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1 Introduction.

Let {ξn, n ∈ ZZ} be a doubly infinite sequence of E-valued independent and identically dis-
tributed random variables defined on some probability space (Ω,F , IP), where E is a polish
space with metric dE . This sequence can be realized as the coordinates ξn(ω) = ω(n) of the
product topological space Ω = EZZ equipped with the product probability measure IP = αZZ,
where α is the common law of ξn.

Let Φ : EZZ → F be a measurable mapping where F is a polish space with metric dF , and
consider the process

Xn = Φ(ξn+·) = Φ(..., ξi+n, ...) ,∀n ∈ ZZ IP− a.s.(1.1)

It appears often in filtrage, time series analysis, statistics and dynamical systems in the following
fashions:

1. ξ = (ξn) is the noise, and X = (Xn) is the (non-linear) filtrage.

2. The stationary process (Xn) represents the received message at instant n, which is assumed
to be of form (1.1).

3. A wide class of dynamical systems can be described as (1.1).
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We deal in this paper with the process level Large Deviation Principle and the moderate devi-
ations of (Xn). The special case of the moving average, when Φ is linear (more exactly when
Xn :=

∑+∞
j=−∞ ajξn+j), has attracted much attention and many works. Several works have been

realized by Burton and Dehling [BD90], Jiang, Rao, and Wang [JRW92], [JRW95], Djellout and
Guillin [DG98] and recently by Wu [Wu99] on the linear case, under different assumptions on
the law ξ0, and the spectral density function of X, see Wu [Wu99] and section 4. for relevant
reference and more details.

Introduce now some notations. Let τkω = ω(k + ·), k ∈ ZZ, be the shifts on Ω. Consider the
process level occupation measures of the i.i.d. sequence

On(ω) :=
1
n

n∑
k=1

δτkω,∀n ≥ 1,

which are random elements in M1(Ω), the space of all probability measures on Ω. The well
known result due to Donsker-Varadhan [DV85] says that IP(On ∈ ·) satisfies the LDP on M1(Ω)
equipped with the usual weak convergence topology, with speed n and with the rate function
given by the entropy functional below

H(Q) =

 IEQ log
Qω(−∞,0](dx)

α(dx)
, if Q ∈M s

1 (Ω);Qω(−∞,0](dx)� α(dx), Q− a.s.

+∞ otherwise

where Qω(−∞,0](dx) := Q(ω(1) ∈ dx|ω(k), k ≤ 0) is the regular conditional distribution, M s
1 (Ω)

is the space of those elements Q ∈M1(Ω) such that Q ◦ τ−1 = Q (or Q is stationary).

Let
Φ̄ = (Φn) , Φn(ω) := Φ(ω(n+ ·)), (Φ is identified as Φ0).

Define the process level occupation measure Rn by

Rn =
1
n

n∑
k=1

δXk+· =
1
n

n∑
k=1

δΦ̄(τkω) = On ◦ Φ̄−1 IP− a.s.

which are random elements in M1(FZZ).

The first purpose of this paper is to establish the process-level large deviation principle of X,
i.e, the LDP of (Rn).
Let us regard roughly the feature of this question. At first when Φ : EZZ → F is continuous

w.r.t the product topology of EZZ, then by the contraction principle, the LDP of (Rn) follows
from that of (On) with speed n and with the rate function given by

J(Q̂) = inf
{
H(Q)|Q ∈M s

1 (Ω), H(Q) <∞, Q̂ = Q ◦ Φ̄−1
}
.

We will consider here the case that Φ is not necessarily continuous. All of our results rely on
the assumption of the existence of a sequence of continuous mappings ΦN such that ‖∇(Φ −
ΦN )‖∞,1 → 0 (see section 3 for details on notation, and it is equivalent to

∑
j∈ZZ |aj | < +∞ in

the linear case). Under the hypothesis IEα(eδdE(ξ0,o)) < +∞ for some δ > 0, (o ∈ E some fixed
point), we establish the large deviation principle for IP(Rn ∈ ·) in M1(FZZ) equipped with the
weak convergence topology, using a generalized contraction principle, proved in [Wu99]. The
second purpose of this paper is to establish the moderate deviations of (Xn).

Let us present now the structure of this paper. In section 2, we set some preliminary results
(as the generalized contraction principle), especially a key exponential inequality will be proved
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here. Then in section 3, we give the main results of this paper, the large deviation principle of
(Rn), and the moderate deviation principle of (Xn), and we prove these results. Section 4 is
devoted to the moving average case.

2 Preliminary results.

First, recall the following [DS89] , [DZ93]:

Definition : Let (µn) be a family of probability measures on a polish space E. We say that
(µn) satisfies the large deviation principle (in short : LDP) on the topological space E with speed
λ(n) (a sequence tending to infinity) and with the rate function I if

(i) ∀L > 0, the level set [I ≤ L] is compact in E, (or I is a good rate function).

