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Abstract

We consider cross-over designs for a model that includes specific carryover effects when a treatment
is preceded by itself. When the parameters of interest are total effects, i.e. the sum of direct effects
of treatment and self carryover effects, we show that optimal designs are a compromise between
designs balanced on subjects such as balanced binary block designs and designs with subjects
having a single treatment. We also propose universally optimal designs with a reduced number of
subjects.

Keywords: Approximate design; Neighbour design; Optimal design; Total effect; Universal
optimality.

1. Introduction

In cross-over designs, it is often assumed that the response on a given period depends on
both the treatment applied to that period (direct treatment effect) and the treatment applied to
the previous period (carryover effect). The optimal designs depend on the way the interference
between these two effects is modelized (see Bose and Dey, 2009, for a recent review of optimal
cross-over designs). The simpler way to modelize this interference is to assume that carryover and
direct treatment effects are additive, which means that the carryover effect of a treatment is the
same no matter the treatment applied to the following period is. For example Kunert (1984),
Kushner (1998), Bailey and Druilhet (2004) obtained optimal or efficient designs for this model,
Zheng (2013) consider optimal designs in the presence of drop out subjects. The additive model is
often too coarse. To enrich the model, Kempton et al. (2001) proposed a model where carryover
effects are proportional to direct effects and Bailey and Kunert (2006) obtained optimal designs for
that model. Sen and Mukerjee (1987) proposed a model with interaction between carryover and
direct treatment effect. Park et al. (2011) obtained efficient cross-over designs under that model.
As a compromise between additive and full interaction models, Afsarinejad and Hedayat (2002)
proposed a model with two different kinds of carryover effect for a treatment: a self carryover
when the following treatment is the same one and a mixed carryover effect when the following
treatment is a different one. This is equivalent to assume a partial interaction between treatment
and carryover effects. Kunert and Stufken (2002) obtained optimal designs for the estimation of
direct treatment effects under this model. For designs with pre-periods and circularity conditions,
Druilhet and Tinsson (2009) obtained efficient designs when the parameters of interest are total
effects, i.e. the effects of treatments preceded by themselves.

In this paper we consider designs without pre-period and therefore without circularity condition
for the model with self and carryover effects. We obtain optimal designs for total effects based on
the construction of optimal sequences initially proposed by in Kushner (1997). Then, we propose
a method to derive universally optimal designs with a limited number of subjects.

2. Models with self and mixed carryover effects.

Let b be the number of subjects, k the number of periods, t the number of treatments and
n = bk the total number of observations. For 1 6 u 6 b and 1 6 j 6 k, denote by d(u, j) the
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treatment assigned to subject u in period j. As in Afsarinejad & Hedayat (2002) , we assume that
the response yuj is

yuj = βu + τd(u,j) + λd(u,j−1) + χd(u,j−1)d(u,j) + εuj , (1)

where βu is the effect of subject u, τi is the effect of treatment i, λi is the general carryover effect
of treatment i, χii′ is the additional specific carryover effect when treatment i is followed by itself,
with χii′ = 0 if i 6= i′, and εuj are independent identically distributed errors with expectation 0
and variance σ2. In vector notation, we have

Y = B β + Td τ + Ld λ + Sd χ + ε (2)

where Y is the n-vector of responses, β the b-vector of subject effects, τ the t-vector of treatment
effects, λ the t-vector of carryover effects and χ the t-vector of self-carryover effects whose entries
are χii, 1 6 i 6 t. The matrices B, Td, Ld and Sd are the design matrices of subjects, direct
treatments, carryover and specific self-carryover effects. Note that var(ε) = σ2Ibk. We define the
vector φ of total effects by φ = τ + λ + χ, which corresponds to the direct effect of a treatment
in addition to that treatment’s carryover effect when preceded by itself. If θ′ = (τ ′, λ′, χ′) and
K ′ = (It|It|It), then

φ = K ′θ.

The model we have described does not include period effects. However, it will be seen in §3.3
that the optimal designs obtained for this model are also optimal when period effects are present.
We denote by Ωt,b,k the set of all cross-over designs with t treatments, b subjects and k periods.
We also denote respectively by In, Jn and In the n× n identity matrix, the n× n matrix of ones
and the n-vector of ones.

