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Abstract. We provide necessary and sufficient conditions to extend the Hopf-Galois algebra
structure on an algebra R to a generalized ambiskew ring based on R, in a way such that the
added variables for the extension are skew-primitive in an appropriate sense. We show that
the associated Hopf algebra is again a a generalized ambiskew ring, based on a suitable Hopf
algebra H(R). Several examples are examined, including the Hopf-Galois objects over Uq(sl2).

1. Introduction

Let R be an algebra over a field k and consider the following data:

(1) A pair of commuting algebra automorphisms τ, ω ∈ AutR; set σ := τω = ωτ .
(2) A σ-central element c; that is c ∈ Zσ(R) := {x ∈ R : xr = σ(r)x, r ∈ R}.
(3) A scalar ξ ∈ k∗.

The associated generalized ambiskew polynomial algebra A = A(R,X, Y, τ, ω, c, ξ), see [9], is the
quotient of the free product R ∗ k〈X,Y 〉 by the relations

Xr = τ(r)X, Y r = ω(r)Y, XY − ξY X = c,

for any r ∈ R.
When c is assumed to be central (so that σ = id or ω = τ−1) then A = A(R,X, Y, τ, τ−1, c, ξ)

is called an ambiskew polynomial algebra [8]; we set A(R,X, Y, τ, c, ξ) := A(R,X, Y, τ, τ−1c, ξ).
A common question is about the ring-theoretical properties such as simplicity, or the repre-

sentation theory, of the resulting algebra A, see for example [7], [9], a useful summary of known
results being given in [4, Section 6].

Another interesting question is to find necessary and sufficient conditions on these data so
that A preserves some extra structure on R. When R is a Hopf algebra, Brown-Macaulay [4]
discuss the case in which the Hopf structure on R extends to a Hopf structure on the ambiskew
polynomial Hopf algebra AR = A(R,X, Y, τ, c, ξ) via the formula

∆(X) = X ⊗ 1 + g ⊗X, ∆(Y ) = Y ⊗ 1 + h⊗ Y(1.1)

for some group-like elements g, h ∈ G(R); here, c is central1. This generalized previous results
from [6] in the case when R is commutative. As an example, Uq(sl2) can be constructed from
kZ by this process.

In this article, we generalize these results in two directions:

(A) We discuss the extension of the Hopf algebra structure on R to a generalized ambiskew
polynomial algebra A.

(B) We further extend this to the case when R is a Hopf-Galois object over some Hopf
algebra.

Hopf-Galois objects are natural generalizations of Hopf algebras with a Galois-theoretic
flavour, introduced in [12], and have proved to be fundamental tools in analysing tensor cate-
gories of comodules [16, 14] as well as in recent classification questions for pointed Hopf algebras
[1, 2].

While our first goal was to extend the results of [4] to Hopf-Galois objects in the case of
ambiskew polynomial rings, our analysis evidenced that the proper context for doing that was
that of generalized ambiskew polynomial rings, leading to the results in item (A).

1In loc.cit. the authors choose the notation (X+, X−) and (g+, g−) instead of (X,Y ) and (g, h), respectively;
and use h instead of c, σ instead of τ .
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The punchline for item (B) is that while having to deal simultaneously with R and the Hopf
algebra coacting on it can look difficult, it turns out that, fortunately, results of Grunspan [10]
and Schauenburg [15] ensure that there is exists a definition of Hopf-Galois objects that does
not use any Hopf algebra, in terms of an algebra map

µ : R→ R⊗Rop ⊗R,

subject to certain axioms, see Section 2. We start with a Hopf-Galois algebra R, and discuss
the ingredients with necessary and sufficient conditions to extend the Hopf-Galois structure of
R to A(R,X, Y, σ, c, ξ) via the formula

µ(X) = X ⊗ 1⊗ 1− g ⊗ g−1X ⊗ 1 + g ⊗ g−1 ⊗X,
µ(Y ) = Y ⊗ 1⊗ 1− h⊗ h−1Y ⊗ 1 + h⊗ h−1 ⊗ Y,

(1.2)

for some quasi-central group-like elements g, h ∈ G0(R), see Definition 2.4.
Given a Hopf-Galois algebra (R,µ) as above, there exists a canonical Hopf algebra H(R) such

that R is an H(R)-Galois object [10, 15]. As for the first item (A), the need of a generalization
of the results in [4] becomes evident when one considers the Hopf algebra associated to the Hopf-
Galois algebra AR = A(R,X, Y, τ, c, ξ) extending a Hopf-Galois algebra R: this Hopf algebra
is an extension of H(R) not in terms of an ambiskew polynomial algebra but of a generalized
ambiskew polynomial algebra A. See Corollary 5.5 and Subsection 6.5 for an example.

The paper is organized as follows. In Section 2 we recall the definition of Hopf-Galois algebras
(R,µ) and their realization as Hopf-Galois objects over a Hopf algebra H(R); we discuss the
concepts of group-like and skew-primitive elements in this setting. Section 3 is devoted to the
answer of item (A) above: in Theorem 3.1 we find necessary and sufficient conditions so that
a generalized ambiskew polynomial algebra AR extends the structure of a Hopf algebra R in a
way such that the added variables are skew-primitive; we recover some of the results in [4] as
a corollary. Next, in Section 4 we find necessary and sufficient conditions so that a generalized
ambiskew polynomial algebra extends the structure of a Hopf-Galois algebra R as in (1.2) and
we provide an answer for item (B) in Theorem 4.1. In Section 5 we show in Theorem 5.3 that the
Hopf algebra associated to a Hopf-Galois ambiskew polynomial algebra AR is a Hopf ambiskew
polynomial algebra, associated to H(R). We conclude the article with a series of examples in
Section 6.

Notation and conventions. We work over a field k. All algebras, vector spaces and unadorned
tensor products ⊗ are assumed to be defined over k. We assume that the reader has familiarity
with Hopf algebra theory, for which the book [13] is a convenient reference. We use standard
notations, in particular ∆, ε and S stand respectively for the comultiplication, counit and
antipode of a Hopf algebra, and Sweedler’s notation h 7→ h(1) ⊗ h(2), resp. m 7→ m(0) ⊗m(1)

for the comultiplication, resp. the coaction on a (right) comodule M , of a Hopf algebra H;
h ∈ H,m ∈M

Acknowledgements. The authors were supported by CONICET, FONCyT PICT-2015-2845,
Secyt (UNC), the MathAmSud project GR2HOPF, and the Emergence Program of the I-SITE
project CAP 20-25 of Clermont Auvergne University.

2. Hopf-Galois algebras

2.1. Basic definitions. The definition below was introduced by Grunspan [10] with more
axioms, and simplified later by Schauenburg [15], under the name quantum torsor. In view of
Theorem 2.8 given in the next subsection, it seems natural to call such a structure a Hopf-Galois
algebra.

Definition 2.1. A Hopf-Galois algebra is a non-zero algebra R together with an algebra map

µ : R −→ R⊗Rop ⊗R
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such that

(µ⊗ idR ⊗ idR) ◦ µ = (idR ⊗ idR ⊗ µ) ◦ µ,(2.1)

(m⊗ idR) ◦ µ = η ⊗ idR, (idR ⊗m) ◦ µ = idR ⊗ η,(2.2)

where m : R⊗R→ R and η : k → R denote the respective multiplication and unit of R.

We shall write
µ(r) = r(1) ⊗ r(2) ⊗ r(3), r ∈ R.

