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Abstract

We present a new approach of univariate partial least squares regression (PLSR)
based on directional signal-noise ratios. We show how PLSR, unlike PCR, takes
into account the actual value and not only the variance of the OLS estimator. We
find an orthogonal sequence of directions associated with decreasing signal-noise
ratios. Then, we state PLS estimators as least squares estimators constrained to be
null onto the last directions. We also give another procedure that shows how PLSR
rebuilds the OLS estimator iteratively by seeking at each step the direction with
largest difference of signals over the noise. The latter approach does not involve any
arbitrary scale or orthogonality constraints.
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1 Introduction

Many different regression methods are now available to improve ordinary least
squares (OLS) estimators in multiple linear regression when explanatory vari-
ables are strongly correlated. Like principal component regression (PCR), par-
tial least squares regression (PLSR) is based on the construction of latent
variables, i.e. new variables that are linear combinations of the original ex-
planatory variables. In PCR, these latent variables have a statistical meaning:
they explain the internal covariance structure of the explanatory variables.
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In PLSR, the statistical interpretation of the latent variables is not always
so clear, but intuitively, they make a compromise between the internal struc-
ture of the explanatory variables and their relationship with the response.
Continuum regression (Stone and Brooks, 1990) gives a more general latent
variables method that includes PLSR and PCR. Latent variables approach
is often related to an underlying common joint covariance distribution struc-
ture between the explanatory variables and the response for each individual:
Helland (1990, 1992), Helland and Almøy (1994) give a population model for
PLSR and establish asymptotic properties. However, in some situations, the
sampling scheme used to collect data can be complex or unknown; on the other
hand, the aim of the study can be to predict new individuals with the same
conditional distribution but different joint distributions. In these cases, it is of
interest to formulate a conditional model and then to consider the explanatory
variables as fixed. See Breiman and Spector (1992) for further discussions and
simulation studies upon the difference between fixed and random cases. In this
paper, we assume a conditional model and focus on the improvement of the
least squares estimator.

Like PCR and Ridge regression, PLSR provides a shrunk version of the OLS
estimator (De Jong, 1995 and Goutis, 1996). For a comparison of these three
techniques by simulations and case studies, see Frank and Friedman (1993);
for a general discussion, see Brown (1993). When the explanatory variables are
strongly correlated, the improvement of OLS estimator obtained by shrinking
can be quite large w.r.t. the mean-squared error (MSE). However the MSE
is a global measure of how the estimate is far from the true parameter and
does not show how the estimate is improved on specific directions. Butler and
Denham (2000) and Lingjærde and Christophersen (2000) study the shrink-
age properties of PLS estimators onto directions given by the singular values
decomposition of the design matrix.

In this paper, we aim to show that PLSR singles out some directions to shrink
OLS estimators. More precisely, while PCR shrinks the OLS estimator onto
directions with large variance (under a scale constraint), we show how PLSR
do the same onto some directions corresponding to small signal-noise ratios.
This signal-noise ratio is directly related with optimal directional shrinkage
factors. We also show how the sequence of PLS estimators rebuilds successively
the OLS estimator by seeking the direction of maximal difference of signals
over the noise.

In section 2, we give a brief review of the classical constrained estimators.
In section 3, we recall some known results on the link between shrinkage
coefficients and signal-noise ratios for a one-dimensional parameter. Then,
we apply these results to linear models. In section 4, we use a maximization
procedure to obtain a sequence of orthogonal directions with decreasingly
ordered signal-noise ratios. Then, we obtain PLS estimators as OLS estimators
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under the constraint of nullity onto the last directions. In section 5, we propose
a constraint free algorithm based on the difference of signals over the noise.
This algorithm gives iteratively the PLS estimators.

2 Multiple linear model and biased estimation

We assume the following model for the n individuals:

ẏi = µ + ẋ′iβ + εi, i = 1, ..., n, (1)

where ẏi is the real response observed on the ith individual, ẋi are the p-vector
of its explanatory variables considered as fixed, β is the unknown p-vector
of parameters, and εi are i.i.d. mean zero variance σ2 real random variables.
Removing the dots on the original data means that their sample averages,
denoted by ¯̇y and ¯̇x, has been removed. In vector notation, we have for the
centered model:

y = Xβ + ε. (2)

To avoid handling complicated generalized inverses, the design matrix X is
assumed to be of full-rank. The non full-rank case will be discussed in section
7.

