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We consider repeated measurement designs when a residual or
carry-over effect may be present in at most one later period. Since
assuming an additive model may be unrealistic for some applica-
tions and lead to biased estimation of treatment effects, we consider
a model with interactions between carry-over and direct treatment
effects. When the aim of the experiment is to study the effects of a
treatment used alone, we obtain universally optimal approximate de-
signs. We also propose some efficient designs with a reduced number
of subjects.

1. Introduction. In repeated measurement designs or crossover de-
signs, interference is often observed between a direct treatment effect and
the treatment applied in the previous period. We denote by &, the effect
of treatment v when it is preceded by treatment v. There are several ways
to model such effects. The simplest one is to assume that there is no inter-
ference. In that case, £,, = T, the direct treatment effect.

For a parsimonious interference model, we may assume that the direct
and the carry-over effects are additive. In that case, &,, = T, + Ay, Where
Ty 18 the direct effect of treatment u and )\, is the carry-over effect due to
treatment v. In practice, this model is often unrealistic.

Kempton et al. (2001) propose an interference model in which a treatment
which has a large direct effect will also have a large carry-over effect. More
precisely, they assume that the carry-over effect is proportional to the direct
effect. Bailey and Kunert (2006) obtain optimal designs under this model.

Afsarinejad and Hedayat (2002) proposed another way to enrich the ad-
ditive models: they assume that the carry-over effect of a treatment de-
pends on whether that treatment is preceded by itself or not. In that case
Euv = Tu + Ao + Xuw, Where xyup = 0 if u #£ v and xy,, represents the specific
effect of treatment u preceded by itself. For that model, optimal designs
are obtained by Kunert and Stufken (2002, 2008) when the parameters of
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interest are the direct treatment effects, and by Druilhet and Tinsson (2009)
when the parameters of interest are the total effects 7, + Ay + Xuu-

The finest possible model, proposed by Sen and Mukerjee (1987), assumes
full interactions between carry-over and direct treatment effects, which means
that no constraints on &,, are assumed. For a full interaction model, there
is no natural way to define a direct treatment effect. For example, Park et
al. (2011) obtained efficient designs when the parameters of interest are the
standard least-squares means of treatments, i.e. ¢t~ Yoy buw for 1 < u < t,
where ¢ is the number of treatments to be compared. Under a full inter-
action model, the contrasts of the least-squares means depend on all the
other treatment effects through their interactions.

When the aim of the experiment is to select a single treatment which will
be used alone, i.e. preceded by itself, the relevant effects to be considered
are total effects ¢, = &y for 1 < u < ¢, which correspond to the effect of a
treatment preceded by itself: see Bailey and Druilhet (2004) for a review of
situations where total effects have to be considered.

Kushner (1997) and Kunert and Martin (2000) proposed a method for ob-
taining optimal cross-over designs for direct treatment effects in the frame-
work of approximate designs by using Schur-complement properties. The
method has three main steps: (i) expressing the information matrix of the
whole design as a sum of the information matrices for the sequences of treat-
ments given to individual subjects (Section 3.1); (ii) considering so-called
symmetric designs, in which the proportion of subjects given any sequence
is invariant under the symmetric group of all permutations of the treat-
ments (Section 3.2); applying maximin procedures to equivalence classes of
sequences (Section 4).

A first generalization of these techniques for more general effects was
proposed by Druilhet and Tinsson (2009). In this paper, we propose a higher
level of generalization by using group theory to obtain optimal designs for
total effects under the full interaction interference model. We also propose
efficient designs of reduced sizes.

2. The designs and the model. We consider a design d with n sub-
jects and k periods. Let ¢ be the number of treatments. For 1 < ¢ < n and
1 < j <k, denote by d (i, j) the treatment assigned to subject i in period j.
We assume the following full treatment X carry-over interaction model for
the response y;;:

(1) Yij = Bi + &aig),d(ij—1) T Eijs

where f; is the effect of subject ¢ and &, is the effect of treatment v when
preceded by treatment v. For the first period, we assume a specific carry-
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over effect that can be represented by a fictitious treatment labelled 0: &,¢
represents the effect of treatment u with no treatment before. The residual
errors ¢;; are assumed to be independent identically distributed with expec-
tation 0 and variance ¢2. In most applications, a period effect is included
in the model. It will be seen in Section 3.3 that optimal designs found for
Model (1) are also optimal when period effects are added.

