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Abstract. We propose a convergence mode for positive Radon measures which allows a sequence
of probability measures to have an improper limiting measure. We define a sequence of vague
priors as a sequence of probability measures that converges to an improper prior. We consider
some cases where vague priors have necessarily large variances and other cases where they
have not. We study the consequences of the convergence of prior distributions on the posterior
analysis. Then, we give some constructions of vague priors that approximate the Haar measures
or the Jeffreys priors. We also revisit the Jeffreys-Lindley paradox.
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1. Introduction

Improper priors such as flat priors (Laplace, 1812), Jeffreys priors (Jeffreys, 1946), ref-
erence priors (Berger et al, 2009) or the Haar measures (Eaton, 1989) are often used
in Bayesian analysis when no prior information is available. The posterior distribution
is obtained by applying the formal Bayes rule. There are several approaches to justify
the use of improper priors in statistics. Taraldsen and Lindqvist (2010) explain how the
theory of conditional probability spaces developped by Renyi (1970) is related to a theory
for statistics that includes improper priors. Their article is based on a generalisation of
Kolmogorov’s theory to the σ-finite measures. They show in particular by examples that
this theory is different from the alternative theory of improper priors provided by Harti-
gan (1983). For many authors, the inference based on an improper prior Π is legitimated
as limit of inferences based on proper priors Πn. However, there are several ways to define
this limit. For example, Jeffreys (1961), Stone (1970), Bernardo and Smith (1994, Prop.
5.11), Jaynes (2003) consider the convergence, for any given observation x, of the poste-
rior distributions Πn(·|x) to Π(·|x) for some convergence mode such as total variation.
Stone (1963) consider a convergence mode involving both the posterior distribution and
the marginal distribution.

1

http://isi.cbs.nl/bernoulli/
mailto:Christele.Bioche@math.univ-bpclermont.fr
mailto:Pierre.DRUILHET@univ-bpclermont.fr


2 C. Bioche and P. Druilhet

All these convergence modes are related to the statistical model through the likelihood.
Moreover, there is no standard convergence mode such that a sequence Πn of proper priors
may converge to an improper prior Π independently on the statistical model. Consider for
example a sequence of normal distributions N (0, n) with zero mean and variance equal
to n, it is often admitted that this sequence converges to the Laplace prior since for many
statistical models the bayes estimate related to N (0, n) converges to the bayes estimate
for the Laplace prior. A question then arises: does the limiting behaviour of a sequence of
proper priors depend on the statistical model ? Is there any intrinsic convergence mode
?

The aim of this paper is to define a convergence mode on the set of prior distribu-
tions without reference to any statistical model. In Section 2, we define this convergence
mode. We show that a sequence of vague priors is related to at most one improper prior.
We also show that any improper distribution can be approximated by proper distribu-
tions and reciproquely. In Section 3, we give some conditions on the likelihood to derive
convergence of posterior distributions and bayesian estimators from the convergence of
prior distributions. In Section 4, we give some examples of construction of sequences of
probability measures which converge to improper priors such as the Haar measure or the
Jeffreys prior. In Section 6, we give a special interest in the convergence of Beta distribu-
tions. In Section 7, we revisit the Jeffreys-Lindley paradox in the light of our convergence
mode.

2. Definition, properties and examples of q-vague
convergence

Let X be a random variable and assume that X|θ ∼ Pθ, θ ∈ Θ. We assume that Θ is
in R, Rp with p > 1, or a countable set. In the bayesian paradigm, a prior distribution
Π is given on Θ. In this article, we always assume that a prior Π is a positive Radon
measure, i.e a positive measure which is finite on compact sets. So, a prior may be proper
or improper. We denote by π the density function w.r.t. the Lebesgue measure in the
continuous case and the counting measure in the discrete case, or more generally to some
σ-finite measure. If Π is a probability measure, we can use the Bayes formula to write
the posterior density:

π(θ|x) =
f(x|θ) π(θ)∫

Θ
f(x|θ)π(θ)dθ

(1)

where f(x|θ) is the likelihood function. If Π is an improper measure but
∫

Θ
f(x|θ)π(θ)dθ

< +∞, we can formally apply Formula (1) to get a posterior probability. Now, if we
replace Π by αΠ, for α > 0, we obtain the same posterior distribution, which means that
the prior distribution is defined up to within a scalar factor.