We write s = X ′y and S = X ′X. We denote by In the (n, n) identity matrix.
Let A be a (r,s) matrix, and M be a (r,r) symmetric positive matrix, we denote
PM

A = A(A′MA)−A′M the projector matrix onto Range(A) w.r.t. M . We also
write PA = P Ir

A .

Consider a new individual ẋo and assume that its response ẏo is given by

ẏo = µ + ẋ′o β + εo (3)

where εo is independent of (ε1, ...εn) with mean 0 and variance σ2
o . We want

to predict ẏo by ¯̇y + x′o β̂, where xo = ẋo − ẋo and β̂ is an estimate of β. It
is well known that the best linear unbiased estimator of x′o β is x′o β̂ols, where
β̂ols = (X ′X)−1X ′y = S−1 s. It is also well known that ¯̇y + x′o β̂ols is the best
linear unbiased predictor of ẏo. However, for some xo, x′o β̂ols gives very poor
estimate of x′o β or predictor of ẏo. There are many methods to improve the
estimation of β by biased estimators.

For example, Ridge estimators are obtained by approximating S by S +αI in
the normal equation S β̂ = s, where the real α is a control parameter. They
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can also be obtained as constrained least squares estimators:

β̂Ridge
c = ArgMin

β:β′β≤c
||y −Xβ||2 (4)

where c depends of α.

In a similar way, Lasso estimators (Tibshirani, 1996) are defined by

β̂Lasso
c = ArgMin

β:
∑

|βi|≤c

||y −Xβ||2. (5)

In PCR, it is postulated that bad estimation of x′o β by OLS is due to the
fact that var(x′o β̂ols) can be very ”large”. To give a sense to ”large”, a scale
constraint must be added: in PCR, the constraint is x′o xo = 1. Denote by
~wpcr

1 , ..., wpcr
p an orthogonal basis of unit eigenvectors of S corresponding to

decreasingly ordered eigenvalues. Since var(x′o β̂ols) = σ2 x′oS
−1xo, PCR forces

the OLS to be zero onto the directions given by the last eigenvectors. More
precisely, define W

pcr

(q) = (wpcr
q+1|...|wpcr

p ), then

βpcr

(q) = ArgMin
β:W

pcr
(q)

′
β=0

||y −Xβ||2. (6)

This expression shows how the OLS estimator is modified in a statistically
meaningful way. On another way, βpcr

(q) can be obtained after a regression on
the latent variables tpcr

1 = X wpcr
1 , tpcr

2 = X wpcr
2 , ..., tpcr

q = X wpcr
q . In that case,

the vectors wpcr
1 , wpcr

2 , ..., wpcr
q are weight vectors. The fact that the same vector

wi represent two different things, either a direction or a weight vector, comes
from the fact that wpcr

1 , wpcr
2 , ..., wpcr

p are orthogonal (see Lemma 5 and Formula

10). The main criticism of PCR is that the constraints W
pcr

(q)
′
β = 0 are obtained

by considering var(x′o β̂ols) (the noise) but not the actual value of x′o β̂ols (the
signal). In other words, PCR constructs the latent variables independently of
their relationship with the response y.

In the usual approach, PLSR is a latent variables method that aims to over-
come this undesirable feature of PCR. The first latent variables tpls

1 = X wpls
1

maximizes the empirical covariance:

cove(t, y) = cove(X w, y) = w′ X y (7)

under the scale constraint w′w = 1. The ith latent variables ti = X wpls
i

maximizes (7) under the constraints w′w = 1 and ti ⊥ (tpls
1 , ..., tpls

i−1). Define

T pls

(q) = (tpls
1 | · · · |tpls

q ) and W pls

(q) = (wpls
1 |...|wpls

q ). The PLS estimator β̂pls

(q) based on
the q first latent variables is:
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β̂pls
(q) = W pls

(q)

(
T pls

(q)
′ T pls

(q)

)−1
T pls

(q)
′ y, (8)

= W pls

(q)

(
W pls

(q)
′ S W pls

(q)

)−1
W pls

(q)
′S β̂ols, (9)

= P
S
W pls

(q)
β̂ols. (10)

Note that equations 8, 9 and 10 are general properties of a latent variables
regressors.

