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Introduction

We wish to discover the unknown genetic structure of a target
diploid population from a n-sample without prior information.

It may happen that some loci are just noise or event harmful for
clustering purposes.

Which loci cluster the sample in the ”best” way?

We propose to simultaneously solve the loci selection and
clustering problem by a model selection procedure for density
estimation.

An associated stand alone C++ package named MixMoGenD is
available free of charge on www.math.u-psud.fr/~toussile.
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Methods
Framework

Consider a random vector X =
(
X l
)
l=1,...,L

with L ≥ 2.

With X l =
{

X l ,1,X l ,2
}

, where X l ,1, X l ,2 are nominal variables
taking values in the set {1, . . . ,Al} of allele states at locus l .

Assume that the clusters are characterized by:

(LE) Conditional complete independence of the random variables X l ;
(HWE) Conditional independence of X l,1 and X l,2 at any locus X l .

[Pritchard et al., 2000, Chen et al., 2006,
Corander et al., 2008].

Now, assume that only some loci gathered in a subset S are
relevant for clustering purposes.

Also assume that for any l /∈ S , X l is identically distributed
across all clusters.
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Modeling
Competing models

⇒ In model-based settings, X ∼ P0 of the form

P(K ,S ,θ)(x) =

[
K∑

k=1

πk
∏
l∈S

(2− 1x l,1=x l,2)αk,l ,x l,1 × αk,l ,x l,2

]
×
∏
l /∈S

(2− 1x l,1=x l,2)βl ,x l,1βl ,x l,2 (1)

where θ = (π, α, β) ∈ Θ(K ,S) = · · · .

Model M(K ,S) :=
{

P(K ,S ,θ)| θ ∈ Θ(K ,S)

}
.

Inferring (K , S) ⇐⇒ model selection among
C =

{
M(K ,S)| (K ,S) ∈M

}
for the estimation of P0, where M

is the set of all possible (K , S).
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Methods
Model selection via penalization ([Massart, 2007])

Selected model(
K̂n, Ŝn

)
= arg min

(K , S)
crit (K , S) . (2)

Where crit is a penalyzed maximum likelihood criterion

crit (K , S) = γn

(
P̂(K , S)

)
︸ ︷︷ ︸

Pn(− ln P̂(K ,S)):=
1

n

n∑
i=1
−lnP

(K ,S,θ̂MLE )
(Xi )

+pen (K , S) ;

(3)

Selected estimator P
(K̂n,Ŝn,θ̂MLE )

and classification by MAP.

The most used asymptotic penalized likelihood criteria:

BIC (K ,S) = Pn

(
− ln P̂(K ,S)

)
+

ln n

2n
D(K ,S)

AIC (K ,S) = Pn

(
− ln P̂(K ,S)

)
+

1

n
D(K ,S). (4)
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Consistency of the BIC like criteria

Although there exists a lot of articles concerning the behavior
of the BIC and other penalization methods in practice,
theoretical results in a mixture framework are few: the
consistency of the BIC estimator is shown

I in [Maugis et al., 2009] for a variable selection problem,

I and in [Keribin, 2000] for the number of components,

in Gaussian mixture models framework.

But as far as we know, there is no consistency result for both a
variable selection and clustering problem in a discrete
distribution setting.
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Consistency of the BIC like criteria
Consider a penalty function pen = pen (D, n) such that:

I (P1): for any positive integer D, limn→∞ pen (D, n) = 0;
I (P2): for any M1 (M2, one has

lim
n→∞

[
n

(
pen (D2, n)− pen (D1, n)

)]
=∞.

Let
(

K̂n, Ŝn

)
be a minimizer of crit over a sub-collection CKmax

for a given maximum number Kmax of clusters.

Theorem ([Toussile and Gassiat, 2009])

If P0 > 0 and belongs to one of the competing models in CKmax , then
there exists an identifiable “smallest“ model (K0, S0) such that

lim
n→∞

P0

[(
K̂n, Ŝn

)
= (K0, S0)

]
= 1. (5)

Example: BIC.
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Consistency of the BIC like criteria
Definition of M(K0,S0)

Lemma

For every K1 and K2 in N∗, and S1 and S2 in P∗ (L),
M(K1,S1) ∩M(K2,S2) =M(min(K1,K2),S1∩S2).

The ”smallest” model is defined by (K0, S0) := (K (P0) , S (P0)),
where

K (P) = min

K | P ∈
⋃

S∈P∗(L)

M(K , S)

 , (6)

S (P) = min

{
S | P ∈

⋃
K∈N∗

M(K , S)

}
, (7)

for every P in one of the competing models M(K , S) ∈ CKmax .
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Consistency of the BIC like criteria
Proof

It suffices to show that limn→∞ P0

[
γn

(
P̂(K0, S0)

)
− γn

(
P̂(K , S)

)
>

pen (K , S)− pen (K0, S0)

]
= 0 for any (K , S) 6= (K0, S0).

1 P0 ∈M(K ,S):

−nγn (P0) ≤ −nγn
(

P̂(K0, S0)

)
≤ −nγn

(
P̂(K , S)

)
≤

supP∈D (−nγn (P)) .

