Numerical results

Filtered derivative with p-value method for multiple change points detection

Pierre R. BERTRAND¹², <u>Mehdi FHIMA²</u> and Arnaud GUILLIN²

¹INRIA Saclay, France ²Laboratoire de Mathématiques, CNRS UMR 6620 & University Clermont-Ferrand II, France

Neuvième Colloque "Jeunes Probabilistes et Statisticiens", 3rd May 2010

Plan

Presentation of the problem

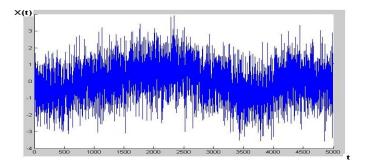
- Our problem
- Penalized method
- Filtered Derivative with p-value
- **2** Description of the FDp-V method
 - Filtered Derivative method
 - Filtered Derivative with p-value method
 - Complexity

3 Numerical results

- Monte Carlo simulation
- Detection of change points in the slope
- Segmentation of the electrocardiogram (ECG)

Presentation of the problem ●○○○○○○	Description of the FDp-V method	Numerical results
Our problem		
Our model		

Let (X_1, \ldots, X_n) be a sequence of independent r.v.'s presenting change points in a parameter $\theta = (\theta_1, \ldots, \theta_n)$.



Toy model: Simulated data of independent Gaussian r.v.'s presenting change points in the mean.

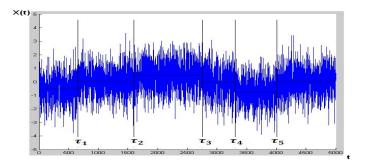
Presentation	of	the	problem
000000			

Our problem

Our goal

Estimate:

- The change points $\tau = (\tau_1, \ldots, \tau_K)$,
- The parameter $\hat{\theta}_k$ of each segment $(\tau_{k-1} + 1, \tau_k)$.



 \rightarrow Off-line detection problem.

Penalized method

Penalized least square criterion (PLSC) method

If the number of change points is known

- Bai & Perron (1994).
- Lavielle & Moulines (2000).
- If the number of change points is unknown
 - Birgé & Massart (2006).
 - Lavielle & Teyssière (2006).

Numerical results

Penalized method

Presentation of the method

• The contrast function can be written as follows:

$$J(K, \mathbf{T}, X) = \frac{1}{n} \sum_{k=1}^{K+1} U(X_{T_{k-1}+1}, \dots, X_{T_k})$$

where $U(X_{T_{k-1}+1}, ..., X_{T_k})$ is the contrast function for estimating θ in the segment $(T_{k-1} + 1, T_k)$.

•
$$(\tau_1,\ldots,\tau_K) = \underset{\mathbf{T}}{\arg\min J(K,\mathbf{T},X)}.$$

 The dynamic programming algorithm is a method which essentially proceeds via a sequential examination of the overall U (X_{i+1},...,X_j).

Numerical results

Penalized method

Presentation of the method

• The **penalized** contrast function can be written as follows:

$$J(K,\mathbf{T},X) = \frac{1}{n} \sum_{k=1}^{K+1} U\left(X_{T_{k-1}+1},\ldots,X_{T_k}\right) + \beta \mathsf{pen}(\mathbf{T})$$

where $U(X_{T_{k-1}+1},...,X_{T_k})$ is the contrast function for estimating θ in the segment $(T_{k-1} + 1, T_k)$.

•
$$(\tau_1, \ldots, \tau_K) = \underset{\mathbf{T}}{\operatorname{arg\,min}} J(K, \mathbf{T}, X).$$

 The dynamic programming algorithm is a method which essentially proceeds via a sequential examination of the overall U (X_{i+1},...,X_j).

Presentation of the problem	Description of the FDp-V method	Numerical results
Penalized method		
Complexity		

This algorithm needs to compute and store the upper triangular matrix:

$$M = \left(U\left(X_{i+1}, \ldots, X_{j}\right)\right)_{1 \le i \le j \le n}$$

Time complexity

Computation of the values $U(X_{i+1}, ..., X_j)$ needs time complexity of $\mathcal{O}(n^2)$.

Memory complexity

Storage of a matrix of size *n*.

 \Rightarrow Memory allocation: 8*n*² bytes.

Filtered Derivative with p-value (FDp-V) method

Filtered Derivative method

- Basseville & Nikiforov (1993).
- Antoch & Huskova (1994).
- Bertrand (2000).

