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Our problem

Our model

Let (X1, . . . , Xn) be a sequence of independent r.v.’s presenting
change points in a parameter θ = (θ1, . . . , θn).

Toy model: Simulated data of independent Gaussian r.v.’s
presenting change points in the mean.
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Our problem

Our goal

Estimate:
The change points τ = (τ1, . . . , τK ),
The parameter θ̂k of each segment (τk−1 + 1, τk ).

→ Off-line detection problem.
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Penalized method

Penalized least square criterion (PLSC) method
1 If the number of change points is known

Bai & Perron (1994).
Lavielle & Moulines (2000).

2 If the number of change points is unknown
Birgé & Massart (2006).
Lavielle & Teyssière (2006).
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Penalized method

Presentation of the method

The contrast function can be written as follows:

J(K , T, X ) =
1
n

K+1∑
k=1

U
(
XTk−1+1, . . . , XTk

)
where U

(
XTk−1+1, . . . , XTk

)
is the contrast function for

estimating θ in the segment (Tk−1 + 1, Tk ).

(τ1, . . . , τK ) = arg min
T

J(K , T, X ).

The dynamic programming algorithm is a method which
essentially proceeds via a sequential examination of the
overall U

(
Xi+1, . . . , Xj

)
.
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Penalized method

Presentation of the method

The penalized contrast function can be written as follows:

J(K , T, X ) =
1
n

K+1∑
k=1

U
(
XTk−1+1, . . . , XTk

)
+βpen(T)

where U
(
XTk−1+1, . . . , XTk

)
is the contrast function for

estimating θ in the segment (Tk−1 + 1, Tk ).

(τ1, . . . , τK ) = arg min
T

J(K , T, X ).

The dynamic programming algorithm is a method which
essentially proceeds via a sequential examination of the
overall U

(
Xi+1, . . . , Xj

)
.
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Penalized method

Complexity

This algorithm needs to compute and store the upper triangular
matrix:

M =
(
U

(
Xi+1, . . . , Xj

))
1≤i≤j≤n

Time complexity

Computation of the values U
(
Xi+1, . . . , Xj

)
needs time

complexity of O(n2).

Memory complexity
Storage of a matrix of size n.
⇒ Memory allocation: 8n2 bytes.
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Filtered Derivative with p-value

Filtered Derivative with p-value (FDp-V) method
1 Filtered Derivative method

Basseville & Nikiforov (1993).
Antoch & Huskova (1994).
Bertrand (2000).

2 Filtered Derivative with p-value method
Bertrand & Fhima (2009)
Bertrand & Fhima & Guillin (2010)
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Filtered Derivative method

Initial idea: "Hat function"

Where

D(k , A) =

{
θ̂(k + 1, k + A)− θ̂(k − A + 1, k) if k ∈ [A, n − A]

0 else
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Filtered Derivative method

Real data

Where

D(k , A) =

{
θ̂(k + 1, k + A)− θ̂(k − A + 1, k) if k ∈ [A, n − A]

0 else
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Filtered Derivative method

Real data with multiple change-points
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Filtered Derivative method

Real data with multiple change-points

1 How do we proceed to detect potential change points
(τ̃1, . . . , τ̃Kmax)? → Step 1.
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Filtered Derivative method

Real data with multiple change-points

1 How do we proceed to detect potential change points
(τ̃1, . . . , τ̃Kmax)? → Step 1.

2 How do we eliminate false alarms and keep only right
change points that we denote (τ̂1, . . . , τ̂K )? → Step 2.
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Filtered Derivative with p-value method

Step 1: Detection of the potential change points

It is based on the following test

(H0) : θ1 = θ2 = · · · = θn−1 = θn

against

(H1) : ∃K ≥ 1 and 0 = τ0 < τ1 < · · · < τK < τK+1 = n such that

θ1 = · · · = θτ1 6= θτ1+1 = · · · = θτ2 · · · 6= θτK +1 = · · · = θτK+1 .
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Filtered Derivative with p-value method

Step 1: Detection of the potential change points

Step 1 of the algorithm
1 Fix type I error at level p∗1 and so the

critical value C1 given by

IP
(

max
k∈[A:n−A]

|D(k , A)| > C1

)
= p∗1 (C1) .

2 Select as potential change points, τ̃k ,
local maxima for which
|D(τ̃k , A)| > C1.

⇒ We obtain potential change points
(τ̃1, . . . , τ̃Kmax).
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Filtered Derivative with p-value method

Step 2: False alarms elimination

Step 2 of the algorithm
1 For each τ̃k , associate the

p-value p̃k .
2 Keep only the change points τ̃k

such that

p̃k < p∗2



Presentation of the problem Description of the FDp-V method Numerical results

Filtered Derivative with p-value method

Statistical hypothesis testing

Let
(H0k ) : θ̂k = θ̂k+1

(H1k ) : θ̂k 6= θ̂k+1

We compute p-values (p̃1, . . . , p̃Kmax) associated respectively
with each potential change points (τ̃1, . . . , τ̃Kmax).
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Complexity

Complexity

Time complexity
To calculate the "hat function" we use recurrence formula, i.e.
that

D(k + 1, A) = f (D(k , A))

For instance, in the case of change points in the mean, we have
the following recurrence formula

D(k + 1, A) = D(k , A) + A−1 [Xk+A+1 − 2Xk + Xk−A+1]

⇒ Complexity of O(n).

Memory complexity
Storage of a vector of size n.
⇒ Memory allocation: 8n bytes.
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Monte Carlo simulation

Signal to be segmented
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Data:
Independent Gaussian r.v,
n = 5000,
τ = {0.1294, 0.3232, 0.5532, 0.66, 0.8},
δk ∈ [0.5, 1.25].
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Monte Carlo simulation

Calibration of the algorithms
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PLSC method
1 Kmax = 10
2 p-value= 10−5

FDp-V method
1 p∗1 = 0.05
2 p∗2 = 10−5

3 A = 300
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Monte Carlo simulation

Number of change points
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Results:
PLSC (left) : K = 5 in 97.9% of all cases.
FDp-V (right): K = 5 in 98.1% of all cases.
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Monte Carlo simulation

Estimation errors

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0 ≤ t ≤ 1

µ(t
)

t

 

 
Theoretical value
Penalized method
Filtered derivative method

SECP MISE
FDp-V 1.1840× 10−4 0.0107
PLSC 1.2947× 10−4 0.0114

Where:
Square Error on Change Points (SECP)= E‖ĝ − g‖2

L2(0,1)

Mean Integrated Squared Error (MISE)= E‖τ̂ − τ‖2
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Monte Carlo simulation

Complexity

Memory allocation CPU time
FDp-V method 0.04 MB 0.005 s
PLSC method 200 MB 240 s

Conclusion
FDp-V method:

Faster (time)
Cheaper (memory)
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Detection of change points in the slope

Detection of change points in the slope

Data
1 n = 1400
2 ∆ = 1
3 σ = 30
4 νk ∈ [3, 5] where

νk := |ak − ak+1|.

Calibration of the
FDp-V method

1 p∗1 = 0.05
2 p∗2 = 10−5

3 A = 100
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Detection of change points in the slope

Smaller change points

Data
1 n = 1400
2 ∆ = 1
3 σ = 30
4 νk ∈ [0.75, 1].

Calibration of the
FDp-V method

1 p∗1 = 0.05
2 p∗2 = 10−5

3 A = 100
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Segmentation of the electrocardiogram (ECG)

Segmentation of the electrocardiogram (ECG)
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Segmentation of heartbeat time series of a marathon
runner.
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