In vector notation, Model (1) can be written:

Y = Bf+ Xaf + ¢,

where Y is the nk-vector of responses with entries y;; in lexicographic order,
and S is the n-vector of subject effects. The entries of the ¢(t+1)-vector £ are
denoted by &, also sorted in lexicographic order. The matrices associated
with these effects are respectively given by B and X;. Note that B = I, @1,
where I,, denotes the identity matrix of order n, the symbol ® denotes the
Kronecker product and I is the k-dimensional vector of ones. Also, Xy is
an nk x t(t + 1) matrix whose entries are all 0 apart from a single 1 in each
row. In particular, Xl 1) = [k We have E(e) = 0 and Var (¢) = 0?1,

We denote by ¢ the t-vector of total effects, which corresponds to the
situation where a treatment is preceded by itself. We have ¢, = &, for
u =1,...,t. Denote by K the t(t + 1) x t matrix with entries K, = 1 if
u = v = w and 0 otherwise for u,w =1,...,t and v = 0,...,t, where w is
the single index for the columns and wv is the double index for the rows,
similar to the index for the vector &,,. We have

(2) ¢ =K'¢t.
3. Information matrices for total effects.

3.1. Information matriz for & and ¢. Put wp = B(B'B)"' B/, which is
the projection matrix onto the column space of B, and wﬁ = I —wp =
I, ® Q with Qi = wﬁ = Iy — k'Ji, where J; = I;I}. The information
matrix Cy [¢] for the vector £ is given by (see e.g. Kunert, 1983):

Cal¢] = X} wi Xa.
Note that wﬁXd]It(tH) = wﬁﬂnk =0, and so
(3) Ca [€]Ty(t41) = 0.

Denote by Xy; the k x t(t+ 1) design matrix for subject ¢ and by Cy[¢] =
X!, Qi Xg; the information matrix corresponding to subject ¢ alone. We
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have X/, = (X/,,..., X}, ) and

n n
Cals] = Caild) = > Xl Qr Xai-
i=1 i=1
Note that Xg4; and therefore Cy;[¢] depend only on the sequence of treat-
ments applied to subject i. Denote by S the set of all sequences of k treat-
ments. For a design d and a sequence s € S, denote by m4(s) the proportion
of subjects that receive s, and denote by X, and C[¢] the associated ma-
trices. We have

(4) Cal€) =n) ma(s) Csl€] =n Y ma(s) X} Qp X

seS seS

The information matrix for the parameter of interest ¢ = K’'¢ may be
obtained from Cjy[¢] by the extremal representation (see Gaftke, 1987 or
Pukelsheim, 1993):

(5) Cil¢] =Cq[K'¢] = min L'Cq(¢] L,

Lelk
where L = {L € R{UHDX | [/K = [} and the minimum is taken relative
to the Loewner ordering. The minimum in (5) exists and is unique for a
given design d. Put & = {L € Lx | L'C4[§]L = Cq4[¢]}.

In the sequel, the entries of L, or, more generally, of any matrix of size
t(t+1)xt, will be denoted by LY, , for u,w =1,...,t,and v =0,...,t, where
w is the column index and uwv is the double index for the rows, similar to the
vector £ or the matrix K. The ¢ X t matrix L'K has entries (L'K),, = LY,
foru,v=1,...,t.

LEMMA 1. For any design d, the row and column sums of Cq[@] are zero.

PROOF. Since Cy[¢] is symmetric, we have to prove that I;Cy[¢]I; = 0.
Consider the t(t + 1) x ¢t matrix L such that LY, is equal to 1 if w = v and 0
otherwise. The matrix L satisfies L I; = I;;;1) and the constraint L'K =1I.
It follows from (5) and (3) that 0 < I} Cyl¢| I, < I, L' C4¢] L I, =
]I:S(t—l—l) Ca [§] Tye+1) = 0. O

For a design d, denote by L* a matrix in &;. Since, for any given L,
L'Cy €] L is linear in Cy [£], we have by (4):

(6) Cald) = L Cy[€] L =n Y _ma(s) L7 Csl¢) L*,

seS

This linearization is the basis of Kushner’s methods.
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3.2. Approrimate designs and symmetric designs. An exact design is
characterized, up to a subject permutation, by the proportions of sequences
that appear in it. These proportions are multiples of n~!. If we allow the
proportions to vary continuously in [0, 1] with the only restriction that the
sum must be equal to 1, we obtain an approximate design. By definition,
the information matrices of £ and ¢ for an approximate designs are given by
(4) and (5) as for an exact design. The second idea of Kushner’s method is
to find a universally optimal design in the set of approximate designs using
the linearized expression (6). If the optimal approximate design is not an
exact design, one can calculate a sharp lower bound for efficiency factors of
competing exact designs.

We now recall the concepts of permuted sequence, symmetric design and
symmetrized design as introduced by Kushner (1997). Let o be a permu-
tation of the treatment labels {1,...,¢t} and s a sequence of treatments.
The permuted sequence s, is obtained from s by permuting the treatment
labels according to ¢. Similarly, the design d, is the design obtained from
the design d by permuting the treatment labels according to o. A design d is
said to be a symmetric design if, for any sequence s and any permutation o,
ma(ss) = ma(s). For such a design, d and d, are identical up to a subject
permutation, which may be written d = d,. From a design d, we define the
symmetrized design d by

1
(7) wg(s) = i Z ma(ss), Vs€S,
o€S
where S; is the set of all permutations of {1,...,¢}. It is easy to see that

the symmetrized design d is a symmetric design.