Piltered Derivative with p-value method

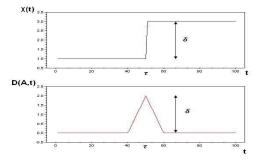
- Bertrand & Fhima (2009)
- Bertrand & Fhima & Guillin (2010)

Description of the FDp-V method

Numerical results

Filtered Derivative method

Initial idea: "Hat function"



Where

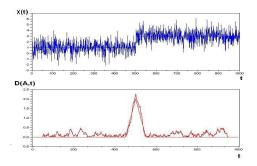
$$D(k,A) = \begin{cases} \hat{\theta}(k+1,k+A) - \hat{\theta}(k-A+1,k) & \text{if } k \in [A,n-A] \\ 0 & \text{else} \end{cases}$$

Description of the FDp-V method

Numerical results

Filtered Derivative method

Real data



Where

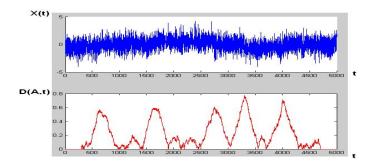
$$D(k,A) = \begin{cases} \hat{\theta}(k+1,k+A) - \hat{\theta}(k-A+1,k) & \text{if } k \in [A,n-A] \\ 0 & \text{else} \end{cases}$$

Description of the FDp-V method

Numerical results

Filtered Derivative method

Real data with multiple change-points

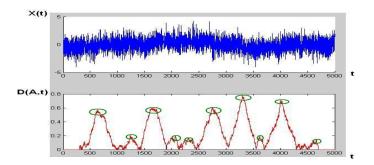


Description of the FDp-V method

Numerical results

Filtered Derivative method

Real data with multiple change-points

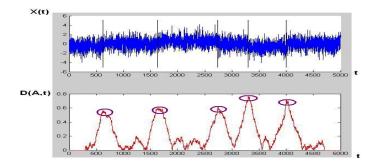


O How do we proceed to detect potential change points (*τ˜*₁,..., *τ˜_{Kmax}*)? → Step 1.

Numerical results

Filtered Derivative method

Real data with multiple change-points



- O How do we proceed to detect potential change points (*τ˜*₁,..., *τ˜_{Kmax}*)? → Step 1.
- **2** How do we **eliminate false alarms** and keep only right change points that we denote $(\hat{\tau}_1, \ldots, \hat{\tau}_K)$? \rightarrow Step 2.

Description of the FDp-V method

Numerical results

Filtered Derivative with p-value method

Step 1: Detection of the potential change points

It is based on the following test

$$(H_0): \ \theta_1 = \theta_2 = \cdots = \theta_{n-1} = \theta_n$$

against

$$(H_1): \exists K \ge 1 \text{ and } 0 = \tau_0 < \tau_1 < \cdots < \tau_K < \tau_{K+1} = n \text{ such that}$$
$$\theta_1 = \cdots = \theta_{\tau_1} \neq \theta_{\tau_1+1} = \cdots = \theta_{\tau_2} \cdots \neq \theta_{\tau_{K+1}} = \cdots = \theta_{\tau_{K+1}}.$$

Description of the FDp-V method

Numerical results

Filtered Derivative with p-value method

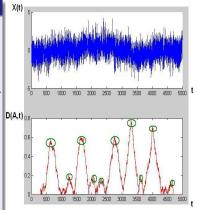
Step 1: Detection of the potential change points

Step 1 of the algorithm

Fix type I error at level p₁^{*} and so the critical value C₁ given by

$$\mathsf{P}\left(\max_{k\in [A:n-A]}|D(k,A)|>C_1
ight)= p_1^*\left(C_1
ight).$$

- 2 Select as potential change points, $\tilde{\tau}_k$, local maxima for which $|D(\tilde{\tau}_k, A)| > C_1$.
- $\Rightarrow We obtain potential change points (\tilde{\tau}_1, \ldots, \tilde{\tau}_{Kmax}).$



Description of the FDp-V method

Numerical results

Filtered Derivative with p-value method

Step 2: False alarms elimination

Step 2 of the algorithm

- For each $\tilde{\tau}_k$, associate the p-value \tilde{p}_k .
- 2 Keep only the change points $\tilde{\tau}_k$ such that

$$\widetilde{p}_k < p_2^*$$



Description of the FDp-V method

Numerical results

Filtered Derivative with p-value method

Statistical hypothesis testing

Let

•
$$(H0_k)$$
 : $\hat{\theta}_k = \hat{\theta}_{k+1}$
• $(H1_k)$: $\hat{\theta}_k \neq \hat{\theta}_{k+1}$

We compute p-values $(\tilde{p}_1, \ldots, \tilde{p}_{K_{max}})$ associated respectively with each potential change points $(\tilde{\tau}_1, \ldots, \tilde{\tau}_{K_{max}})$.

