About the monoidal invariance of cohomological dimension of Hopf algebras

Julien Bichon
Université Clermont Auvergne

Quantum Groups Seminar
Online, 18 January 2021

The question I want to discuss is

Question

Let A, B be Hopf algebras such that

$$
\mathcal{M}^{A} \simeq^{\otimes} \mathcal{M}^{B}
$$

Do we have $\operatorname{cd}(A)=\operatorname{cd}(B)$?

Here:

- \mathcal{M}^{A} is the tensor category of right A-comodules,
- $\operatorname{cd}(A)$ is the cohomological dimension of A (see below).

We work over an algebraically closed field k.
(1) Cohomological dimension
(2) Positive answers to our question
(3) Strategy
(4) Twisted separable functors
(5) An example
(6) Other strategy: Gerstenhaber-Schack cohomological dimension

Cohomological dimension

Classical examples

- If $A=\mathcal{O}(G)$, with G a compact Lie group, then

$$
\operatorname{cd}(\mathcal{O}(G))=\operatorname{dim}(G)
$$

- If $A=k \Gamma$, with Γ a discrete group, then $\operatorname{cd}(k \Gamma)=\operatorname{cd}_{k}(\Gamma)$, the cohomological dimension of Γ with coefficients k.
- if Γ is finitely generated, then $\operatorname{cd}(k \Gamma)=1 \Longleftrightarrow \Gamma$ has a free subgroup of finite index (Dunwoody's theorem);
- if Γ is the fundamental group of an aspherical closed manifold of dimension n, then $\operatorname{cd}(k \Gamma)=n$.
- Let $\Gamma=\left\langle r, s, a \mid r s=s r, t a t^{-1} a=a t a t^{-1}, s a s^{-1}=a t a t^{-1}\right\rangle$ (Baumslag). Then $\operatorname{cd}(k \Gamma)=\infty$.
- If Γ is a finite group, then $\operatorname{cd}(k \Gamma)=0 \Longleftrightarrow|G| \neq 0$ in k, and $\operatorname{cd}(k \Gamma)=\infty$ otherwise.
- If A is a finite-dimensional Hopf algebra, then either $\operatorname{cd}(A)=0(A$ is semisimple) or $\operatorname{cd}(A)=\infty$.

Cohomological dimension

Let A be an algebra and let M be a (left) A-module.

- M is said to be projective if the functor $\operatorname{Hom}_{A}(M,-)$ is exact. This is equivalent to say that M is a direct summand in a free module.
- A projective resolution of M is an exact sequence of A-modules

$$
\cdots \longrightarrow P_{n} \xrightarrow{d_{n}} P_{n-1} \xrightarrow{d_{n-1}} \cdots \xrightarrow{d_{2}} P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{d_{0}} M \rightarrow 0
$$

where the P_{i} 's are projective.

- The projective dimension of $M, \operatorname{pd}_{A}(M) \in \mathbb{N} \cup\{\infty\}$, is the smallest possible length (the largest n with $P_{n} \neq 0$) for a projective resolution of M.
- We have $\operatorname{pd}_{A}(M)=0 \Longleftrightarrow M$ is projective, so $\operatorname{pd}_{A}(M)$ measures how far is a module from being projective.
- The (left) global dimension of A is defined by

$$
\operatorname{l.gldim}(A)=\max \left\{\operatorname{pd}_{A}(M), M \in \mathcal{M}_{A}\right\} \in \mathbb{N} \cup\{\infty\}
$$

Cohomological dimension

More generally as soon as we are in an abelian category having enough projective objects (every object is a quotient of a projective), we can define projective dimensions of objects.

When A is a Hopf algebra, we have as well

$$
\text { l.gldim }(A)=\operatorname{pd}_{A}\left(k_{\varepsilon}\right)=\operatorname{cd}(A)=\text { r.gldim }(A)
$$

where k_{ε} denote the trivial A-module, and
$\operatorname{cd}(A)$ is the Hochschild cohomological dimension of A
with $\operatorname{cd}(A)=\operatorname{pd}_{A \mathcal{M}_{A}}(A)$. We simply denote $\operatorname{cd}(A)$ all these numbers.

