Loci selection in model-based clustering

W. Toussile

U. Paris-Sud 11, U. Yaoundé 1, UR016-IRD

Neuvième Colloque Jeunes Probabilistes et Statisticiens, Mont-Dore 3-7 Mai 2010

Introduction

- We wish to discover the unknown genetic structure of a target diploid population from a *n*-sample without prior information.
- It may happen that some loci are just noise or event harmful for clustering purposes.

Introduction

- We wish to discover the unknown genetic structure of a target diploid population from a *n*-sample without prior information.
- It may happen that some loci are just noise or event harmful for clustering purposes.
- Which loci cluster the sample in the "best" way?
- We propose to simultaneously solve the loci selection and clustering problem by a model selection procedure for density estimation.
- An associated stand alone C++ package named MixMoGenD is available free of charge on www.math.u-psud.fr/~toussile.

Outline

Methods

- Competing models
- Model selection via penalization

2 Consistency

3 Selection procedure

- Selection procedure in practice
- Numerical experiments using BIC

Framework

- Consider a random vector $X = (X')_{I=1,...,L}$ with $L \ge 2$.
- With $X^{l} = \{X^{l,1}, X^{l,2}\}$, where $X^{l,1}, X^{l,2}$ are nominal variables taking values in the set $\{1, \ldots, A_{l}\}$ of allele states at locus *l*.

Framework

- Consider a random vector $X = (X')_{I=1,...,L}$ with $L \ge 2$.
- With $X^{l} = \{X^{l,1}, X^{l,2}\}$, where $X^{l,1}, X^{l,2}$ are nominal variables taking values in the set $\{1, \ldots, A_{l}\}$ of allele states at locus *l*.
- Assume that the clusters are characterized by:

(LE) Conditional complete independence of the random variables X'; (HWE) Conditional independence of $X^{l,1}$ and $X^{l,2}$ at any locus X'. [Pritchard et al., 2000, Chen et al., 2006, Corander et al., 2008].

Framework

- Consider a random vector $X = (X')_{I=1,...,L}$ with $L \ge 2$.
- With $X^{l} = \{X^{l,1}, X^{l,2}\}$, where $X^{l,1}, X^{l,2}$ are nominal variables taking values in the set $\{1, \ldots, A_{l}\}$ of allele states at locus *l*.
- Assume that the clusters are characterized by:
 (LE) Conditional complete independence of the random variables X¹;
 (HWE) Conditional independence of X^{1,1} and X^{1,2} at any locus X¹.
 [Pritchard et al., 2000, Chen et al., 2006, Corander et al., 2008].
 - Now, assume that only some loci gathered in a subset S are relevant for clustering purposes.
 - Also assume that for any $l \notin S$, X^{l} is identically distributed across all clusters.

イロト イポト イヨト イヨト

Modeling Competing models

• \Rightarrow In model-based settings, $X \sim P_0$ of the form

$$P_{(K,S,\theta)}(x) = \left[\sum_{k=1}^{K} \pi_{k} \prod_{l \in S} (2 - \mathbb{1}_{x^{l,1} = x^{l,2}}) \alpha_{k,l,x^{l,1}} \times \alpha_{k,l,x^{l,2}}\right] \times \prod_{l \notin S} (2 - \mathbb{1}_{x^{l,1} = x^{l,2}}) \beta_{l,x^{l,1}} \beta_{l,x^{l,2}}$$
(1)

where $\theta = (\pi, \alpha, \beta) \in \Theta_{(K,S)} = \cdots$.

- Model $\mathcal{M}_{(K,S)} := \{ P_{(K,S,\theta)} | \ \theta \in \Theta_{(K,S)} \}.$
- Inferring $(K, S) \iff$ model selection among $C = \{\mathcal{M}_{(K,S)} | (K, S) \in \mathbb{M}\}$ for the estimation of P_0 , where \mathbb{M} is the set of all possible (K, S).

