and gives birth to a random number Ne of particle
ei , each one having a position V (ei ),
then each living particle x dies at time 2 and give birth to a random
number Nx of particles xi , with positions V (xi ), in such a way that
(Nx ,V (xi )− V (x))1≤i≤Nx

has the same distribution as
(Ne ,V (ei ))1≤i≤Ne

.
b

b b b
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We associate the Branching Random Walk to the marked tree by the
relation

e−V (x) =
∏

e<y≤x

A(y) := C (x).

C (x) is called conductance between ←−x and x . We call

Y (α)
n :=

∑

x∈Tn

e−αV (x),

the Laplace transform of the empirical measure of the BRW. It is closely
related to the random walk on T , indeed, denoting by π the invariant
measure associated to the walk, we get

π(x) =
π(e)w(e,←−e )

w(x ,←−x )
e−αV (x),

where w(e,←−e ) is arbitrarily defined as 1
PNe

i=1 A(ei )

Gabriel Faraud Random Walks in Random environment on trees.
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Note that
Y (α)

n

enψ(α) is a positive martingale, therefore it converges almost

surely to some variable Y (α). More precisely

Theorem (Biggins, 1977)

Let α ∈ R
+. Suppose ψ is finite in a small neighborhood of α, and ψ′(α)

exists and is finite, then the following are equivalent

given non-extinction, Y (α) > 0 a.s.,

PMT[Y
(α) = 0] < 1,

EMT[Y
(α)] = 1,

(H1) : ∀α ∈ [0, 1], Eq

[(

∑N(e)
0 A(ei )

α
)

log+
(

∑N(e)
0 A(ei )

α
)]

<∞,
and αψ′(α) < ψ(α) (H2),
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Consequency:

if p < 1 then
∑

x∈T π(x)α ≤ C
∑∞

n=1 Y
(α)
n <∞ as eψ(α) < 1.

Therefore the walk is positive recurrent.

Gabriel Faraud Random Walks in Random environment on trees.
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The Central Limit Theorem

Consequency:

if p < 1 then
∑

x∈T π(x)α ≤ C
∑∞

n=1 Y
(α)
n <∞ as eψ(α) < 1.

Therefore the walk is positive recurrent.

if p = 1, ψ′(1) ≥ 0, then (H2) is not verified, thus the walk is
recurrent

the other cases are not trivial ...

Gabriel Faraud Random Walks in Random environment on trees.
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We recall the results in the “slow movement” regime

Theorem

Assume ψ(1) = ψ′(1) = 0. On the set of non-extinction,

lim
n→∞

max0≤k≤n |Xk |
(log n)3

=
8

3π2σ2
, P− a.s.,

where

σ2 := E

{

Ne
∑

i=1

A(ei )(log A(ei ))
2

}

.

Assume now inft∈[0, 1] ψ(t) = 0 and ψ′(1) > 0. On the set of
non-extinction,

lim
n→∞

max0≤k≤n |Xk |
(log n)3

=
2 θ

3π2ψ′′(θ)
, P− a.s.,

where θ ∈ (0, 1) is such that ψ′(θ) = 0

Gabriel Faraud Random Walks in Random environment on trees.
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We call τn the hitting time of Tn and τe the first return to the root. Let
ρn := PT (τn < τe)

Theorem

Assume inft∈[0,1] ψ(t) = 0 and ψ′(1) ≥ 0. Almost surely on the set of non

extinction, (i) if ρn ≥ e−(c1+o(1))n1/3

for some positive constant c1, then

lim inf
n→∞

1

log3 n
max

0≤k≤n
|Xk | ≥ c−3

1 ;

(ii) if ρn ≤ e−(c2+o(1))n1/3

for some positive constant c2, then

lim sup
n→∞

1

log3 n
max

0≤k≤n
|Xk | ≤ c−3

2 ;

Therefore the proof reduces to showing that ρn = e−(a∗+o(1))n1/3

for some
appropriated a∗.
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A lower bound in the case ψ′(1) > 0

Note that PT (τn < τe) ≥ max|x|=n PT (τx < τe). The last probability can
be computed explicitly (it is a 1-dimensional Random Walk) , and is
equal to

w(e, x1)e
V (x1)

∑

e<z≤x eV (z)

therefore

ρn ≥
c(T )

n
e−min|x|=n maxe<z≤x V (z) :=

c(T )

n
e−min|x|=n V (z)

This can be estimated.