Cohomological dimension: examples

Example 1. Let $n \geq 2$. Let $A_{o}(n)$ be the algebra presented by generators $\left(u_{i j}\right)_{1 \leq i, j \leq n}$ and relations

$$
u^{t} u=I_{n}=u u^{t}
$$

where u is the matrix $\left(u_{i j}\right)_{1 \leq i, j \leq n}$. It has a Hopf algebra structure

$$
\Delta\left(u_{i j}\right)=\sum_{k=1}^{n} u_{i k} \otimes u_{k j}, \quad \varepsilon\left(u_{i j}\right)=\delta_{i j}, S(u)=u^{t}
$$

This is the coordinate algebra on Wang's free orthogonal quantum group O_{n}^{+}. Collins-Härtl-Thom (2008) have shown

$$
\operatorname{cd}\left(A_{o}(n)\right)=3
$$

There is a monoidal equivalence $\mathcal{M}^{A_{o}(n)} \simeq{ }^{\otimes} \mathcal{M}^{\mathcal{O}\left(S L_{q}(2)\right)}$ for $n=-q-q^{-1}$, and indeed $\operatorname{cd}\left(\mathcal{O}\left(S L_{q}(2)\right)\right)=3$.

Cohomological dimension: examples

Example 1 (continued). More generally, let $E \in \mathrm{GL}_{n}(k), n \geq 2$, and let $\mathcal{B}(E)$ presented by generators $\left(u_{i j}\right)_{1 \leq i, j \leq n}$ and relations

$$
E^{-1} u^{t} E u=I_{n}=u E^{-1} u^{t} E
$$

where u is the matrix $\left(u_{i j}\right)_{1 \leq i, j \leq n}$. It has a Hopf algebra structure defined by $\Delta\left(u_{i j}\right)=\sum_{k=1}^{n} u_{i k} \otimes u_{k j}, \varepsilon\left(u_{i j}\right)=\delta_{i j}, S(u)=E^{-1} u^{t} E$.
The Hopf algebra $\mathcal{B}(E)$ (Dubois-Violette and Launer, 1990), represents the quantum symmetry group of the bilinear form associated to the matrix E. For a well-chosen $E_{q} \in \mathrm{GL}_{2}(k)$ we have $\mathcal{B}\left(E_{q}\right)=\mathcal{O}\left(\mathrm{SL}_{q}(2)\right)$. One has

$$
\operatorname{cd}(\mathcal{B}(E))=3
$$

and we have a monoidal equivalence

$$
\mathcal{M}^{\mathcal{B}(E)} \simeq^{\otimes} \mathcal{M}^{\mathcal{O}\left(\mathrm{SL}_{q}(2)\right)}
$$

for $q \in k^{*}$ satisfying $\operatorname{tr}\left(E^{-1} E^{t}\right)=-q-q^{-1}$.

Cohomological dimension: examples

Example 2. Let $A_{s}(n)$ be the algebra presented by generators $\left(u_{i j}\right)_{1 \leq i, j \leq n}$ and relations

$$
\sum_{k} u_{k i}=1=\sum_{k} u_{i k}, u_{i k} u_{i j}=\delta_{k j} u_{i j}, u_{k i} u_{j i}=\delta_{j k} u_{j i}
$$

It has a natural Hopf algebra structure and represents the quantum permutation group S_{n}^{+}(Wang).
For $n \geq 4$, one has

$$
\operatorname{cd}\left(A_{s}(n)\right)=3
$$

and a monoidal equivalence $\mathcal{M}^{A_{s}(n)} \simeq{ }^{\otimes} \mathcal{M}^{\mathcal{O}\left(\text { PSL }_{q}(2)\right)}$ for $\sqrt{n}=q+q^{-1}$.
In these examples, the monoidal equivalence is important to determine the cohomological dimension, but there are furthermore special types of "equivariant" resolutions that play a role.