Model selection via penalization ([Massart, 2007])

Selected model

$$(\widehat{K}_n, \ \widehat{S}_n) = \arg\min_{(K, S)} \operatorname{crit}(K, S).$$
 (2)

A B >
 A B >
 A

• Where crit is a penalyzed maximum likelihood criterion

$$\operatorname{crit}(K, S) = \underbrace{\gamma_n\left(\widehat{P}_{(K,S)}\right)}_{\mathbb{P}_n\left(-\ln\widehat{P}_{(K,S)}\right):=\frac{1}{n}\sum_{i=1}^n -\ln P_{(K,S,\widehat{\theta}_{MLE})}(X_i)} + \operatorname{pen}(K, S);$$
(3)

• Selected estimator $P_{(\widehat{K}_n, \widehat{S}_n, \widehat{\theta}_{MLE})}$ and classification by MAP.

Model selection via penalization ([Massart, 2007])

Selected model

$$(\widehat{K}_n, \ \widehat{S}_n) = \arg\min_{(K, S)} \operatorname{crit}(K, S).$$
 (2)

• Where crit is a penalyzed maximum likelihood criterion

$$\operatorname{crit}(K, S) = \underbrace{\gamma_n\left(\widehat{P}_{(K,S)}\right)}_{\mathbb{P}_n\left(-\ln\widehat{P}_{(K,S)}\right):=\frac{1}{n}\sum\limits_{i=1}^n -\ln P_{(K,S,\widehat{\theta}_{MLE})}(X_i)} + \operatorname{pen}(K, S);$$
(3)

Selected estimator P_(Kn,Sn,BMLE) and classification by MAP.
 The most used asymptotic penalized likelihood criteria:

$$\mathbf{BIC}(K,S) = \mathbb{P}_n\left(-\ln\widehat{P}_{(K,S)}\right) + \frac{\ln n}{2n}D_{(K,S)}$$
$$\mathbf{AIC}(K,S) = \mathbb{P}_n\left(-\ln\widehat{P}_{(K,S)}\right) + \frac{1}{n}D_{(K,S)}.$$

6 / 19

Outline

Methods

- Competing models
- Model selection via penalization

2 Consistency

3 Selection procedure

- Selection procedure in practice
- Numerical experiments using BIC

- Although there exists a lot of articles concerning the behavior of the BIC and other penalization methods in practice, theoretical results in a mixture framework are few: the consistency of the BIC estimator is shown
 - ▶ in [Maugis et al., 2009] for a variable selection problem,
 - ► and in [Keribin, 2000] for the number of components, in Gaussian mixture models framework.
- But as far as we know, there is no consistency result for both a variable selection and clustering problem in a discrete distribution setting.

• Consider a penalty function $\mathbf{pen} = \mathbf{pen}(D, n)$ such that:

- (P1): for any positive integer D, $\lim_{n\to\infty} \mathbf{pen}(D, n) = 0$;
- (P2): for any $\mathcal{M}_1 \subsetneq \mathcal{M}_2$, one has

$$\lim_{n\to\infty}\left[n\left(\operatorname{pen}\left(D_{2}, n\right) - \operatorname{pen}\left(D_{1}, n\right)\right)\right] = \infty$$

• Let $(\widehat{K}_n, \widehat{S}_n)$ be a minimizer of **crit** over a sub-collection $\mathcal{C}_{K_{\max}}$ for a given maximum number K_{\max} of clusters.

Theorem ([Toussile and Gassiat, 2009])

If $P_0 > 0$ and belongs to one of the competing models in $C_{K_{max}}$, then there exists an identifiable "smallest" model (K_0, S_0) such that

$$\lim_{n\to\infty} P_0\left[\left(\widehat{K}_n, \ \widehat{S}_n\right) = (K_0, \ S_0)\right] = 1.$$
 (5)

• Example: BIC.