We denote by CK(Θ) the space of real-valued continuous functions on Θ with compact
support and by C+

K(Θ) the positive functions in CK(Θ). When there is no ambiguity on
the space, they will be simply denoted by CK or C+

K . We also introduce the notations
Cb(Θ) for the space of bounded continuous functions on Θ, and C0(Θ) for the space of
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continuous functions g such that for all ε > 0, there exists a compact K ⊂ Θ such that
for all θ ∈ Kc, g(θ) < ε. We use the notations Π(h) =

∫
Θ
hdΠ where h is a measurable

real-valued function, and |Π| = Π(1) =
∫

Θ
dΠ, the total mass of Π.

We recall the two classic kinds of convergence of measures (Bauer, 2001). A sequence
of probability measures {Πn}n converges narrowly (also said weakly) to a probability
measure Π if, for every function φ in Cb(Θ), {Πn(φ)}n converges to Π(φ) . A sequence of
positive Radon measures {Πn}n converges vaguely to a positive Radon measure Π if, for
every function φ in CK(Θ), {Πn(φ)}n converges to Π(φ). We also recall a characterization
of vague convergence for a sequence of probability measures which will be usefull later
in the article.

Lemma 2.1 (Billinglsey, 1986, p.393). If {Πn}n is a sequence of probability measures
and Π is a probability measure, then {Πn}n converges vaguely to Π iff for all g ∈ C0(Θ),
{Πn(g)}n converges to Π(g).

2.1. Convergence of prior distribution sequences

In this section, we define a new convergence mode for sequences of positive Radon mea-
sures. The aim is to propose a formalization of an usual practice which consists of ap-
proximate an improper prior with a sequence of proper priors.

Definition 2.2. A sequence of positive Radon measures {Πn}n is said to converge q-
vaguely to a positive Radon measure Π if there exists a sequence of positive real numbers
{an}n such that {anΠn}n converges vaguely to Π.

Let us justify this definition. In Formula (1), if we replace Π by αΠ, for α > 0, we
obtain the same posterior distribution, which means that the prior distribution is defined
up to within a scalar factor. So, it is natural to define the equivalence relation ∼ on the
space of positive Radon measures by:

Π ∼ Π′ ⇐⇒ ∃ α > 0 such that Π = αΠ′. (2)

Then, it is natural to define the quotient space of positive Radon measures by the equiva-
lence relation∼. We denote by Π the equivalence class of Π, i.e. Π = {Π̃/∃α > 0, Π̃ = αΠ}.
The q-vague convergence corresponds to the standard quotient topology on this quotient
space.

Remark 2.3. One referee pointed out that similar quotient spaces for σ-finite measures
were considered by Taraldsen adn Lindqvist (2015) to define conditional measures.

Proposition 2.4. Let {Πn}n and Π be positive Radon measures. The sequence {Πn}n
converges q-vaguely to Π iff {Πn}n converges to Π for the quotient topology.

Proof.
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• Direct part: Assume that lim
n→+∞

Πn = Π. The space of positive Radon measures
is a metrisable space so it admits a countable neighbourhood base. Thus, there
exists a decreasing sequence of open sets {Oi}i∈N in the space of positive Radon
measures such that for all i ∈ N, Π ∈ Oi and

⋂
i∈NOi = {Π}. So, for all i ∈ N,

Π ∈ Oi. For any Oi, there exists Ni such that for all n > Ni, Πn ∈ Oi. Without
lost of generality, we can choose Ni such that Ni > Ni−1. For all n such that
Ni 6 n < Ni+1, Πn ∈ C(Oi) where C(Oi) = {λx with λ > 0 and x ∈ Oi}; i.e. for all
n such that Ni 6 n < Ni+1, there exists an > 0 such that anΠn ∈ Oi. Moreover,
since

⋂
i∈NOi = {Π}, lim

n→+∞
anΠn = Π.

• Converse part: Assume that {anΠn}n converges to Π. Since the canonical mapping
φ defined by

φ : R → R/ ∼
Π 7→ Π

(3)

where R is the space of positive Radon measures, is continuous, {φ(anΠn)} = {Πn}
converges to φ(Π) = Π.

The following proposition shows that a sequence of prior measures cannot converge
q-vaguely to more than one limit up to within a scalar factor.

Theorem 2.5. Let {Πn}n be a sequence of priors such that {Πn}n converges q-vaguely
to both Πa and Πb, then necessarily there exists α > 0 such that Πa = αΠb.