To a permutation o of treatment labels, we may associate a permutation
o* of the carry-over effect labels {0, 1,...,t} where 0*(0) = 0 and o*(u) =
o(u) for u = 1,...,t. We also associate a permutation & of {1,...,t} x
{0,...,t} defined by &(u,v) = (o(u),c*(v)). We denote by P, Py« and Py =
P, ® P,~ the corresponding permutation matrices: for example, P, (u,v) =1
if o(u) = v and P,(u,v) = 0 otherwise.

For L € Lk, put Ly = PLLP,. It can be checked that P.KP, = K (see
also the definition of the matrix L) after Lemma 4).
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LEMMA 2.  For any design d and any permutation o in Sy, we have

(8)  Ca,lé] = Ps5Cqylé] Ps;

(9)  Cald] = Py Cald] Py;
1 /
(1) Cale] = 5 > Ps Calé] Py
€St
(11)  Cyl¢] > % Z P, Cyl¢] P, w.r.t. the Loewner ordering;
€St

and L € E; if and only if Ly € &g, .

PROOF. By definition of Py, Xq, = XqP%, and so Cq, [§] = X wp Xq4, =
P; X!, wi XgPL = P; Cy¢] PL, which corresponds to (8). If L € L then
L'Cy,[§]L = L'P;Cy[€]PiL = P, L,Cy4[¢] Lo P,. Now L, K = P,L'PsP.K P, =
P.I'KP, If L € Lk then 'K = I, so L' K = I; and L, € Lk. The same
argument with o' shows that if L, € Lxg then L € Lx. The Loewner
ordering is unchanged by permutations, so

a6 = puin (L'Cu L) = P, (mip LLCAELy ) Py = Py Culo] P,

and (9) is established. Moreover, L € &; if and only if L, € &;,. Formula
(10) follows directly from (8) and (7). Formula (11) follows from (10) and
the concavity of the minimum representation (5). O

We recall that a ¢ x t matrix C is completely symmetric if C' = aI; +
b Jy for some scalars a and b or, equivalently, if P, C P, = C for every
permutation ¢ in S;.

LEMMA 3. Ifd is a symmetric design then Cy[¢] is completely symmet-
Tic.

PROOF. Since d is symmetric, d, = d. By (9), Cy[¢] = Cq, [¢] = P> Cql¢] P.
for any permutation o in S;. Therefore Cy[¢] is completely symmetric. [

The key point to obtain an optimal design is to identify the structure of
the t(t + 1) x ¢t matrix L* defined in (6), whose entries are denoted by L}%.

LEMMA 4. Ifd is a symmetric design then the matriz L* in (6) can be
chosen so that it satisfies

(12) L:=L* Voebs,
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or, equivalently,

(13) L), =L, Voes,.

Proor. If ¢ € S; then d, = d, so &;, = £; and Lemma 2 shows that
Lo € & Put L* = (3 ,cq, Lo) /t!, which satisfies (12). Since &; is closed
under taking averages (see Druilhet and Tinsson, 2009, proof of Lemma A1),
L* also belongs to &;. O

A consequence of (13) is that the entries LY are constant for (u,v,w)
belonging to the same orbit of the permutation group {(7,0)},cs, acting
on {1,...,t} x{0,...,t} x {1,...,t}. There are seven distinct orbits:

e O ={(u,u,u) |u=1,. ,t},

o Oy = {(uvu)\uv—l St u# v},

o O3 ={(u,v,v) |u,v=1,...,t, u+#v},

o Oy ={(u,v,w) | u,v,w = 1 ot uF v #£ w# ul,

o U5 ={(u,0,u) |u=1,. t}
ong{(U,O,wHu,w—l,...,t,u;éw}

o O7 ={(w,u,w) |u,w=1,...,t, u+#w}.

Forg=1,...,7, denote by L, the t(t+1) x t matrix with entries Lz‘é)uvzl

if (u,v, w) belongs to the orbit O, and 0 otherwise. Note that L) = K.
By construction of L), we have

(14) Pé L(q) P, = L(q), VoeSiandg=1,...,7.

PROPOSITION 5.  For a symmetric design d, the matrixz L* in Lemma 4
may be written as

6
(15) L* =Ly =Ly + Z’YqL(q)v
q=2
where v = (va,...,77) is a vector of scalars.