Hence, for any r ∈ R,

r ⊗ 1 = r(1) ⊗ r(2)r(3), 1⊗ r = r(1)r(2) ⊗ r(3);
and we may set

r(1) ⊗ r(2) ⊗ r(3) ⊗ r(4) ⊗ r(5) := µ(r(1))⊗ r(2) ⊗ r(3) = r(1) ⊗ r(2) ⊗ µ(r(3)).

Example 2.2. The basic example is a Hopf algebra H with

µ(x) = x(1) ⊗ S(x(2))⊗ x(3), x ∈ R.
We denote by R(H) the resulting Hopf-Galois algebra. This defines a functor from the category
of Hopf algebras to the category of Hopf-Galois algebras (a morphism of Hopf-Galois algebras
being an algebra map commuting with µ in the obvious way).

A Hopf-Galois algebra arises from a Hopf algebra as above if and only if there exists an
algebra map α : R → k. Indeed, starting with R and such an α, the Hopf algebra H whose
counit is α and with the other structure maps defined by

∆(x) = α(x(2))x(1) ⊗ x(3), S(x) = α(x(1)x(3))x(2)

is such that R = R(H).

Example 2.3. A more significant example is the Weyl algebra

A1(k) = k〈x, y | xy − yx = 1〉
with Hopf-Galois structure defined by

µ(x) = x⊗ 1⊗ 1− 1⊗ x⊗ 1 + 1⊗ 1⊗ x, µ(y) = y ⊗ 1⊗ 1− 1⊗ y ⊗ 1 + 1⊗ 1⊗ y.
More examples will be discussed in the final section. We now introduce group-like elements

and skew-primitives in Hopf-Galois algebras.

Definition 2.4. A group-like element in a Hopf-Galois algebra R is an invertible element g ∈ R
such that

µ(g) = g ⊗ g−1 ⊗ g.(2.3)

We denote by G0(R) the set of group-like elements in R; g ∈ G0(R) is quasi-central if there
exists a character α on G0(R) such that

xg = α(x)gx, for any x ∈ G0(R).

If g ∈ G0(R), then we write g · r := grg−1.

Remark 2.5. It should be noticed that, contrary to the Hopf algebra case, if g ∈ R is group-
like, then λ g is grouplike for any nonzero scalar λ ∈ k. If we consider G0(R) acting on R by
conjugation, then g and λ g define the same operator.

Definition 2.6. Let R be a Hopf-Galois algebra and let g, h ∈ G0(R). The set P0
g,h(R) of

(g, h)-skew primitive elements is the collection of those x ∈ R such that

µ(x) = x⊗ h−1 ⊗ h− g ⊗ g−1xh−1 ⊗ h+ g ⊗ g−1 ⊗ x.
Remark 2.7. If x ∈ P0

g,h(R), then h−1x ∈ P0
h−1g,1(R) and xg−1 ∈ P0

1,hg−1(R). Notice also that

g, h ∈ P0
g,h(R). Indeed,

µ(h) = h⊗ h−1 ⊗ h = h⊗ h−1 ⊗ h− g ⊗ g−1hh−1 ⊗ h+ g ⊗ g−1 ⊗ h.
and similarly for g.
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2.2. From Hopf-Galois algebras to Hopf algebras. We recall that a (right) Hopf-Galois
object R over a Hopf algebra H is a (right) comodule algebra R over H with trivial coinvariants
RcoH = k and such that the Galois map

can: R⊗R→ R⊗H, can(r ⊗ s) = rs(0) ⊗ s(1), r, s ∈ R

is bijective.
The following result relates what we called Hopf-Galois algebras and classical Hopf-Galois

objects.

Theorem 2.8 (Grunspan-Schauenburg, [10, 15]). Let R be an algebra. The following assertions
are equivalent.

(1) There exists an algebra map µ : R −→ R⊗Rop⊗R making R into a Hopf-Galois algebra.
(2) R is a right Hopf-Galois object over some Hopf algebra H(R).

Therefore the notion of Hopf-Galois algebra provides a definition of Hopf-Galois object which
is Hopf algebra free.

The constuction of H(R) in the theorem is as follows. Let R = (R,µ) be a Hopf-Galois alge-
bra. Then R is a right Hopf-Galois object for the Hopf algebra H(R) defined as the subalgebra

(2.4) H(R) =
{
x⊗ y : xy(1) ⊗ y(2) ⊗ y(3) = 1⊗ x⊗ y

}
⊆ Rop ⊗R

with coalgebra structure

(2.5) ∆(x⊗ y) = x⊗ y(1) ⊗ y(2) ⊗ y(3), ε(x⊗ y) = xy.

The coaction is given by µ, as µ : R→ R⊗H(R).

Remark 2.9. Here, we follow Schauenburg in [15, §3] and we write a generic element
∑
xi⊗yi ∈

Rop ⊗ R as a single tensor x ⊗ y, “in the spirit of Sweedler’s notation”. Definition (2.4) and
formula (2.5) should be interpreted in this sense.

Conversely, let H be a Hopf algebra and let R be a right Hopf-Galois object, with coaction
r 7→ ρ(r) = r(0) ⊗ r(1), r ∈ R. Then R is a Hopf-Galois algebra with

µ(r) = r(0) ⊗ can−1(1⊗ r(1)).

We now use the construction H(R) to relate the group-likes and skew-primitives of the
previous subsection with ordinary group-likes and skew-primitives in a Hopf algebra.

Lemma 2.10. Let R be a Hopf-Galois algebra.

(1) There is a short exact sequence of groups

1→ k∗ → G0(R)
ϕ−→ G(H(R))→ 1,

where ϕ(g) = g−1 ⊗ g.
(2) For any g ∈ G0(R), there is a linear short exact sequence

0→ k → P0
g,1(R)

ψ−→ Pϕ(g),1(H(R))→ 0,

where ψ(x) = g−1 ⊗ x− g−1x⊗ 1.

Proof. (1) On the one hand, we see that k∗ ⊂ G0(R), as in Remark 2.5. If g ∈ G0(R), then it
is clear that g−1 ⊗ g ∈ G(H(R)). Moreover, ϕ(λ) = 1⊗ 1 for any λ ∈ k∗.

Now, if u = x⊗ y =
∑

i xi ⊗ yi ∈ G(H(R)), then ε(x⊗ y) = xy =
∑

i xiyi = 1 and

∆(x⊗ y) = x⊗ y ⊗ x⊗ y =
∑
i,j

xi ⊗ yi ⊗ xj ⊗ yj .

On the other hand, by definition

∆(x⊗ y) = x⊗ y(1) ⊗ y(2) ⊗ y(3).
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Hence, by multiplying the factors in the middle, we get

x⊗ 1⊗ y =
∑
i

xi ⊗ 1⊗ yi =
∑
i,j

xi ⊗ yixj ⊗ yj .

If we assume that {xi}i is linearly independent, we obtain, for any i, that 1⊗ yi =
∑

j yixj ⊗ yj
and hence

1⊗ µ(yi) =
∑
j

yixj ⊗ µ(yj).

Multiplying the left handed tensors, this gives

µ(yi) =
∑
j

yixjyj(1) ⊗ yj(2) ⊗ yj(3) =
∑
j

yi ⊗ xj ⊗ yj = yi ⊗ u.

Applying the same reasoning to u−1 =
∑

k x
′
k ⊗ y′k yields

µ(y′k) = y′k ⊗ u−1

for any k. Hence for any i, k, we have µ(yiy
′
k) = yiy

′
k ⊗ 1⊗ 1 and µ(y′kyi) = y′kyi⊗ 1⊗ 1, so that

there exists scalars λi,k, µk,i such that yiy
′
k = λi,k and y′kyi = µk,i. There exists j, l such that

yjy
′
l 6= 0, so we see from the previous identities that λj,l = µl,j and that y′l is invertible in R.