9 / 19

Definition of $\mathcal{M}_{(K_0,S_0)}$

Lemma

For every K_1 and K_2 in \mathbb{N}^* , and S_1 and S_2 in $\mathcal{P}^*(L)$, $\mathcal{M}_{(K_1,S_1)} \cap \mathcal{M}_{(K_2,S_2)} = \mathcal{M}_{(\min(K_1,K_2),S_1 \cap S_2)}$.

The "smallest" model is defined by $(K_0, S_0) := (K(P_0), S(P_0))$, where

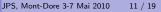
$$K(P) = \min \left\{ K \mid P \in \bigcup_{S \in \mathcal{P}^*(L)} \mathcal{M}_{(K, S)} \right\},$$
(6)
$$S(P) = \min \left\{ S \mid P \in \bigcup_{K \in \mathbb{N}^*} \mathcal{M}_{(K, S)} \right\},$$
(7)

for every P in one of the competing models $\mathcal{M}_{(K, S)} \in \mathcal{C}_{\mathcal{K}_{max}}$.

10 / 19

It suffices to show that
$$\lim_{n\to\infty} P_0\left[\gamma_n\left(\widehat{P}_{(K_0, S_0)}\right) - \gamma_n\left(\widehat{P}_{(K, S)}\right)\right] >$$

pen (K, S) - **pen** (K_0, S_0) = 0 for any $(K, S) \neq (K_0, S_0)$.



3

▶ < ∃ >

Image: 0

It suffices to show that
$$\lim_{n\to\infty} P_0\left[\gamma_n\left(\widehat{P}_{(K_0, S_0)}\right) - \gamma_n\left(\widehat{P}_{(K, S)}\right) >$$

pen (K, S) - **pen** (K_0, S_0) = 0 for any $(K, S) \neq (K_0, S_0)$.
9 $P_0 \in \mathcal{M}_{(K,S)}$:

$$P_0 \notin \mathcal{M}_{(K,S)}:$$

Image: 0

▶ < ∃ >

It suffices to show that
$$\lim_{n\to\infty} P_0\left[\gamma_n\left(\widehat{P}_{(K_0, S_0)}\right) - \gamma_n\left(\widehat{P}_{(K, S)}\right)\right) >$$

pen (K, S) – **pen** (K_0, S_0) = 0 for any $(K, S) \neq (K_0, S_0)$.

$$P_{0} \in \mathcal{M}_{(K,S)}:$$

- $n\gamma_{n}(P_{0}) \leq -n\gamma_{n}\left(\widehat{P}_{(K_{0}, S_{0})}\right) \leq -n\gamma_{n}\left(\widehat{P}_{(K, S)}\right) \leq \sup_{P \in \mathcal{D}}\left(-n\gamma_{n}(P)\right).$

$$P_0 \notin \mathcal{M}_{(K,S)}:$$

6

< A

э

It suffices to show that
$$\lim_{n\to\infty} P_0\left[\gamma_n\left(\widehat{P}_{(K_0, S_0)}\right) - \gamma_n\left(\widehat{P}_{(K, S)}\right)\right) >$$

pen (K, S) - **pen** (K_0, S_0) = 0 for any $(K, S) \neq (K_0, S_0)$.

■
$$P_0 \in \mathcal{M}_{(K,S)}$$
:
 $-n\gamma_n(P_0) \leq -n\gamma_n\left(\widehat{P}_{(K_0, S_0)}\right) \leq -n\gamma_n\left(\widehat{P}_{(K, S)}\right) \leq \sup_{P \in \mathcal{D}} (-n\gamma_n(P)).$

$$P_{0} \notin \mathcal{M}_{(K,S)}:$$

$$\gamma_{n} \left(\widehat{P}_{(K_{0}, S_{0})} \right) - \gamma_{n} \left(\widehat{P}_{(K, S)} \right) =$$

$$- \inf_{\theta \in \Theta_{(K, S)}^{\delta}} E_{P_{0}} \left[\ln P_{0} \left(X \right) - \ln P_{(K, S)} \left(X \mid \theta \right) \right] + o_{P_{0}} \left(1 \right),$$

where $\Theta_{(K,S)}^{\delta} = \left\{ \theta \in \Theta_{(K,S)}: P_{(K,S,\theta)} \ge \delta \right\}$

