About the monoidal invariance of cohomological dimension of Hopf algebras

Julien Bichon Université Clermont Auvergne

Quantum Groups Seminar Online, 18 January 2021 The question I want to discuss is

Question

Let A, B be Hopf algebras such that

 $\mathcal{M}^A\simeq^{\otimes}\mathcal{M}^B$

Do we have cd(A) = cd(B)?

Here:

- \mathcal{M}^A is the tensor category of right A-comodules,
- cd(A) is the cohomological dimension of A (see below).

We work over an algebraically closed field k.

Cohomological dimension

- 2 Positive answers to our question
- 3 Strategy
- Twisted separable functors

5 An example

6 Other strategy: Gerstenhaber-Schack cohomological dimension

Cohomological dimension

Classical examples

• If $A = \mathcal{O}(G)$, with G a compact Lie group, then

 $\operatorname{cd}(\mathcal{O}(G)) = \dim(G)$

- If $A = k\Gamma$, with Γ a discrete group, then $\operatorname{cd}(k\Gamma) = \operatorname{cd}_k(\Gamma)$, the cohomological dimension of Γ with coefficients k.
 - if Γ is finitely generated, then $cd(k\Gamma) = 1 \iff \Gamma$ has a free subgroup of finite index (Dunwoody's theorem);
 - if Γ is the fundamental group of an aspherical closed manifold of dimension *n*, then $cd(k\Gamma) = n$.
 - Let $\Gamma = \langle r, s, a | rs = sr, tat^{-1}a = atat^{-1}, sas^{-1} = atat^{-1} \rangle$ (Baumslag). Then $cd(k\Gamma) = \infty$.
 - If Γ is a finite group, then $\operatorname{cd}(k\Gamma) = 0 \iff |G| \neq 0$ in k, and $\operatorname{cd}(k\Gamma) = \infty$ otherwise.
- If A is a finite-dimensional Hopf algebra, then either cd(A) = 0 (A is semisimple) or cd(A) = ∞.

Cohomological dimension

Let A be an algebra and let M be a (left) A-module.

- *M* is said to be **projective** if the functor $Hom_A(M, -)$ is exact. This is equivalent to say that *M* is a direct summand in a free module.
- A projective resolution of M is an exact sequence of A-modules

$$\cdots \longrightarrow P_n \xrightarrow{d_n} P_{n-1} \xrightarrow{d_{n-1}} \cdots \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0 \xrightarrow{d_0} M \to 0$$

where the P_i 's are projective.

- The projective dimension of M, $pd_A(M) \in \mathbb{N} \cup \{\infty\}$, is the smallest possible length (the largest n with $P_n \neq 0$) for a projective resolution of M. • We have $pd_A(M) = 0 \iff M$ is projective, so $pd_A(M)$ measures how far is a module from being projective.
- The (left) global dimension of A is defined by

l.gldim(A) = max {pd_A(M),
$$M \in M_A$$
} $\in \mathbb{N} \cup \{\infty\}$

More generally as soon as we are in an abelian category having enough projective objects (every object is a quotient of a projective), we can define projective dimensions of objects.

When A is a Hopf algebra, we have as well

$$\operatorname{l.gldim}(A) = \operatorname{pd}_A(k_{\varepsilon}) = \operatorname{cd}(A) = \operatorname{r.gldim}(A)$$

where k_{ε} denote the trivial A-module, and

 $\operatorname{cd}(A)$ is the Hochschild cohomological dimension of Awith $\operatorname{cd}(A) = \operatorname{pd}_{A\mathcal{M}_A}(A)$. We simply denote $\operatorname{cd}(A)$ all these numbers.

Cohomological dimension: examples

Example 1. Let $n \ge 2$. Let $A_o(n)$ be the algebra presented by generators $(u_{ij})_{1 \le i,j \le n}$ and relations

$$u^t u = I_n = u u^t$$

where u is the matrix $(u_{ij})_{1 \le i,j \le n}$. It has a Hopf algebra structure

$$\Delta(u_{ij}) = \sum_{k=1}^{n} u_{ik} \otimes u_{kj}, \ \varepsilon(u_{ij}) = \delta_{ij}, \ S(u) = u^{t}$$

This is the coordinate algebra on Wang's free orthogonal quantum group O_n^+ . Collins-Härtl-Thom (2008) have shown

$$\operatorname{cd}(A_o(n)) = 3$$

There is a monoidal equivalence $\mathcal{M}^{A_o(n)} \simeq^{\otimes} \mathcal{M}^{\mathcal{O}(SL_q(2))}$ for $n = -q - q^{-1}$, and indeed $\operatorname{cd}(\mathcal{O}(SL_q(2))) = 3$.

