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The wave equation with distributed control

We consider the following wave equation:




ytt(x, t)−∆y(x, t) = v(x, t)1qT (x, t), (x, t) ∈ QT
y(x, t) = 0, (x, t) ∈ ΣT
y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ Ω.

(1)

I QT = Ω× (0, T );

I ΣT = ∂Ω× (0, T );

I qT = ω × (0, T ) ⊂ QT ;

I (y0, y1) ∈ H1
0 (Ω)× L2(Ω).

t
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Controllability problem

We search a control v ∈ L2(qT ) such that

y(·, T ) = 0, yt(·, T ) = 0. (2)
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The wave equation with boundary control

We consider the following wave equation:




ytt(x, t)−∆y(x, t) = 0, (x, t) ∈ QT
y(x, t) = 0, (x, t) ∈ Σ0

T

y(x, t) = v(x, t), (x, t) ∈ Σ1
T

y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ Ω.

(1)

I QT = Ω× (0, T );

I ΣiT = Γi × (0, T );

I (y0, y1) ∈ L2(Ω)×H−1(Ω).
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Controllability problem

We search a control v ∈ L2(Σ1
T ) such that

y(·, T ) = 0, yt(·, T ) = 0. (2)
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Controllability of the wave equation
Some references
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J.-L. Lions, Contrôlabilité exacte, perturbations et
stabilisation de systèmes distribués. Masson, Paris, 1988.
I Hilbert Uniqueness Method (HUM).

C. Bardos, G. Lebeau, and J. Rauch, Sharp sufficient
conditions for the observation, control, and stabilization of
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I Geometric Control Condition.
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approximated by finite difference methods, Siam Review, 2005.

I spurious high frequencies issue.
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Aim of this talk
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Propose a method to approximate the control
of minimal L2-norm for the wave-like
equations using a space-time finite element
discretization:

I avoid the spurious frequencies issue

I easy to implement

I moving controls case

I convergence of the controls?
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Plan

From a minimization problem to a mixed formulation

Numerical approximation and simulations

Application to wave equations with moving controls
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Hilbert Uniqueness Method (HUM)
The idea

The controllability of the wave equation is reduced to the following
minimization problem:

min
(ϕ0,ϕ1)∈H

J?(ϕ0, ϕ1) =
1

2

∫∫

qT

|ϕ|2dxdt+〈ϕt(·, 0), y0〉−1,1−〈ϕ(·, 0), y1〉2 ,

where

I H = L2(Ω)×H−1(Ω)

I ϕ is the solution of the following backward equation:





Lϕ = 0, in QT
ϕ = 0, on ΣT

(ϕ(T ), ϕt(T )) = (ϕ0, ϕ1), in Ω.
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Hilbert Uniqueness Method (HUM)
Some remarks

I The well posedness of the minimization of J? can be deduced
from the coercivity of J∗: there is a constant kT > 0 such
that for every (ϕ0, ϕ1) ∈H we have

‖(ϕ(·, 0), ϕt(·, 0))‖2H ≤ kT
∫∫

qT

|ϕ|2dxdt. (OBS)

I The control of minimal L2-norm is given by

v = −ϕ1qT .

I The observability inequality (OBS) is, in general, not uniform
with respect to the discretization step.
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Minimization with respect to ϕ
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We replace the standard minimization problem

min
(ϕ0,ϕ1)∈H

J?(ϕ0, ϕ1)

by the following one

min
ϕ∈W

J?(ϕ) =
1

2

∫∫

qT

|ϕ|2dxdt+ 〈ϕt(·, 0), y0〉−1,1 − 〈ϕ(·, 0), y1〉2 ,

with W =
{
ϕ ∈ Φ such that Lϕ = 0 ∈ L2(0, T ;H−1(Ω))

}
and

Φ =

{
ϕ ∈ C(0, T ;L2(Ω)) ∩ C1(0, T ;H−1(Ω));
Lϕ ∈ L2(0, T ;H−1(Ω)).