Hence for any i we have yi = λi,l(y
′
l)
−1. We get u = (

∑
i λi,lxi)⊗ (y′l)

−1 = g−1⊗ g for g = y′l
−1,

and we then see that g ∈ G0(R).

(2) We know that k ⊂ P0
g,1(R), see Remark 2.7. Also, it is easy to check that g−1 ⊗ x −

g−1x⊗ 1 ∈ Pϕ(g),1(H(R)) if x ∈ P0
1,g(R), and that Ker(ψ) = k.

Now, let u = x⊗y =
∑
xi⊗yi ∈ Pϕ(g),1(H(R)). We assume that {yi} is linearly independent.

We have xy(1) ⊗ y(2) ⊗ y(3) = 1⊗ x⊗ y and

(2.6) x⊗ y(1) ⊗ y(2) ⊗ y(3) = x⊗ y ⊗ 1⊗ 1 + g−1 ⊗ g ⊗ x⊗ y

so that multiplying the factors in the middle as before:

x⊗ 1⊗ y = x⊗ y ⊗ 1 + g−1 ⊗ gx⊗ y, i.e.∑
i

xi ⊗ 1⊗ yi =
∑
i

xi ⊗ yi ⊗ 1 +
∑
i

g−1 ⊗ gxi ⊗ yi.

If 1 6∈ Span{yi}, we get that u =
∑

i xi ⊗ yi = 0. Otherwise, there exists for any i, a scalar λi
such that

xi ⊗ 1 = g−1 ⊗ gxi + λiu

with λk 6= 0 for some k. This gives

u = g−1 ⊗ z − g−1z ⊗ 1

for z = −λ−1k gxk. Going back to the expression (2.6), we get

g−1⊗µ(z)−g−1z⊗1⊗1⊗1 = g−1⊗z⊗1⊗1−g−1z⊗1⊗1⊗1+g−1⊗g⊗g−1⊗z−g−1⊗g⊗g−1z⊗1.

This shows that z ∈ P0
g,1(R), and we have u = ψ(z). �

3. Ambiskew Hopf algebras

In this section we assume that R is a Hopf algebra and consider the generalized ambiskew
algebra A = A(R,E, F, τ, ω, c, ξ) as in the introduction. We look for necessary and sufficient
conditions to extend the comultiplication in R to A via the formulas

∆(E) = E ⊗ 1 + g ⊗ E, ∆(F ) = F ⊗ 1 + h⊗ F,(3.1)

for some (necessarily group-like) elements g, h ∈ G(R).
When the element c is assumed to be central, or equivalently when ω = τ−1 (so σ = id), this

question has been addressed in [4]. Our result reads as follows.
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Theorem 3.1. Let H be a Hopf algebra, let τ, ω ∈ AutH be such that τω = ωτ and define
σ = τω. Let c ∈ Zσ(H) be σ-central and ξ ∈ k∗. Then the generalized ambiskew polynomial
algebra A(H,E, F, τ, ω, c, ξ) has a Hopf algebra structure extending that of H and such that (3.1)
holds for some g, h ∈ G(H) if and only if

• there are characters α, β of H, with α ∗ β = β ∗ α and

τ(r) = α(r(1))r(2), ω(r) = β(r(1))r(2).(3.2)

α(r(1))r(2) = g · r(1)α(r(2)), β(r(1))r(2) = h · r(1)β(r(2)) r ∈ H,(3.3)

• the group-like elements g, h are central in G(H) and α(h) = β(g)−1 = ξ,
• the σ-central element c is (gh, 1)-skew primitive.

Proof. Assume A = A(H,E, F, τ, ω, c, ξ) is a Hopf algebra as in the statement. Then, by
comparing ∆(Xr) and ∆(τ(r)X) we obtain that

τ(r(1))⊗ r(2) = τ(r)(1) ⊗ τ(r)(2) = g · r(1) ⊗ τ(r(2)).

Hence, if α = ε ◦ τ : H → k we get that α(r(1))r(2) = g · r(1)α(r(2)) and τ(r) = α(r(1))r(2).
Similarly, by comparing ∆(Y r) and ∆(ω(r)Y ) we obtain that ω(r) = β(r(1))r(2) for β = ε ◦ ω
and both identities in (3.3) hold. Also, since τω = ωτ , it follows that α ∗ β = β ∗ ω.

Now, observe that (3.3) applied to r = h gives g · h = h, that is gh = hg. We use this to see
that

∆(EF − ξFE) =(EF − ξFE)⊗ 1 + gh⊗ (EF − ξFE)

+ (α(h)− ξ)hE ⊗ F + (1− ξβ(g))gF ⊗ E
= ∆(c) ∈ H ⊗H

and thus, since A is a free R-module with basis {XaY b : a, b ≥ 0}, we have α(h) = β(g)−1 = ξ
and ∆(c) = c⊗ 1 + gh⊗ c, so c = EF − ξFE is a σ-central (gh, 1)-skew primitive element. The
previous computations allow as well to prove converse statement. �

Remark 3.2. Notice that g ·c = gσ(g)−1c = α(g)−1β(g)−1c = ξα(g)−1c. We can thus compute
τ(c) in two ways and get

ξ(α(g)−1 − α(g))c = α(c)(1− gh).

So either α(g) = ±1 (and α(c) = 0 or 1 = gh) or c = α(ghc)
1−α(g)2 (1− gh).

Similarly, if we compute ω(c), we get that

ξ−1(β(h)−1 − β(h))c = β(c)(1− gh),

that is β(h) = ±1 (and β(c) = 0 or 1 = gh) or c = β(ghc)
1−β(h)2 (1− gh).

Theorem 3.1 extends the result in [4] as mentioned; we recall this here as a corollary.

Corollary 3.3. [4] Assume c is central (i.e. ω = τ−1 so σ = id). Then the ambiskew polynomial
algebra A(R,E, F, τ, c, ξ) = A(R,E, F, τ, τ−1, c, ξ) has a Hopf algebra structure extending that
of H and such that (3.1) holds for some g, h ∈ G(H) if and only if there are

• a character χ of R,
• central group-like elements g, h ∈ Z(G(R)) such that gh ∈ Z(R) and

χ(g) = χ(h) = ξ,

• a central (gh, 1)-skew primitive element c,

such that the following2 holds:

χ(r(1))r(2) = g · r(1)χ(r(2)), r ∈ R.

2In the notation from [4], this condition reads τ lχ = adl(y+) ◦ τrχ and then τ = τ lχ.
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In this setting,

τ(r) = χ(r(1))r(2) = g · r(1)χ(r(2)).

Moreover,

either • ξ = ±1; (and gh = 1 or χ(c) = 0),

or else • ξ 6= ±1 and c = λ(1− gh), for λ =
χ(c)

1− ξ2
∈ k.

(3.4)

�

Remark 3.4. Conditions (3.4) are stated in [4, §3.1], in this setting they follow by Remark 3.2.

4. Ambiskew Hopf-Galois algebras

Let (R,µ) be a Hopf-Galois algebra and let us fix A = A(R,X, Y, τ, ω, c, ξ) an associated
generalized ambiskew polynomial algebra. We investigate whenA is again a Hopf-Galois algebra,
extending R.