Helland (1988) shows that Range
(
W(q)

)
= Kq where Kq is the Krylov sub-

space defined by:

Kq = span
(
s, S s, S2 s, ..., Sq−1 s

)
. (11)

He also shows that Martens’ algorithm (see Martens and Næs, 1989) is equiv-
alent to a Gram-Schmidt orthogonalization procedure of the nested Krylov
subspaces (K1, K2, ...) and gives the same estimator, as easily seen with For-
mula 10. Note that Formulas 8, 9 and 10 are general expressions of a latent
variables estimator.

The goal of the paper is to find an analogue to Formula 6 for PLSR. Of
course, any estimator obtained by latent variables, whatever they are, can be
expressed as a least squares estimator under some linear constraints. However,
we seek for PLSR constraints corresponding to direction that have a clear
statistical meaning. Since PLSR is a shrinkage method, shrinkage factors onto
directions are of importance. This will be the key point of our approach.

3 Shrinkage factors and signal-noise ratio

The signal-noise ratio arises naturally in univariate estimation to deal with
shrinkage. First, we recall some known facts on unidimensional shrinkage.
Then, we apply these notions to directions in linear model.

3.1 Shrinking a one-dimensional estimator or predictor

Let θ̂ be an unbiased estimator of a real parameter θ. We denote by σ2 the vari-
ance of θ̂. We want to improve θ̂ by shrinking, so we consider new estimators
a θ̂ for a ∈ R. Let a∗ be the scalar that minimizes the MSE, i.e. :

a∗ = ArgMin
a∈R

E
(
a θ̂ − θ

)2
. (12)
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We have,

a∗ =
ρ2

1 + ρ2
where ρ =

|θ|
σ

. (13)

When ρ is known, which arises in some scale models, a∗ θ̂ is uniformly better
under the quadratic lost among all the estimators a θ̂. When ρ is unknown but
σ2 is known, ρ can be estimated by

ρ̂ =
|θ̂|
σ

and â∗ =
ρ̂2

1 + ρ̂2
=

θ̂2

σ2 + θ̂2
. (14)

We see that the shrinkage factor â∗ is an increasing function of the signal-noise
ratio ρ̂. Bibby and Toutenburg (1977) study the properties of the estimator
â∗ θ̂. They also show that, in the normal case, the probability that â∗ θ̂ improve
θ̂ is very high: 77% or more depending on ρ. When ρ < 1, the probability is
equal to 1.

Consider now the following prediction problem: we want to predict yo = θ+εo

where εo ∼ (0, σ2
o) is independent of θ̂. The predictor ỹo = θ̂ is an unbiased

predictor of yo, i.e. E(θ̂) = E(yo) = θ, and we want to improve the prediction
by shrinking. The equivalent of the MSE in prediction is the mean-squared
error of prediction (MSEP):

MSEP = E(ỹo − yo)
2 = MSE + σ2

o .

The predictor a ỹo that minimizes the MSEP is a∗ ỹo with a∗ given by equation
13. Thus in both estimation and prediction problem, the best shrinkage factor
is the same.

3.2 Shrinkage factors in multiple linear regression

We apply the results of Section 3.1 to the linear model (2). For some xo ∈ Rp,
we are interested in the estimation of x′oβ. The minimum-variance unbiased
linear estimator of x′oβ is x′oβ̂

ols. To improve this estimator, we apply the
shrinkage factor presented in Section 3.1. So, we have:

a∗xo
=

ρ2
xo

1 + ρ2
xo

where ρxo =
|x′o β|

σ
√

x′o S−1xo

, (15)
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that can be estimated by

â∗xo
=

ρ̂2
xo

1 + ρ̂2
xo

where ρ̂xo =
|x′o β̂ols|

σ
√

x′o S−1xo

. (16)

If σ2 is not known, it can be replaced by an estimation. However, σ2 is a
positive constant and will not play any role in the following. Note that x 7→ ρ̂x

is positively homogeneous, that is:

∀α 6= 0, ρ̂αx = ρ̂x. (17)