3. Linearization of the problem

3.1. Information matrices
There are two equivalent ways to define the information matrix for the parameter φ (see

Pukelsheim, 1993, chapter 3). The first one is to consider a linear reparameterize of the model
by θ 7→ η = (φ′, ψ′)′, then calculate the partitioned information matrix Cd(η) of η and derive the
information matrix Cd(φ) for φ by taking the Schur-complement in Cd(η). This approach allows
one to compute the information matrix for a given design, but may lead to untractable formulae to
derive optimal designs. In order to adapt Kushner’s (1997) methods to our case, it is preferable to
use a definition of Cd(φ) through an extremal representation which allows linearization techniques.
This approach is presented below.

The information matrix for the whole parameter θ′ = (τ ′, λ′, χ′) is given by:

Cd(θ) = (Td|Ld|Sd)
′
ω⊥B (Td|Ld|Sd)

denoting ωB = B (B′B)−1
B′ the projection matrix onto the column span of B and ω⊥B = In−ωB .

So:

Cd (θ) =




T ′dω
⊥
BTd T ′dω

⊥
BLd T ′dω

⊥
BSd

L′dω
⊥
BTd L′dω

⊥
BLd L′dω

⊥
BSd

S′dω
⊥
BTd S′dω

⊥
BLd S′dω

⊥
BSd


 =




Cd11 Cd12 Cd13

C ′d12 Cd22 Cd23

C ′d13 C ′d23 Cd33


 . (3)

The information matrix for the total effects φ may be obtained from Cd (θ) by the following
extremal representation proposed by Gaffke (1987):

Cd(φ) = min
L∈R3t×t:L′K=It

L′Cd(θ)L, (4)

where the minimum, which exists and is unique, is taken relative to the Loewner ordering. We
recall that, for two t × t symmetric matrices M and N , M 6 N relative to the Loewner ordering
means that u′Mu 6 u′Nu for any t-vector u.
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Lemma 1. The row and column sums of Cd(φ) are zero, i.e. Cd(φ)It = 0.

Proof. It is equivalent to prove that I′tCd(φ)It = 0. Since TdIt = In and ω⊥BIn = 0, we have
I′tCd11It = 0. Consider L1 = (It|0t|0t)′ where 0t is the t× t zero matrix. L1 satisfies the constraint
L′1K = It. Therefore, from (4), I′t Cd(φ) It 6 I′t L′1 Cd(θ) L1 It = I′t Cd11 It = 0.

2

The definition of Cd(φ) given by (4) does not provide an explicit expression. Especially, the
matrix L∗ that achieves the minimum has usually an untractable form (see Pukelsheim, 1993,
chapter 3). A design d is said to be symmetric if all its matrices Cdij are completely symmetric,
i.e. if Cdij = (aij It + bij Jt) for some scalars aij and bij . For such designs, the matrix L∗ has the
simple parametric form given by the following lemma.

Lemma 2 (Druilhet and Tinsson, 2009, Prop. 1). If a design d is symmetric, then Cd(φ) is
completely symmetric. Moreover, let L∗ be a matrix that achieves the minimum in (4), i.e. such
that

Cd(φ) = L∗′Cd(θ)L∗.

Then, L∗ may be chosen among the matrices L having the following form

L = ((1− x1 − x2) It − (y1 + y2) Jt|x1It + y1Jt |x2It + y2Jt) , (5)

where x1, x2, y1 and y2 are scalars.

Note that the parametric form of L in (5) includes the constraint L∗′K = It. We denote x∗1,
x∗2, y∗1 and y∗2 the scalars corresponding to L∗. A completely symmetric matrix with zero row
and column sums is entirely determined by its trace. Therefore, for a symmetric design, we can
obtained scalars x∗1, x∗2, y∗1 and y∗2 the by minimizing tr (L∗′Cd(θ)L∗). For any design d, we denote
cdij = tr (Cdij) and c̃dij = tr (CdijJt), i, j = 1, 2, 3.

Lemma 3. If a design d is symmetric,

tr(Cd(φ)) = min
x1,x2,y1,y2

qd (x1, x2, y1, y2) = qd (x∗1, x
∗
2, y

∗
1 , y∗2) ,

where x∗1, x
∗
2, y

∗
1 and y∗2 are the scalars defined in Lemma 2 and

qd (x1, x2, y1, y2) = (1− x1 − x2)
2
cd11 + 2x1 (1− x1 − x2) cd12 + 2x2 (1− x1 − x2) cd13

+x2
1cd22 +

(
2x1y1 + ty2

1

)
c̃d22 + x2

2cd33 +
(
2x2y2 + ty2

2

)
c̃d33

+2x1x2cd23 + 2 (x1y2 + x2y1 + ty1y2) c̃d23.