PROOF. Since L* satisfies (12), it is a linear combination of the matrices
* 7
L L =32 4—1 VgL (q)- It can be checked that L'(l)K =K'K =1, L’(7)K =

Jy — I and qu)K =0 for ¢ = 2,...,6. Consequently, the constraint LYK =
I; may be written v; = 1 and ~7 = 0. O
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3.3. The model with period effects. We consider here the same model as
in Section 2 with the addition of a period effect. The response for subject ¢
in period j is given by:

(16) Yij = @ + Bi + Saig).atig-1) T iy
where «; is the effect of period j. In vector notation, we have
Y =Aa+ BB+ X4 + ¢,

with A = I, ® I}, where « is the k-vector of period effects. Denote §' =
(&',a’). If d is an exact design, the information matrix for 6 is given by:

Culf] = Calé] Caz \ _ [ XjwpXa XjwgA
d Cd21 Cd22 A’ wﬁ Xd A wﬁ A ’

where Cy[¢] is the information matrix for £ obtained in the model without
period effects and Cyoo = nQ.

The t-vector ¢ of total effects defined by (2) may also be seen as a sub-
system of the parameter 0, because ¢ = K'0 with K’ = (K',0;x%). The
information matrix C4[¢] for ¢ under Model (16) may be obtained from
Cyl0] by the extremal representation:

Cyq[¢] = min Z’C’d 0] E,
LEﬁf(

where Lz = {L e REEHD+R)xt | [V[¢ — [,}. Partitioning L' as (L' | N)
with L and N of sizes t(t + 1) x t and k X ¢, we have

A7) Calél= | min (L'Cald]L+L'CasN + N'CinL + N'CaoN)
K

Note that (L' | N') € L is equivalent to L € Lg for L and N with

suitable dimensions. Choosing N = 0 in (17), we have Cyl¢] < Cy[¢] with
respect to the Loewner ordering, where Cy[¢] is the information matrix
for ¢ under the model without period effects, as defined in (5). Therefore
0 < I Cqlg] Iy < T} Cq[¢] Ty = 0. Hence the row and column sums of Cg[¢]
are all zero, and so Q;Cy[¢]Q; = Cy[¢].

For o € S;, define the permutation & for the entries of 6 such that the
entries of £ are permuted according to ¢ and « remain unchanged. The
associated permutation matrix Pj is the block diagonal matrix with diagonal
blocks P and Iy. For L in Lz, put L, = PLLP,. If L' = (L' | N') then
L = (L. | N’), where N, = NP,.

The two
first sen-
tences
have  been
changed by
Pierre.
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LEMMA 6. For any design d and any permutation o of treatment labels,
we have

(18) ~Cd012 = Ps €d12;
(19) Ca, 0] = P, Cqld] P,.

PrOOF. Equation (18) follows from the fact that X4 = Xg P%. The proof
of (19) is similar to the proof of (9), replacing &, L, Lk and K by 0, L, L
and K respectively. 0

An exact design is said to be strongly balanced on the periods if it satisfies
the following conditions:

(i) for the first period, each treatment appears equally often,
(ii) for any given period, except the first one, each treatment appears
preceded by itself equally often,
(iii) for any given period, except the first one, the number of times a treat-
ment, say u, is preceded by another treatment v does not depend on
U or v.

Note that a symmetric exact design is strongly balanced on the periods.

LEMMA 7. If a design d is strongly balanced on the periods and o € Sy
then PLX)A = X A.

PROOF. The (uv,j)-entry of XA is equal to the number of times that
treatment u occurs in period j preceded by treatment v. Strong balance
implies that there is a single value for v = 0, another single value for v = u,
and another single value for v ¢ {0, u}. Permutation of the treatments does
not change this. O

Given a design d, let G4 be the subgroup of S; consisting of those per-
mutations o satisfying d, = d (up to a subject permutation). Note that a
symmetric design may be characterized by G4 = S;. The subgroup Gy is
said to be transitive on {1,...,t}, if, given w, v in {1,...,t}, there is some
o in Gg with o(u) = v. The subgroup Gy is doubly transitive if, given uy,
u2, V1, v2 with u; # ug and v # vy there is some o in G4 with o(u1) = v;
and o(ug) = va.

ProprosITION 8. If d is an exact design with strong balance on the pe-
riods and with transitive group Gg, then the information matriz for ¢ is the
same under Models (1) and (16), that is

Calg] = Calg].
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In particular, this is true if d is a symmetric design.

PRrROOF. The method of proof of Lemma 4 shows that the matrix L used
for minimizing may be chosen to satisfy P.LP, = L for all o in G4. This
means that L = L, and N = N, = NP, for all o in G4. If NP, = N for all
o in G4 and Gy is transitive then every row of N is a multiple of Tj.

We have Cy19 = X&wng = X} AQy. Lemma 7 shows that if L = L, then
L'Cypo = L, X,AQ, = L,P.XAQ) = P,L'Cqi2. If G4 is transitive then
every column of L'Cyio is a multiple of I;.