Consequently, the signal-noise ratio ρ̂xo depends only on the direction given
by xo, not on the exact xo. More precisely:

ρ̂xo =
|x′o β̂|

σ
√

x′o S−1xo

=
|x′o S−1s|

σ
√

x′o S−1xo

=

√
s S−1s

σ
|cosS−1(x̂o, s)| , (18)

where cosS−1(x̂o, s) is the cosine of the angle (x̂o, s) w.r.t. the quadratic form
S−1. Thus, ρ̂xo depends only on the angle between xo and s = X ′y w.r.t. the
quadratic form S−1. The greater the angle w.r.t S−1 between x and s, the less
its signal ratio. Thus, the space of null signal-noise, which coincides with the
space of null signal, is the orthogonal complement w.r.t the quadratic form
S−1 of s. Moreover, the relationship between a∗xo

and xo is intrinsically non
linear and depends only on ρxo .

4 PLSR and directional signal-noise algorithm

In the classical algorithms used to construct PLS estimators, two kinds of
arbitrariness are involved: a scale constraint and an orthogonality constraint.
In this section, we present an algorithm based on the signal-noise ratio. Since
the signal-noise ratio is scale invariant, no scale constraint is necessary. The
algorithm seeks a sequence of orthogonal directions corresponding to decreas-
ing signal-noise ratios. Then, we show that PLS estimators as least squares
estimators constrained to be null onto the last directions of this sequence.

4.1 The signal-noise maximization procedure

Let start to seek the direction w1 that maximizes the signal-noise ratio, i.e.
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w1 = ArgMax
w∈Rp

(ρ̂w) = ArgMax
w∈Rp

|w′β̂|
σ
√

w′S−1w
. (19)

By a direct application of Cauchy-Schwarz’s inequality and because w′β̂ =
w′S−1s, we have:

Proposition 1 The first direction is spanned by s, that is w1 is any vector
proportional to s.

It is interesting to see that the direction of maximal noise play a central role
in PLSR.

Iteratively, at step i, the direction wi maximizes the signal-noise ratio ρ̂w under
the orthogonality constraints w ⊥ (w1, ..., wi−1).

Define q∗ the lowest integer q such that Kq+1 = Kq, where Kq is the Krylov
subspace given by (11). We have:

S Kq∗ = Kq∗ . (20)

This invariance property implies that β̂ols belongs to Kq∗ .

Lemma 2 The orthogonal subspace of Kq∗ w.r.t. the quadratic form S is the
same as the orthogonal subspace w.r.t. I. Moreover, K⊥

q∗ is included in the
null-signal space, that is

∀w ∈ K⊥
q∗ , w

′β̂ols = 0.

PROOF. Let w be in the orthogonal to Kq∗ w.r.t. I and w∗ be any vector
in Kq∗ , then w′Sw∗ = w′ (Sw∗) = 0 since Sw∗ ∈ Kq∗+1 = Kq∗ . Hence w lies
in the orthogonal to Kq∗ w.r.t. S. Consider now w ∈ K⊥

q∗ . Then, ∀w∗ ∈ Kq∗ ,

w′w∗ = 0. Equation 20 gives s = Sw∗∗ for some w∗∗ ∈ Kq∗ and then w′β̂ols =
w′S−1s = w′S−1Sw∗∗ = w′w∗∗ = 0. 2

We can now formulate the theorem that characterizes the sequence w1, ..., wp

and shows its relationship with the Krylov subspaces K1, ..., Kq∗ .

Theorem 3 For i = 1, ..., p, the directions wi can be obtained as follow:

(1) If i ≤ q∗, then wi belongs to Ki and is orthogonal to Ki−1. Moreover,
w′

iβ̂
ols 6= 0.

(2) If i > q∗, then wi is any vector orthogonal to (w1, ..., wi−1). In that case,
w′

iβ̂
ols = 0, i.e. wi belongs to the null-signal space.
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PROOF.