Cohomological dimension: examples

Example 1 (continued). More generally, let $E \in GL_n(k)$, $n \ge 2$, and let $\mathcal{B}(E)$ presented by generators $(u_{ij})_{1 \le i,j \le n}$ and relations

$$E^{-1}u^tEu=I_n=uE^{-1}u^tE,$$

where u is the matrix $(u_{ij})_{1 \le i,j \le n}$. It has a Hopf algebra structure defined by $\Delta(u_{ij}) = \sum_{k=1}^{n} u_{ik} \otimes u_{kj}$, $\varepsilon(u_{ij}) = \delta_{ij}$, $S(u) = E^{-1}u^{t}E$. The Hopf algebra $\mathcal{B}(E)$ (Dubois-Violette and Launer, 1990), represents the quantum symmetry group of the bilinear form associated to the matrix E. For a well-chosen $E_q \in \operatorname{GL}_2(k)$ we have $\mathcal{B}(E_q) = \mathcal{O}(\operatorname{SL}_q(2))$. One has

$$\operatorname{cd}(\mathcal{B}(E)) = 3$$

and we have a monoidal equivalence

$$\mathcal{M}^{\mathcal{B}(E)}\simeq^{\otimes}\mathcal{M}^{\mathcal{O}(\mathrm{SL}_q(2))}$$

for
$$q \in k^*$$
 satisfying $\operatorname{tr}(E^{-1}E^t) = -q - q^{-1}$.

Cohomological dimension: examples

Example 2. Let $A_s(n)$ be the algebra presented by generators $(u_{ij})_{1 \le i,j \le n}$ and relations

$$\sum_{k} u_{ki} = 1 = \sum_{k} u_{ik}, \ u_{ik}u_{ij} = \delta_{kj}u_{ij}, \ u_{ki}u_{ji} = \delta_{jk}u_{ji}$$

It has a natural Hopf algebra structure and represents the quantum permutation group S_n^+ (Wang).

For $n \ge 4$, one has

$$\operatorname{cd}(A_s(n)) = 3$$

and a monoidal equivalence $\mathcal{M}^{A_s(n)} \simeq^{\otimes} \mathcal{M}^{\mathcal{O}(PSL_q(2))}$ for $\sqrt{n} = q + q^{-1}$.

In these examples, the monoidal equivalence is important to determine the cohomological dimension, but there are furthermore special types of "equivariant" resolutions that play a role.

Theorem [Wang-Yu-Zhang, 2017]

Let A, B be Hopf algebras such that $\mathcal{M}^A \simeq^{\otimes} \mathcal{M}^B$. If A is twisted Calabi-Yau and B is smooth, then cd(A) = cd(B).

Smooth means that the trivial module has a finite resolution by finitely generated projective modules, and twisted Calabi-Yau is a stronger condition (a nice duality between homology and cohomology). In fact they prove that B is twisted Calabi-Yau as well.

Theorem [B, 2016-2018]

Let A, B be Hopf algebras such that $\mathcal{M}^A \simeq^{\otimes} \mathcal{M}^B$. If A, B are cosemisimple and satisfy $S^4 = \mathrm{id}$, then $\mathrm{cd}(A) = \mathrm{cd}(B)$.

The main new result presented in this talk is:

Theorem

Let A, B be Hopf algebras such that $\mathcal{M}^A \simeq^{\otimes} \mathcal{M}^B$. Assume that one of the following conditions hold:

A and B are smooth;

2 A, B are cosemisimple and cd(A), cd(B) are finite. Then cd(A) = cd(B).

(1) mainly consists in checking that the arguments of Wang-Yu-Zhang still work to get the desired conclusion.

We will focus on explaining the proof of (2).