Proof. This is a direct consequence of Proposition A.1 that states that R is a Hausdorff
space. However, we give here a direct proof that does not involve abstract topological
concept.
Assume that {Πn}n converges q-vaguely to both Πa and Πb. From Definition 2.2, there ex-
ist two sequences of positive scalars {an}n and {bn}n such that {anΠn}n, resp. {bnΠn}n,
converges vaguely to Πa, resp. Πb. We have to prove that Πb = αΠa for some positive
scalar α. Since Πa 6= 0 and Πb 6= 0, there exist ha and hb in C+

K such that Πa(ha) > 0
and Πb(hb) > 0. Put h0 = ha + hb, we have Πa(h0) > 0 and Πb(h0) > 0. Moreover,
lim
n→∞

anΠn(h0) = Πa(h0) and lim
n→∞

bnΠn(h0) = Πb(h0). So, there exists N such that for

n > N , anΠn(h0) > 0 and bnΠn(h0) > 0. For any h in CK and n > N , lim
n→∞

Πn(h)
Πn(h0) =

lim
n→∞

anΠn(h)
anΠn(h0) = Πa(h)

Πa(h0) and lim
n→∞

Πn(h)
Πn(h0) = lim

n→∞
bnΠn(h)
bnΠn(h0) = Πb(h)

Πb(h0) . By uniqueness of the

limit in R, Πa(h)
Πa(h0) = Πb(h)

Πb(h0) . Therefore, Πa = Πa(h0)
Πb(h0) Πb. The result follows.

Theorem 2.6 motivates to include the improper priors in the theory since it shows
these are obtained naturally from limits of proper priors. This can be compared with a
completion of a metric space.
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Theorem 2.6. Any improper measure may be approximated by a sequence of probability
measures and conversely, any proper prior may be approximated by a sequence of improper
measures.

Proof.

• Consider an improper prior Π and {Kn}n an increasing sequence of compacts such
that Θ =

⋃
nKn. Then Πn = Π1Kn is a proper measure so, 1

|Πn|Πn is a probability
measure. Moreover, {Πn}n converges vaguely to Π, so { 1

|Πn|Πn} converges q-vaguely
to Π.

• Let Π be a probability measure. Consider the sequence Πn = Π + αnΠ′ where Π′

is an improper measure and {αn}n is a decreasing sequence which converges to 0.
Then, for all n ∈ N, Πn is an improper measure and {Πn}n converges q-vaguely to
Π.

In many statistical models, there are several parameterizations of interest. We show
that the q-vague convergence is invariant by change of parameterization. Consider a new
parameterization η = h(θ) where h is a homeomorphism. We denote by Π̃n = Πn ◦ h−1

and Π̃ = Π ◦ h−1 the prior distribution on η derived from the prior distribution on θ.
The following proposition establishes a link between q-vague convergence of {Πn}n and
{Π̃n}n.

Proposition 2.7. Let {Πn}n be a sequence of priors which converges q-vaguely to Π.
Let h be a homeomorphism and consider the parameterization η = h(θ). Then {Π̃n}n
converges q-vaguely to Π̃.

Proof. From the change of variables formula,
∫
g(h(θ))dΠn(θ) =

∫
g(η) dΠ̃n(η) and∫

g(h(θ))dΠ(θ) =
∫
g(η) dΠ̃(η). Morevover, if {Πn}n converges q-vaguely to Π, from

Definition 2.2 there exists {an}n such that {anΠn}n converges vaguely to Π. Note that
for all g ∈ CK , g ◦ h ∈ CK . So, for all g ∈ CK , lim

n→∞
an
∫
g(h(θ)) dΠn(θ) =

∫
g(h(θ))

dΠ(θ), i.e. lim
n→∞

an
∫
g(η) dΠ̃n(η) =

∫
g(η) dΠ̃(η). Thus {Π̃n}n converges q-vaguely to

Π̃.

2.2. Convergence when approximants are probabilities

In this section, the sequence of approximants {Πn}n is assumed to be a sequence of
probability measures. Then, we can establish some links between q-vague and narrow
convergence.

Indeed, if {Πn}n is a sequence of probabilities and Θ is a compact set, q-vague conver-
gence is equivalent to narrow convergence; i.e. for every function φ in Cb(Θ), {Πn(φ)}n
converges to Π(φ).
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More generally, we give a necessary and sufficient condition for the narrow convergence
of a sequence of probabilities which converges q-vaguely to a probability. We recall that
a sequence of bounded measures {Πn}n is said to be tight if, for each ε > 0, there exists
a compact set K such that, for all n, Πn(Kc) < ε.