Proof. Since TdIt = In and ω⊥BIn = 0, Cd1jIt = I′tCd1j = 0 and Cd1jJt = JtCd1j = 0 for
j = 1, 2, 3. Thus,

L∗′Cd (θ)L∗ = (1− x∗1 − x∗2)
2
Cd11 + 2x∗1 (1− x∗1 − x∗2) Cd12 + 2x∗2 (1− x∗1 − x∗2) Cd13

+(x∗1It + y∗1Jt)Cd22 (x∗1It + y∗1Jt) + (x∗2It + y∗2Jt) Cd33 (x∗2It + y∗2Jt)
+2 (x∗1It + y∗1Jt)Cd23 (x∗2It + y∗2Jt).

Remark that tr (JtCdijJt) = tr
(
CdijJ

2
t

)
= t tr (CdijJt) = tc̃dij . Therefore, from lemma 2,

tr(Cd(φ)) = tr (L∗′Cd (θ) L∗) = qd (x∗1, x
∗
2, y

∗
1 , y∗2). Since the minimum in (4) exists and is unique,

we have
tr(Cd(φ)) = min

L∈R3t×3:L′K=It

tr(L′Cd(θ)L) = min
x1,x2,y1,y2

qd (x1, x2, y1, y2) .

2

Lemma 4. Let d be a symmetric design, from lemmas 1, 2 and 3, we have

Cd(φ) =
qd (x∗1, x

∗
2, y

∗
1 , y∗2)

t− 1

(
It − 1

t
Jt

)
.

Proof. From Lemma 2, the matrix Cd(φ) is completely symmetric. From Lemma 1, Cd(φ)It = 0.
So Cd(φ) = α

(
It − 1

t Jt

)
for some scalar α. Then tr(Cd(φ)) = α(t − 1) and, from Lemma 3,

α(t− 1) = qd (x∗1, x
∗
2, y

∗
1 , y∗2). 2
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Lemma 5. For any design d, we have:

tr(Cd(φ)) 6 min
x1,x2,y1,y2

qd (x1, x2, y1, y2)

Proof. The proof of this lemma is similar to the proof of Proposition 2 by Druilhet and Tinsson
(2009) and will be therefore omitted. 2

3.2. Decomposition over the subjects
We denote by Tdu, Ldu and Sdu the incidence matrices restricted to subject u, thus T ′d =

(T ′d1| . . . |T ′db) , L′d = (L′d1| . . . |L′db) and S′d = (S′d1| . . . |S′db). Since ω⊥B = Ib ⊗ Qk with Qk =
Ik − k−1Jk, each coefficients cdij and c̃dij can be decomposed using the contribution c

(u)
dij and c̃

(u)
dij

of each subject u. For example when i = j = 1:

cd11 = tr (Cd11) = tr
(
T ′dω

⊥
BTd

)
=

b∑
u=1

c
(u)
d11 with c

(u)
d11 = tr (T ′duQkTdu) .

In order to calculate all the cdij and c̃dij , we introduce the following notations for each subject u:
nui is the number of occurrences of treatment i, mui is the number of occurrences of treatment i
followed by itself and tui is 1 if treatment i is in the last period, 0 otherwise. We denote also by
nu, mu and tu the vectors constituted by the t values nui, mui and tui and 〈., .〉 is the usual scalar
product on Rt. With these notations, c

(u)
dij and c̃

(u)
dij can be written:

c
(u)
d11 = k − 1

k
‖nu‖2 , c

(u)
d12 = 〈mu, It〉 − 1

k
〈nu, nu − tu〉 ,

c
(u)
d13 = 〈mu, It〉 − 1

k
〈nu,mu〉 , c

(u)
d22 = (k − 1)− 1

k
‖nu − tu‖2 ,

c
(u)
d23 = 〈mu, It〉 − 1

k
〈nu − tu,mu〉 , c

(u)
d33 = 〈mu, It〉 − 1

k
‖mu‖2,

c̃
(u)
d22 =

1
k

(k − 1) , c̃
(u)
d23 =

1
k
〈mu, It〉,

c̃
(u)
d33 = 〈mu, It〉

(
1− 〈mu, It〉

k

)
.