(

< A

э

Theorem ([Toussile and Gassiat, 2009])

If $P_0 > 0$, there exists a real $\delta > 0$ such that for every (K, S), one has

$$-\gamma_{n}\left(\widehat{P}_{(K,S)}\right) = \sup_{\theta \in \Theta_{(K,S)}^{\delta}} \left\{-\gamma_{n}\left(P_{(K,S,\theta)}\right)\right\} + o_{P_{0}}\left(1\right) \quad (8)$$

and

$$\sup_{\theta \in \Theta_{(K,S)}} E_{P_0} \left[\ln P_{(K,S,\theta)}(X) \right] = \sup_{\theta \in \Theta_{(K,S)}^{\delta}} E_{P_0} \left[\ln P_{(K,S,\theta)}(X) \right].$$
(9)

- ∢ ≣ →

Outline

Methods

- Competing models
- Model selection via penalization

2 Consistency

3 Selection procedure

- Selection procedure in practice
- Numerical experiments using BIC

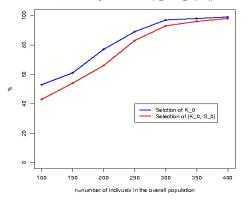
Selection procedure in practice

- An exhaustive search of the optimum model is very painfull in most situations.
- A two nested algorithm based on Backward-Stepwise proposed in [Maugis et al., 2009] could miss the optimum model in some cases, in particular in cases where the optimum subset of clustering loci is small.
- In MixMoGenD, we prefer a modified Backward-Stepwise algorithm with which sets *S* with small cardinality are always explored for any value of *K* [Toussile and Gassiat, 2009].
- The optimum model is then chosen between all the explored models.

BACKWARD-STEPWISE EXPLORER(crit, K) $S \leftarrow \{1, \ldots, L\}, c_{ex} \leftarrow 0, c_{in} \leftarrow 0$ 1 2 repeat 3 EXCLUSION(K, S) { $c_{ex} \leftarrow \arg\min_{l \in S} \operatorname{crit}(K, S \setminus \{l\})$ 4 if crit (K, S) – crit $(K, S \setminus \{c_{ex}\}) \ge 0$ or $c_{in} = 0$ 5 6 then $S \leftarrow S \setminus \{c_{ex}\}$ 7 8 INCLUSION(K, S) { 9 $c_{in} \leftarrow \arg\min_{l \notin S} \operatorname{crit}(K, S \cup \{l\})$ $\text{if} \left(\operatorname{crit} \left(K, \ S \cup \{ c_{in} \} \right) - \operatorname{crit} \left(K, \ S \right) < 0 \text{ and } S \cup \{ c_{in} \} \text{ have} \right)$ 10 never been the current set in an EXCLUSION step 11 12 then $S \leftarrow S \cup \{c_{in}\}$ 13 else $c_{in} \leftarrow 0$ 14 15 **until** |S| = 1.

Numerical experiments using BIC Consistency

Figure: Percentage of selecting the true model using the BIC



% of selecting the true model (K_0=2, S_0={1, 2})

Numerical experiments using BIC

- L = 10, $A_I = 10$, $K_0 = 5$, $|S_0| \in \{2, 4, 6, 8\}$.
- 30 datasets with n = 1000 for each value of $|S_0|$.
- $F_{ST} \in [0.0181, 0.0450]$ a range where clustering is thought to be difficult.

Table: Thresholds of F_{ST} for which MixMoGenD perfectly selects the true model. F_{ST}^{S} : with loci selection; F_{ST} : without loci selection.

$ S_0 $	8	6	4	2
F_{ST}^S	0.0342	0.0307	0.0316	0.0248
$F_{ST} >$	0.0425	0.0410	0.0413	0.0350

• The improvement on the estimation of K and the prediction capacity is obviously due to the variable selection procedure.