Theorem 4.1. Let R = (R,µ) be a Hopf-Galois algebra. Assume given a sextuple (τ, ω, g, h, c, ξ)
where

(1) τ, ω ∈ Aut(R) are commuting algebra automorphisms satisfying, for any r ∈ R,

τ(r)(1) ⊗ τ(r)(2) ⊗ τ(r)(3) = τ(r(1))⊗ r(2) ⊗ r(3) = τ(r(1))⊗ τ(r(2))⊗ τ(r(3)),(4.1)

ω(r)(1) ⊗ ω(r)(2) ⊗ ω(r)(3) = ω(r(1))⊗ r(2) ⊗ r(3) = ω(r(1))⊗ ω(r(2))⊗ ω(r(3)).(4.2)

(2) g, h ∈ G0(R) are quasi-central group-like elements such that, for any r ∈ R,

g · r(1) ⊗ g · r(2) ⊗ r(3) = τ(r(1))⊗ τ(r(2))⊗ r(3),(4.3)

h · r(1) ⊗ h · r(2) ⊗ r(3) = ω(r(1))⊗ ω(r(2))⊗ r(3).(4.4)

(3) ξ ∈ k∗ is a scalar such that τ(h) = ξ h, ω(g) = ξ−1 g.
(4) c ∈ Zσ(R) ∩ Pgh,1(R), for σ := τω; that is c is a σ-central skew-primitive element:

µ(c) = c⊗ 1⊗ 1− gh⊗ (gh)−1c⊗ 1 + gh⊗ (gh)−1 ⊗ c
and cr = σ(r)rc, for all r ∈ R.

Then there is a unique Hopf-Galois algebra structure on A = A(R,X, Y, τ, ω, c, ξ) extending µ
and such that

µ(X) = X ⊗ 1⊗ 1− g ⊗ g−1X ⊗ 1 + g ⊗ g−1 ⊗X,
µ(Y ) = Y ⊗ 1⊗ 1− h⊗ h−1Y ⊗ 1 + h⊗ h−1 ⊗ Y.

(4.5)

Conversely, given commmuting τ, ω ∈ Aut(R), c ∈ Zσ(R) for σ = τω and ξ ∈ k∗, if (4.5) defines
a Hopf-Galois algebra structure on A(R,X, Y, τ, ω, c, ξ) extending µ, for some g, h ∈ G0(R), then
conditions (1) to (4) are satisfied.

Proof. We assume there is an extension µ : A → A ⊗ Aop ⊗ A and elements g, h ∈ G(R) such
that (4.5) holds. Recall the notation x · r := xrx−1, for x ∈ G(R), r ∈ R.

♦The commutation rule. On the one hand, we have, in A⊗Aop ⊗A,

µ(Xr) = µ(τ(r)X) = (τ(r)(1) ⊗ τ(r)(2) ⊗ τ(r)(3))µ(X).

On the other,

µ(Xr) = Xr(1) ⊗ r(2) ⊗ r(3) − gr(1) ⊗ r(2)g−1X ⊗ r(3) + gr(1) ⊗ r(2)g−1 ⊗Xr(3)
= τ(r(1))X ⊗ r(2) ⊗ r(3) − (g · r(1))g ⊗ g−1Xτ−1(g · r(2))⊗ r(3)

+ (g · r(1))g ⊗ g−1(g · r(2))⊗ τ(r(3))X

= (τ(r(1))⊗ r(2) ⊗ r(3))(X ⊗ 1⊗ 1)− (g · r(1) ⊗ τ−1(g · r(2))⊗ r(3))(g ⊗ g−1X ⊗ 1)

+ (g · r(1) ⊗ g · r(2) ⊗ τ(r(3)))(g ⊗ g−1 ⊗X).
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Since A is a free R-module with basis {XaY b : a, b ∈ N}, we get the following identities:

τ(r)(1) ⊗ τ(r)(2) ⊗ τ(r)(3) = τ(r(1))⊗ r(2) ⊗ r(3) = g · r(1) ⊗ g · r(2) ⊗ τ(r(3))

g · r(1) ⊗ g · r(2) ⊗ r(3) = τ(r(1))⊗ τ(r(2))⊗ r(3)
We may combine these identities to show that µ ◦ τ = τ⊗3 ◦ µ:

τ(r(1))⊗ r(2) ⊗ r(3) = g · r(1) ⊗ g · r(2) ⊗ τ(r(3)) = τ(r(1))⊗ τ(r(2))⊗ τ(r(3))

and thus we see that our identities are then equivalent to (4.1) and (4.3). Similarly, from the
identity Y r = ω(r)Y we obtain (4.2) and (4.4).

♦The group characters. We make the following

Claim. There are characters α, β, γ, δ ∈ Ĝ0(R) such that for any x ∈ G0(R),

τ(x) = α(x)x ω(x) = β(x)x,(4.6)

τ(x) = γ(x)g · x, ω(x) = δ(x)h · x.(4.7)

Hence, α(h)β(g) = γ(h)δ(g) and both g, h are quasi-central group-like elements in G0(R) with

gh(hg)−1 ∈ k∗ ⊂ Z(R), (gh)⊗ (gh)−1 = (hg)⊗ (hg)−1.(4.8)

As for the proof, notice that combining (2.2) and (4.1) we get

τ(x)x−1 ⊗ x = 1⊗ τ(x), x ∈ G0(R).

Hence τ(x) is a scalar multiple of x, and we get a character α ∈ Ĝ0(R). Similarly for ω; we call
the corresponding character β and (4.6) follows.

Now, we see from (4.3) that there is a character χ ∈ Ĝ0(R) such that g · x = χ(x)x;
which shows that g is a quasi-central group-like element. Hence τ(x) = γ(x)g · x, for γ(x) =

α(x)χ(x)−1. Analogously, h ∈ G(R) is quasi-central and ω(x) = δ(x)h · x, for some δ ∈ Ĝ0;
(4.7) follows.

Finally, we see that

gh = α(h)γ(h)−1hg,(4.9)

whence gh(hg)−1 ∈ k× and (4.8) follows.

♦The bracket rule. Recall that, for any t ∈ G0(R), Xt = α(t) tX and Y t = β(t) tY . Also,
observe that both XY and Y X are σ-central, σ = τω, in AR and hence XY − ξ Y X ∈ Zσ(R).
Now,

µ(XY ) =XY ⊗ 1⊗ 1−Xh⊗ h−1Y ⊗ 1 +Xh⊗ h−1 ⊗ Y
− gY ⊗ g−1X ⊗ 1 + gh⊗ h−1Y g−1X ⊗ 1− gh⊗ h−1g−1X ⊗ Y
+ gY ⊗ g−1 ⊗X − gh⊗ h−1Y g−1 ⊗X + gh⊗ h−1g−1 ⊗XY

=XY ⊗ 1⊗ 1− α(h)hX ⊗ h−1Y ⊗ 1 + α(h)hX ⊗ h−1 ⊗ Y
− gY ⊗ g−1X ⊗ 1 + β(g−1) gh⊗ (gh)−1Y X ⊗ 1− gh⊗ (gh)−1X ⊗ Y
+ gY ⊗ g−1 ⊗X − β(g−1) gh⊗ (gh)−1Y ⊗X + gh⊗ (gh)−1 ⊗XY.

On the other hand, using (4.8),

µ(Y X) =Y X ⊗ 1⊗ 1− β(g)gY ⊗ g−1X ⊗ 1 + β(g)gY ⊗ g−1 ⊗X
− hX ⊗ h−1Y ⊗ 1 + α(h−1)gh⊗ (gh)−1XY ⊗ 1− gh⊗ (gh)−1Y ⊗X
+ hX ⊗ h−1 ⊗ Y − α(h−1)gh⊗ (gh)−1X ⊗ Y + gh⊗ (gh)−1 ⊗ Y X.