We use a recurrence procedure. It has already been shown that w1 = s. We
assume that the theorem is true for k = 1, ..., i − 1. At step i, we seek wi

that maximizes the signal-noise ratio and that is orthogonal to w1, ..., wi−1.
By Formula 17, we actually seek a direction. Thus, without loss of generality,
we may impose a scale constraint. The choice of the constraint will change
the actual wi but not the direction given by wi. So, we choose the simplest
constraint which is w′ S−1 w = 1. Under this constraint, the signal-noise ratio
reduce to |w′β̂ols|. If w maximizes |w′β̂ols| then either w either −w maximize
w′β̂olsa. So, we want to maximize w′ β̂ols under the constraint w′ S−1 w = 1
and w′ wk = 0 for k = 1, ..., i− 1.

Case 1: i ≤ q∗

The maximizing wi will be a solution to the Lagrange multiplier equation

S−1 s + λS−1 wi +
i−1∑

k=1

µk wk = 0. (21)

By recurrency, wk ∈ Kk for k = 1, ..., i− 1, thus S wk ∈ Kk+1 ⊆ Ki. Multiply-
ing Equation 21 by S gives:

λ wi = −s−
i−1∑

k=1

µk S wk. (22)

Since k < q∗, Kk+1 6= Kk and w1, S w1, ..., S wi−1 are linearly independent.
Hence, λ cannot be equal to 0 and wi belongs necessarily to Ki. Point 1 is
established.

Multiplying Equation 21 by w′
i gives

w′
iS
−1 s + λwi S

−1 wi = 0. (23)

Thus, w′
iβ̂

ols 6= 0.

Case 2: i > q∗

Since wi is orthogonal to Kq∗ = span {w1, ..., wq∗}, the signal w′
iβ̂

ols = 0 ac-
cording to Lemma 2. Hence, the function to be maximized is null and every
wi in the orthogonal to w1, ..., wi−1 is a solution of the maximization problem.
Point 2 is established. 2

Theorem 3 shows that the sequence (w1, ..., wq∗) can be found by a Gram-
Schmidt orthogonalization procedure from the nested Krylov subspaces K1, ..., Kq∗ .

9



Therefore, it corresponds to Martens’ weight vectors sequence. However, in
our context, wi corresponds to a direction for the parameter β or its estimate
rather than weight vectors used to define latent variables. Denote

W(q) = (w1|...|wq) and W (q) = (wq+1|...|wp) . (24)

We obviously have:

Range
(
W (q)

)
= Range

(
W(q)

)⊥
. (25)

Therefore, signal-noise ratios and shrinkage factors of directions in Range
(
W (q)

)

are bounded above, i.e.

Proposition 4

∀x ∈ Range
(
W (q)

)
, ρ̂x ≤ ρ̂wq+1 and â∗x ≤ â∗wq+1

. (26)

4.2 PLS estimators as constrained least squares estimators

We show that PLS estimators are least squares estimators constrained to be
null onto the last directions of the sequence exhibited in Section 4.1. By For-
mula 26, we know that these directions are associated to the lowest shrinkage
factors or the lowest signal-noise ratios of the sequence.

Lemma 5 Let G be a p × g matrix of rank g (g ≤ p) and F a p × f matrix
(f = p− g) of rank f such that G′F = 0, then:

ArgMin
β:G′β=0

‖y −Xβ‖2 = S−1
(
I − P S−1

G

)
(s) = P S

F β̂.

PROOF. The proof of this Lemma can be found in Seber (1984).

Theorem 6 For q ≤ q∗, the PLS estimator β̂pls

(q) given by (8) is the least

squares estimator constrained to have null signal onto the space W (q):

β̂pls

(q) = ArgMin
β:W

′
(q)β=0

‖y −Xβ‖2 . (27)

PROOF. By Theorem 3, W
′
(q)Kq = 0, Rank(Kq) = q and Rank(W (q)) =

p− q, Lemma 5 with G = W (q) and F = Kq gives the result. 2
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Actually, the constraints W
′
(q)β = 0 do not need to take into account the

vectors wq∗+1, ..., wp since they belong to the null-signal space. More precisely,

let W̃(q) = (wq+1, ..., wq∗) for q < q∗ and W̃(q) = ∅ for q ≥ q∗, then, forcing the

least squares estimator to be zero either on W (q) or on W̃(q) both gives β̂pls

(q).
First, we give two technical results:

Lemma 7 Let G1 be a p× g1 matrix of rank g1 and G2 be a p× g2 matrix of
rank g2 such that G