Therefore, the expression in (17) is equal to L'Cy[¢]L+c¢(L, N)J; for some
scalar ¢(L, N'). Hence

L'|N'YeLg

Cald] = Qi Calg) Qr = Qi (( min  L'Cy[¢]L + c(L,N)Jt> o
= min (QtL,Cd[g]LQt)

(L'IN"YeL

= Qt <m1n L/Cd[f]L> Qt

LeLk

QiCa[d]Qr = Cald).

O]

For any design d whose G4 is doubly transitive, Cy[¢] is completely sym-
metric (replace S; by Gy in the proof of Lemma 3). Double transitivity
implies strong balance on the periods, so then 6d [¢] is also completely sym-
metric, by Proposition 8. In Section 5.6 we give some examples that show
that strong balance on the periods is not sufficient for 5’d[¢] to be completely
symmetric.

The results obtained in this section also hold for approximate designs.
Since the restriction of A to a single sequence is equal to Iy, for an exact
designs d we have

Cyl6] = nZWd(s) < Xé?g(fs Xéfk > )

This expression can also be used for approximate designs. Moreover, in the
definition of a design being strongly balanced on the periods, “equally often”
may be replaced by “in the same proportions” and “number of times” by
“proportion of times”. Then, the proofs of Lemma 7 and Proposition 8 can be
easily adapted to approximate designs by replacing A’ Xy by n >  mq(s)Xs,
replacing X/ w5 A by >, ma(s) XsQk, and so on.
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4. Universally optimal approximate designs. From Kiefer (1975),
a design d* for which the information matrix Cy=[¢] is completely symmetric
and that maximizes the trace of Cy[¢] over all the designs d for ¢ treatments
using n subjects for k periods is universally optimal.

4.1. Condition for optimal designs. The following proposition shows that
a universally optimal approximate design may be sought among symmetric
designs.

PROPOSITION 9. A symmetric design for which the trace of the informa-
tion matriz is maximal among the class of symmetric designs is universally
optimal among all possible approximate designs.

PRrROOF. For any design d, taking the trace in (11), we have tr(Cgz[¢]) >
tr(Cyl¢]). Since, by Lemma 3, Cj[¢] is completely symmetric, d is always
better than d with respect to universal optimality. If d* maximizes the trace
among the set of symmetric designs, then for any design d, tr(Cy«[¢]) >
tr(Cgl¢p]) > tr(Cy[¢]). Since Cy+[¢] is completely symmetric and maximizes
the trace, d* is universally optimal. O

For any sequence s, and 1 < p,q < 7, put cgpq = tr (L’(p) Cs[¢] L(q)>.

Then combining (6), (5) and (15), we have for a symmetric design,

6 6

tr(Cal¢]) = Wmir% Zn d(s) Z Z VpYq Cspg With 71 = 1.
"0 ses

p=1g=1

LEMMA 10. For a sequence s and a permutation o on the treatment
labels, we have:

Csopq = Cspq-

PROOF.

Cs,pqg = tr(PL L’(p) Cs, [€] L(q)PU), since tr(AB) = tr(BA),
= (P L, Ps Cs[€]1P; Ly Fs), by (8),
= tr(L’(p) Cs[f] L(q)) = Cspq; by (14)

O]

Two sequences are said to be equivalent if one can be obtained from the
other one by some permutation of treatment labels. We denote by C the set
of all possible equivalence classes. From Lemma 10, ¢y, depends only on the



12 R. A. BAILEY AND P. DRUILHET

equivalence class ¢ to which s belongs, and will be therefore denoted cy .
To each equivalence class £, we may also associate the non-negative convex
quadratic polynomial with five variables v = (y2,...,7):

6 6

hﬁ(’)/) = Z Z’Yp’yq Clpq where 7 =1.
p=1 g=1

For a symmetric design, we may write m, for the proportion of sequences
which are in the equivalence class . Then

tr(Calg]) = meZn e he(7)-

LecC

Therefore, we have the following proposition:

PROPOSITION 11.  An approximate symmetric design d* with proportions
{7} }eec that achieves

20 max min e he(y
(20 {meleec 7 Zezc ™)

1s universally optimal for ¢ among all possible designs.

4.2. Determination of optimal proportions. Each equivalence class of se-
quences is defined by a partition of the set {1,3,...,k} into at most ¢ parts.
If t > k, the number of such partitions is the Bell number By, which grows
with &£ more than exponentially (Cameron, 1994, Chapter 3). Thus it is not
realistic to solve the maximin problem in (20) by hand.