Proposition 2.8. Let {Πn}n and Π be probability measures such that {Πn}n converges
q-vaguely to Π. Then {Πn}n converges narrowly to Π iff {Πn}n is tight.

Proof. Direct part: {Πn}n converges narrowly to Π a probability measure so {Πn}n is
tight.
Converse part: Let us show that if {Πnk}k is any subsequence of {Πn}n which converges
narrowly then {Πnk}k converges to Π. From Billingsley (1986, Th. 25.10), there exists
a subsequence {Πnk}k of {Πn}n which converges narrowly to some probability measure,
say Π̃. Since {Πnk}k is a sequence of probabilities which converges narrowly to Π̃, from
Definition 2.2, {Πnk}k converges q-vaguely to Π̃. So, from Theorem 2.5, there exists α > 0

such that Π = αΠ̃, but Π and Π̃ are probabilities. So Π = Π̃. The result follows from
Billingsley (1986, Cor p.346).

Now, we also assume that the limiting measure Π is an improper measure. Then we
can give a result about the sequence {an}n which will be useful thereafter.

Lemma 2.9. Let {Πn}n be a sequence of probability measures and {an}n a sequence
of positive scalars such that {anΠn}n converges vaguely to Π. If Π is improper, then
necessarily lim

n→∞
an = +∞.

Proof. We assume that {anΠn}n converges vaguely to Π so, we have Π(Θ) 6 lim infn an
Πn(Θ) (see Bauer, 2001, Th.30.3). But for all n ∈ N, Πn(Θ) = 1 so Π(Θ) 6 lim inf an.
Moreover, Π(Θ) = +∞ so lim infn an = +∞. The result follows.

Lemma 2.10 (Lang, 1977, p.38). Let E be R, Rp with p > 1 or a countable set, for all

compact K0 ⊂
( ⋃
n>0

K̊n

)
= E, there exists a function h ∈ CK(E) such that 1K0

6 h 6

1.

When a sequence of proper priors is used to approximate an improper prior, the mass
tends to concentrate outside any compact set.

Proposition 2.11. Let {Πn}n be a sequence of probability measures which converges
q-vaguely to an improper prior Π. Then, for any compact K in Θ, lim

n→∞
Πn(K) = 0, and

consequently, lim
n→∞

Πn(Kc) = 1.

Proof. From Definition 2.2, there exists {an}n such that lim
n→∞

anΠn(h) = Π(h) for any
h in CK . From Lemma 2.9, lim

n→∞
an = +∞ whereas Π(h) < +∞, so lim

n→∞
Πn(h) = 0. Let
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K0 be a compact set in Θ. From Lemma 2.10, there exists a function h ∈ CK such that
1K0

6 h. So Πn(K0) 6 Πn(h) and lim
n→∞

Πn(K0) = 0. Since Πn(K0) + Πn(Kc
0) = 1 for all

n ∈ N, thus lim
n→∞

Πn(Kc
0) = 1.

Many authors consider that few knowledge on the parameter is represented by priors
with large variance. Here, we establish some links between q-vague convergence and
variances of the prior sequence.

Proposition 2.12. Let {Πn}n be a sequence of probabilities on R such that EΠn(θ) is
a constant. If {Πn}n converges q-vaguely to an improper prior Π whose support is R,
then lim

n→∞
VarΠn(θ) = +∞.

Proof. Since EΠn(θ) is constant, lim
n→∞

VarΠn(θ) = +∞ iff lim
n→∞

EΠn(θ2) = +∞. For

any r > 0, we have EΠn(θ2) >
∫

[−r,r]c θ
2dΠn(θ) so EΠn(θ2) > r2 Πn([−r, r]c). From

Proposition 2.11, lim
n→∞

Πn([−r, r]c) = 1 and then lim
n→∞

EΠn(θ2) ≥ r2. Since this holds for

any r > 0, lim
n→∞

EΠn(θ2) = +∞.

Corollary 2.13. Let {Πn}n be a sequence of probabilities with constant mean which
approximate the Lebesgue measure λR. Then, necessarily, lim

n→∞
VarΠn(θ) = +∞.