Positive answers to our question

Theorem [Wang-Yu-Zhang, 2017]

Let A, B be Hopf algebras such that $\mathcal{M}^{A} \simeq^{\otimes} \mathcal{M}^{B}$. If A is twisted Calabi-Yau and B is smooth, then $\operatorname{cd}(A)=\operatorname{cd}(B)$.

> Smooth means that the trivial module has a finite resolution by finitely generated projective modules, and twisted Calabi-Yau is a stronger condition (a nice duality between homology and cohomology). In fact they prove that B is twisted Calabi-Yau as well.

Theorem [B, 2016-2018]

Let A, B be Hopf algebras such that $\mathcal{M}^{A} \simeq^{\otimes} \mathcal{M}^{B}$. If A, B are cosemisimple and satisfy $S^{4}=\mathrm{id}$, then $\operatorname{cd}(A)=\operatorname{cd}(B)$.

Positive answers to our question

The main new result presented in this talk is:

Theorem

Let A, B be Hopf algebras such that $\mathcal{M}^{A} \simeq^{\otimes} \mathcal{M}^{B}$. Assume that one of the following conditions hold:
(1) A and B are smooth;
(2) A, B are cosemisimple and $\operatorname{cd}(A), \operatorname{cd}(B)$ are finite.

Then $\operatorname{cd}(A)=\operatorname{cd}(B)$.
(1) mainly consists in checking that the arguments of Wang-Yu-Zhang still work to get the desired conclusion.

We will focus on explaining the proof of (2).

Strategy: equivariant bimodules

Recall that if R is a right A-comodule algebra (an algebra in the category \mathcal{M}^{A}), the category of R-bimodules inside A-comodules is denoted

$$
{ }_{R} \mathcal{M}_{R}^{A}
$$

Objects: the A-comodules V with an R-bimodule structure having the Hopf bimodule compatibility conditions $(x \in R, v \in V)$
$(x \cdot v)_{(0)} \otimes(x \cdot v)_{(1)}=x_{(0)} \cdot v_{(0)} \otimes x_{(1)} v_{(1)},(v \cdot x)_{(0)} \otimes(v \cdot x)_{(1)}=v_{(0)} \cdot x_{(0)} \otimes v_{(1)} x_{(1)}$
Morphisms: the A-colinear and R-bilinear maps.
The category ${ }_{R} \mathcal{M}_{R}^{A}$ is obviously abelian, and the tensor product of bimodules induces a monoidal strucure on it.

Strategy

For a Hopf algebra A, recall (Schauenburg) that it follows from the structure theorem for Hopf modules that the functor

$$
{ }_{A} \mathcal{M} \longrightarrow{ }_{A} \mathcal{M}_{A}^{A}, \quad V \longmapsto V \otimes A
$$

is a monoidal equivalence, where $V \otimes A$ has the tensor product left A-module structure and the right module and comodule structures are induced by the multiplication and comultiplication of A respectively. Now, starting with a monoidal equivalence $F: \mathcal{M}^{A} \simeq^{\otimes} \mathcal{M}^{B}$, let $R=F(A)$. This is an algebra in \mathcal{M}^{B}, and F induces an equivalence

$$
{ }_{A} \mathcal{M}_{A}^{A} \simeq{ }^{\otimes}{ }_{R} \mathcal{M}_{R}^{B}
$$

Composing with the previous one, we get an equivalence

$$
{ }_{A} \mathcal{M} \simeq{ }^{\otimes}{ }_{R} \mathcal{M}_{R}^{B}
$$

sending εk to R, and hence $\operatorname{cd}(A)=\operatorname{pd}_{A \mathcal{M}}(\varepsilon k)=\operatorname{pd}_{R} \mathcal{M}_{R}^{B}(R)$.