As we request XY − ξ Y X ∈ R, we see that

α(h) = ξ, β(g) = ξ−1,(4.10)

and there is a σ-central skew-primitive element c ∈ Zσ(R) ∩Pgh,1(R), so that XY − ξ Y X = c.
As a result, τ(h) = ξ h, ω(g) = ξ−1 g.
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♦On the converse. The previous computations show that given a Hopf-Galois algebra (R,µ),
if there is a quintuple (τ, ω, g, h, c, ξ) satisfying conditions (1) to (4), then (4.5) defines a Hopf-
Galois structure on A that extends µ.

This ends the proof of the theorem. �

We write down the case ω = τ−1 for completeness. We start with a remark that will be of
importance further on.

Remark 4.2. We point out that even in the case ω = τ−1 we do not have gh = hg as in the
Hopf algebra case, cf. Theorem 3.1 and Corollary 3.3. Instead, we have that g, h commute up
to a scalar, see (4.8). In particular,

gh · r = α(h)γ(h)−1 r, r ∈ R.(4.11)

Corollary 4.3. Let R = (R,µ) be a Hopf-Galois algebra. Assume given a quintuple (τ, g, h, c, ξ)
where

(1) τ ∈ Aut(R) is an algebra automorphism satisfying, for any r ∈ R,

τ(r)(1) ⊗ τ(r)(2) ⊗ τ(r)(3) = τ(r(1))⊗ r(2) ⊗ r(3) = τ(r(1))⊗ τ(r(2))⊗ τ(r(3)).(4.12)

(2) g, h ∈ G0(R) are quasi-central group-like elements such that, for any r ∈ R,

g · r(1) ⊗ g · r(2) ⊗ r(3) = τ(r(1))⊗ τ(r(2))⊗ r(3),(4.13)

h · r(1) ⊗ h · r(2) ⊗ r(3) = τ−1(r(1))⊗ τ−1(r(2))⊗ r(3).(4.14)

(3) ξ ∈ k∗ is a scalar such that τ(g) = ξ g and τ(h) = ξ h.
(4) c ∈ Z(R) ∩ Pgh,1(R) is a central skew-primitive element, i.e.

µ(c) = c⊗ 1⊗ 1− gh⊗ (gh)−1c⊗ 1 + gh⊗ (gh)−1 ⊗ c.

Then there is a unique Hopf-Galois algebra structure on A = A(R,X, Y, τ, c, ξ) extending µ and
such that (4.5) holds.

Conversely, given τ ∈ Aut(R), c ∈ Z(R) and ξ ∈ k∗, if (4.5) defines a Hopf-Galois algebra
structure on A(R,X, Y, τ, c, ξ) extending µ, for some g, h ∈ G0(R), then conditions (1) to (4)
are satisfied.

Proof. This is Theorem 4.1 for ω = τ−1. In particular, notice that the four conditions (4.1)–
(4.4) become just three, as we obtain (4.12) and (4.13), together with the additional (4.14). For
the remaining identity in (4.2), namely

τ−1(r(1))⊗ r(2) ⊗ r(3) = τ−1(r(1))⊗ τ−1(r(2))⊗ τ−1(r(3)),

we remark that it follows by applying τ−2 ⊗ τ−1 ⊗ τ−1 to the corresponding identity in (4.1),
as µ ◦ τ−1 = (τ−1)⊗3 ◦ µ . �

5. The Hopf algebra associated to an ambiskew Hopf-Galois algebra

Let (R,µ) be a Hopf-Galois algebra. Recall that this is equivalent to a structure of Hopf-
Galois object over certain Hopf algebra H(R), by Theorem 2.8. In this section, we study
the corresponding Hopf algebra H(AR), where AR = A(R,X, Y, τ, ω, c, ξ) is the generalized
ambiskew polynomial algebra that extends (R,µ) as in Theorem 4.1. Recall that σ = τω = ωτ .

We start with a technical lemma. We shall stick to the notation r ⊗ s :=
∑

i ri ⊗ si ∈ H(R)
for a generic element in H(R), see Remark 2.9.

Lemma 5.1. Let (R,µR) and AR be as above. Then

(1) H(R) ⊂ H(AR).
(2) (g ⊗ g−1)(h⊗ h−1) = (h⊗ h−1)(g ⊗ g−1).
(3) If r ⊗ s ∈ H(R), then

τ(r)⊗ τ(s) = r ⊗ s, ω(r)⊗ ω(s) = r ⊗ s.
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(4) If r ⊗ s ∈ H(R), then

g · r ⊗ τ(s) ∈ H(R), h · r ⊗ ω(s) ∈ H(R).

In particular, (gh · r)⊗ σ(s) ∈ H(R).

Proof. (1) This is clear, as µA|R = µR. (2) is (4.8).
(3) Recall that r ⊗ s ∈ H(R) if and only if

rs(1) ⊗ s(2) ⊗ s(3) = 1⊗ r ⊗ s.

If we apply τ⊗3 to this equality, as τ(1) = 1, then we get

1⊗ τ(r)⊗ τ(s) = τ(rs(1))⊗ τ(s(2))⊗ τ(s(3))
(4.1)
= τ(rs(1))⊗ s(2) ⊗ s(3) = 1⊗ r ⊗ s.

The result for ω is analogous.
(4) By (4.1) and (4.3):

(g · r)τ(s)(1) ⊗ τ(s)(2) ⊗ τ(s)(3) = (g · r)(g · s(1))⊗ g · s(2) ⊗ τ(s(3)) = g · 1⊗ g · r ⊗ τ(s).

Thus g · r ⊗ τ(s) ∈ H(R). The other case is similar. �

We use Lemma 5.1 to define algebra automorphisms τ ′, ω′ ∈ AutH(R) via the formulas

τ ′(r ⊗ s) = g · r ⊗ τ(s), ω′(r ⊗ s) = h · r ⊗ ω(s), r ⊗ s ∈ H(R).(5.1)

Notice that τ ′ω′ = ω′τ ′ as g, h are quasi-central and thus gh · r = hg · r, r ∈ R.

Remark 5.2. If τω = id, that is if gh · r⊗ s = r⊗ s for all r⊗ s ∈ H(R), then gh ∈ Z(G0(R))
and gh = hg.

Proof. Indeed, let t ∈ G0(R) and fix r⊗ s = t⊗ t−1 ∈ H(R). Then (gh · t)⊗ t−1 = t⊗ t−1 which
implies gh · t = t, i.e. gh ∈ Z(G0(R)). If t = h, then it follows that gh = hg. �

Theorem 5.3. Let (R,µ) be a Hopf-Galois algebra, let (τ, ω, g, h, c, ξ) be a sextuple satisfying
the conditions of Theorem 4.1 and let AR = A(R,X, Y, τ, ω, c, ξ) be the associated Hopf-Galois
algebra.

Consider τ ′, ω′ ∈ AutH(R) as in (5.1), the group-like elements g−1⊗ g, h−1⊗h ∈ G(H(R)),
the scalar λ ∈ k∗ such that gh = λhg, and the elements c′ ∈ H(R) and ξ′ ∈ k∗ defined by

c′ = (gh)−1 ⊗ c− (gh)−1c⊗ 1, ξ′ = ξλ−1.

Then A(H(R), E, F, τ ′, ω′, c′, ξ′) has a Hopf algebra structure as in Theorem 3.1, and we have
a Hopf algebra isomorphism

H(AR) ' A(H(R), E, F, τ ′, ω′, c′, ξ′).