It seems intuitive that sequences in an optimal symmetric design should
satisfy two contradictory conditions: for accurate estimation of total effects,
each treatment should be preceded by itself a large number of times; while,
for efficiency in allowing for subjects, the replications within each sequence
should be as equal as possible. As a compromise, this suggests sequences in
which all occurrences of each treatment are in a run of consecutive periods.
Indeed, in our numerical results in Section 5, all seqeuences in the optimal
designs have this form. Each equivalence class of such sequences is defined
by a so-called composition of k. However, the number of compositions of k
is 2¥=1 (Cameron, 1994, Chapter 4), so, even if we restrict ourselves to such
sequences, a hand search is still not realistic.

We propose now the following method derived from Kushner (1997). Con-
sider

R*(v) = (7).
(7) max ()

We use the following procedure.



CROSS-OVER DESIGNS 13

Step 1 Find ~* that minimizes the function h*(y) and denote h* = h*(v*)
the minimum.

Step 2 Select the classes ¢ of sequences such that hy(7y*) = h* and denote
C* this set.

Step 3 Solve in {7, | £ € C*} the linear system, ;.- Wg% (v*) =0, for
0<m <land ) ,com = 1; denote 7* = {m} | £ € C*} the solution
(not necessarily unique).

Step 4 Give the symmetric designs such that 7, = 7; for £ € C* and 7y = 0
otherwise; these designs are universally optimal.

Step 1 is the most challenging. However, since h*(y) is a convex function,
any standard optimization algorithm gives accurate values for v* and h* in a
short time even if the number of possible classes is large. When supported by
the software, we used an exact optimization algorithm to obtain the values
of ~*.

For Step 2, the optimal sequences are part of the information found in
Step 1. Since C* is usually rather small, Step 3 simply involves inverting a
small square matrix whose entries have been found in Step 1. Step 4 then
reports the results.

5. Examples of optimal and efficient designs. For some values of k&
and t, we give optimal approximate designs for ¢. For each given k, the first
table gives the optimal proportions and the second table gives the efficiency
factor for a symmetric design generated by a single sequence.

Consider a real-valued criterion ¢(Cy[¢]) which is concave, non-decreasing
in Cy[¢] with respect to the Loewner ordering, and invariant under simul-
taneous permutations of rows and columns. From Kiefer (1975), there is an
approximate design d* which maximizes 1)(Cy[¢]) over the set of approx-
imate designs with the same values of k£ and t. The efficiency factor of a
design d for criterion 1 can therefore be defined by

_ ¥(Cale))
BolD = 50w lo)
For ¢(C) = tr(C), we simply write
1 D) = e

When Cy[¢] is completely symmetric, eff(d) is also the efficiency factor for
the well known D-, A- and E-criteria (see Shah and Sinha, 1989 or Druilhet,
2004).
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In our tables, we write 07 or 1= when a value is within 0.005 of 0, 1
respectively. For some values of k and ¢ the optimal proportions have been
calculated with formal calculus when tractable; all others have been obtained
by numerical optimization.

The values h* displayed correspond to those defined in Section 4.2 for an
optimal design. The information matrix for a symmetric optimal approxi-
mate design with n subjects is therefore

n h*

Calp] = m@t-

5.1. 8 periods. Optimal proportions for some values of ¢:

¢ ol 3 lals|e| 78] 9 1011 |12]13]14] 15]16
1 5 1 7 2 3 5 11 1 13 7 5 4 17 3

Prop. [112] | 5 | 35 | 3 |35 | 7 | i1 | 16 | 43 | 2 | 53 | 29 | 21 | it | 75 | i3
1 8 2 16 5 8 14 32 3 40 22 16 13 56 10

Prop. [122] 1 5 | 35 | 5 | 23 | 7 | i1 | 10 | 45 | 1 | 53 | 20 | 21 | 17 | 75 | 13
e 1 16 | 4| 32| 10 | 16 | 28 | 64 | 1 | 80 | 44 | 32 | 26 | 112 | 20

3 39 9 69 21 33 57 129 2 159 87 63 51 219 39

Efficiency of symmetric designs generated by a single sequence:

~+
[\

3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15 | 16
eff. [112]|0| O 0 0 0 0 0 0 0 0 0 0 0 0 0
eff. [122](0]0.61{0.75|0.81|0.84|0.86|0.87|0.88(0.89|0.89|0.90|0.90|0.91|0.91|0.91

Example of universally optimal design for ¢ = 4:

111111222222333333444444 1112223334414
2233441 133441122441 12233111222333444
223344113344 112244112233234134124123

5.2. 4 periods. The optimal approximate designs are generated by the
single sequence [ 112 2 | for 2 < ¢ < 30. It is conjectured that this is true
for any value of t.