′
2S

−1G1 = 0. Let G = (G1|G2). Then,

G′
2β̂ = 0 =⇒ ArgMin

β:G′β=0
‖y −Xβ‖2 = ArgMin

β:G′1β=0

‖y −Xβ‖ .2

PROOF. G′
2S

−1G1 = 0 and G′
2β̂ = 0 imply respectively that P S−1

G = P S−1

G1
+

P S−1

G2
and P S−1

G2
(s) = 0. Whence, from Lemma 5,

ArgMin
β:G′β=0

‖y −Xβ‖2 = S−1
(
I − P S−1

G

)
(s)

= S−1
(
I − P S−1

G1

)
(s)

= ArgMin
β:G

′
1β=0

‖y −Xβ‖2 .

2

Corollary 8 If G′β̂ = 0, then P S−1

G (s) = 0 and

ArgMin
β:G′β=0

‖y −Xβ‖2 = β̂ols.

Theorem 9 We have the following characterizations for β̂pls

(q) :

1) ∀q < q∗,

β̂pls

(q) = ArgMin
β:W̃ ′

(q)
β=0

‖y −Xβ‖2 .

2) ∀q ≥ q∗,
β̂pls

(q) = ArgMin
β:W̃ ′

(q)
β=0

‖y −Xβ‖2 = β̂ols.

PROOF. From Theorem 3, we have W
′
(q∗)β̂ = 0. Moreover, if q < q∗,

W̃(q) ⊂ Kq∗ ⊥ W (q∗) =⇒ Kq∗ = SKq∗ ⊥S−1 W (q∗).
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The conditions of Lemma 7 are fulfilled with G1 = W̃(q), G2 = W (q∗) and
G = W (q) . Then, Theorem 6 and Lemma 7 give the first part of the theorem.

If q ≥ q∗,W (q) ⊂ W (q∗). Thus, W
′
(q)β̂ = 0. Theorem 6 and Corollary 8 give

β̂pls

(q) = β̂ols. 2

Thus, when the underlying space of an estimator on latent variables con-
tains Kq∗ , this latter estimator coincides with β̂ols. This follows from the fact

that any estimator on latent variables can be obtained by projecting β̂ols on
the space spanned by its weight vectors. Hence, Kq∗ indicates the end of the
procedure of shrinkage in the sequence of nested Krylov subspaces.

5 A constraint free algorithm for PLSR

In the classical approach of PLSR and the one presented in Section 4, the
maximization algorithm involves some arbitrary constraints. In this section,
we give another procedure for PLSR with no such arbitrariness. The main idea
is to rebuild iteratively β̂ols according to a new criterion which is the difference
between signals over the noise. At each step, we attempt to bring closer the
current estimator to β̂ols by adding the direction that maximizes this criterion.
This direction is the one where the two estimators differ the most.

The algorithm starts with the null estimator. At step one, we put β̂pls
o = 0 and

we define

∆SNo(x) =
|x′β̂ols − x′β̂pls

o |
σ
√

x′S−1x
.

Then, we seek the direction that maximizes ∆SNo(x). Since in that case,
∆SNo(x) = ρ̂x, this direction is spanned by w1 = s. Now we want to rebuild
from 0 the least squares estimator on that direction. So, we have:

ArgMin
β∈span{w1}

‖y −Xβ‖2 = β̂pls

(1). (28)

Iteratively, at step q + 1 ≤ q∗, the current estimator is β̂pls
q = P S

W(q)
β̂ols where

W(q) is defined in Section 4.1. To construct the subspace of dimension q + 1

which gives β̂pls
q+1, we add to W(q) the direction that maximizes ∆SNq(x), where

∆SNq(x) =
|x′β̂ols − x′P S

W(q)
β̂ols|

σ
√

x′ S−1 x
=
|x′β̂ols − x′β̂pls

q |
σ
√

x′ S−1 x
. (29)
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Theorem 10 ∀q ≤ q∗ − 1,

ArgMax
x∈Rp

∆SNq(x) = wq+1 (30)

where wq+1 is the q+1th element of the sequence given by Theorem 3. Moreover,

max
x∈Rp

∆SNq(x) = ρ̂wq+1 . (31)

PROOF. We have: P S
Wq

S−1 = S−1 P S−1

SWq
. By Cauchy-Schwarz’s inequality:

∆SNq(x) =

∣∣∣x′ S−1
(
s− PS−1

S Wq
s
)∣∣∣√

x′S−1x
≤

∥∥∥s− PS−1

S Wq
s
∥∥∥

S−1
.