(ii) For each open subset O ⊂ E,

lim inf
n→∞

1
λ(n)

logµn(O) ≥ − inf
x∈O

I(x) ;

(iii) For each closed subset C ⊂ E,

lim sup
n→∞

1
λ(n)

logµn(C) ≤ − inf
x∈C

I(x) .

We give now two lemmas taken from [Wu99, Th. 1.1 and Th. 1.2], which are very useful for our
purpose :

Lemma 2.1 (Wu) If (Z(N)
n ), (Zn) are E-valued r.v defined on some probability space (Ω,F , IP)

such that

(i) For each N , IP(Z(N)
n ∈ ·) satisfies LDP on E with speed λ(n) and the rate function I(N);

(ii) (Z(N)
n ) is an exponential good approximation of (Zn),i.e.,

lim
N→∞

lim sup
n→∞

1
λ(n)

log IP
(
dE(Z(N)

n , Zn) > δ

)
= −∞, ∀δ > 0 .

Then IP(Zn ∈ ·) satisfies LDP on E with speed λ(n) and rate function I given by

I(x) := sup
δ>0

lim inf
N→∞

inf
B(x,δ)

I(N) = sup
δ>0

lim sup
N→∞

inf
B(x,δ)

I(N) .

where B(x, δ) = {y ∈ E; dE(x, y) < δ} is the ball centered at x with radius δ.

Remark :
The main difference from [DZ93, Th.4.2.16] is : their technical assumption of (ii) and of the inf
compactness of I is dropped, and the inf-compactness of I becomes now a consequence.

Lemma 2.2 (Wu) Let E,F be two Polish spaces and dF a metric compatible with the topology
of F . Given a family of probability measures (µn) on E such that (µn) satisfies LDP on E with
speed λ(n) and good rate function I, and a measurable application f : E → F .
If there is a sequence of continuous mappings fN : E → F such that

lim
N→∞

lim sup
n→∞

1
λ(n)

logµn(dF (fN , f) > δ) = −∞, ∀δ > 0,
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then there is a continuous function f̃ : [I <∞] ⊂ F such that

sup
x∈[I≤L]

dF (fN (x), f̃)→ 0, as N →∞, ∀L > 0,(2.1)

and µnof−1 satisfies LDP on F with speed λ(n) and good rate function I
f̃

given by

I
f̃
(y) := inf

{
I(x)|I(x) < +∞; f̃(x) = y

}
; ∀y ∈ F.

Moreover [I
f̃
≤ L] = f̃([I ≤ L]), ∀L ∈ IR+.

Remark :
This result extends Theorem 4.2.23 of Dembo-Zeitouni [DZ93]. In their Theorem, (2.1) is an
assumption with f̃ = f , while it becomes now a consequence of the large deviation negligeability
in this new version. Note that in practice f is often only well defined µn a.s. and the conclusion
means that f admits a continuous version f̃ on [I < ∞] (which is often of zero µn measure
however), in some sense.

We need also the following exponential inequality, which will be crucial for the proof of our main
results:

Lemma 2.3 Let f : (Ω = EZZ, IP = αZZ)→ IR be a measurable function. We suppose that there
is δ > 0 such that IEα(eδd(ξ0,o)) < +∞ (where o ∈ E is some fixed point); then

IP
(
|f − IE(f)| > r

)
≤ 2 exp

(
−r2

2C(δ)
∑
m∈ZZ ‖∂mf‖2∞

∨ −δr
4 supm∈ZZ ‖∂mf‖∞

)
(2.2)

where

‖∂mf‖∞ :=

∥∥∥∥∥f(ξ]−∞,m−1], ωm, ω[m+1,+∞[)− f(ξ]−∞,m−1], ξm, ω[m+1,+∞[)
dE(ωm, ξm)

∥∥∥∥∥
L∞(IP(dξ)⊗IP(dω))

and

C(δ) = IE

((
d(ξ0, o) + IEd(ξ0, o)

)2

e
δ
2

(d(ξ0,o)+IEd(ξ0,o))

)
.

Proof : We can assume that
∑
m∈ZZ ‖∂mf‖2∞ < +∞ (trivial otherwise).

On the extended filtered probability space
Ω̄ := EZZ × EZZ = {(ωk, ξk)k∈ZZ|ωk ∈ E; ξk ∈ E} ,
ĪP := αZZ × αZZ = IP× IP ;
F̄n := σ((ωk, ξk); k ≤ n) ;

we consider f(ξ, ω) = f(ξ) as a function on Ω̄. Assume at first that f is bounded.
So, on (Ω̄, F̄ , (F̄n), ĪP), we can define the martingale Mn = IEĪP(f(ξ)|F̄n) and M∞ = f . Consider
the martingale difference : mn = Mn −Mn−1. By Kolmogorov’s 0-1 law IEIP(f) = IEĪP(f |F̄−∞)
and by the martingale convergence we have

f − IEIP(f) = M∞ − IEĪP(M∞) =
∑
k∈ZZ

mk, (L2(ĪP)−convergence) .
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We have now to estimate ∣∣∣IEĪP(e
∑

k∈ZZ
mk)

∣∣∣ ≤ ∏
k∈ZZ

‖IEk−1(eλmk)‖∞

where IEk−1(·) = IEĪP(·|F̄k−1). By Taylor formula, we have

IEk−1(eλmk) ≤ 1 +
λ2

2
IEk−1(m2

ke
|λmk|).