Strategy

\star So, starting from $F: \mathcal{M}^{A} \simeq{ }^{\otimes} \mathcal{M}^{B}$, we get, for $R=F(A)$,

$$
\operatorname{cd}(A)=\operatorname{pd}_{R} \mathcal{M}_{R}^{B}(R)
$$

Similarly, we have, for $T=F^{-1}(B)$,

$$
\operatorname{cd}(B)=\operatorname{pd}_{T \mathcal{M}_{T}^{A}}(T)
$$

When A, B have bijective antipode, we have $R \simeq T^{\mathrm{op}}$, so $\operatorname{cd}(R)=\operatorname{cd}(T)$. (here we are with the Hochshild cohomological dimension $\operatorname{cd}(R)=\operatorname{pd}_{R_{R} \mathcal{M}_{R}}(R)$) So the key question is to compare

$$
\operatorname{pd}_{R} \mathcal{M}_{R}^{B}(R) \quad \text { and } \quad \operatorname{pd}_{R} \mathcal{M}_{R}(R)=\operatorname{cd}(R)
$$

Remark: at this stage we have not used any assumption on A and B (apart from bijectivity of the antipodes).

Twisted separable functors

Definition

Let \mathcal{C} and \mathcal{D} be some categories. We say that a functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is twisted separable if there exist
(1) an autoequivalence Θ of the category \mathcal{D};
(2) a generating subclass $\mathcal{F} \subset o b(\mathcal{C})$ (i.e. for every $V \in o b(\mathcal{C})$, there exists $P \in \mathcal{F}$ and an epimorphism $P \rightarrow V$) together with, for any $P \in \mathcal{F}$, an isomorphism $\theta_{P}: F(P) \rightarrow \Theta F(P)$;
(3) a natural morphism $\mathbf{M}_{-,-}: \operatorname{Hom}_{\mathcal{D}}(F(-), \Theta F(-)) \rightarrow \operatorname{Hom}_{\mathcal{C}}(-,-)$ such that for any $P \in \mathcal{F}$, we have $M_{P, P}\left(\theta_{P}\right)=\mathrm{id}_{P}$.

The naturality condition above means that for any morphisms $\alpha: V^{\prime} \rightarrow V$, $\beta: W \rightarrow W^{\prime}$ in \mathcal{C} and any morphism $f: F(V) \rightarrow \Theta F(W)$ in \mathcal{D}, we have

$$
\beta \circ \mathbf{M}_{V, W}(f) \circ \alpha=\mathbf{M}_{V^{\prime}, W^{\prime}}(\Theta F(\beta) \circ f \circ F(\alpha))
$$

Twisted separable functors

When $\mathcal{F}=\mathrm{ob}(\mathcal{C}), \Theta=\mathrm{id}_{\mathcal{D}}$ and $\theta_{P}=\mathrm{id}_{P}$ for any P, we get the notion of separable functor by Nastasescu-Van den Bergh-Van Oystaeyen, which provides a convenient setting for various types of generalized Maschke theorems (an exact sequence splits in \mathcal{C} if and only if it splits in \mathcal{D} after applying F).

Basic example of a separable functor: when A is cosemisimple Hopf algebra, the forgetful functor $\mathcal{M}^{A} \rightarrow \mathrm{Vec}_{k}$. The separability is obtained by averaging with respect to the Haar integral.

Twisted separable functors

Motivation to introduce the present notion of twisted separable functor:

Proposition

Let \mathcal{C} and \mathcal{D} be abelian categories having enough projectives and let $F: \mathcal{C} \rightarrow \mathcal{D}$ be a functor. Assume that the following conditions hold:
(1) the functor F is exact and preserves projective objects;
(2) the functor F is twisted separable and \mathcal{F}, the corresponding class of objects of \mathcal{C}, consists of projective objects.
Then for any object V of \mathcal{C} such that $\operatorname{pd}_{\mathcal{C}}(V)$ is finite, we have

$$
\operatorname{pd}_{\mathcal{C}}(V)=\operatorname{pd}_{\mathcal{D}}(F(V))
$$

Thus, if we know that the forgetful functor $\Omega_{R}:{ }_{R} \mathcal{M}_{R}^{B} \rightarrow{ }_{R} \mathcal{M}_{R}$ satisfies the above conditions and that $\operatorname{pd}_{R^{\prime} \mathcal{M}_{R}^{B}}(R)$ is finite, we can conclude that $\operatorname{pd}_{R \mathcal{M}_{R}^{B}}(R)=\operatorname{pd}_{R_{R} \mathcal{M}_{R}}(R)=\operatorname{cd}(R)$ (which, in the context of our equivalence $\mathcal{M}^{A} \simeq{ }^{\otimes} \mathcal{M}^{B}$ will give $\operatorname{cd}(A)=\operatorname{cd}(R)$, as needed).