Equality holds iff x ∝ (I − PS−1

S Wq
) s. Since Range(W q) is the orthogonal to

Range(Wq) w.r.t. I, W q is the orthogonal to Range(S Wq) w.r.t. S−1. So,
(I −PS−1

S Wq
) s = P S−1

W q
s ∈ Range(W q). Thus, ∆SNq(x) attains its maximum on

Range(W q). Since ∆SNq(x) and ρ̂x coincide on Range(W q),

max
x∈Rp

∆SNq(x) = max
x∈Range(W q)

∆SNq(x) = max
x∈Range(W q)

ρ̂x = ρ̂wq+1 .

The last equality follows from Theorem 3. 2

Thus, Range(W(q+1)) is the subspace that we are looking for, where Wq+1 =

(w1|...|wq+1). The corresponding rebuilt least squares estimator is then β̂pls

(q+1)

since
β̂pls

(q+1) = ArgMin
β∈Range(W(q+1))

‖y −Xβ‖2 . (32)

Formulas 28 and 32 follows from Formula 27 since β ∈ Range(W(q+1)) is

equivalent to W
′
(q+1)β = 0.

At step q∗, β̂pls
q∗ = β̂ols and ρ̂wq∗+1

= 0.

6 Some comments:

The two algorithms presented in Sections 4 and 5 focus on the way PLSR
modify the OLS estimator from a directional point of view. The first one is
based on the signal-noise ratio ρ̂x. This ratio appears naturally to improve the
estimate of x′β by applying a shrinkage factor. It plays the same role for PLSR
as the variance (or noise) for PCR. The second one is based on ∆SNq(x), which
is a measurement of the difference between the current estimator and the OLS
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estimator according to x. The interesting feature of these two criteria is that
there are scale invariant. Therefore, unlike the latent variables approach, no
arbitrary scale constraints are needed .

Both algorithms differ in their structure. In the first one, the maximization
procedure of ρ̂x is carried out to get the whole sequence of directions. Then,
the latest directions are used as constraints in the least squares minimization.
In the second approach, the alternation of ∆SNq(x) maximization and least
squares minimization at each step gives the PLS estimators. This alternation
allows to release the orthogonality constraints used in the first algorithm.

Both algorithms differ also in their interpretation. The first one shows PLS
estimators as least squares estimators forcing to be null onto the smallest
signal-noise ratio directions of the sequence. The second algorithm shed the
light on how PLSR reduce the difference in terms of ∆SNq(x) between the
current estimator and the OLS estimator.

7 The non full-rank case

We discuss briefly the non full-rank case. If Rank(S) = r < p, the same pro-
cedure describe in Section 4 can be applied but need to be adjusted. The OLS
estimator β̂ols is non unique, but if x′oβ is estimable, i.e. if xo ∈ Range S, x′β̂ols

and var(x′β̂ols) do not depend on the choice of β̂ols. So, we seek directions
w1, ..., wr in Range(S) rather than in the whole space. With this restriction,
part (a) of Theorem 3 and Theorem 10 are still valid and w1, ..., wq∗ are identi-
cal to Martens’ weight vectors. Denote by wr+1, ..., wp an orthogonal sequence
in Range(S)⊥. For q ≤ r, we define W (q) = (wq+1|...|wp). It can be shown that
for q < q∗,

β̂pls

(q) = ArgMin
β:W

′
(q)β=0

‖y −Xβ‖2 (33)

and for q∗ ≤ q ≤ r :

ArgMin
β:W

′
(q)β=0

‖y −Xβ‖2 = β̂ols∗. (34)

where β̂ols∗ = S+s with S+ the Moore-Penrose inverse of S. The constraints
w′

r+1β = 0, ..., w′
pβ = 0 ensures that the estimator belongs to Range(S). The

interpretation of estimators in term of projectors can be easily adapted by
using generalized projectors (see Rao and Mitra, 1974) and choosing β̂ols∗ as
initial OLS estimator.
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