}
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Nicolae Ĉındea Controllability of the wave equation using space-time FEM 8/ 36

We replace the standard minimization problem

min
(ϕ0,ϕ1)∈H

J?(ϕ0, ϕ1)

by the following one

min
ϕ∈W

J?(ϕ) =
1

2

∫∫

qT

|ϕ|2dxdt+ 〈ϕt(·, 0), y0〉−1,1 − 〈ϕ(·, 0), y1〉2 ,

with W =
{
ϕ ∈ Φ such that Lϕ = 0 ∈ L2(0, T ;H−1(Ω))

}
and

Φ =

{
ϕ ∈ C(0, T ;L2(Ω)) ∩ C1(0, T ;H−1(Ω));
Lϕ ∈ L2(0, T ;H−1(Ω)).

}

Φ is a Hilbert space endowed with the scalar product:

(ϕ,ϕ)Φ =

∫∫

qT

ϕϕdxdt+ η

∫ T

0
〈Lϕ(·, t), Lϕ(·, t)〉−1dt.



Minimization with respect to ϕ
A mixed formulation

I The minimization of J? over Φ is submitted to the constraint
equality

Lϕ = 0.

I This constraint is addressed introducing a Lagrangian
multiplier

λ ∈ L2(0, T ;H1
0 (Ω)) = Λ.

I ϕ can be obtained as the solution of the following mixed
formulation:

{
a(ϕ,ϕ) + b(ϕ, λ) = l(ϕ), ∀ϕ ∈ Φ

b(ϕ, λ) = 0, ∀λ ∈ Λ.
(MF)
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Minimization with respect to ϕ
A mixed formulation

{
a(ϕ,ϕ) + b(ϕ, λ) = l(ϕ), ∀ϕ ∈ Φ

b(ϕ, λ) = 0, ∀λ ∈ Λ
(MF)

where

a : Φ× Φ→ R, a(ϕ,ϕ) =

∫∫

qT

ϕϕdx dt

b : Φ× Λ→ R, b(ϕ, λ) =

∫ T

0
〈Lϕ(·, t), λ(·, t)〉−1,1dt

l : Φ→ R, l(ϕ) = −〈ϕt(·, 0), y0〉−1,1 +

∫

Ω
ϕ(·, 0) y1dx.
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Well-posedness of the mixed formulation

Theorem

We assume that there exists C > 0 such that for every ϕ ∈ Φ

‖(ϕ(·, 0), ϕt(·, 0))‖2H ≤ C
(
‖ϕ‖2L2(qT ) + ‖Lϕ‖2L2(0,T ;H−1(Ω))

)
.

1. The mixed formulation (MF) is well-posed.

2. The unique solution (ϕ, λ) ∈ Φ× Λ is the unique saddle-point
of the Lagrangian

L(ϕ, λ) =
1

2
a(ϕ,ϕ) + b(ϕ, λ)− l(ϕ).

3. The optimal function ϕ is the minimizer of J? over Φ while
the optimal function λ ∈ Λ is the state of the controlled wave
equation (1) in the weak sense (associated to the
control −ϕ1qT ).

Nicolae Ĉındea Controllability of the wave equation using space-time FEM 11/ 36



Well-posedness of the mixed formulation

Theorem

We assume that there exists C > 0 such that for every ϕ ∈ Φ

‖(ϕ(·, 0), ϕt(·, 0))‖2H ≤ C
(
‖ϕ‖2L2(qT ) + ‖Lϕ‖2L2(0,T ;H−1(Ω))

)
.

1. The mixed formulation (MF) is well-posed.

2. The unique solution (ϕ, λ) ∈ Φ× Λ is the unique saddle-point
of the Lagrangian

L(ϕ, λ) =
1

2
a(ϕ,ϕ) + b(ϕ, λ)− l(ϕ).