Twisted separable functors

Let A be a cosemisimple Hopf algebra with Haar integral h. Recall that the Haar integral is not a trace in general, but satisfies a KMS type property, discovered by Woronowicz in the setting of compact quantum groups.

Theorem

There exists a convolution invertible linear map $\psi: A \rightarrow k$, called a modular functional on A, satisfying the following conditions:

- $S^{2}=\psi * \mathrm{id} * \psi^{-1}$;
- $\sigma:=\psi * \mathrm{id} * \psi$ is an algebra automorphism of A;
- we have $h(a b)=h(b \sigma(a))$ for any $a, b \in A$.

The proof is based on the orthogonality relations.

Twisted separable functors

Let R be right A-comodule over a cosemisimple Hopf algebra A, and let ρ be the automorphism of R defined by $\rho(x)=\psi^{-2}\left(x_{(1)}\right) x_{(0)}$

Key averaging lemma

Let $V, W \in{ }_{R} \mathcal{M}_{R}^{A}$. If $f: V \rightarrow W$ is a linear map satisfying

$$
f(x \cdot v)=\rho(x) \cdot f(v), f(v \cdot x)=f(v) \cdot x
$$

for any $v \in V$ and $x \in R$, then $\mathbf{M}_{V, W}(f): V \rightarrow W$ is a morphism in ${ }_{R} \mathcal{M}_{R}^{A}$.

Here $\mathbf{M}_{V, W}(f): V \longrightarrow W$ is the averaging of f defined by

$$
v \longmapsto h\left(f\left(v_{(0)}\right)_{(1)} S\left(v_{(1)}\right)\right) f\left(v_{(0)}\right)_{(0)}
$$

If G is a compact group, $\mathbf{M}_{V, W}(f)=\int_{G} \pi_{W}(g) \circ f \circ \pi_{V}\left(g^{-1}\right) d g$

Twisted separable functors

Now consider
(1) the class \mathcal{F} of free objects in ${ }_{R} \mathcal{M}_{R}^{A}$, i.e. those of the form

$$
R \otimes V \otimes R, V \in \mathcal{M}^{A}
$$

with the tensor comodule structure, and bimodule structure by left-right multiplication;
(2) the autoequivalence $\Theta:{ }_{R} \mathcal{M}_{R} \rightarrow{ }_{R} \mathcal{M}_{R}, W \mapsto{ }_{\rho} W$ with ${ }_{\rho} W=W$ as vector space and $x!^{\prime} w{ }^{\prime} x=\rho(x) \cdot w \cdot x$, and is trivial on morphisms;
(3) for a free object $R \otimes V \otimes R$, the R-bimodule isomorphism $\rho_{V}=\rho \otimes \mathrm{id}_{V} \otimes \mathrm{id}_{R}: R \otimes V \otimes R \rightarrow{ }_{\rho}(R \otimes V \otimes R)$.
(9) for $V, W \in{ }_{R} \mathcal{M}_{R}^{A}$, the averaging map

$$
\mathbf{M}_{V, W}: \operatorname{Hom}_{A}\left(V,{ }_{\rho} W\right) \rightarrow \operatorname{Hom}_{R} \mathcal{M}_{R}^{A}(V, W)
$$

from the key averaging lemma.
It follows that the functor $\Omega_{R}:{ }_{R} \mathcal{M}_{R}^{A} \rightarrow{ }_{R} \mathcal{M}_{R}$ is indeed twisted separable.