Proof. Step 1. We first have to show that the conditions in Theorem 3.1 are satisfied. Define
α, β : H(R) → k by α(r ⊗ s) = (g · r)τ(s) and β(r ⊗ s) = (h · r)ω(s). It is clear that α and β
are characters on H(R). We have

α((r ⊗ s)(1))(r ⊗ s)(2) = α(r ⊗ s(1))s(2) ⊗ s(3) = (g · r)τ(s(1))s(2 ⊗ s(3)
(4.1)
= (g · r)τ(s(1))τ(s(2)⊗ τ(s(3)) = g · r ⊗ τ(s) = τ ′(r ⊗ s)

so that (3.2) holds for τ ′, and for ω′. Similarly

g−1 ⊗ g · (r ⊗ s)(1)α((r ⊗ s)(2)) = g−1 ⊗ g · (r ⊗ s(1))α(s(2) ⊗ s(3)) = (g · r ⊗ g · s(1))g · s(2)τ(s(3))

(4.3)
= (g · r ⊗ τ(s(1)))τ(s(2)τ(s(3)) = g · r ⊗ τ(s) = τ ′(r ⊗ s)

and (3.3) holds for τ ′, and for ω′ as well.
It is clear that τ ′ and ω′ commute since τ and ω commute and g and h commute up to a

scalar, so the characters α and β convolution commute.
We have

α(h−1 ⊗ h) = g · h−1τ(h) = λ−1h−1ξh = ξ′
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and similarly β(g−1 ⊗ g) = ξ′−1. It is an immediate verification that c′ ∈ H(R) and that c′ is
((gh)−1⊗gh, 1)-primitive, with (gh)−1⊗gh = (g−1⊗g)(h−1⊗h). We have finally, for σ′ = τ ′ω′,

c′(r ⊗ s) = r(gh)−1 ⊗ cs− r(gh)−1c⊗ s = (gh)−1(gh) · r ⊗ σ(s)c− (gh)−1(gh · r)c⊗ s
= (gh)−1(gh) · r ⊗ σ(s)c− (gh)−1cσ−1(gh · r)⊗ s
= (gh)−1(gh) · r ⊗ σ(s)c− (gh)−1c(gh · r)⊗ σ(s) (by Lemma 5.1)

= ((gh) · r ⊗ σ(s))c′ = σ′(r ⊗ s)c′

and hence c′ is σ′-central.
Step 2. We now check thatAR = A(R,X, Y, τ, ω, c, ξ) has a naturalA(H(R), E, F, τ ′, ω′, c′, ξ′)-

comodule algebra structure. We start with preliminary computations. We have

(g ⊗ E +X ⊗ 1⊗ 1)r(1) ⊗ r(2) ⊗ r(3) = gr(1) ⊗
(
E(r(2) ⊗ r(3)))

)
+Xr(1) ⊗ r(2) ⊗ r(3)

= gr(1) ⊗
(
g · r(2) ⊗ τ(r(3))E

)
+ τ(r(1))X ⊗ r(2) ⊗ r(3)

(4.1)
= (g · r(1))g ⊗

(
g · r(2) ⊗ τ(r(3))E)

)
+ τ(r)(1)X ⊗ τ(r)(2) ⊗ τ(r)(3)

(4.3)
= τ(r(1))g ⊗

(
τ(r(2))⊗ τ(r(3))E

)
+ τ(r)(1)X ⊗ τ(r)(2) ⊗ τ(r)(3)

(4.1)
= τ(r)(1)g ⊗

(
τ(r)(2) ⊗ τ(r)(3)E

)
+ τ(r)(1)X ⊗ τ(r)(2) ⊗ τ(r)(3)

= τ(r)(1) ⊗ τ(r)(2) ⊗ τ(r(3)) (g ⊗ E +X ⊗ 1⊗ 1)

and similarly

(h⊗ F + Y ⊗ 1⊗ 1) r(1) ⊗ r(2) ⊗ r(3) = ω(r)(1) ⊗ ω(r)(2) ⊗ ω(r(3)) (h⊗ F + Y ⊗ 1⊗ 1) .

We also have

(g ⊗ E +X ⊗ 1⊗ 1) (h⊗ F + Y ⊗ 1⊗ 1)− ξ (h⊗ F + Y ⊗ 1⊗ 1) (g ⊗ E +X ⊗ 1⊗ 1)

= gh⊗ (EF − ξ′FE) + (XY − ξY X)⊗ 1⊗ 1 + (gY − ξY g)⊗ E + (Xh− ξhX)⊗ F
= gh⊗ c′ + c⊗ 1⊗ 1 = gh⊗ (gh)−1 ⊗ c− gh⊗ (gh)−1c⊗ 1 + c⊗ 1⊗ 1

= c(1) ⊗ c(2) ⊗ c(3)
These computations show that we have an algebra map

AR −→ AR ⊗A(H(R), E, F, τ ′, ω′, c′, ξ′),

defined by

R 3 r 7−→ r(1) ⊗ r(2) ⊗ r(3), X 7−→ g ⊗ E +X ⊗ 1⊗ 1, Y 7−→ h⊗ F + Y ⊗ 1⊗ 1

which is easily seen to furnish the expected comodule algebra structure.
Step 3. We now prove that the previous comodule algebra structure makes AR a Hopf-Galois

object over A(H(R)) = A(H(R), E, F, τ ′, ω′, c′, ξ′). For this, we claim that there exists an
algebra map

θ : A(H(R)) −→ Aop
R ⊗AR

r ⊗ s, E, F 7−→ r ⊗ s, E′ := g−1 ⊗X − g−1X ⊗ 1, F ′ := h−1 ⊗ Y − h−1Y ⊗ 1

such that r ⊗ s 7−→ r ⊗ s and

E 7−→ E′ := g−1 ⊗X − g−1X ⊗ 1, F 7−→ F ′ := h−1 ⊗ Y − h−1Y ⊗ 1.

To prove the claim, we have to check a number of identities. We have, for r ⊗ s ∈ H(R),

E′(r ⊗ s) = rg−1 ⊗Xs− rg−1X ⊗ s = rg−1 ⊗ τ(s)X − rg−1X ⊗ s
= (g · r ⊗ τ(s))(g−1 ⊗X)− (τ−1(g · r)⊗ s)(g−1X ⊗ 1)

= (g · r ⊗ τ(s))(g−1 ⊗X − g−1X ⊗ 1)

= τ ′(r ⊗ s)E′
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where the third equality holds since g · r ⊗ τ(s) = τ−1(g · r) ⊗ s, by Lemma 5.1. Similarly
F ′(r ⊗ s) = ω′(r ⊗ s)F ′. Finally we see that:

E′F ′ = h−1g−1 ⊗XY − h−1Y g−1 ⊗X − h−1g−1X ⊗ Y + h−1Y g−1X ⊗ 1

= (gh)−1 ⊗XY − ξ(gh)−1Y ⊗X − (gh)−1X ⊗ Y + ξ(gh)−1Y X ⊗ 1.

F ′E′ = λ−1(gh)−1 ⊗ Y X − λ−1ξ−1(gh)−1X ⊗ Y − λ−1(gh)−1Y ⊗X + λ−1ξ−1(gh)−1XY ⊗ 1.

Hence we have

E′F ′ − ξ′F ′E′ = (gh)−1 ⊗ (XY − ξY X)− (gh)−1(XY − ξY X)⊗ 1

= (gh)−1 ⊗ c− (gh)−1c⊗ 1 = c′.

We have thus proved that the announced algebra map is well-defined. It is now an immediate
verification that the composite map

AR ⊗A(H(R))
id⊗θ−→ AR ⊗AR ⊗AR

mult⊗id−→ AR ⊗AR
is inverse to the Galois map in Section 2, so we conclude that AR is a Hopf-Galois object over
A(H(R)).

Step 4. To finish the proof, first notice that the elements E′ = g−1 ⊗ X − g−1X ⊗ 1 and
F ′ = h−1 ⊗ Y − h−1Y ⊗ 1 from the previous step belong to H(AR), and that the computations
done in this previous step ensure the existence of a Hopf algebra map

f : A(H(R)) −→ H(R),

given by

r ⊗ s 7−→ r ⊗ s, E 7−→ E′, F 7−→ F ′.