Recall that if R is a right A-comodule algebra (an algebra in the category \mathcal{M}^A), the category of R-bimodules inside A-comodules is denoted

$_{R}\mathcal{M}_{R}^{A}$

Objects: the A-comodules V with an R-bimodule structure having the Hopf bimodule compatibility conditions ($x \in R, v \in V$)

 $(x \cdot v)_{(0)} \otimes (x \cdot v)_{(1)} = x_{(0)} \cdot v_{(0)} \otimes x_{(1)} v_{(1)}, \ (v \cdot x)_{(0)} \otimes (v \cdot x)_{(1)} = v_{(0)} \cdot x_{(0)} \otimes v_{(1)} x_{(1)}$

Morphisms: the A-colinear and R-bilinear maps. The category $_{R}\mathcal{M}_{R}^{A}$ is obviously abelian, and the tensor product of bimodules induces a monoidal strucure on it.

Strategy

For a Hopf algebra *A*, recall (Schauenburg) that it follows from the structure theorem for Hopf modules that the functor

$${}_{\mathcal{A}}\mathcal{M} \longrightarrow {}_{\mathcal{A}}\mathcal{M}^{\mathcal{A}}_{\mathcal{A}}, \quad V \longmapsto V \otimes \mathcal{A}$$

is a monoidal equivalence, where $V \otimes A$ has the tensor product left *A*-module structure and the right module and comodule structures are induced by the multiplication and comultiplication of *A* respectively. Now, starting with a monoidal equivalence $F : \mathcal{M}^A \simeq^{\otimes} \mathcal{M}^B$, let R = F(A). This is an algebra in \mathcal{M}^B , and *F* induces an equivalence

$$_{\mathcal{A}}\mathcal{M}^{\mathcal{A}}_{\mathcal{A}}\simeq^{\otimes}{}_{\mathcal{R}}\mathcal{M}^{\mathcal{B}}_{\mathcal{R}}$$

Composing with the previous one, we get an equivalence

$$_{A}\mathcal{M}\simeq^{\otimes}{}_{R}\mathcal{M}^{B}_{R}$$

sending $_{\varepsilon}k$ to R, and hence $\operatorname{cd}(A) = \operatorname{pd}_{_{\mathcal{A}}\mathcal{M}}(_{\varepsilon}k) = \operatorname{pd}_{_{\mathcal{R}}\mathcal{M}_{\mathcal{R}}^{\mathcal{B}}}(R)$.

Strategy

 ${igsidents}$ So, starting from $F: \mathcal{M}^A\simeq^{\otimes}\mathcal{M}^B$, we get, for R=F(A),

$$\operatorname{cd}(A) = \operatorname{pd}_{_{R}\mathcal{M}_{R}^{B}}(R)$$

Similarly, we have, for $T = F^{-1}(B)$,

$$\operatorname{cd}(B) = \operatorname{pd}_{\tau \mathcal{M}_{T}^{A}}(T)$$

When A, B have bijective antipode, we have $R \simeq T^{\text{op}}$, so $\operatorname{cd}(R) = \operatorname{cd}(T)$. (here we are with the Hochshild cohomological dimension $\operatorname{cd}(R) = \operatorname{pd}_{RM_R}(R)$) So the key question is to compare

$$\operatorname{pd}_{_{\!\!R}\mathcal{M}^B_R}(R)$$
 and $\operatorname{pd}_{_{\!\!R}\mathcal{M}_R}(R)=\operatorname{cd}(R)$

Remark: at this stage we have not used any assumption on A and B (apart from bijectivity of the antipodes).

Julien Bichon

Definition

Let C and D be some categories. We say that a functor $F : C \to D$ is **twisted separable** if there exist

- $\textbf{0} \text{ an autoequivalence } \Theta \text{ of the category } \mathcal{D};$
- a generating subclass *F* ⊂ ob(*C*) (i.e. for every *V* ∈ ob(*C*), there exists *P* ∈ *F* and an epimorphism *P* → *V*) together with, for any *P* ∈ *F*, an isomorphism θ_P : *F*(*P*) → Θ*F*(*P*);
- ③ a natural morphism M_{-,−} : Hom_D(F(−), ΘF(−)) → Hom_C(−, −) such that for any P ∈ F, we have M_{P,P}(θ_P) = id_P.