Note that it is not necessary to compute all these 9 values for each subject because c̃
(u)
d22 depends

only on the size k and c̃
(u)
d33 = kc̃

(u)
d23

(
1− c̃

(u)
d23

)
. It follows that:

qd (x1, x2, y1, y2) =
b∑

u=1

h
(u)
d (x1, x2, y1, y2) with:

h
(u)
d (x1, x2, y1, y2) = c

(u)
d11 + 2

(
c
(u)
d12 − c

(u)
d11

)
x1 + 2

(
c
(u)
d13 − c

(u)
d11

)
x2

+
(
2c

(u)
d11 − 2c

(u)
d12 − 2c

(u)
d13 + 2c

(u)
d23

)
x1x2+

(
2c̃

(u)
d22

)
x1y1 +

(
2c̃

(u)
d33

)
x2y2

+
(
2c̃

(u)
d23

)
x1y2 +

(
2c̃

(u)
d23

)
x2y1 +

(
2tc̃

(u)
d23

)
y1y2 +tc̃

(u)
d22y

2
1 + tc̃

(u)
d33y

2
2

+
(
c
(u)
d11 − 2c

(u)
d12 + c

(u)
d22

)
x2

1 +
(
c
(u)
d11 − 2c

(u)
d13 + c

(u)
d33

)
x2

2.

Two sequences of treatments in two subjects u1 and u2 are said to be equivalent if h
(u1)
d = h

(u2)
d

(that is if they have the same values for the cdij and c̃dij in hd). Therefore, for given k and t,
we can divide the set of all possible treatment sequences into L equivalence classes. By abuse of
notation ` refers now to an equivalence class as well as its index, so we can write 1 6 ` 6 L and:

qd (x1, x2, y1, y2) = b

L∑

`=1

πd` h` (x1, x2, y1, y2) (6)

with πd` the proportion of subjects assigned to the class ` and h` common value of h
(u)
d for all the

subjects u of the class `.
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3.3. Model with period effects
Consider the model (1) with the addition of period effects:

Y = P γ + B β + Td τ + Ld λ + Sd χ + ε (7)

where γ is the k-vector of periods effects and P = Ib ⊗ Ik is the plot×period incidence matrix.
Write θ̃ = (τ |λ|φ|γ). The information matrix for θ̃ is:

C̃d(θ̃) =
(

Cd(θ) C̃d12

C̃d21 C̃d22

)
,

where Cd(θ) is the information matrix given by (3) corresponding to Model (2), C̃d21 =
(P ′ω⊥BTd|P ′ω⊥BLd|P

′
ω⊥BSd), C̃d12 = C̃ ′d21 and C̃d22 = P ′ω⊥BP = b(Ik−Jk/k). Note that (T ′dω

⊥
B P )ij =

pdij−rdi/k, where pdij is the number of occurrences of treatment i on period j and rdi is the number
of occurrences of treatment i over the whole design, (L′dω

⊥
B P )ij = pdi(j−1) − r̃di/k where pdi0 = 0

and r̃di is the number of occurrences of treatment i over the whole design except the first period
and (S′dω

⊥
B P )ij = sdij − sdi/k where sdij is the number of times treatment i is preceded by itself

on period j and sdj is the number of times treatment i is preceded by itself over the whole design.
Denote by C̃d(φ) the information matrix for φ under Model (7):

C̃d(φ) = min
L̃∈R(3t+k)×t:L̃′K=It

L̃′C̃d(θ̃)L̃, (8)

where K ′ = (It|It|It|0t×k).

Lemma 6. The row and column sums of C̃d(φ) are zero.

Proof. The proof is similar to the proof of Lemma 1 with L1 = (It|0t|0t|0t×k)′.
2

A design is said to be balanced on the periods if each treatment appears equally often in each
period and if the number of times a treatment is preceded by itself on a given period, except the
first one, does not depend on the treatment label.

Proposition 1. If d is a symmetric design balanced on the periods, then the information matrix
for total effects is the same under Model (2) and Model (7).