It is obvious that f commutes with the respective coactions on AR, so using the bijective
canonical maps of our two Hopf-Galois objects, we conclude that f is an isomorphism. �

While the group-like and skew-primitive elements in a Hopf-Galois algebra R can be described
from those of H(R) thanks to Lemma 2.10, the proof of the previous theorem also provides the
description of the automorphisms in Theorem 4.1 in terms of characters of H(R):

Corollary 5.4. Let (R,µ) be Hopf-Galois algebra, let (τ, ω, g, h, c, ξ) be a sextuple satisfying the
conditions of Theorem 4.1. Then there are convolution commuting characters α, β : H(R)→ k
such that for r ∈ R,

τ(r) = α(r(2) ⊗ r(3))g · r(1), ω(r) = β(r(2) ⊗ r(3))h · r(1)
and for r ⊗ s ∈ H(R),

α((r ⊗ s)(1))(r ⊗ s)(2) = g−1 ⊗ g · (r ⊗ s)(1)α((r ⊗ s)(2)),

β((r ⊗ s)(1))(r ⊗ s)(2) = h−1 ⊗ h · (r ⊗ s)(1)β((r ⊗ s)(2)).

Proof. We have, for any r ∈ R, by the construction of τ ′,

r(1) ⊗ τ ′(r(2) ⊗ r(3)) = r(1) ⊗ g · r(2) ⊗ τ(r(3))

hence

g · r(1) ⊗ τ ′(r(2) ⊗ r(3)) = g · r(1) ⊗ g · r(2) ⊗ τ(r(3)).

Multiplying everything, we get, by the definition of α in the previous proof the announced
identity for τ and α, and similarly for ω and β. The final identities have been proved in the
previous proof as well. �

Notice that when ω = τ−1, that is when AR = A(R,X, Y, τ, c, ξ) is an ambiskew polynomial

algebra, for some τ ∈ AutR, then we do not necessarily have ω′ = τ
′−1, as we get

τ ′ω′(g−1 ⊗ g) = gh · g−1 ⊗ g = λg−1 ⊗ g.
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Thus it becomes evident that we need to work with generalized ambiskew polynomial algebras
rather than plain ambiskew polynomial algebras. We resume this situation in the next corollary,
see §6.5 for a concrete example.

Corollary 5.5. Let (R,µ) be a Hopf-Galois algebra and assume that AR = A(R,X, Y, τ, c, ξ)
is a Hopf-Galois algebra. Then the corresponding Hopf algebra H(AR) is a generalized am-
biskew polynomial algebra A(H(R), τ ′, ω′, c′, ξ′), where τ ′, ω′ ∈ AutH(R) are commuting auto-
morphisms not necessarily inverse to each other.

6. Examples

6.1. Baby example: R = k. It is immediate that Theorem 4.1 produces only two examples:
the Hopf algebra k[X,Y ] with primitive X,Y , and the Weyl algebra A1(k) as in Example 2.3.

6.2. Almost general example: cleft Galois objects. Before going into other specific ex-
amples, we examine the case of cleft Galois objects, i.e. those obtained by deforming the mul-
tiplication of a Hopf algebra by a Hopf 2-cocycle. This is the most studied type of Hopf-Galois
objects, but there exist some that are not of this type, see [3].

Let H be a Hopf algebra and let π : H ⊗H → k be a 2-cocycle on H, i.e. π is convolution
invertible, π(x, 1) = ε(x) = π(1, x) for any x ∈ H, and we have, for any x, y, z ∈ H,

π(x(1), y(1))π(x(2)y(2), z) = π(y(1), z(1))π(x, y(2)z(2)).

The algebra πH has H as underlying vector space, and product defined by

x.y = π(x(1), y(1))x(2)y(2).

It follows from standard cocycle identities [5] that πH is a Hopf-Galois algebra with

µ : πH −→ πH ⊗ πH
op ⊗ πH

x 7−→ π−1(S(x(3)), x(4))x(1) ⊗ S(x(2))⊗ x(5)

and that the map

H −→ H(πH) ⊂ πH
op ⊗ πH

x 7−→ π−1(S(x(2)), x(3))S(x(1))⊗ x(4))

is a Hopf algebra isomorphism. We thus see from Lemma 2.10 that

G0(πH) = {λg, λ ∈ k∗, g ∈ G(H)}

and for g, h ∈ G(H),

P0
g,h(πH) = {λ1 + x, λ ∈ k, x ∈ Pg,h(H)}.

Using this description and Corollary 5.4, we then see that the sextuples (τ, ω, g, h, c, ξ) as in
Theorem 4.1 can be chosen as follows:

(1) g, h are central group-like elements in H;
(2) the automorphisms τ, ω ∈ AutπH are of the form

τ(x) = α(x(2))g · x(1), ω(x) = β(x(2))h · x(1)

for some convolution commuting algebra maps α, β : H → k that also satisfy

α(x(2))x(1) = α(x(1))g · x(2), β(x(2))x(1) = β(x(1))h · x(2)

(these last identities are in H) and α(h) = β(g)−1, ξ = α(h)λ, where λ is such that
gh = λhg in πH.

(3) c is σ-central for σ = τω, and c = γ1 + x, for γ ∈ k and x ∈ Pgh,1(H);
13



6.3. The example R = k[T ]. We now examine the case when R = R(k[T ]). The analysis
of the previous subsection applies: we have G0(R) = k∗ and P0

1,1(R) = k + kT and for the

sextuples (τ, ω, g, h, c, ξ) of Theorem 4.1, the automorphisms τ , ω are of the form τ(T ) = T+α1,
ω(T ) = T + β1 for some α, β ∈ k. Moreover we must have β = −α if c 6= 0 because of the
σ-centrality of c.

At the end, after suitable changes in the generators, we find that a Hopf-Galois algebra
A = A(R, τ, ω, g, h, c, ξ) as in Theorem 4.1 belongs to one of the following classes.

(1) A is the enveloping Hopf algebra of the Lie algebra sl2:

A = U(sl2) = k〈T,X, Y | [X,T ] = X, [Y, T ] = −Y, [X,Y ] = T 〉.
(2) A is the enveloping Hopf algebra of the 3-dimensional Heisenberg Lie algebra h:

A = U(h) = k〈T,X, Y | [X,T ] = 0 = [Y, T ], [X,Y ] = T 〉.
(3) A = Uβ, β ∈ k, is the enveloping algebra of a solvable 3-dimensional Lie algebra:

A = Uβ = k〈T,X, Y | [X,T ] = X, [Y, T ] = βY, [X,Y ] = 0〉.
(4) A = k[T,X, Y ] is abelian.
(5) A is a Hopf-Galois algebra and not a Hopf algebra, with

A = Uα,λ = k〈T,X, Y | [X,T ] = αX, [Y, T ] = −αY, [X,Y ] = 1 + λT 〉, α ∈ {0, 1}, λ ∈ k.
Moreover, the Hopf algebra H(Uα,λ) is
(a) U(sl2) if α = 1 and λ 6= 0;
(b) U−1 if α = 1 and λ = 0;
(c) U(h) if α = 0 and λ 6= 0;
(d) k[T,X, Y ] if α = 0 and λ = 0.

6.4. The example R = k[T, T−1] = kZ. In this part, we set R = R(H), for H = kZ = k〈K±1〉.
As above, we choose two (central) group-like elements g = Kn, h = Km, m,n ∈ Z. We fix
two characters α, β : H → k, which are determined by nonzero scalars α := α(K), β := β(K),
satisfying ξ = αm = β−n (as λ = 1). If c 6= 0, then there is γ, µ ∈ k such that c = γ+µ(1− gh).
As c is σ-central, it follows that in this case β = α−1 (hence αn = αm = ξ).