The naturality condition above means that for any morphisms $\alpha : V' \to V$, $\beta : W \to W'$ in C and any morphism $f : F(V) \to \Theta F(W)$ in D, we have

$$\beta \circ \mathsf{M}_{V,W}(f) \circ \alpha = \mathsf{M}_{V',W'}(\Theta F(\beta) \circ f \circ F(\alpha))$$

When $\mathcal{F} = \operatorname{ob}(\mathcal{C})$, $\Theta = \operatorname{id}_{\mathcal{D}}$ and $\theta_P = \operatorname{id}_P$ for any P, we get the notion of **separable functor** by Nastasescu-Van den Bergh-Van Oystaeyen, which provides a convenient setting for various types of generalized Maschke theorems (an exact sequence splits in \mathcal{C} if and only if it splits in \mathcal{D} after applying F).

Basic example of a separable functor: when A is cosemisimple Hopf algebra, the forgetful functor $\mathcal{M}^A \to \operatorname{Vec}_k$. The separability is obtained by averaging with respect to the Haar integral.

Twisted separable functors

Motivation to introduce the present notion of twisted separable functor:

Proposition

Let C and D be abelian categories having enough projectives and let $F: C \to D$ be a functor. Assume that the following conditions hold:

- the functor F is exact and preserves projective objects;
- Ithe functor F is twisted separable and F, the corresponding class of objects of C, consists of projective objects.

Then for any object V of C such that $pd_{\mathcal{C}}(V)$ is finite, we have

 $\mathrm{pd}_{\mathcal{C}}(V) = \mathrm{pd}_{\mathcal{D}}(F(V))$

Thus, if we know that the forgetful functor $\Omega_R : {}_R\mathcal{M}_R^B \to {}_R\mathcal{M}_R$ satisfies the above conditions and that $\operatorname{pd}_{R\mathcal{M}_R^B}(R)$ is finite, we can conclude that $\operatorname{pd}_{R\mathcal{M}_R^B}(R) = \operatorname{pd}_{R\mathcal{M}_R}(R) = \operatorname{cd}(R)$ (which, in the context of our equivalence $\mathcal{M}^A \simeq^{\otimes} \mathcal{M}^B$ will give $\operatorname{cd}(A) = \operatorname{cd}(R)$, as needed). Let *A* be a cosemisimple Hopf algebra with Haar integral *h*. Recall that the Haar integral is not a trace in general, but satisfies a KMS type property, discovered by Woronowicz in the setting of compact quantum groups.

Theorem

There exists a convolution invertible linear map $\psi : A \rightarrow k$, called a modular functional on A, satisfying the following conditions:

•
$$S^2 = \psi * id * \psi^{-1};$$

•
$$\sigma := \psi * id * \psi$$
 is an algebra automorphism of A;

• we have
$$h(ab) = h(b\sigma(a))$$
 for any $a, b \in A$.

The proof is based on the orthogonality relations.

Twisted separable functors

Let R be right A-comodule over a cosemisimple Hopf algebra A, and let ρ be the automorphism of R defined by $\rho(x) = \psi^{-2}(x_{(1)})x_{(0)}$

Key averaging lemma

Let $V, W \in {}_{R}\mathcal{M}_{R}^{\mathcal{A}}$. If $f: V \to W$ is a linear map satisfying

$$f(x \cdot v) = \rho(x) \cdot f(v), \ f(v \cdot x) = f(v) \cdot x$$

for any $v \in V$ and $x \in R$, then $\mathbf{M}_{V,W}(f) : V \to W$ is a morphism in ${}_{R}\mathcal{M}^{\mathcal{A}}_{R}$.