Our key observation is: mk depends only on ξ and

|mk(ξ)| =
∣∣∣∣ ∫ f(ξ(−∞,k−1], ξk, ωk+1, ...)IP(dω)−

∫
f(ξ(−∞,k−1], ωk, ωk+1, ...)IP(dω)

∣∣∣∣
≤

∫
IP(dω)‖∂kf‖∞d(ξk, ωk)

≤ ‖∂kf‖∞
(
d(ξk, o) + IEIPd(ωk, o)

)
= ‖∂kf‖∞(d(ξk, o) + C),

where C = IEIP(dE(ξ0, o)) < ∞ and o ∈ E is some fixed point. Using this inequality and the
fact that 1 + x ≤ ex for all x ∈ IR , we get for all |λ| ≤ δ

2 supk ‖∂kf‖∞
:= δ′

∣∣∣∣IEk−1
(
eλmk

)∣∣∣∣ ≤ 1 +
λ2

2
IE
(
‖∂kf‖2∞(d(ξk, o) + C)2e|λ|(d(ξk,o)+C) ‖∂kf‖∞

)
≤ exp

(
λ2

2
C(δ)‖∂kf‖2∞

)
,

where
C(δ) = IE

(
(d(ξ0, o) + C)2e

δ
2

(d(ξ0,o)+C)
)
.

Thus

IEIP
(
eλ(f−IE(f))

)
≤ exp

λ2

2
C(δ)

∑
k∈ZZ

‖∂kf‖2∞

 , ∀|λ| ≤ δ′ .(2.3)

By Chebychev’s inequality, we have for all r ≥ 0, 0 < λ ≤ δ′

IP(f − IE(f) > r) ≤ e−λrIEIP
(
eλ(f−IE(f))

)
≤ exp

(
−λr +

λ2

2
C(δ)

∑
k

‖∂kf‖2∞

)
.

We now have to optimize this inequality regarding only on λ. We consider the following two
cases.

1. When r ≤ δC(δ)
2 supk ‖∂kf‖∞

∑
k ‖∂kf‖2∞, choose λ = r

C(δ)
∑

k
‖∂kf‖2∞

≤ δ′, for which

exp

(
−λr +

λ2

2
C(δ)

∑
k

‖∂kf‖2∞

)
= exp

(
− r2

2C(δ)
∑
m∈ZZ ‖∂mf‖2∞

)
.
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2. When r > δC(δ)
2 supk ‖∂kf‖∞

∑
k ‖∂kf‖2∞, we choose λ = δ

2 supk ‖∂kf‖∞
, for which

exp

(
−λr +

λ2

2
C(δ)

∑
k

‖∂kf‖2∞

)
≤ exp

(
− δr

4 supm∈ZZ ‖∂mf‖∞

)
.

These two estimates together yield

IP
(
f − IE(f) > r

)
≤ exp

(
−min

(
r2

2C(δ)
∑
m∈ZZ ‖∂mf‖2∞

;
δr

4 supm∈ZZ ‖∂mf‖∞

))
.

Since the same inequalities holds for −f , we get

IP
(
|f − IE(f)| > r

)
≤ 2 exp

(
−r2

2C(δ)
∑
m∈ZZ ‖∂mf‖2∞

∨ −δr
4 supm∈ZZ ‖∂mf‖∞

)
(2.4)

In the general case where f is unbounded, we take fn = (f ∧n)∨ (−n). Notice that ‖∂mfn‖∞ ≤
‖∂mf‖∞. At first, we show that

{IEfn, n ≥ 0} is bounded.

To this purpose, suppose that {IEfn, n ≥ 0} is not bounded, then there is a subsequence fnk
such that

IEfnk → ±∞ .

The inequality (2.4) applied to fnk implies that

fnk → ±∞ in probability.

This is in contradiction with the fact that fnk → f IP − a.s., proving the boundedness of
{IEfn, n ≥ 0} .
Therefore {fn, n ≥ 0} is uniformly integrable by (2.3). Consequently

IEfn → IEf .

Now by (2.3) and Fatou’s Lemma,

IEeλ(f−IEf) ≤ lim inf
n→∞

IE exp
(
λ(fn − IEfn)

)

≤ lim inf
n→∞

exp

λ2

2
C(δ)

∑
k∈ZZ

‖∂kfn‖2∞


≤ exp

λ2

2
C(δ)

∑
k∈ZZ

‖∂kf‖2∞

 .
We get so (2.2) like precedently.