Numerical experiments using BIC

Data	F _{ST}	<i>R</i> _n	% WA	\widehat{K}_n^s	% WA ^s	Data	F _{ST}	<i>R</i> _n	% WA	\widehat{K}_n^s	% WA ^s
1	0.0306	3	-	3	-	16	0.0381	5	10.90	5	10.30
2	0.0318	3	-	3	-	17	0.0382	5	09.30	5	08.80
3	0.0328	3	-	3	-	18	0.0390	4	-	5	09.10
4	0.0331	3	-	3	-	19	0.0400	5	08.80	5	08.00
5	0.0335	3	-	4	-	20	0.0404	4	-	5	09.50
6	0.0337	3	-	3	-	21	0.0425	5	06.30	5	05.40
7	0.0340	4	-	4	-	22	0.0427	5	07.10	5	07.50
8	0.0342	3	-	5	11.80	23	0.0427	5	05.90	5	05.90
9	0.0348	3	-	5	12.40	24	0.0435	5	06.70	5	06.50
10	0.0362	3	-	5	09.10	25	0.0436	5	07.10	5	06.60
11	0.0373	4	-	5	08.90	26	0.0440	5	05.50	5	05.70
12	0.0373	5	08.50	5	07.60	27	0.0442	5	07.20	5	06.80
13	0.0377	5	11.40	5	10.40	28	0.0449	5	07.20	5	06.70
14	0.0377	5	10.50	5	10.20	29	0.0449	5	06.10	5	06.30
15	0.0377	5	10.30	5	10.20	30	0.0450	5	06.10	5	05.60

Table: 30 samples each with n = 1 000, $K_0 = 5$, L = 10, $|S_0| = 8$ and $F_{ST} \in [0.0306, 0.0450]$. % WA and % WA^s = percentage of wrongly assigned individuals without and with loci selection respectively; \hat{K}_n and \hat{K}_n^s = the estimates of the number of populations without and with loci selection respectively. $\hat{S}_n = S_0$.

Conclusion and perspectives

- Theoretical result on the consistency of the **BIC** type criteria is also valid for the variable selection problem in clustering with multinomial mixture models.
- As expected, the variable selection procedure significantly improves the inference on the number of clusters and the prediction capacity.

Conclusion and perspectives

- Theoretical result on the consistency of the **BIC** type criteria is also valid for the variable selection problem in clustering with multinomial mixture models.
- As expected, the variable selection procedure significantly improves the inference on the number of clusters and the prediction capacity.
- Robustness of the selection procedure with respect to HWE and LE assumptions.
- Is it the same set S of loci that discriminates all populations?
- **BIC**, as well as **AIC**, relies on a strong asymptotic assumption, and can thus be inappropriate for small sample sizes.

Chen, C., Forbes, F., and Francois, O. (2006).

fastruct: model-based clustering made faster.

Molecular Ecology Notes, 6(4):980–983.

Corander, J., Marttinen, P., Sirén, J., and Tang, J. (2008).

Enhanced bayesian modelling in baps software for learning genetic structures of populations.

BMC Bioinformatics, 9:539.

Keribin, C. (2000).

Consistent estimation of the order of mixture models.

Sankhyā Ser. A, 62(1):49-66.

Massart, P. (2007).

Concentration inequalities and model selection, volume 1896 of *Lecture Notes in Mathematics*.

Springer, Berlin.

Lectures from the 33rd Summer School on Probability Theory held Saint-Flour, July 6–23, 2003, With a foreword by Jean Picard.

Maugis, C., Celeux, G., and Martin-Magniette, M.-L. (2009).
 Variable selection for clustering with gaussian mixture models.
 Biometrics.

Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of population structure using multilocus genotype data.

Genetics, 155(2):945-59.

Toussile, W. and Gassiat, E. (2009).

Variable selection in model-based clustering using multilocus genotype data.

Advances in Data Analysis and Classification, 3(2):109–134.