Here $\mathbf{M}_{V,W}(f): V \longrightarrow W$ is the averaging of f defined by

$$v \longmapsto h(f(v_{(0)})_{(1)}S(v_{(1)}))f(v_{(0)})_{(0)}$$

If G is a compact group, $\mathbf{M}_{V,W}(f) = \int_{G} \pi_{W}(g) \circ f \circ \pi_{V}(g^{-1}) dg$

Twisted separable functors

Now consider

() the class
$$\mathcal{F}$$
 of free objects in ${}_{R}\mathcal{M}^{A}_{R}$, i.e. those of the form

 $R \otimes V \otimes R, \ V \in \mathcal{M}^A$

with the tensor comodule structure, and bimodule structure by left-right multiplication;

- the autoequivalence $\Theta : {}_{R}\mathcal{M}_{R} \to {}_{R}\mathcal{M}_{R}, W \mapsto {}_{\rho}W$ with ${}_{\rho}W = W$ as vector space and $x \cdot ' w \cdot ' x = \rho(x) \cdot w \cdot x$, and is trivial on morphisms;
- for a free object $R \otimes V \otimes R$, the *R*-bimodule isomorphism $\rho_V = \rho \otimes \operatorname{id}_V \otimes \operatorname{id}_R : R \otimes V \otimes R \to \rho(R \otimes V \otimes R).$
- for $V, W \in {}_{R}\mathcal{M}^{\mathcal{A}}_{R}$, the averaging map

$$\mathbf{M}_{V,W}$$
: Hom_A $(V, {}_{\rho}W) \rightarrow$ Hom_R $\mathcal{M}_{R}^{A}(V, W)$

from the key averaging lemma.

It follows that the functor $\Omega_R : {}_R\mathcal{M}_R^A \to {}_R\mathcal{M}_R$ is indeed twisted separable.

Twisted separable functors: end of proof

The functor $\Omega_R : {}_R \mathcal{M}_R^A \to {}_R \mathcal{M}_R$ is twisted separable. Moreover, the class \mathcal{F} consists of projectives (A is cosemisimple), the projectives in ${}_R \mathcal{M}_R^A$ are direct summands of free objects and hence are preserved by Ω_R , which is exact.

Hence we are in the situation of the previous proposition, and as soon as $\mathrm{pd}_{_R\mathcal{M}_R^A}(R)$ is finite, we have

$$\operatorname{pd}_{_{\!R}\mathcal{M}^A_R}(R) = \operatorname{pd}_{_{\!R}\mathcal{M}_R}(R) = \operatorname{cd}(R)$$

This proves our theorem, as already explained here 💽

Remark: If $S^4 = id$, $\Omega_R : {}_R \mathcal{M}_R^A \to {}_R \mathcal{M}_R^A$ is separable, and for any comodule algebra

$$\operatorname{pd}_{_{\!\!R}\mathcal{M}^A_{\!R}}(R) = \operatorname{pd}_{_{\!\!R}\mathcal{M}_{\!R}}(R) = \operatorname{cd}(R)$$

An example

For $n \ge 2$ and $F \in GL_n(k)$, the universal cosovereign Hopf algebra H(F) is the algebra generated by $(u_{ij})_{1\le i,j\le n}$ and $(v_{ij})_{1\le i,j\le n}$, with relations:

$$uv^{t} = v^{t}u = I_{n}; \quad vFu^{t}F^{-1} = Fu^{t}F^{-1}v = I_{n},$$

where $u = (u_{ij})$, $v = (v_{ij})$ and I_n is the identity $n \times n$ matrix. The Hopf algebra structure is defined by

$$\Delta(u_{ij}) = \sum_{k} u_{ik} \otimes u_{kj}, \quad \Delta(v_{ij}) = \sum_{k} v_{ik} \otimes v_{kj},$$
$$\varepsilon(u_{ij}) = \varepsilon(v_{ij}) = \delta_{ij}, \quad S(u) = v^{t}, \quad S(v) = F u^{t} F^{-1}.$$

When $F \in \operatorname{GL}_n(\mathbb{C})$ is positive, this is the compact Hopf algebra $A_u(F)$.

An example

A matrix $F \in \operatorname{GL}_n(k)$ is said to be

- an **asymmetry** if there exists $E \in GL_n(k)$ such that $F = E^t E^{-1}$;
- normalizable if $tr(F) \neq 0$ and $tr(F^{-1}) \neq 0$ or $tr(F) = 0 = tr(F^{-1})$;
- generic if it is normalizable and the solutions of the equation $q^2 \sqrt{\operatorname{tr}(F)\operatorname{tr}(F^{-1})}q + 1 = 0$ are generic, i.e. are not roots of unity of order ≥ 3 (does not depend on the choice of the above square root).