Gabriel Faraud Random Walks in Random environment on trees.
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Theorem

Assume p = 1 and ψ′(1) ≥ 0. Let θ ∈ (0, 1] be such that ψ′(θ) = 0. We
have, on the set of non-extinction,

lim
n→∞

1

n1/3
min
|x|=n

V (x) =
(3π2σ2

θ

2

)1/3

, P-a.s.,

where

σ2
θ :=

1

θ
E
{

∑

|x|=1

V (x)2e−θV (x)
}

.

This gives a first bound for the walk. Unfortunately, it is optimal is the
case ρ′(1) > 0 but not in the case ρ′(1) = 0.
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A lower bound in the case ψ′(1) = 0

For any x in T we call T (k)(x) the k-th visit at x . Since the walk is
recurrent, each T (k)(x) is well-defined; we have

̺n =
∑

|x|=n

∞
∑

k=1

Pω

{

T (k)(x) < τe < T (k+1)(x), max
T (k)(x)<i≤τe

|Xi | < n
}

=
∑

|x|=n

∞
∑

k=1

Pω

{

T (k)(x) < τe , max
T (k)(x)<i≤τe

|Xi | < n
}

.

Applying the strong Markov property at T (k)(x), we see that the
probability on the right-hand side equals Pω{T (k)(x) < τe}Px

ω{τn > τe}.
Therefore,

̺n =
∑

|x|=n

Px
ω{τn > τe}

∞
∑

k=1

Pω{T (k)(x) < τe} =
∑

|x|=n

Px
ω{τn > τe}π(x)
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By a spinal decomposition, we can reduce to studying Px
ω{τn > τe} for a

slightly different law of environment, with a spine. We reduce to studying
a walk on [e, x ] defined as follows: when the walk is at some point
xn ∈ [e, x ],

it goes to xn+1 with probability pn = w(xn, xn+1)

it goes to xn−1 with probability qn = w(xn, xn−1)

it dies with probability rn = Px
T (τn < τx ,X1 6∈ {xn−1, xn+1})

e xxn xn+1xn−1

pnqn

rn
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We obtain, after some computations, that when ψ(1) = ψ′(1) = 0,

lim inf
n→∞

max0≤k≤n |Xk |
(log n)3

≥ 8

3π2σ2
, P-a.s.. (1)

However this method relies on
∑

|x|=n C (x) being a martingale, which is

not the case when ψ′(1) > 0. The other bounds are obtained by taking
well-chosen cutsets.
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We study here the case p = 1, ψ′(1) < 0. Recall that in this case,

E [
∑Nx

i=1 A(ei )] = 1. We first introduce a new distribution on trees. We
call MT the usual distribution of Marked Trees. We call q the distribution
of (Ne ,A(ei )) and q̂ the distribution defined a by dq̂

dq
=

∑Ne

i=1 A(ei ). We
construct a marked graph the following way.

We set an infinite ray Ray e = v0, v1, .... such that vi+1 =←−vi .

To each vi , i 6= 0, we attach a set of children with distribution q̂.

To e we attach we attach a set of children with distribution
(q̂ + q)/2.

Finally to all the vertices not on Ray we attach independent trees
with law MT

We also introduce the horocycle distance h, defined as h(e) = 0 and
h(←−x ) = h(x)− 1.
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MT MT

MT MT MT

MT MT

MT MT MT

v0

v1

v2

v3

h = 1

h = 0

h = −1

h = −2

h = −3

h = −4

(q + q̂)/2

q̂

Ray
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We can define as before a Random Walk on a IMT tree. We call Tt the
tree “shifted” at Xt .

Proposition

The process Tt is invariant.

For this measure, things behave quite well

Theorem

Suppose p = 1, ρ′(1) < 0 and κ ∈ [2,∞]. There exists a deterministic

constant σ such that, under PIMT the process {h(X⌊nt⌋)/
√
σ2n} converges

in distribution to a standard brownian motion, as n goes to infinity.
Moreover, if κ > 5, then we have a quenched CLT.

It remains to go back to the original process, by a coupling method.
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bb

(q̂ + q)/2
q̂
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We do obtain a Random path on a IMT tree, whose excursions are
coupled with those of the original walk.

However, a certain error comes from the parts outside those
excursion.

The method to bound this error is quite delicate, and we loose here
some precision on the results.
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Conclusion : Open questions

Does |Xn|
nν

converge in law for all κ, when ψ′(1) < 0

How does |Xn| behave in the slow regime, and a related issue would
be, where is min|x|=n V (z) realized.
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