Proof.
Step 1 : if d is a design balanced on the periods, then pdij = b/t, rdi = bk/t and r̃di = b(k−1)/t for
i = 1, ..., t and j = 1, ...t. Moreover adj = sdij − sdi/k do not depend on i and C̃ ′d12 = (0k×t|E′

d|F ′d)
with Ed the (t× k) matrix b

kt (−(k − 1)It|It|...|It) and Fd the (t× k) matrix (ad1It|...|adkIt). Since
QtIt = 0, we have QtEd = QtFd = 0 and then (I3 ⊗Qt) C̃d12 = 0.
Step 2 : write L̃∗

′
= (M ′|N ′) a matrix L that achieves the minimum in (8) where M ′ = (A′|B′|C ′)

with A, B and C of size t×t such that A+B+C = I and N is a k×t matrix. By the same argument
that used in Proposition 1 by Druilhet and Tinsson (2009), the matrices A, B and C can be chosen
completely symmetric. Therefore, A, resp. B and C, commutes with Qt and QtM

′ = M ′(I3⊗Qt).
Step 3 : from Lemma 6, C̃d(φ)It = 0. Thus, C̃d(φ) = QtC̃d(φ)Qt = QtM

′Cd(θ)MQt+QtM
′C̃d12NQt+

QtN
′C̃d21MQt + QtN

′C̃d22NQt. But, from step 1 and 2, QM ′C̃d12 = M ′(I3 ⊗ Qt)C̃d12 = 0 and
(C̃d21MQt)′ = QM ′C̃d12 = 0. Therefore, C̃d(φ) = QtM

′Cd(θ)MQt +QtN
′C̃d22NQt. Since M and

N minimize this expression and N is allowed to vary freely, N can be chosen equal to 0 and then
C̃d(φ) = Cd(φ).

2

Corollary 1. A symmetric period-balanced design which is universally optimal under model (2) is
also universally optimal under model (7).
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4. Optimal designs

Our goal is now to obtain universally optimal designs. Since, for any design d, Cd(φ) have
row and column sums equal to zero, we know from Kiefer (1975) that a design d∗ for which the
information matrix Cd∗(φ) is completely symmetric and maximizes the trace over all the designs
d in Ωt,b,k is universally optimal for the estimation of total effects.

Proposition 2. Let d∗ be a symmetric design in Ωt,b,k with proportions π∗ = (πd∗1, ..., πd∗L) that
achieve the maximum in

max
π

min
(x1,x2,y1,y2)

b

L∑

`=1

π` h` (x1, x2, y1, y2) , (9)

then d∗ is universally optimal for the estimation of total effects over Ωt,b,k.

Proof. From Lemma 2, Cd∗ is completely symmetric. Therefore, it is sufficient to prove that
d∗ maximises the trace of the information matrix. By Lemma 3 and Lemma 5, for any design d in
Ωt,b,k, we have

tr(Cd(φ)) 6 min
x1,x2,y1,y2

qd (x1, x2, y1, y2) = min
x1,x2,y1,y2

b

L∑

`=1

πd` h` (x1, x2, y1, y2)

6 max
π

min
(x1,x2,y1,y2)

b

L∑

`=1

πd` h` (x1, x2, y1, y2) = tr(Cd∗(φ)).

2

The following proposition by Kunert and Martin (2000) provides a simple way to check if a
symmetric design is universally optimal.

Proposition 3. Consider a symmetric design d∗ ∈ Ωt,b,k and a point (x∗1, x
∗
2, y

∗
1 , y∗2) such that the

first derivatives of qd∗ are equal to zero. If we have:

∀ ` = 1, ...,L , bh` (x∗1, x
∗
2, y

∗
1 , y∗2) 6 qd∗ (x∗1, x

∗
2, y

∗
1 , y∗2)

then d∗ is universally optimal over Ωt,b,k.

Proof. Denote q∗d the minimum of the function qd. For every design d ∈ Ωt,b,k it is clear that
q∗d 6 qd (x∗1, x

∗
2, y

∗
1 , y∗2) and:

qd (x∗1, x
∗
2, y

∗
1 , y∗2) = b

L∑

`=1

πd`h` (x∗1, x
∗
2, y

∗
1 , y∗2) 6 b

L∑

`=1

πd`
qd∗ (x∗1, x

∗
2, y

∗
1 , y∗2)

b
.