Twisted separable functors: end of proof

The functor $\Omega_{R}:{ }_{R} \mathcal{M}_{R}^{A} \rightarrow{ }_{R} \mathcal{M}_{R}$ is twisted separable. Moreover, the class \mathcal{F} consists of projective (A is cosemisimple), the projective in ${ }_{R} \mathcal{M}_{R}^{A}$ are direct summands of free objects and hence are preserved by Ω_{R}, which is exact.
Hence we are in the situation of the previous proposition, and as soon as $\operatorname{pd}_{R_{R} \mathcal{M}_{R}^{A}}(R)$ is finite, we have

$$
\operatorname{pd}_{R^{\prime} \mathcal{M}_{R}^{A}}(R)=\operatorname{pd}_{R} \mathcal{M}_{R}(R)=\operatorname{cd}(R)
$$

This proves our theorem, as already explained here \square
Remark: If $S^{4}=\mathrm{id}, \Omega_{R}:{ }_{R} \mathcal{M}_{R}^{A} \rightarrow{ }_{R} \mathcal{M}_{R}^{A}$ is separable, and for any comodule algebra

$$
\operatorname{pd}_{R^{\mathcal{M}}}^{R}(R)=\operatorname{pd}_{R} \mathcal{M}_{R}(R)=\operatorname{cd}(R)
$$

An example

For $n \geq 2$ and $F \in \mathrm{GL}_{n}(k)$, the universal cosovereign Hopf algebra $H(F)$ is the algebra generated by $\left(u_{i j}\right)_{1 \leq i, j \leq n}$ and $\left(v_{i j}\right)_{1 \leq i, j \leq n}$, with relations:

$$
u v^{t}=v^{t} u=I_{n} ; \quad v F u^{t} F^{-1}=F u^{t} F^{-1} v=I_{n}
$$

where $u=\left(u_{i j}\right), v=\left(v_{i j}\right)$ and I_{n} is the identity $n \times n$ matrix. The Hopf algebra structure is defined by

$$
\begin{gathered}
\Delta\left(u_{i j}\right)=\sum_{k} u_{i k} \otimes u_{k j}, \quad \Delta\left(v_{i j}\right)=\sum_{k} v_{i k} \otimes v_{k j}, \\
\varepsilon\left(u_{i j}\right)=\varepsilon\left(v_{i j}\right)=\delta_{i j}, \quad S(u)=v^{t}, \quad S(v)=F u^{t} F^{-1} .
\end{gathered}
$$

When $F \in \mathrm{GL}_{n}(\mathbb{C})$ is positive, this is the compact Hopf algebra $A_{u}(F)$.

An example

A matrix $F \in \mathrm{GL}_{n}(k)$ is said to be

- an asymmetry if there exists $E \in \mathrm{GL}_{n}(k)$ such that $F=E^{t} E^{-1}$;
- normalizable if $\operatorname{tr}(F) \neq 0$ and $\operatorname{tr}\left(F^{-1}\right) \neq 0$ or $\operatorname{tr}(F)=0=\operatorname{tr}\left(F^{-1}\right)$;
- generic if it is normalizable and the solutions of the equation $q^{2}-\sqrt{\operatorname{tr}(F) \operatorname{tr}\left(F^{-1}\right)} q+1=0$ are generic, i.e. are not roots of unity of order ≥ 3 (does not depend on the choice of the above square root).

The Hopf algebra $H(F)$ is cosemisimple if and only if F is generic.

Theorem

If F is an asymmetry or F is generic, we have $\mathrm{cd}(H(F))=3$.