3 Main Results.

3.1 Large deviations

We have the following:
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Theorem 3.1 Assume that there exists δ > 0 such that IEα(eδd(ξ0,o)) < ∞. We suppose also
that there exists a sequence of continuous mappings ΦN : E[−N,N ] → F , such that

‖∇(Φ− ΦN )‖∞,1 =
∑
m∈ZZ

‖∂mdF (Φ,ΦN )‖∞ −→ 0,(3.1)

then there is an application Φ̃ : Ω→ FZZ (Φ̃ = (Φ̃n) with the same notations as those introduced
for Φ) such that

Φ̃0(τ lω) = Φ̃l(ω), ∀l ∈ ZZ, ω ∈ Ω ;

sup
{Q;H(Q)≤L}

∫
dF (Φ(N)

l , Φ̃l) ∧ 1 dQ→ 0 as N →∞ ∀L > 0, l ∈ ZZ;

Q→ Q ◦ Φ̃−1 is continuous from [H < +∞] to M1(FZZ);

(3.2)

and IP(Rn ∈ ·) satisfies LDP on M1(FZZ) equipped with the weak convergence topology with speed
n and with the good rate function given by

J(Q̂) = inf
{
H(Q)|Q ∈M s

1 (Ω);H(Q) < +∞; Q̂ = Q ◦ Φ̃−1
}
.(3.3)

Remark :
Perhaps condition (3.1) seems to imply the continuity of Φ, but in fact it is far from to be the

case. As an example, see the moving average process in section 4. And in section 4, we will see
that condition (3.1) is quite sharp for the LDP.

Proof :
We define RNn = 1

n

∑n
k=1 δΦ̄N (τkω) = On ◦ (Φ̄N )−1, with Φ̄N = (ΦN

n ) as previous notation. Since
ΦN is continuous from E[−N,N ] to F , the application Q→ Q◦ (Φ̄N )−1 is continuous from M1(Ω)
to M1(FZZ).

It is well known that the following metric on M1(F [−l,l])

d[−l,l]

(
Q[−l,l], Q

′
[−l,l]

)
:= sup

{∣∣∣∣∫
F [−l,l]

fdQ[−l,l] −
∫
F [−l,l]

fdQ′[−l,l]

∣∣∣∣ ; |f(x)| ≤ 1,

|f(x)− f(y)| ≤ d[−l,l](x, y) =
l∑

j=−l
dF (xj , yj),∀x, y ∈ F [−l,l]

}

where Q[−l,l] = Q((x−l, .., x0, .., xl) ∈ ·), is compatible with the weak convergence topology of
M1(F [−l,l]). Now we define a metric on M1(FZZ) by

dW (Q,Q′) =
+∞∑
l=0

1
2l+1

d[−l,l](Q[−l,l], Q
′
[−l,l])

1 + d[−l,l](Q[−l,l], Q
′
[−l,l])

.(3.4)

Note that this distance is compatible with the weak convergence topology on M1(FZZ).

The d[−l,l]-distance between the marginal laws of Rn and RNn restricted to M1(F [−l,l]) is less
than (see [Wu99, Lemma 4.1]),

1
n

n∑
k=1

d[−l,l]

(
(Φ(ω(k + j + ·)))−l≤j≤l, (ΦN (ω(k + j + ·)))−l≤j≤l

)
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=
l∑

j=−l

1
n

n∑
k=1

dF
(
Φ(ω(k + j + ·)),ΦN (ω(k + j + ·))

)
.

Substituting it into (3.4), we get that for each l ≥ 0

dW (Rn, RNn ) ≤ 1
2l

+
l∑

j=−l

1
n

n∑
k=1

dF
(
Φ(ω(k + j + ·)),ΦN (ω(k + j + ·))

)
.

For the LDP of IP(Rn ∈ ·), by lemma 2.2, it is enough to establish the negligeability between
Rn and RNn , i.e.

lim
N→∞

lim sup
n→∞

1
n

log IP

(
dW

(
1
n

n∑
k=1

δΦ̄(N)(τkω),
1
n

n∑
k=1

δΦ̄(τkω)

)
> δ

)
= −∞ , ∀δ > 0.(3.5)

To this end, for each δ fixed, choose l ≥ 1 so that 1
2l
< δ. Hence by the last inequality and the

shift invariance of IP,

IP(dW (Rn, RNn ) > δ) ≤
l∑

j=−l
IP

(
1
n

n∑
k=1

dF (Φ(ω(k + j + ·)),ΦN (ω(k + j + ·))) >
δ − 1

2l

2l + 1

)

= (2l + 1)IP

(
1
n

n∑
k=1

dF
(
Φ(ω(k + ·)),ΦN (ω(k + ·))

)
>
δ − 1

2l

2l + 1

)
.

Define

f =
n∑
k=1

dF
(
Φ(ω(k + ·)),ΦN (ω(k + ·))

)
.