3. The optimal function ϕ is the minimizer of J? over Φ while
the optimal function λ ∈ Λ is the state of the controlled wave
equation (1) in the weak sense (associated to the
control −ϕ1qT ).
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Well-posedness of the mixed formulation
Idea of the proof
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I a continuous over Φ× Φ
symmetric
positive

I b continuous over Φ× Λ

I l linear form over Φ

I Two more properties:

I a is coercive over N (b) with

N (b) = {ϕ ∈ Φ such that b(ϕ, λ) = 0, ∀λ ∈ Λ}

I b satisfies the inf-sup condition: there exists δ > 0 such that

inf
λ∈Λ

sup
ϕ∈Φ

b(ϕ, λ)

‖ϕ‖Φ‖λ‖Λ
≥ δ.

a(ϕ,ϕ) =

∫∫

qT

ϕϕdx dt
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Idea of the proof
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An augmented Lagrangian strategy
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For any r > 0 we define the augmented Langrangian Lr by:

Lr(ϕ, λ) =
1

2
ar(ϕ,ϕ) + b(ϕ, λ)− l(ϕ),

where ar : Φ× Φ→ R is given by

ar(ϕ,ϕ) = a(ϕ,ϕ) + r

∫ T

0
〈Lϕ(·, t), Lϕ(·, t)〉−1dt.



An augmented Lagrangian strategy
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For any r > 0 we define the augmented Langrangian Lr by:

Lr(ϕ, λ) =
1

2
ar(ϕ,ϕ) + b(ϕ, λ)− l(ϕ),

where ar : Φ× Φ→ R is given by

ar(ϕ,ϕ) = a(ϕ,ϕ) + r

∫ T

0
〈Lϕ(·, t), Lϕ(·, t)〉−1dt.

Remark:

Since a(ϕ,ϕ) = ar(ϕ,ϕ) for every ϕ ∈W , the Lagrangians L and
Lr share the same saddle points.



Plan

From a minimization problem to a mixed formulation

Numerical approximation and simulations

Application to wave equations with moving controls
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Discretization of the mixed formulation
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Let Φh and Λh be two finite dimensional spaces such that for every
discretization parameter h > 0:

I Φh ⊂ Φ

I Λh ⊂ Λ.

We introduce the following approximating problems:

{
ar(ϕh, ϕh) + b(ϕh, λh) = l(ϕ), ∀ϕ ∈ Φh

b(ϕh, λh) = 0, ∀λh ∈ Λh
(MFh)
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Let Φh and Λh be two finite dimensional spaces such that for every
discretization parameter h > 0:

I Φh ⊂ Φ

I Λh ⊂ Λ.

We introduce the following approximating problems:

{
ar(ϕh, ϕh) + b(ϕh, λh) = l(ϕ), ∀ϕ ∈ Φh

b(ϕh, λh) = 0, ∀λh ∈ Λh
(MFh)

Φh must be chosen such that Lϕh ∈ L2(0, T ;H−1(Ω))

For instance, Φh could be chosen as a finite element space of class
C1. E.g. Hsieh-Clough-Tocher (HCT) finite element space.



Well-posedness of the discrete mixed formulation
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For a fixed h > 0 the mixed formulation (MFh) is well-posed as a
consequence of the following two properties:

I ar is coercive on the subset Nh(b) ⊂ Φh ⊂ Φ;

I discrete inf-sup condition: there exists δh > 0 such that

inf
λh∈Λh

sup
ϕh∈Φh

b(ϕh, λh)

‖ϕh‖Φ‖λh‖Λ
≥ δh.
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For a fixed h > 0 the mixed formulation (MFh) is well-posed as a
consequence of the following two properties:

I ar is coercive on the subset Nh(b) ⊂ Φh ⊂ Φ;

I discrete inf-sup condition: there exists δh > 0 such that

inf
λh∈Λh

sup
ϕh∈Φh

b(ϕh, λh)

‖ϕh‖Φ‖λh‖Λ
≥ δh.