Since qd∗ (x∗1, x
∗
2, y

∗
1 , y∗2) = q∗d∗ , d∗ maximizes the trace of the information matrix over Ωt,b,k.

2

In order to prove that the optimal design d∗ is generated by only one treatment sequence
`1 (i.e. qd∗ (x1, x2, y1, y2) = bh`1 (x1, x2, y1, y2)), we have to find (x∗1, x

∗
2, y

∗
1 , y∗2) that minimize

h`1 , find the minimum q∗d∗ of qd∗ (that is only find the minimum of h`1) and check that for
1 6 ` 6 L, bh` (x∗1, x

∗
2, y

∗
1 , y∗2) 6 q∗d∗ . Otherwise an optimal design can be generated by two or more

sequences and only sequences ` such that h` (x∗1, x
∗
2, y

∗
1 , y∗2) = max16`6L h` (x∗1, x

∗
2, y

∗
1 , y∗2) have to

be considered. Therefore (x∗1, x
∗
2, y

∗
1 , y∗2) must be at the intersection of two or more of the h` and

the proportions πd` must be chosen such that the partial derivatives of qd (x∗1, x
∗
2, y

∗
1 , y∗2) are both

0.
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5. Some examples

We give here the way to obtain optimal or efficient designs from optimal sequences. First, the
case k = 4 is treated with all the details. Then, we consider all the cases for k 6 10. We can
see that the optimal designs obtained here are most often generated by a single sequence whereas
optimal circular designs obtained by Druilhet and Tinsson (2009) are generated by a mixture of
sequences. However, it is worth noting that if we use the optimal sequences obtained here to
generate circular designs, we obtain very efficient designs.

Example 1. Consider the case k = 4. If t > 4 then the following table lists the equivalence classes
and the corresponding values c

(`)
d11, c

(`)
d12, c

(`)
d13, c

(`)
d22, c

(`)
d23, c

(`)
d33 and c̃

(`)
d23.

` Sequence c
(`)
d11 c

(`)
d12 c

(`)
d13 c

(`)
d22 c

(`)
d23 c

(`)
d33 c̃

(`)
d23

01 [ 1 1 1 1 ] 0 0 0 3/4 3/4 3/4 3/4
02 [ 1 1 1 2 ] 3/2 −1/4 1/2 3/4 1/2 1 1/2
03 [ 1 1 2 1 ] 3/2 −3/4 1/4 7/4 1/2 3/4 1/4
04 [ 1 1 2 2 ] 2 1/2 1 7/4 5/4 3/2 1/2
05 [ 1 1 2 3 ] 5/2 −1/4 1/2 7/4 1/2 3/4 1/4
06 [ 1 2 1 2 ] 2 −3/2 0 7/4 0 0 0
07 [ 1 2 1 3 ] 5/2 −5/4 0 7/4 0 0 0
08 [ 1 2 2 1 ] 2 −1/2 1/2 7/4 1/2 3/4 1/4
09 [ 1 2 2 2 ] 3/2 1/4 1/2 7/4 1 1 1/2
10 [ 1 2 3 1 ] 5/2 −1 0 9/4 0 0 0
11 [ 1 2 3 3 ] 5/2 0 1/2 9/4 3/4 3/4 1/4
12 [ 1 2 3 4 ] 3 −3/4 0 9/4 0 0 0

For the sequence [ 1 1 2 2 ] the corresponding function h4 is then:

h4 (x1, x2, y1, y2) = 2− 3x1 − 2x2 +
7
2
x1x2 +

3
2
x1y1 + 2x2y2

+x1y2 + x2y1 +ty1y2 +
3t

4
y2
1 + ty2

2+
11
4

x2
1 +

3
2
x2

2

The partial derivatives of h4 are zero if and only if:

x∗1 =
8t (t− 2)

8− 34t + 17t2
, x∗2 =

2t2

8− 34t + 17t2
, y∗1 =

−8 (t− 2)
8− 34t + 17t2

, y∗2 =
−2t

8− 34t + 17t2
.

and then:

h4 (x∗1, x
∗
2, y

∗
1 , y∗2) =

4
(
5t2 − 11t + 4

)

8− 34t + 17t2

Finally we check that:

∀ ` = 1, ..., 12 , h` (x∗1, x
∗
2, y

∗
1 , y∗2) 6 h4 (x∗1, x

∗
2, y

∗
1 , y∗2)

and then the sequence [ 1 1 2 2 ] is optimal.