We have

sup
m
‖∂mf‖∞ = sup

m

n∑
k=1

‖∂m−kdF (Φ,ΦN )‖∞

≤ ‖∇(Φ− ΦN )‖∞,1
(3.6)

and

∑
k∈ZZ

‖∂mf‖2∞ ≤
∑
m∈ZZ

(
n∑
k=1

‖∂m−kdF (Φ,ΦN )‖∞

)2

≤ ‖∇(Φ− ΦN )‖∞,1
∑
m∈ZZ

n∑
k=1

‖∂m−kdF (Φ,ΦN )‖∞

= n ‖∇(Φ− ΦN )‖2∞,1.

(3.7)

Hence by lemma 2.3, we have for any r > 0,

IP

(
n∑
k=1

[
dF

(
Φ(ξk+·),ΦN (ξk+·)

)
− IEdF

(
Φ(ξk+·),ΦN (ξk+·)

)]
> rn

)

≤ exp

(
−
(

nr2

2C(δ)‖∇(Φ− ΦN )‖2∞,1
∧ δnr

4‖∇(Φ− ΦN )‖∞,1

))
.

Since for sufficiently large N ,

IE
(
dF (Φ(ξk+·),ΦN (ξk+·))

)
≤ 2IE

(∑
m∈ZZ

‖∂mdF (Φ,ΦN )‖∞ · d(ξm, o)

)
≤ 2‖∇(Φ− ΦN )‖∞,1IE (d(ξ0, o)) < r ;
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we obtain

lim
n→∞

1
n

log IP

(
n∑
k=1

dF
(
Φ(ξk+·),ΦN (ξk+·)

)
> 2rn

)
≤ −r2

2C(δ)‖∇(Φ− ΦN )‖2∞,1

∨ −δr
4‖∇(Φ− ΦN )‖∞,1

;

where the right hand side, depending only on N , tends to −∞ as N goes to infinity, because
‖∇(Φ− ΦN )‖∞,1 → 0. It ends the proof of (3.5).

The identification of the rate function needs more effort. By Lemma 2.2, the appli-
cation ψN (Q) = Q ◦ (Φ̄N )−1 will converge to some continuous application ψ(Q) from
{Q ∈M s

1 (Ω);H(Q) <∞} to M1(FZZ) , but the limit application ψ(Q) is not always of the
form Q ◦ G−1 for some mapping G : Ω → FZZ. To overcome this technical difficulty, we do
appeal to the inequality (2.3) .

In fact, for all N ′, N ′′ ≥ N and for

λ(N) =
(

1

C(δ) sup
N ′,N ′′≥1

‖∇(ΦN ′ − ΦN ′′)‖∞,1

)1/2

by Varadhan’s Laplace principle,

sup
{
λ(N)

∫
dF (ΦN ′ ,ΦN ′′) ∧ 1 dQ−H(Q) | Q ∈M1(Ω), H(Q) < +∞

}

= lim
n→∞

1
n

log IE exp

(
λ(N)

n∑
k=1

dF
(
ΦN ′(ξk+·),ΦN ′′(ξk+·)

)
∧ 1

)

which is less than 1
2 by (2.3) and a similar calculation as in (3.6) and (3.7).

It follows that for any L ∈ IN

sup
N ′,N ′′≥N

sup
{Q;H(Q)≤L}

∫
dF (ΦN ′ ,ΦN ′′) ∧ 1 dQ→ 0, (as N →∞).

Put

q(N ′, N ′′) :=
∞∑
L=0

1
2L

sup{Q;H(Q)≤L}
∫
dF (ΦN ′ ,ΦN ′′) ∧ 1 dQ

1 + sup{Q;H(Q)≤L}
∫
dF (ΦN ′ ,ΦN ′′) ∧ 1 dQ

.

We get by the dominated convergence limN ′,N ′′→∞ q(N ′, N ′′) = 0.
Therefore, we can find a subsequence (Nk) such that q(Nk, Nk+1) < 1

2k
.

Now consider A =
{
ω ∈ Ω| limk→∞Φ(Nk)(ω) = Φ̃0(ω) exists

}
,

Ω0 =
⋂
l∈ZZ τ

−lA, Φ̃l(ω) = Φ̃0(τ lω),

Φ̃(ω) = (Φ̃l(ω))l∈ZZ, ∀ω ∈ Ω0, and Φ̃(ω) = (.., 0, .., 0, ..), if ω /∈ Ω0.

By Borel-Cantelli and our choice of (Nk), for any Q with H(Q) < ∞, Q(A) = 1. Then
Q(τ−lA) = 1, ∀ l ∈ ZZ, by the shift invariance of Q. Consequently Q(Ωo) = 1.

Letting N ′ = N, N ′′ = Nk and k →∞, we get for any l ∈ ZZ, as Q ∈M s
1 (Ω),
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sup
Q∈[H≤L]

∫
dF (Φ(N)

l , Φ̃l) ∧ 1 dQ = sup
Q∈[H≤L]

∫
dF (Φ(N), Φ̃) ∧ 1 dQ→ 0 as N →∞ .