Remark:

The constant δh may go to zero when h goes to zero. . .
If this is the case then (ϕh, λh) may not converge to (ϕ, λ) in
Φ× Λ when h→ 0.



Some difficulties
The inf-sup constant is uniform with respect to h?
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I For this choice of spaces Φh and Λh, there exists δ > 0 such
that

δh ≥ δ, ∀h > 0?
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Some difficulties
Some tricky terms appear in the mixed formulation
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How can we implement numerically the following terms?

I

∫ T

0
〈Lϕ(·, t), Lϕ(·, t)〉−1dt

I

∫ T

0
〈Lϕ(t), λ(t)〉−1,1dt
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An example with distributed control
Simplest initial data

y0(x) = sin(πx), y1(x) = 0, (x ∈ (0, 1))

T = 2.2, qT =

(
1

5
,

2

5

)
× (0, T ).
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An example with boundary control

y0(x) = 4x1(0, 1
2

)(x), y1(x) = 0, (x ∈ (0, 1))

T = 2.4, Σ0
T = {0} × (0, T ), Σ1

T = {1} × (0, T )
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An example with boundary control
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Figure : Exact control vs. approximated control
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An example with boundary control
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Figure : Evolution of ‖v − vh‖L2(0,T ) w.r.t. h for BFS finite element (?),
HCT-uniform mesh (◦) and HCT- non uniform mesh (�); r = 1.
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Plan

From a minimization problem to a mixed formulation

Numerical approximation and simulations

Application to wave equations with moving controls
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Time-dependent control domains qT case
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For time-dependent control domains qT :

I prove the exact controllability of the wave
equation;

I give a constructive method to approach
the control of minimal L2-norm;

I discuss the numerical implementation of
this method.
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For time-dependent control domains qT :

I prove the exact controllability of the wave
equation;

I give a constructive method to approach
the control of minimal L2-norm;

I discuss the numerical implementation of
this method.

A. Y. Khapalov, Controllability of the wave equation with
moving point control, Appl. Math. Optim. (1995).

L. Cui, X. Liu, H. Gao, Exact controllability for a
one-dimensional wave equation in non-cylindrical domains, J.
Math. Anal. Appl. (2013).

C. Castro, Exact controllability of the 1-D wave equation
from a moving interior point, ESAIM COCV (2013).
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Observability inequality in time-dependent domain case

Proposition (C. Carlos, N.C, A. Münch – 2014)

Assume that qT ⊂ (0, 1)× (0, T ) is a finite union of connected
open sets and satisfies the following hypotheses:
any characteristic line starting at a point x ∈ (0, 1) at time t = 0
and following the optical geometric laws when reflecting at the
boundary ΣT must meet qT .
Then, there exists C > 0 such that the following estimate holds :

‖(ϕ(·, 0), ϕt(·, 0))‖2H ≤ C
(
‖ϕ‖2L2(qT ) + ‖Lϕ‖2L2(0,T ;H−1(0,1))

)
,

for every ϕ ∈ C([0, T ], L2(0, 1)) ∩ C1([0, T ], H−1(0, 1)) and
satisfying Lϕ ∈ L2(0, T ;H−1(0, 1)).

Notation: H = L2(0, 1)×H−1(0, 1).
Lϕ = ϕtt − ϕxx.
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Observability inequality in time-dependent domain case
Idea of the proof

We follow the method used by C. Castro in the case of a moving
pointwise control:

C. Castro, Exact controllability of the 1-D wave equation
from a moving interior point, ESAIM COCV., 19 (2013).

Some ingredients of the proof :

I D’Alembert formulae;

I known observability inequality in the boundary case;

I equi-repartition of energy.
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Nicolae Ĉındea Controllability of the wave equation using space-time FEM 24/ 36

t

t− δ

t+ δ

t− x

t+ x

x

Uδ
(x,t+x)

Uδ
(x,t−x)

