5. Pseudodifferential calculus and further topics (work in progress)

Georges Skandalis
joint work with Iakovos Androulidakis

Université Paris-Diderot Paris 7
Institut de Mathématiques de Jussieu

Fleurance - June 2007
Summary

1. Lie groupoids
2. Foliations
3. Holonomy groupoid of a singular foliation
4. The C^*-algebra of a singular foliation
5. Pseudodifferential calculus and further topics
 - 1. Pseudodifferential calculus
 - 2. Tangent groupoid
 - 3. Quotient Lie groupoids
 - 4. Lie algebroids
 - 5. Continuous family groupoids
Why did we spend so much energy to construct a C^*-algebra?

Take a compact manifold M. Let $X_1, \ldots X_n$ be vector fields on M such that $[X_i, X_j] = \sum_k f_{i,j,k} X_k$.

- Show that $\Delta = \sum X_i^* X_i$ is essentially selfadjoint on $L^2(M)$; on $L^2(\text{Leaf})$.
- Where does the resolvant of Δ live?
- Where does the index of such an operator live?
1. Pseudodifferential calculus
The ‘cotangent bundle’; symbols

We fix a foliated manifold \((M, \mathcal{F})\). We also fix an atlas \(\mathcal{U}\).

The symbols should be (polyhomogeneous) functions defined on the cotangent bundle. What is this bundle?

Denote by \(F^*\) the union of \((\mathcal{F}_x)^*\): nice locally compact space.

Locally, \(\mathcal{F}\) (being finitely generated) is a quotient of a trivial bundle: \(\mathbb{R}^n/N_x\). Then \(F^*\) is a closed subspace of \((\mathbb{R}^n)^* \times M\).

A homogeneous symbol is then just the restriction to \(F^*\) of a symbol on \((\mathbb{R}^n)^* \times M\).
Pseudodifferential operators

The pseudodifferential operators should be smoothing outside the ‘units’.

So, we start with a bi-submersion \((U, t, s)\) in our atlas together with an identity bisection \(i.e.\) a submanifold \(V \subset U\) such that \(s, t\) coincide on \(V\) (and are local diffeomorphisms).

We further give:

- A local isomorphism \(\varphi : U \sim N\) where \(N\) is the normal bundle of the inclusion \(V \subset U\) - only defined near \(V\);
- A cut-off function \(\chi: \) smooth function on \(U\); \(\chi(u) = 1\) on \(V\) and \(\chi(u) = 0\) for \(u\) far from \(V\) (when \(\varphi\) is not defined);
- A symbol \(a\) on \(N^*\) (in the usual sense: polyhomogeneous).
Pseudodifferential operators (2)

We can then make sense of an expression like

\[k_a(u) = \int a(s(u), \xi) \exp(i\phi(u)\xi) \chi(u) \, d\xi \]

Theorem

In this way we get a multiplier of our \(\ast \)-algebra \(\mathcal{A}_U \).

Proposition

Modulo lower order, the operator \(k_a \) only depends on the restriction of \(a \) to \(F^ \).*

This means that if \(a \) is of order \(m \) and vanishes on \(F^* \), there exists \(b \) of order \(m - 1 \) such that \(k_b \) and \(k_a \) define the same multiplier.
Order zero pseudodifferential operators

We can then form the extension of order 0 pseudodifferential operators. We then prove the following facts

- If a is of negative order, then $k_a \in C^*(M, \mathcal{F})$;
- if a is of order 0, then k_a is bounded (in every representation π); it is a multiplier of $C^*(M, \mathcal{F})$.
- If a is of order 0, and its symbol vanishes outside \mathcal{F}^*, then $k_a \in C^*(M, \mathcal{F})$.

Take then the closure of the set of such operators: we will find an exact sequence of C^*-algebras:

$$0 \to C^*(G) \to \Psi^*(G) \to C_0(S\mathcal{F}^*) \to 0.$$
Elliptic operators

Proposition

Positive order elliptic operators define unbounded multipliers of the C^*-algebra.

Same proof as Vassout in the Lie groupoid case.

We may then deduce:

- In particular formally selfadjoint elliptic (pseudo)differential operators are essentially self adjoint in every representation: in particular in $L^2(M)$, in $L^2(Leaf)$.
- They have the same spectrum in every faithful representation.
- We thus have an analytic index map $K^*(F^*) \to K^*(C^*(M, \mathcal{F}))$.

Conclusion

Our C^*-algebra is suited for index problems of differential operators.
2. The ‘tangent groupoid’

The analogue of the ‘tangent groupoid’ of Alain Connes: foliation on \(\tilde{M} = M \times \mathbb{R} \) with leaves

- \((x, 0)\) for \(x \in M\);
- \(L \times \{\lambda\}\) for \(\lambda \in \mathbb{R}^*\), \(L\) leaf in \(M\).