Consequently for any Q with H(Q) < +∞, Q ◦ (ΦN )−1 converge to Q ◦ Φ̃−1. By lemma 2.1,
Q→ Q ◦ Φ̃−1 must be continuous from [H < +∞] to M1(FZZ), and the rate function governing
the LDP of Rn must be given by (3.3). So we have finished the proof of the theorem.

By Theorem 3.1 and the contraction principle, for any bounded continuous function G on FZZ

with values in a separable Banach space, IP(
∫
GdRn ∈ ·) satisfies the Large Deviation Principle

on B with speed n and with rate function

JG(z) = inf
{
H(Q)|Q ∈M s

1 (Ω), H(Q) <∞,
∫
G(Φ̃)dQ = z

}
.

With the same proof as that of Theorem 3.1, we have the following

Corollary 3.2 Let F = (B, ‖ · ‖) a separable Banach space. Assume that for all λ > 0 we
have IEα(eλd(ξ0,o)) < ∞. We suppose also that there exists a sequence of continuous mappings
ΦN : E[−N,N ] → B, such that supN IEIP(eλ‖Φ

N‖) <∞ for all λ > 0 , and

‖∇(Φ− ΦN )‖∞,1 =
∑
m∈ZZ

‖∂m(‖Φ− ΦN‖)‖∞ −→ 0,(3.8)

then IP
(

1
n

∑n
k=1 Φ(ξk+·) ∈ ·

)
satisfies a large deviation principle on B with the rate function

given by

JΦ(z) = inf
{
H(Q)|Φ̃0 ∈ L1(dQ) and

∫
Φ̃0 dQ = z

}
.

3.2 Moderate deviations

Let Φ : EZZ −→ (B, ‖ · ‖) be a measurable function, where (B, ‖ · ‖) is a separable Banach space.
Let {bn}n≥0 be a sequence of positive numbers such that

bn√
n
→ +∞, bn

n
→ 0.

In the following theorem, we are looking for the large deviation principle on (B, ‖ · ‖) of

Mn(Φ) :=
1
bn

n∑
k=1

(
Φ(ξk+·)− IEΦ(ξk+·)

)
.

Theorem 3.3 Assume that for some δ > 0 we have IEα(eδd(ξ0,o)) < ∞. We suppose also that
there exists a sequence of mappings ΦN : E[−N,N ] → B, such that IEIP(eβ‖Φ

N‖) < ∞ for some
β > 0 (depending on N), and

‖∇(Φ− ΦN )‖∞,1 =
∑
m∈ZZ

‖∂m(‖Φ− ΦN‖)‖∞ −→ 0,(3.9)

Mn(ΦN )→ 0 in probability and lim
N→∞

lim sup
n→∞

IE‖Mn(Φ− ΦN )‖ = 0.(3.10)

Then
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σ2(y) := lim
n→∞

1
n

IE

(
n∑
k=1

〈y,Φ(ξk+·)− IEΦ(ξk+·)〉
)2

∈ IR,(3.11)

exists for every y ∈ B′, and IP
(

1
bn

∑n
k=1 (Φ(ξk+·)− IEΦ(ξk+·)) ∈ ·

)
satisfies the large deviation

principle on B, with speed b2n
n and with the good convex rate function I(x), given by

I(x) = sup
y∈B′

{
〈x, y〉 − 1

2
σ2(y)

}
(3.12)

where B′ is the dual Banach space of B.

Remarks :
(i) In the literature, the large deviation principles in Theorem 3.3 are often called Moderate
Deviation Principles (in abrigde MDP, see e.g [DZ]).
(ii) If B = IRd, Mn(ΦN ) → 0 in L2(IP) (a obvious fact) and by (3.17) in the proof below,
limN→∞ supn IE|Mn(Φ−ΦN )|2 = 0. Then the second condition of (3.10) is automatically satis-
fied, too. In other words, (3.10) is superfluous in the finite dimensional setting.

Proof :
We separate its proof into four steps.

1) It is known (see [Che97]) that for each N fixed,

lim
n→∞

n

b2n
log IE

(
e
b2n
n
〈y,Mn(ΦN )〉

)
=

1
2

lim
n→∞

1
n

IE
(
〈y, bnMn(ΦN )〉

)2

:=
1
2
σ2
N (y) ∈ IR, ∀y ∈ B′,

(3.13)

and that Mn(ΦN ) satisfies the MDP with the good rate function

IN (x) = sup
y∈B′

{
〈x, y〉 − 1

2
σ2
N (y)

}
.

2) We denote
fNn := bnMn(Φ− ΦN ).

By Lemma 2.3, and by some similar calculation as in (3.6) and (3.7), we have for rbn > IE‖fNn ‖,

IP
(
‖fNn ‖ > rbn

)
≤ exp

 −
(
rbn − IE‖fNn ‖

)2

2C(δ)n‖∇(Φ− ΦN )‖∞,1
∨
−δ
(
rbn − IE‖fNn ‖

)
4‖∇(Φ− ΦN )‖∞,1

 .
By (3.9) and (3.10), we deduce that

lim
N→∞

lim sup
n→∞

n

b2n
log IP

(
‖fNn ‖ > rbn

)
= −∞ , ∀r > 0 .