Complexity

Complexity

Time complexity

To calculate the "hat function" we use recurrence formula, i.e. that

$$D(k+1,A) = f(D(k,A))$$

For instance, in the case of change points in the mean, we have the following recurrence formula

$$D(k+1,A) = D(k,A) + A^{-1} [X_{k+A+1} - 2X_k + X_{k-A+1}]$$

 \Rightarrow Complexity of $\mathcal{O}(n)$.

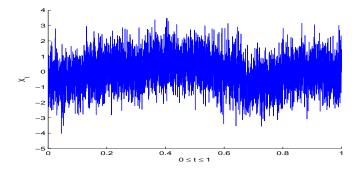
Memory complexity

Storage of a vector of size n. \Rightarrow Memory allocation: 8*n* bytes.

Numerical results

Monte Carlo simulation

Signal to be segmented



Data:

- Independent Gaussian r.v,
- *n* = 5000,

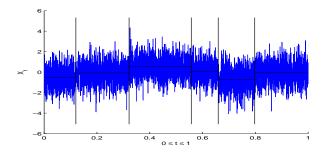
•
$$\tau = \{0.1294, 0.3232, 0.5532, 0.66, 0.8\},\$$

δ_k ∈ [0.5, 1.25].

Numerical results

Monte Carlo simulation

Calibration of the algorithms



PLSC method

FDp-V method

•
$$p_1^* = 0.05$$

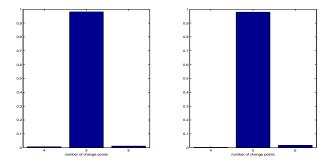
2
$$p_2^* = 10^{-5}$$

Presentation	of	the	problem

Numerical results

Monte Carlo simulation

Number of change points



Results:

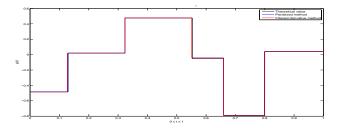
- PLSC (left) : *K* = 5 in 97.9% of all cases.
- FDp-V (right): K = 5 in 98.1% of all cases.

Presentation	the	problem

Numerical results

Monte Carlo simulation

Estimation errors



	SECP	MISE
FDp-V	$1.1840 imes 10^{-4}$	0.0107
PLSC	$1.2947 imes 10^{-4}$	0.0114

Where:

- Square Error on Change Points (SECP)= $\mathbb{E} \|\widehat{g} g\|_{L^2(0,1)}^2$
- Mean Integrated Squared Error (MISE)= $\mathbb{E} \| \hat{\tau} \tau \|^2$

Complexity

	Memory allocation	CPU time
FDp-V method	0.04 MB	0.005 s
PLSC method	200 MB	240 s

Conclusion

FDp-V method:

- Faster (time)
- Cheaper (memory)

Description of the FDp-V method

Numerical results

Detection of change points in the slope

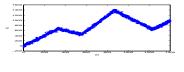
Detection of change points in the slope

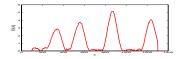
Data 1 n = 14002 $\Delta = 1$ 3 $\sigma = 30$ 4 $\nu_k \in [3, 5]$ where $\nu_k := |a_k - a_{k+1}|.$

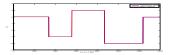
Calibration of the FDp-V method

•
$$p_1^* = 0.05$$

• $p_1^* = 10^{-5}$







Description of the FDp-V method

Numerical results

Detection of change points in the slope

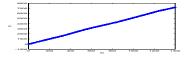
Smaller change points

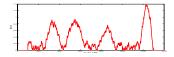
Data **1** n = 1400 $\Delta = 1$ **3** $\sigma = 30$ **4** $\nu_k \in [0.75, 1].$ **Calibration of the FDp-V** method 0.05

$$p_1 = 0.05$$

 $p_1^* = 10^{-5}$

$$3 A = 100$$



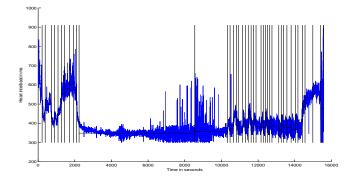


Description of the FDp-V method

Numerical results

Segmentation of the electrocardiogram (ECG)

Segmentation of the electrocardiogram (ECG)



Segmentation of heartbeat time series of a marathon runner.