More precisely, let \(\lambda : M \times \mathbb{R} \to \mathbb{R}\) be the second projection. Let \(\tilde{\mathcal{F}} \subset T(M \times \mathbb{R})\) be generated by \((\lambda X, 0), X \in \mathcal{F}\). It is a foliation.

- Its holonomy groupoid is a field \((\tilde{G}_\lambda)_{\lambda \in \mathbb{R}}\) of groupoids.
- For \(\lambda \neq 0\), \(\tilde{G}_\lambda = G\) is the holonomy groupoid of \((M, \mathcal{F})\).
- \(\tilde{G}_0\) is the field \((\mathcal{F}_x)_{x \in M}\).

Its \(C^*\)-algebra is isomorphic (via Fourier) to \(C_0(F^*)\).
Tangent groupoid (2)

As in the Lie groupoid case, restricting \(\tilde{G} \) to \([0, 1]\), we get an exact sequence:

\[
0 \to C^*(M, \mathcal{F}) \otimes C_0((0, 1]) \to C^*(\tilde{G}_{[0,1]}) \xrightarrow{ev_0} C_0(F^*) \to 0
\]

whence a morphism \([ev_1] \circ [ev_0]^{-1} : K_0(C_0(F^*)) \to K_0(C^*(M, \mathcal{F}))\).

Proposition (cf. Monthubert-Pierrot)

This morphism coincides analytic index of elliptic pseudodifferential operators.
3. Quotient Lie groupoids

One could (should...) systematize our construction of the holonomy groupoid - and its C^*-algebra.

A quotient Lie groupoid is a groupoid which is a ‘suitable quotient’ of a manifold. The composition is defined and smooth ‘upstairs’; algebraic properties: associativity, units, inverse, ‘downstairs’.

More precisely, we have:

- a manifold \mathcal{W} (not necessarily connected) with a pair of submersions $s, t : \mathcal{W} \to M$.
- a ‘nice’ equivalence relation \sim on \mathcal{W} which respects both s and t: (if $x \sim y$, then $s(x) = s(y)$ and $t(x) = t(y)$).
Quotient groupoids (2)

- A composition $W^{(2)} = \{(x, y) \in W \times W; \ s(x) = t(y)\} \rightarrow W$ (which may as well be defined only locally) satisfying
 - $s(xy) = s(y)$ and $t(xy) = t(x)$;
 - compatible with \sim: if $x \sim x'$ and $y \sim y'$, then $xy \sim x'y'$.
 - Associative modulo \sim: $(xy)z \sim x(yz)$.
 - Units and inverses modulo \sim

We can then form as above:

- The \ast-algebra - as a quotient of $C^\infty_c(W, \Omega^{1/2})$ using half densities on $\ker s \times \ker t$.
- The representations of $G + \text{an } L^1$-estimate, whence C^*-algebra.
- A pseudodifferential calculus, an index map, a tangent groupoid...
- Reduced C^*-algebra ?
Quotient groupoids (3)

Question
What do we mean by ‘suitable’ equivalence relations?

- They should be given by families of pairs of submersions $U \xrightarrow{p,q} W$ - with $s \circ p = s \circ q$ and $t \circ p = t \circ q$. We then have $p(u) \sim q(u)$.

- All this works if \sim is given by partial diffeomorphisms.

Proposition

Every algebroid is integrable!
4. Lie algebroids

One should be able to do something better...

Let us examine the example of non integrable Lie groupoid we met.

- The groupoid we get is $(S^2 \times S^2) \rtimes (SU(2) \times SU(2))/\mathbb{R}$.
- It is Morita equivalent to the group $\mathbb{R}/(\mathbb{Z} + \alpha\mathbb{Z})$ where α is an irrational number.
- The C^*-algebra we obtain is just \mathcal{K}...

Question

Is there a better way to define the C^*-algebra of such a quotient group?

It should be K-equivalent to $C^*(\mathbb{T}^2)$, with infinite dimensional K-groups.
5. Continuous family groupoids

A. Paterson:
Locally compact groupoids which are smooth only in the ‘group direction’: the fibers of s and t are manifolds.

One then forms:
- pseudodifferential calculus;
- analytic index;
- tangent groupoid...

Examples of such groupoids
- Lie group actions on locally compact spaces;
- Closed saturated subsets in Lie groupoids.
Continuous family groupoids (2)

Question
Find a framework which generalizes both Paterson’s setting and ours.

1. $C_{\infty,0}$-foliations on locally compact spaces. One can define them in terms of bi-submersions. One can then again construct:
 - their groupoid;
 - their C^*-algebra;
 - a pseudo differential calculus;
 - an analytic index;
 - a tangent groupoid...

2. Quotient continuous family groupoids
And, this is the right place to stop...

Thank you for your patience.

Thank you Claire and sorry for all the trouble