The MDP is then established by lemma 2.1, with the good rate function given by

Ĩ(x) = sup
δ>0

lim inf
N→∞

inf
B(x,δ)

IN

= sup
δ>0

lim sup
N→∞

inf
B(x,δ)

IN .
(3.14)
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3) We have now to prove the identification of the rate function. Firstly, we show that ∀y ∈ B′

σ2(y) := limn→∞
1
n IE (

∑n
k=1〈y,Φ(ξk+·)− IEΦ(ξk+·)〉)2 exists and

σ2(y) = lim
N→+∞

σ2
N (y) ∈ IR.

(3.15)

By (2.3) again, we have as in (3.6) and (3.7) that for all |λ| small enough,

IE
(
eλ〈y,f

N
n 〉
)
≤ exp

(
λ2

2
‖y‖2B′C(δ)n‖∇(Φ− ΦN )‖2∞,1

)
(3.16)

= 1 +
λ2

2
‖y‖2B′C(δ)‖∇(Φ− ΦN )‖2∞,1 + o

(
λ2

2

)
.

But

IE
(
eλ〈y,f

N
n 〉
)

= 1 +
λ2

2
IE
(
〈y, fNn 〉

)2
+ o

(
λ2

2

)
,

we deduce that
IE
(
〈y, fNn 〉

)2
≤ nC(δ)‖y‖2B′‖∇(Φ− ΦN )‖2∞,1 .

So we have

sup
n

1
n

IE
(
〈y, fNn 〉

)2
= sup

n

b2n
n

IE
(
〈y,Mn(Φ− ΦN )〉

)2
→ 0 as N → +∞ .(3.17)

Whence the limit σ2(y) in (3.15) exists and σ2
N (y) −→ σ2(y), ∀y ∈ B′.

Now we claim that

lim
n→∞

n

b2n
log IE exp

(
b2n
n
〈y,Mn(Φ)〉

)
=

1
2
σ2(y), ∀y ∈ B′ .(3.18)

For fixed p, q > 1 with 1
p + 1

q = 1, by the Hölder inequality we have that

log IE exp

(
b2n
n
〈y,Mn(Φ)〉

)
≤ 1

q
log IE exp

(
q
b2n
n
〈y,Mn(Φ− ΦN )〉

)

+
1
p

log IE exp

(
p
b2n
n
〈y,Mn(ΦN )〉

)

for every y ∈ B′. From (3.13) and (3.16) it follows that

lim sup
n→∞

n

b2n
log IE

(
e
b2n
n
〈y,Mn(Φ)〉

)
≤ 1

2p
σ2
N (py) +

q

2
‖∇(Φ− ΦN )‖2∞,1C(δ)‖y‖2B′ .

Letting N →∞ and using (3.15), we get

lim sup
n→∞

n

b2n
log IE

(
e
b2n
n
〈y,Mn(Φ)〉

)
≤ 1

2p
σ2(py) =

p

2
σ2(y).(3.19)
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Similarly, by the Hölder inequality, we have

log IE exp

(
b2n
pn
〈y,Mn(ΦN )〉

)
≤ 1

q
log IE exp

(
qb2n
pn
〈y,Mn(ΦN − Φ)〉

)

+
1
p

log IE exp

(
b2n
n
〈y,Mn(Φ)〉

)

for every y ∈ B′. From (3.13) and (3.16) it follows that

1
2
σ2
N

(
y

p

)
≤ lim inf

n→∞
n

pb2n
log IE

(
e
b2n
n
〈y,Mn(Φ)〉

)
+

q

2p2
‖∇(Φ− ΦN )‖2∞,1C(δ)‖y‖2B′ .

Letting N →∞ and using (3.15), we obtain

1
2p
σ2(y) ≤ lim inf

n→∞
n

b2n
log IE

(
e
b2n
n
〈y,Mn(Φ)〉

)
.(3.20)

Letting p→ 1 in (3.19) and (3.20) yields (3.18).

So by (3.18) and the Laplace principle [DS89, Th. 2.1.10, p.43], we have

1
2
σ2(y) = lim

n→∞
n

b2n
log IE

(
e
b2n
n
〈y,Mn(Φ)〉

)
= sup

x∈B

{
〈x, y〉 − Ĩ(x)

}
.(3.21)

4) We have now to show that Ĩ(x) defined in (3.14) is convex.