∫ t+δ

t−δ
|ϕx(0, s)|2ds ≤

1

δ

∫ ∫

Uδ
(x,t+x)

(
|ϕx|2 + |ϕt|2

)
dyds

∫ t+δ

t−δ
|ϕx(0, s)|2ds ≤

1

δ

∫ ∫

Uδ
(x,t−x)

(
|ϕx|2 + |ϕt|2

)
dyds



Observability inequality in time-dependent domain case
Idea of the proof

We follow the method used by C. Castro in the case of a moving
pointwise control:

C. Castro, Exact controllability of the 1-D wave equation
from a moving interior point, ESAIM COCV., 19 (2013).

Some ingredients of the proof :

I D’Alembert formulae;

I known observability inequality in the boundary case;

I equi-repartition of energy.
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Boundary observability inequality:

‖(ϕ(·, 0), ϕt(·, 0))‖2H ≤ C
∫ T

0
|ϕx(0, t)|2dt.

combined with the previous estimate gives:

‖(ϕ(·, 0), ϕt(·, 0))‖2V ≤ C
(
‖ϕt‖2L2(qT ) + ‖ϕx‖2L2(qT )

)

H = L2(0, 1)×H−1(0, 1)

V = H1
0(0, 1)× L2(0, 1)
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Observability inequality in time-dependent domain case
Idea of the proof

We follow the method used by C. Castro in the case of a moving
pointwise control:

C. Castro, Exact controllability of the 1-D wave equation
from a moving interior point, ESAIM COCV., 19 (2013).

Some ingredients of the proof :

I D’Alembert formulae;

I known observability inequality in the boundary case;

I equi-repartition of energy.

Remark

The proof of the proposition is specific to the one-dimensional case.
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Controllability in time-dependent control domain case

Corollary (C. Castro, N.C., A. Münch – 2014)

Let T > 0 and qT ⊂ (0, 1)× (0, T ) be such that
any characteristic line starting at a point x ∈ (0, 1) at time t = 0
and following the optical geometric laws when reflecting at the
boundary ΣT must meet qT .
Then the wave equation is null controllable in time T .
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Controllability in time-dependent control domain case

Corollary (C. Castro, N.C., A. Münch – 2014)

Let T > 0 and qT ⊂ (0, 1)× (0, T ) be such that
any characteristic line starting at a point x ∈ (0, 1) at time t = 0
and following the optical geometric laws when reflecting at the
boundary ΣT must meet qT .
Then the wave equation is null controllable in time T .

Proof.

We apply HUM.

Numerical approximation :

I usual problems due to the controllability of high frequencies;

I problems due to the controllability domain non-constant in
time.
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Hilbert Uniqueness Method - a reformulation

N. Ĉındea and A. Münch, A mixed formulation for the
direct approximation of the control of minimal L2-norm for
linear type wave equations, Calcolo, Vol. 52, 2015.

min
ϕ∈Φ

Ĵ?(ϕ), subject to Lϕ = 0.

Φ =

{
ϕ ∈ C([0, T ], H1

0 (0, 1)) ∩ C1([0, T ], L2(0, 1))
such that Lϕ ∈ L2(0, T,H−1(0, 1))

}
.

Remark

Φ is an Hilbert space endowed with the inner product

(ϕ,ϕ)Φ =

∫∫

qT

ϕ(x, t)ϕ(x, t) dxdt+ η

∫∫

QT

〈Lϕ,Lϕ〉−1 dx dt.

for any fixed η > 0.
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Idea of the method: step by step

1. write the minimization of J∗ as a saddle-point problem for an
associated Lagrangian.

2. write the optimality conditions for the Lagrangian as a
mixed-formulation in ϕ and λ.

3. use the generalized observability inequality in order to prove
that this mixed formulation is well-posed:

I ϕ is the dual variable
I λ is the controlled solution.