An example

Theorem

If F is an asymmetry or F is generic, we have $\mathrm{cd}(H(F))=3$.
Proof: it was already known that if F is an asymmetry, then $\operatorname{cd}(H(F))=3$, and that if F is generic, then $\operatorname{cd}(H(F)) \leq 3$. So suppose that F is generic. Then

$$
\mathcal{M}^{H(F)} \simeq^{\otimes} \mathcal{M}^{H\left(F_{q}\right)}
$$

for

$$
F_{q}=\left(\begin{array}{cc}
q & 0 \\
0 & q^{-1}
\end{array}\right), \quad q^{2}-\sqrt{\operatorname{tr}(F) \operatorname{tr}\left(F^{-1}\right)} q+1=0
$$

F_{q} is an asymetry, so $\operatorname{cd}\left(H\left(F_{q}\right)\right)=3$, and since we know $\operatorname{cd}(H(F))$ is finite, we can apply our theorem to conclude

$$
\operatorname{cd}(H(F))=\operatorname{cd}\left(H\left(F_{q}\right)\right)=3
$$

Other strategy: Gerstenhaber-Schack cohomological dimension

Other strategy to attack our question: use an auxiliary cohomological dimension, the Gerstenhaber-Schack cohomological dimension, based on Yetter-Drinfeld modules. Let A be a Hopf algebra.

Definition

A (right-right) Yetter-Drinfeld module over A is a right A-comodule and right A-module V satisfying the condition, $\forall v \in V, \forall a \in A$,

$$
(v \leftarrow a)_{(0)} \otimes(v \leftarrow a)_{(1)}=v_{(0)} \leftarrow a_{(2)} \otimes S\left(a_{(1)}\right) v_{(1)} a_{(3)}
$$

\rightsquigarrow category $\mathcal{Y}_{D_{A}}^{A}$, with $\mathcal{Y} \mathcal{D}_{A}^{A} \simeq^{\otimes} \mathcal{Z}\left(\mathcal{M}^{A}\right) \simeq^{\otimes} \mathcal{Z}\left(\mathcal{M}_{A}\right)$.
The Gerstenhaber-Schack cohomological dimension of A is defined by $\operatorname{cd}_{G S}(A)=\max \left\{n: \operatorname{Ext}_{\mathcal{Y D}_{A}^{A}}^{n}(k, V) \neq 0\right.$ for some $\left.V \in \mathcal{Y D}_{A}^{A}\right\} \in \mathbb{N} \cup\{\infty\}$

Other strategy: Gerstenhaber-Schack cohomological dimension

We always have $\operatorname{cd}(A) \leq \operatorname{cd}_{\mathrm{GS}}(A)$, and
Theorem (B, 2016)
Let A and B be Hopf algebras such that $\mathcal{M}^{A} \simeq{ }^{\otimes} \mathcal{M}^{B}$. Then we have $\max (\operatorname{cd}(A), \operatorname{cd}(B)) \leq \operatorname{cd}_{\mathrm{GS}}(A)=\operatorname{cd}_{\mathrm{GS}}(B)$.

It is therefore important to compare $\operatorname{cd}(A)$ and $\operatorname{cd}_{\mathrm{GS}}(A)$.
When A is cosemisimple, $\mathcal{Y} \mathcal{D}_{A}^{A}$ has enough projective objects, and we also have

$$
\operatorname{cd}_{\mathrm{GS}}(A)=\operatorname{pd}_{\mathcal{Y} \mathcal{D}_{A}^{A}}(k)
$$

Other strategy: Gerstenhaber-Schack cohomological dimension

Theorem (B, 2016-2018)
Let A be a cosemisimple Hopf algebra. If $S^{4}=\mathrm{id}$, then $\operatorname{cd}(A)=\operatorname{cd}_{G S}(A)$.
The new result is:
Theorem
Let A be a cosemisimple Hopf algebra. If $\operatorname{cd}_{\mathrm{GS}}(A)$ is finite, then $\operatorname{cd}(A)=\operatorname{cd}_{\mathrm{GS}}(A)$.

Keypoint: the forgetful functor $\Omega_{A}: \mathcal{Y D}_{A}^{A} \rightarrow \mathcal{M}_{A}$ is twisted separable.

Corollary

Let A and B be cosemisimple Hopf algebras such that $\mathcal{M}^{A} \simeq{ }^{\otimes} \mathcal{M}^{B}$. If $\operatorname{cd}_{\mathrm{GS}}(A)$ is finite, then $\operatorname{cd}(A)=\operatorname{cd}(B)$.

Slightly weaker than what we had, but...