Example 2. This example is devoted to designs generated by a single optimal sequences. For k > 4
it is a tedious task to obtain explicit results, so optimal designs are computed numerically. The
tables given below list all the results for k = 4, 5, 6, 7, 8, 9, 10 and t > k:

k Single optimal sequence

4 [ 1 1 2 2 ]
5 [ 1 1 2 2 2 ]
6 none
7 [ 1 1 2 2 3 3 3 ]

k Single optimal sequence

8 [ 1 1 1 2 2 3 3 3 ]
9 [ 1 1 1 2 2 2 3 3 3 ]

10 [ 1 1 1 2 2 2 3 3 3 3 ]
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A simple way to construct a symmetric design balanced on the periods which is universally
optimal is to consider all the possible treatment permutations from an optimal sequence. For
example, for t = 4 and k = 7, the following design is universally optimal:




1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4
1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4
2 2 3 3 4 4 1 1 3 3 4 4 1 1 2 2 4 4 1 1 2 2 3 3
2 2 3 3 4 4 1 1 3 3 4 4 1 1 2 2 4 4 1 1 2 2 3 3
3 4 2 4 2 3 3 4 1 4 1 3 2 4 1 4 1 2 2 3 1 3 1 2
3 4 2 4 2 3 3 4 1 4 1 3 2 4 1 4 1 2 2 3 1 3 1 2
3 4 2 4 2 3 3 4 1 4 1 3 2 4 1 4 1 2 2 3 1 3 1 2




When the number of different treatments that appear in the optimal sequence is 3, this method
required t(t−1)(t−2) subjects. We propose now a method which requires, when it is feasible, only
t(t − 1) subjects. We first construct a binary block design with 3 periods such that each ordered
pair of distinct treatments appear equally often on each pair of periods. The resulting design is a
balanced incomplete block design in the usual sense which is also neighbour balanced at distance
1 and 2 and balanced on the period. From this design, we construct the final design by replicating
the treatment according to the optimal sequence pattern. It is straightforward to check that the
resulting design is a symmetric design balanced on the periods and therefore is universally optimal
according to Proposition 2 and Corollary 1. For example, again for t = 4 and k = 7, we consider
first the following design with 3 periods and 12 subjects:




1 1 1 2 2 2 3 3 3 4 4 4
2 3 4 1 3 4 1 2 4 1 2 3
3 4 2 4 1 3 2 4 1 3 1 2




It satisfies the conditions above. From this design and the optimal sequence, we obtain the design:



1 1 1 2 2 2 3 3 3 4 4 4
1 1 1 2 2 2 3 3 3 4 4 4
2 3 4 1 3 4 1 2 4 1 2 3
2 3 4 1 3 4 1 2 4 1 2 3
3 4 2 4 1 3 2 4 1 3 1 2
3 4 2 4 1 3 2 4 1 3 1 2
3 4 2 4 1 3 2 4 1 3 1 2




which is universally optimal among all possible designs with 12 subjects, 4 treatments and 7 periods.

Example 3. Consider the case k = 6. The optimal design is then a mixture of the two sequences
[ 1 1 1 2 2 2 ] and [ 1 1 2 2 3 3 ] . The optimal proportions of these sequences depend on t: some
values are given below:

Optimal sequences t = 6 t = 7 t = 8 t = 10 t = 20
[ 1 1 1 2 2 2 ] 0.482 0.428 0.388 0.330 0.210
[ 1 1 2 2 3 3 ] 0.518 0.572 0.612 0.670 0.790

Note that the sequence [ 1 1 2 2 3 3 ] is always predominant in the mixture. In practice it can be
used alone because of its high efficiency which is given below:

Sequence t = 6 t = 7 t = 8 t = 10 t = 20
[ 1 1 2 2 3 3 ] 0.989 0.992 0.994 0.996 0.998

Example 4. Now consider a situation where t is less than the number of treatments that appear in
an optimal sequence. For example k = 10 and t = 2. Such cases are easier to compute because the
number of equivalence classes to be considered is lower than in the general case. In our example
there are only 46 equivalence classes (instead of 973 for t > 10) and we find that an optimal design
is generated by the following single sequence :

[ 1 1 1 1 1 2 2 2 2 2 ]
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