5.3. & periods. Optimal proportions for some values of t:

t 23| 4|5 | 6 7 | 8 | 9 | 10| 15 | 20 | 30
Prop. [11222] | 3| I | 4% | 4% 098 | 0.98 | 0.98 [ 0.98 | 0.98 | 0.97 | 0.97 | 0.97
Prop.[11122] | 3| 2 | 5| & | O 0 0 0 0 0 0 0
Prop. [11233] 0| 0 [ 0 [ 0 [002]0.02]|0.02|0.02]|002|003|0.03|0.03
* 7 68 148 388
h T8 | 52| 288|160 161 1.62|1.63|1.63|1.64|1.65 | 1.66
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Efficiency of symmetric designs generated by a single sequence:

t 2 3 4 5 6 7 8 9 | 10 | 15 | 20 | 30
Eff.[11222] 0950990998 | 1= | 1= | 1= [ 1= | 1= | 1= | 1= | 1= | 1~
Ef.[11122] 095|091 | 0.89 | 0.8 | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 | 0.86 | 0.86 | 0.85
Eff.[11233]| — |077| 082 | 0.84 | 0.85 | 0.86 | 0.86 | 0.86 | 0.86 | 0.87 | 0.88 | 0.88
Example of universally optimal symmetric design for ¢ = 3:

1111111111111122222222222222
1111111111 111122222222222222
2 222222333333311111113333333
2222222333333311111113333333
2 222222333333311111113333333
333333333333331111222723333
33333333333333T111122223333
11111112222222111122223333
11111112222222223311331122
11111112222222223311331122
5.4. 6 periods. Optimal proportions for some values of ¢:
2] 3 4 5 6 7 8 9 [ 10 | 15 | 20 | 30
Prop. [111222] |1 | 081 |0.66| 055|048 | 0.42 | 0.38 | 0.35 | 0.32 | 0.23 | 0.19 | 0.15
Prop. [112233] 0] 019 |0.34 | 045 | 0.52 | 0.58 | 0.62 | 0.65 | 0.68 | 0.77 | 0.81 | 0.85

R* 2211216219 | 221|222 223|224 225226227228
Efficiency of symmetric designs generated by a single sequence:

t 2| 3 4 5 6 7 8 9 [ 10 | 15 | 20 | 30
Eff. [111222] ] 1 |0.99 | 0.99 | 0.98 | 0.98 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.96 | 0.96
Eff.[112233] | — 095097098 |099|099 099|099 | 1= | 1= | 1= | 1~

5.5. 7 periods.

Optimal proportions for some values of ¢:

t 3 14| 5 6 |7<t<30
Prop. [1112222] | 057 019| 0 | 0
Prop. [1112233]| 0 | 0 [009| 0oF 0
Prop. [1122333] (043 | 081|091 | 1~ 1

h* 2.60 | 2.70 | 2.76 | 2.80 2.82

Efficiency of symmetric designs generated by a single sequence:
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t 3 4 5 6 7
Eff.[1112222]]0.98 | 0.96 | 0.95 | 0.94 | 0.94
Eff.[1112233]]0.98|0.99 | 0.98 | 0.98 | 0.98
Eff.[1122333] (098 | 1~ 1= 1= 1

5.6. Efficient designs with t(t — 1) subjects. For k = 6 or k = 7, we
saw that efficient symmetric designs may be obtained from single sequences
having three treatments by permuting all the treatment labels. Such designs
require t(t — 1)(t — 2) subjects, which may be too large. We can construct
efficient designs that are strongly balanced on the periods, are generated by
a single sequence, and require only ¢(t — 1) subjects, as follows.

Step 1 We start from a balanced incomplete-block design with block-size 3
and t treatments such that for any two different periods j; and j» and
any two different treatments u and v, there exists exactly one subject
that receives treatment u in period j; and treatment v in period jo.
(This is called an orthogonal array of type I and strength two: see Rao,
1961.)

e If ¢ is odd, use all the triplets [u,u + v,u + 2v] modulo ¢, for
u=0,....,t—landv=1,...,t—1.

e If ¢ is even, use the preceding construction for t — 1 and replace
each triplet of the form [u,u + 1,u + 2] by the three sequences
[t,u+ 1,u+2], [u,t,u+ 2] and [u,u+ 1,t].

Step 2 Then, we construct a design with k periods by replicating the three
treatments in each triplet in such a way that we obtain a sequence
in the same equivalence class as the one that generates the efficient
design.

For example, take k = 7 and ¢ = 5 with generating sequence [1122333].
The starting design with three periods is:

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5
2 3 45 3 45 1 45 12 5 1 2 3 1 2 3 4
35 2 4 413 5 5 2 41135 2 2 4 1 3
The resulting design with seven periods generated by [1122333] is
1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5
2 3 45 3 45 1 45 12 5 1 2 3 1 2 3 4
2 3 45 3 45 1 45 1 2 5 1 2 3 1 2 3 4
3 5 2 4 4 1 35 5 2 41135 2 2 4 1 3
3 5 2 4 4 1 3 5 5 2 41 135 2 2 41 3
3 5 2 4 4 1 3 5 5 2 4113 5 2 2 4 1 3
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The following table displays the A-, D-, E-efficiency factors for designs
with 6 periods and ¢(¢ — 1) subjects generated by the sequence [1122 3 3]
using the method described above. The efficiency factors are given relative
to universally optimal approximate designs.