Ĩ

(
1
2

(x1 + x2)
)

= sup
δ>0

lim sup
N→∞

inf
B( 1

2
(x1+x2),δ)

IN

inf
B( 1

2
(x1+x2),δ)

IN ≤ inf
y1∈B(x1,δ),y2∈B(x2,δ)

IN
(

1
2

(y1 + y2)
)

≤ 1
2

inf
y1∈B(x1,δ),y2∈B(x2,δ)

(
IN (y1) + IN (y2)

)
=

1
2

(
inf

B(x1,δ)
IN + inf

B(x2,δ)
IN
)

So

lim sup
N→∞

inf
B( 1

2
(x1+x2),δ)

IN ≤ 1
2

(
lim sup
N→∞

inf
B(x1,δ)

IN + lim sup
N→∞

inf
B(x2,δ)

IN
)

Letting δ ↓ 0, we get

Ĩ

(
1
2

(x1 + x2)
)
≤ 1

2

(
Ĩ(x1) + Ĩ(x2)

)
.

Since Ĩ is inf-compact and convex, by Fenchel’s theorem and (3.21), we get for all x ∈ IR

Ĩ(x) = sup
y∈B′

{
〈x, y〉 − 1

2
σ2(y)

}
,

which is exactly the rate function given by (3.12).
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4 The moving average case

We now consider an example where Φ is linear, i.e. the moving average process. Consider

Xn = Φ(ξn+·) =
∑
j∈ZZ

ajξn+j

where (an)n∈ZZ is some doubly infinite real sequence, and (ξk) are i.i.d. centered random variables
with values in a separable Banach space (B, ‖·‖). X = (Xn) is called the moving average process.

When B = IRd, Burton and Dehling [BD90] obtained the large deviation of the empirical means

Sn
n

=
1
n

n∑
k=1

Xk

under the conditions that
∑
n∈ZZ |an| < ∞ and IE exp(δ|ξ0|) < +∞ for all positive δ. Jiang,

Rao and Wang [JRW95] showed that the lower bound of Sn is valid without the condition
IE exp(δ|ξ0|) < +∞ and that the upper bound (with perhaps a different rate function) is true if
IE exp(δ|ξ0|) < +∞ for some positive δ. Moreover their result still holds in a separable Banach
space B, under the assumption IE exp(qK(B)) < ∞ for some balanced convex compact subset
K of B (qK denotes the Minkowski functional).

We will show the corresponding level 3 LDP for Xn which seems to be unknown. Denote
Φ̄(ω) = (Φn(ω)), where Φn(ω) =

∑
j∈ZZ ajω(n+ j), and (using notations of previous sections)

RΦ̄
n :=

1
n

n∑
k=1

δXk+· = On ◦ Φ̄−1.

We have the following

Theorem 4.1 Assume
∑
i |ai| < ∞ and IE exp(δ‖ξ0‖) < ∞ for some positive δ, then

IP
(
RΦ̄
n ∈ ·

)
satisfies a LDP on M1(BZZ) equipped with the weak convergence topology, with speed

n and with the rate function given by

J(Q̂) = inf
{
H(Q)|Q ∈M s

1 (Ω), H(Q) <∞, Q̂ = Q ◦ Φ̄−1
}
.(4.1)

Proof :
We have to find some approximation functions which satisfy conditions of Theorem 3.1. So
define

ΦN
n (ω) :=

N∑
j=−N

ajω(n+ j) :=
∑
j∈ZZ

aNj ω(n+ j)

where

aNj =

{
aj if |j| ≤ N
0 if |j| > N

By simple calculations,

‖∇(Φ− ΦN )‖∞,1 =
∑
k∈ZZ

|am−k − aNm−k|

=
∑
|j|≥N

|aj |

−→ 0 as N → +∞ .
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Thus the LDP of IP(RΦ̄
n ∈ ·) follows from Theorem 3.1.

We still have to establish the identification of the rate function (4.1). To this end, we follow
Remark 1.5 of Wu [Wu99]. If H(Q) < ∞, the integrability condition IE exp(δ|ξ0|) < ∞ implies
that IEQ|ξ0| <∞, and then

IEQ
∑
j∈ZZ

|ajξn+j | ≤
∑
j∈ZZ

|aj |IEQ|ξ0| <∞,

and we consequently have (using Theorem 3.1 and its notations) that Φ̃ = Φ, Q− a.s. and (4.1)
follows from the expression (3.3).

Remarks :
(i) Note that corollary 3.2 applied to the linear case gives exactly the results of corollary 3 of
[JRW95].
(ii) Condition (3.1) in the nonlinear case is quite sharp. It is equivalent to the absolute summa-
bility

∑
j∈ZZ |aj | < +∞ in the linear case. Notice that last condition is rather sharp even for

the central limit theorem (CLT). In fact, when an ≥ 0, the best condition for the CLT of∑n
k=1Xk in [HH80], becomes exactly

∑
n∈ZZ an < +∞. In this non-negative case, the summabil-

ity
∑
n∈ZZ an < +∞ is also sharp for the level 1 and level 3 LDP of (Xn), see Bryc and Dembo

[BD95].
(iii) The results of section 3.2 on Moderate deviations Th. 3.3, applied to the moving average
case, is Th. 2.1 of [JRW92] in Banach space.
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