4. discretize the mixed formulation and prove that the discrete
controls converge to the exact continuous controls:

I C1 finite elements for ϕ
I P1 finite elements for λ.
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Idea of the method: step by step

We consider the following mixed formulation : find
(ϕ, λ) ∈ Φ× L2(0, T,H1

0 (0, 1)) solution of
{
a(ϕ,ϕ) + b(ϕ, λ) = l(ϕ), ∀ϕ ∈ Φ

b(ϕ, λ) = 0, ∀λ ∈ L2(0, T,H1
0 (0, 1)),

where

a : Φ× Φ→ R, a(ϕ,ϕ) =

∫∫

qT

ϕϕdxdt+ η

∫∫

QT

〈Lϕ,Lϕ〉−1 dx dt.

b : Φ× L2(0, T,H1
0 (0, 1))→ R, b(ϕ, λ) =

∫ T

0
〈Lϕ(·, t), λ(·, t)〉−1,1dt.

l : Φ→ R, l(ϕ) = −〈ϕt(·, 0), y0〉−1,1 +

∫ 1

0
ϕ(x, 0)y1(x)dx.

1. write the minimization of J∗ as a saddle-point problem for an
associated Lagrangian.

2. write the optimality conditions for the Lagrangian as a
mixed-formulation in ϕ and λ.
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Numerical examples
Some controllability domains
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Numerical examples
Some controllability domains – and associated meshes
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Nicolae Ĉındea Controllability of the wave equation using space-time FEM 28/ 36



A first numerical test
Initial data to control
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y0(x) = sin(πx).

y1(x) = 0.
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A first numerical example
Results
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Figure : qT = q1
2.2 : Functions ϕh (Left) and λh (Right).
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A first numerical example
Results
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Figure : Norms ‖v − vh‖L2(qT ) (•) and ‖y − λh‖L2(QT ) (�) vs. h.
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A second numerical example
Initial data to control
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3(1− x)

2
1(1/3,1)(x).

y1(x) = 0.

Nicolae Ĉındea Controllability of the wave equation using space-time FEM 31/ 36



A second numerical example
Results
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Figure : Functions ϕh (Left) and λh (Right).
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A second numerical example
Results

Table: qT = q2
T=2.2.

] Mesh 1 2 3 4 5
h 7.18× 10−2 3.59× 10−2 1.79× 10−2 8.97× 10−3 4.49× 10−3

‖vh‖L2(qT ) 5.350 5.263 5.195 5.172 5.165

‖v − vh‖L2(qT ) 1.3571 9.78× 10−1 6.91× 10−1 5.13× 10−1 3.69× 10−1

‖y − λh‖L2(QT ) 7.12× 10−3 3.23× 10−3 1.19× 10−3 4.82× 10−4 2.12× 10−4

I v – control of minimal L2-norm supported on qT ;

I y – controlled solution by control v.
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A wave with variable speed of propagation

We consider the following wave equation




ytt(x, t)− (c(x)yx(x, t))x = v(x, t)1qT (x), (x, t) ∈ QT
y(x, t) = 0, (x, t) ∈ ΣT

y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ (0, 1).

We take the propagation speed c ∈ C∞(0, 1) given by
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c(x) =

{
1, x ∈ [0, 0.45]
5, x ∈ [0.55, 1].



A wave with variable speed of propagation
Numerical results
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Figure : qT = q2
2 for a non-constant velocity of propagation

Function ϕh (Left) and λh (Right).
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Conclusion

I We developed a constructive method to compute the
distributed (and boundary) control of minimal L2-norm
(eventually supported in non-cylindrical domains);

I We proved the exact controllability of the one-dimensional
wave equation with a distributed control supported on a
non-cylindrical domain;

I Numerical results indicate that the computed controls
converge to the exact control.

I A similar method can be used for the dual inverse problem. . .
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Some perspectives and open questions

I ‖vh − v‖L2(qT ) → chθ?

I uniform “inf-sup” discrete condition?

I Optimization of the control’s support.
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I What about the approximation of
controls for higher dimensional
wave equations?
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Thank you!
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