t 4 5 6 7 8 9 10
A-efficiency | 0.951 | 0.977 | 0.973 | 0.978 | 0.974 | 0.970 | 0.968
D-efficiency | 0.951 | 0.977 | 0.973 | 0.978 | 0.974 | 0.970 | 0.968
E-efficiency | 0.951 | 0.977 | 0.951 | 0.978 | 0.950 | 0.950 | 0.949

We may note that this method is interesting only for ¢t = 7 or ¢t = 8. For the
other values of ¢, the symmetric design with ¢(¢ — 1) subjects generated by
the sequence [ 11122 2] is more efficient.

The following table displays the A-, D-, E-efficiency factors for designs
with 7 periods and #(t—1) subjects generated by the sequence [1122 3 3 3]
using the method described above.

t 4 5 6 7 8 9 10
A-efficiency | 0.974 | 0.990 | 0.982 | 0.983 | 0.978 | 0.973 | 0.971
D-efficiency | 0.974 | 0.990 | 0.982 | 0.983 | 0.978 | 0.973 | 0.971
E-efficiency | 0.974 | 0.990 | 0.961 | 0.983 | 0.955 | 0.954 | 0.954

For t = 4,5,7, the information matrices are completely symmetric. For ¢ > 4
and when the number of subjects is t(¢ — 1), these designs are preferable to
symmetric designs generated by the sequence [1112222].

If t = 4 or ¢ is an odd prime, this method always gives a design d for
which Gy is doubly transitive and so 6d [¢] is completely symmetric. If ¢ is
any prime power, there is a second method which gives a design d in ¢(t — 1)
periods for which G4 is completely symmetric.

Step 1 Identify the treatments with the elements of the finite field GF(t)
of order t¢.

Step 2 Form any triplet [z,y, 2] of distinct treatments.

Step 3 Use this to produce all triplets of the form [ax + b, ay + b,az + V]
for which a and b are in GF(t) and a # 0.

Step 4 Use these triplets to construct a design from the desired sequence
just as in the previous method.

For example, when ¢ = 8, one correspondence between {1,...,8} and
GF(8) gives the following starting design with three periods.

(
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The design obtained from this starting design and the generating sequence
[112233], respectively [ 1 1 2 2 3 3 3], has efficiency factor equal to
0.977, respectively to 0.981.

For t =9, we obtain the following starting design.

[N

1122334455667 788991144772255883366199

(231312564645897978471714582825693936

323121656454989787747141858252969363
115599226677334488116688224499335577
591915672726483834681816492924573735)
959151767262848343868161949242757353

The design obtained from this starting design and the generating sequence
[112233], respectively [ 1 1 2 2 3 3 3], has efficiency factor equal to
0.950, respectively to 0.954.

5.7. Comments. Here we briefly discuss the performances of the optimal
designs obtained in this paper when the true statistical model is simpler
than the full interaction model.

Under the assumption that the true model is the self and mixed model
proposed by Afsarinejad and Hedayat (2002), Druilhet and Tinsson (2014)
obtained optimal approximate designs for the estimation of total effects. So,
we can compute the efficiency factors of our designs as defined defined in (21)
for several values of k and for all £ with 2 <t < 30. For £ = 3, our designs
have efficiency factors greater than 0.67. For k = 4, the optimal designs are
the same under both models. For k£ = 5, our designs have efficiency factors
greater than 0.98. For k = 6, our designs have efficiency factors greater than
0.97.

We cannot make the analogous comparison under the the assumption that
the additive model is the true one, because in this case there are no optimal
designs for total effects available in the literature (Bailey and Druilhet, 2004,
considered only circular designs).

We now compare our designs to complete-block neighbour-balanced de-
signs (CBNBDs) such as the column-complete latin squares widely used in
practice.

Under the self and mixed model, CBNBDs give non-estimable total effects
but are optimal for the estimation of direct treatment effects (Kunert and
Stufken, 2002). The efficiency factors of our designs for the direct treatment
effects are 0.39 for k =t =3; 0.33 for k =t =4; 0.25 for k =t = 5; 0.33 for
k=t=6;and 0.36 for k=t =171.
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Under the additive model, the efficiency factors of our designs for the
estimation of total effects relative to CBNBDs are 1.15 for £ = t = 3;
131 for k =t = 4; 1.24 for k =t = 5; 1.33 for k = t = 6; and 1.38
for k =t = 7. For the estimation of direct effects, CBNBDs are optimal
(Kunert, 1984, Kushner 1997) and the efficiency factors of our designs are
0.82 for k=t=3;0.67for k=t=4;052for k=t=25;059fork=t=6
and 0.61 for k=t=17.
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