Sums of two S-units via Frey-Hellegouarch curves (joint work with Michael A. Bennett)

Nicolas Billerey

Laboratoire de mathématiques Blaise Pascal Université Clermont-Auvergne

January 9, 2019

UNIVERSITÉ
Clermont Auvergne

Notation and history

- $S=\left\{p_{1}, \ldots, p_{k}\right\}$ a finite set of primes (with $k \geq 1$)

Notation and history

- $S=\left\{p_{1}, \ldots, p_{k}\right\}$ a finite set of primes (with $k \geq 1$)
- S-units $=\left\{ \pm p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}, \alpha_{i}\right.$ nonnegative integers $\}$

Notation and history

- $S=\left\{p_{1}, \ldots, p_{k}\right\}$ a finite set of primes (with $k \geq 1$)
- S-units $=\left\{ \pm p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}, \alpha_{i}\right.$ nonnegative integers $\}$

Solving the diophantine equation

$$
x+y=z^{2}
$$

with x and $y S$-units, and z a nonzero integer is a classical problem, closely related to computing elliptic curves with good reduction outside a given set of primes.

Notation and history

- $S=\left\{p_{1}, \ldots, p_{k}\right\}$ a finite set of primes (with $k \geq 1$)
- S-units $=\left\{ \pm p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}, \alpha_{i}\right.$ nonnegative integers $\}$

Solving the diophantine equation

$$
x+y=z^{2}
$$

with x and $y S$-units, and z a nonzero integer is a classical problem, closely related to computing elliptic curves with good reduction outside a given set of primes.
For exponent $n=2$:

- effective Shafarevich's theorem

Notation and history

- $S=\left\{p_{1}, \ldots, p_{k}\right\}$ a finite set of primes (with $k \geq 1$)
- S-units $=\left\{ \pm p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}, \alpha_{i}\right.$ nonnegative integers $\}$

Solving the diophantine equation

$$
x+y=z^{2}
$$

with x and $y S$-units, and z a nonzero integer is a classical problem, closely related to computing elliptic curves with good reduction outside a given set of primes.
For exponent $n=2$:

- effective Shafarevich's theorem
- B. M. M. de Weger (around 1990) : algorithm ; complete list of solutions for $S=\{2,3,5,7\}$.