The Hopf algebra H(F) is cosemisimple if and only if F is generic.

Theorem

If F is an asymmetry or F is generic, we have cd(H(F)) = 3.

An example

Theorem

If F is an asymmetry or F is generic, we have cd(H(F)) = 3.

Proof: it was already known that if F is an asymmetry, then cd(H(F)) = 3, and that if F is generic, then $cd(H(F)) \le 3$. So suppose that F is generic. Then

$$\mathcal{M}^{H(F)} \simeq^{\otimes} \mathcal{M}^{H(F_q)}$$

for

$$egin{aligned} \mathcal{F}_q &= egin{pmatrix} q & 0 \ 0 & q^{-1} \end{pmatrix}, \quad q^2 - \sqrt{\mathrm{tr}(\mathcal{F})\mathrm{tr}(\mathcal{F}^{-1})}q + 1 = 0 \end{aligned}$$

 F_q is an asymetry, so $cd(H(F_q)) = 3$, and since we know cd(H(F)) is finite, we can apply our theorem to conclude

$$\operatorname{cd}(H(F)) = \operatorname{cd}(H(F_q)) = 3$$

Other strategy: Gerstenhaber-Schack cohomological dimension

Other strategy to attack our question: use an auxiliary cohomological dimension, the Gerstenhaber-Schack cohomological dimension, based on Yetter-Drinfeld modules. Let A be a Hopf algebra.

Definition

A (right-right) Yetter-Drinfeld module over A is a right A-comodule and right A-module V satisfying the condition, $\forall v \in V$, $\forall a \in A$,

$$(v \leftarrow a)_{(0)} \otimes (v \leftarrow a)_{(1)} = v_{(0)} \leftarrow a_{(2)} \otimes S(a_{(1)})v_{(1)}a_{(3)}$$

 \rightsquigarrow category \mathcal{YD}_{A}^{A} , with $\mathcal{YD}_{A}^{A} \simeq^{\otimes} \mathcal{Z}(\mathcal{M}^{A}) \simeq^{\otimes} \mathcal{Z}(\mathcal{M}_{A})$. The **Gerstenhaber-Schack cohomological dimension of** A is defined by

$$\mathrm{cd}_{\mathrm{GS}}(A) = \max\{n: \ \mathrm{Ext}^n_{\mathcal{YD}^A_A}(k,V) \neq 0 \ \mathrm{for \ some} \ V \in \mathcal{YD}^A_A\} \in \mathbb{N} \cup \{\infty\}$$

Other strategy: Gerstenhaber-Schack cohomological dimension

We always have $\operatorname{cd}(A) \leq \operatorname{cd}_{\operatorname{GS}}(A)$, and

Theorem (B, 2016)

Let A and B be Hopf algebras such that $\mathcal{M}^A \simeq^{\otimes} \mathcal{M}^B$. Then we have $\max(\operatorname{cd}(A), \operatorname{cd}(B)) \leq \operatorname{cd}_{\operatorname{GS}}(A) = \operatorname{cd}_{\operatorname{GS}}(B)$.

It is therefore important to compare cd(A) and $cd_{GS}(A)$. When A is cosemisimple, \mathcal{YD}_A^A has enough projective objects, and we also have

$$\operatorname{cd}_{\operatorname{GS}}(A) = \operatorname{pd}_{\mathcal{YD}_A^A}(k)$$

Other strategy: Gerstenhaber-Schack cohomological dimension

Theorem (B, 2016-2018)

Let A be a cosemisimple Hopf algebra. If $S^4 = id$, then $cd(A) = cd_{GS}(A)$.

The new result is:

Theorem

Let A be a cosemisimple Hopf algebra. If $cd_{GS}(A)$ is finite, then $cd(A) = cd_{GS}(A)$.

Keypoint: the forgetful functor $\Omega_A : \mathcal{YD}_A^A \to \mathcal{M}_A$ is twisted separable.

Corollary

Let A and B be cosemisimple Hopf algebras such that $\mathcal{M}^A \simeq^{\otimes} \mathcal{M}^B$. If $\operatorname{cd}_{\operatorname{GS}}(A)$ is finite, then $\operatorname{cd}(A) = \operatorname{cd}(B)$.

Slightly weaker than what we had, but...