2 P0 /∈M(K ,S):

γn

(
P̂(K0, S0)

)
− γn

(
P̂(K , S)

)
=

− infθ∈Θδ
(K , S)

EP0

[
ln P0 (X )− ln P(K , S) (X | θ)

]
+ oP0 (1) ,

where Θδ
(K ,S) =

{
θ ∈ Θ(K ,S) : P(K ,S ,θ) ≥ δ

}
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Consistency of the BIC like criteria
Proof

Theorem ([Toussile and Gassiat, 2009])

If P0 > 0, there exists a real δ > 0 such that for every (K , S), one
has

− γn
(

P̂(K ,S)

)
= sup

θ∈Θδ
(K , S)

{
−γn

(
P(K ,S ,θ)

)}
+ oP0 (1) (8)

and

sup
θ∈Θ(K ,S)

EP0

[
ln P(K ,S ,θ) (X )

]
= sup

θ∈Θδ
(K , S)

EP0

[
ln P(K ,S ,θ) (X )

]
. (9)
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Selection procedure in practice

An exhaustive search of the optimum model is very painfull in
most situations.

A two nested algorithm based on Backward-Stepwise proposed
in [Maugis et al., 2009] could miss the optimum model in some
cases, in particular in cases where the optimum subset of
clustering loci is small.

In MixMoGenD, we prefer a modified Backward-Stepwise
algorithm with which sets S with small cardinality are always
explored for any value of K [Toussile and Gassiat, 2009].

The optimum model is then chosen between all the explored
models.
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Backward-Stepwise explorer(crit,K )
1 S ← {1, . . . , L} , cex ← 0, cin ← 0
2 repeat
3 EXCLUSION(K ,S) {
4 cex ← arg minl∈S crit (K , S r {l})
5 if crit (K , S)− crit (K , S r {cex}) ≥ 0 or cin = 0
6 then S ← S r {cex}
7 }
8 INCLUSION(K , S) {
9 cin ← arg minl /∈S crit (K , S ∪ {l})

10 if

(
crit (K , S ∪ {cin})− crit (K , S) < 0 and S ∪ {cin} has

11 never been the current set in an EXCLUSION step

)
12 then S ← S ∪ {cin}
13 else cin ← 0
14 }
15 until |S | = 1.
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Numerical experiments using BIC
Consistency

Figure: Percentage of selecting the true model using the BIC
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Numerical experiments using BIC

L = 10, Al = 10, K0 = 5, |S0| ∈ {2, 4, 6, 8}.
30 datasets with n = 1000 for each value of |S0|.
FST ∈ [0.0181, 0.0450] a range where clustering is thought to
be difficult.

Table: Thresholds of FST for which MixMoGenD perfectly selects the true
model. F S

ST : with loci selection; FST : without loci selection.

|S0| 8 6 4 2

F S
ST 0.0342 0.0307 0.0316 0.0248

FST > 0.0425 0.0410 0.0413 0.0350

The improvement on the estimation of K and the prediction
capacity is obviously due to the variable selection procedure.
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Numerical experiments using BIC

Data FST K̂n % WA K̂ s
n % WAs Data FST K̂n % WA K̂ s

n % WAs

1 0.0306 3 - 3 - 16 0.0381 5 10.90 5 10.30
2 0.0318 3 - 3 - 17 0.0382 5 09.30 5 08.80
3 0.0328 3 - 3 - 18 0.0390 4 - 5 09.10
4 0.0331 3 - 3 - 19 0.0400 5 08.80 5 08.00
5 0.0335 3 - 4 - 20 0.0404 4 - 5 09.50
6 0.0337 3 - 3 - 21 0.0425 5 06.30 5 05.40
7 0.0340 4 - 4 - 22 0.0427 5 07.10 5 07.50
8 0.0342 3 - 5 11.80 23 0.0427 5 05.90 5 05.90
9 0.0348 3 - 5 12.40 24 0.0435 5 06.70 5 06.50

10 0.0362 3 - 5 09.10 25 0.0436 5 07.10 5 06.60
11 0.0373 4 - 5 08.90 26 0.0440 5 05.50 5 05.70
12 0.0373 5 08.50 5 07.60 27 0.0442 5 07.20 5 06.80
13 0.0377 5 11.40 5 10.40 28 0.0449 5 07.20 5 06.70
14 0.0377 5 10.50 5 10.20 29 0.0449 5 06.10 5 06.30
15 0.0377 5 10.30 5 10.20 30 0.0450 5 06.10 5 05.60

Table: 30 samples each with n = 1 000, K0 = 5, L = 10, |S0| = 8 and
FST ∈ [0.0306, 0.0450]. % WA and % WAs = percentage of wrongly

assigned individuals without and with loci selection respectively; K̂n and
K̂ s
n = the estimates of the number of populations without and with loci

selection respectively. Ŝn = S0.
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Conclusion and perspectives

Theoretical result on the consistency of the BIC type criteria is
also valid for the variable selection problem in clustering with
multinomial mixture models.

As expected, the variable selection procedure significantly
improves the inference on the number of clusters and the
prediction capacity.

Robustness of the selection procedure with respect to HWE and
LE assumptions.

Is it the same set S of loci that discriminates all populations?

BIC, as well as AIC, relies on a strong asymptotic assumption,
and can thus be inappropriate for small sample sizes.
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