Thus, a Hopf-Galois algebra A = A(R, τ, ω, g, h, c, ξ) as in Theorem 4.1, with g = Kn and
h = Km, belongs to one of the following classes.

(1) For each α, β with ξ = αm = β−n:

A = k〈K,X, Y | XK = αKX, Y K = βKY, XY − ξ Y X = 0〉.
(2) For each α with ξ = αm = αn and γ, µ ∈ k:

A = k〈K,X, Y | XK = αKX, Y K = α−1KY, XY − ξ Y X = γ + µ(1−Kn+m)〉.
In the last class, we recognize the Hopf algebra Uq(sl2) when n = m = −1, γ = 0, µ = 1

q−q−1

and ξ = q2 = α−1. On the other hand, when γ 6= 0, we obtain the Uq(sl2)-cleft objects A(a) as

computed in [11, Lemma 16], for a = γ + µ and n = m = −1, µ = 1
q−q−1 as before.

6.5. The example R = k〈T±11 , T±12 |T1T2 = qT2T1〉. Here q ∈ k∗ and R = πH is a twisted

group algebra of the group algebra H = kZ2 = k〈K±11 ,K±12 |K1K2 = K2K1〉 and π such that
π(K1,K2)
π(K2,K1)

= q. Subsection 6.2 applies to give the complete description of all the generalized

ambiskew polynomial algebras that are Hopf-Galois as in Theorem 4.1. We focus on giving an
example to illustrate Corollary 5.5, see §6.5.1 below. In particular, we assume that q 6= 1.

We choose g = K1, h = K2 ∈ G(H), so gh = q hg in R, that is, λ = q. Now, we get that

τ(T1) = α(K1)T1, τ(T2) = qα(K2)T2, ω(T1) = q−1β(K1)T1, ω(T2) = β(K2)T2,

for some algebra maps α, β : H → k such that α(K2) = ξq−1 = β(K1)
−1.

In particular, σ(T1) = ξ−1α(K1)T1 and σ(T2) = ξβ(K2)T2.
Now c = γ + µ(1− T1T2). If c 6= 0, then being σ-central amounts to

14



(1) If µ = 0, then ξ = α(K1) = β(K2)
−1. Thus, ω = τ−1 and hence σ = id.

(2) If µ 6= 0 and γ = −µ, then α(K1) = q−1ξ and β(K2) = qξ−1. Hence σ 6= id.
(3) Otherwise, q = 1 and this is a contradiction.

Next we analyze cases (1) and (2).

6.5.1. Case (1). Fix µ = 0, γ = 1, so τω = id and c = 1. This will provide an example for
Corollary 5.5. We have

τ(T1) = ξT1, τ(T2) = ξT2, ω(T1) = ξ−1T1, ω(T2) = ξ−1T2.

Let AR = A(R,X, Y, τ, c, ξ) be the corresponding Hopf-Galois algebra. This is generated by
T±11 , T±12 , X and Y with relations

T1T2 = qT2T1, XT1 = ξT1X, XT2 = ξT2X, Y T1 = ξ−1T1Y, Y T2 = ξ−1T2Y, XY − ξY X = 1.

Now, by Theorem 5.3, the Hopf algebra H(AR) is a generalized ambiskew polynomial algebra
A(H(R), τ ′, ω′, c′, ξ′).

In this case, H(R) ' H via the assignment T−11 ⊗ T1  K1, T
−1
2 ⊗ T2  K2. Recall that

ξ′ = ξλ−1 = q−1ξ, c′ = (gh)−1 ⊗ c− (gh)−1c⊗ 1 = 0.

Finally, τ ′, ω′ ∈ AutH(R) are the automorphisms given by

τ ′(T−11 ⊗ T1) = T1 · T−11 ⊗ τ(T1) = ξT−11 ⊗ T1,
ω′(T−11 ⊗ T1) = T2 · T−11 ⊗ τ−1(T1) = qξ−1T−11 ⊗ T1,
τ ′(T−12 ⊗ T2) = T1 · T−12 ⊗ τ(T2) = ξq−1T−12 ⊗ T2,
ω′(T−12 ⊗ T2) = T2 · T−12 ⊗ τ−1(T2) = ξ−1T−12 ⊗ T2.

In other words, under the identification above, we have that

τ ′(K1) = ξ K1, τ ′(K2) = ξq−1K1, ω′(K1) = ξ−1q K1, ω′(K2) = ξ−1K2.

In particular, we see that τ ′ and ω′ are not inverse to each other and the Hopf algebra H(AR)
is generated by K±11 , K±12 , E and F with relations

K1K2 = K2K1, EK1 = ξK1E, EK2 = ξq−1K2E, FK1 = ξ−1qK1F, FK2 = ξ−1K2F,

EF − q−1ξFE = 0.

6.5.2. Case (2). We have c = γT1T2 and

τ(T1) = q−1ξT1, τ(T2) = ξT2, ω(T1) = ξ−1T1, ω(T2) = qξ−1T2.

Hence AR = A(R,X, Y, τ, c, ξ) is generated by T±11 , T±12 , X and Y with relations

T1T2 = qT2T1, XT1 = q−1ξT1X, XT2 = ξT2X, Y T1 = ξ−1T1Y, Y T2 = qξ−1T2Y,

XY − ξY X = γT1T2.

For the Hopf algebra H(AR), we get c′ = γ(1−K1K2) and

τ ′(K1) = q−1ξ K1, τ ′(K2) = ξq−1K1, ω′(K1) = ξ−1q K1, ω′(K2) = qξ−1K2.

In this case, ω′τ ′ = id. The Hopf algebra is now generated by K±11 , K±12 , E and F with relations

K1K2 = K2K1, EK1 = q−1ξK1E, EK2 = ξq−1K2E, FK1 = ξ−1qK1F, FK2 = qξ−1K2F,

EF − q−1ξFE = γ(1−K1K2).
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6.6. The example R = A1(k). Here R = k〈U, V |UV − V U = 1〉 is a cleft object for the
polvnomial Hopf algebra H = k[u, v], with G(H) = {1} and P1,1(H) = ku + kv. As above,
we obtain that the automorphisms τ, ω are determined by algebra maps α, β : H → k, as
τ(U) = U +α(u), ω(U) = U +β(u), similarly for τ(V ), ω(V ). We have that c = γ+ c1U + c2V ,
for some γ, c1, c2 ∈ k. The fact that c is σ = τω-central determines that c1 = α(v) + β(v) and
c2 = −α(u)−β(u). Therefore AR = A(R, τ, ω, g, h, c, ξ) with g = h = 1 is determined by scalars
γ, αu, αv, βu, βv ∈ k and relations

[U, V ] = 1, [X,U ] = αuX, [X,V ] = αvX, [Y,U ] = βuY, [Y, V ] = βvY

[X,Y ] = γ + (αv + βv)U − (αu + βu)V.

If c = γ + (αv + βv)U − (αu + βu)V = 0, then this is a Hopf algebra. When c 6= 0, if we
identify H(R) with H = k[u, v] via 1 ⊗ U − U ⊗ 1  u, 1 ⊗ V − V ⊗ 1  v then for the
corresponding Hopf algebra H(AR) it follows that ξ′ = ξ, τ ′ = τ and ω′ = ω, in such a way
that H(AR) = A(H, τ, ω, c′, ξ) for c′ = (αv + βv)u− (αu + βu)v.
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