However, we will see on examples in Section 5.4.1, that when we don’t assume the
expectation to be constant, the variance does not necessarily diverge.

2.3. Characterization of q-vague convergence

In this section we establish several sufficient conditions for the q-vague convergence of
{Πn}n to Π through their pdf. When Θ is continuous, then πn and π are the standard
pdf w.r.t. the Lebesgue measure. When Θ is discrete, then π(θ0) = Π(θ = θ0), i.e. π is
the pdf w.r.t. the counting measure.

When Θ = {θi}i∈I is a discrete set with I ⊂ N, we give an easy-to-check characteri-
zation of the q-vague convergence.

Proposition 2.14. Let {Πn}n and Π be priors on Θ = {θi}i∈I , I ⊂ N. The sequence
{Πn}n converges q-vaguely to Π iff there exists a sequence of positive real numbers {an}n
such that for all i ∈ I, lim

n→∞
anπn(θi) = π(θi).

Proof. It is a direct consequence of Definition 2.2 applied to the discret case.

Now, we consider the continuous case:
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Proposition 2.15. Let {Πn}n and Π be continuous priors on Θ in R or Rp with p > 1.
Assume that:
1) there exists a sequence of positive real numbers {an}n such that the sequence {anπn}n
converges pointwise to π,
2) there exists a continuous function g : Θ → R+ and N ∈ N such that for all n > N
and θ ∈ Θ, anπn(θ) < g(θ).
Then, {Πn}n converges q-vaguely to Π.

Proof. Let h be in CK(Θ). Then, anh(θ)πn(θ) 6 ‖h ‖ g 1K(θ) where ‖h ‖ = max
θ∈Θ

h(θ).

Since ‖h ‖ g 1K(θ) is Lebesgue integrable, by dominated convergence theorem, lim
n→∞

∫
an πn(θ) h(θ) dθ =

∫
π(θ)h(θ)dθ.

The following result will be useful to establish a result in Section 4.2.

Proposition 2.16. Let {Πn}n and Π be priors. Assume that:
1) there exists a sequence of positive real numbers {an}n such that the sequence {anπn}n
converges pointwise to π,
2’) for any compact set K, there exists a scalar M and some N ∈ N such that for n > N ,
supθ∈K an πn(θ) < M .
Then, {Πn}n converges q-vaguely to Π.

Proof. The proof is similar to the proof of Proposition 2.15 with an πn(θ) h(θ) 6
M supθ∈K |h(θ)| 1K(θ).

Remark 2.17. Proposition 2.15 and Proposition 2.16 hold if π(θ) is the pdf w.r.t. any
positive Radon measure.

3. Convergence of posterior distributions and
estimators

Consider the model X|θ ∼ Pθ, θ ∈ Θ. We denote by f(x|θ) the likelihood. The priors Πn

on Θ represent our prior knowledge. We always assume that
∫

Θ
f(x|θ)dΠ(θ) > 0.

For a measure Π and a measurable function g, we define the mesure gΠ by gΠ(f) =
Π(gf) =

∫
f(θ)g(θ)dΠ(θ) for any f whenever the integrals are defined; gΠ is also denoted

g dΠ or Π ◦ g−1 by some authors.
In this paper, we define the posterior on θ, Π(·|x), by π(θ|x) ∝ f(x|θ) π(θ). Thus,

the posterior Π(·|x) may be proper or improper. There are three possible cases. First, if
we use a proper prior, by applying the Bayes Formula, we obtain a posterior which is
a probability measure. If the prior is an improper measure such that

∫
Θ
f(x|θ)π(θ)dθ <

+∞, we can formally apply the Bayes rule which provides a posterior probability measure
by renormalization. At last, if the prior is an improper measure such that

∫
Θ
f(x|θ)π(θ)dθ
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= +∞, we use the relation π(θ|x) ∝ f(x|θ) π(θ) to define the posterior which will be an
improper measure.

In this section, we study the consequences of the q-vague convergence of {Πn}n on the
posterior analysis. In the general case where the posteriors may be proper or improper,
we give a result about the q-vague convergence of posteriors {Πn(·|x)}n to Π(·|x). When
posteriors are probability measures, we can establish results about the narrow conver-
gence instead of the q-vague convergence.

Proposition 3.1. Let {Πn}n be a sequence of priors which converges q-vaguely to Π.
Assume that, θ 7−→ f(x|θ) is a non-zero continuous function on Θ. Then {Πn(·|x)}n
converges q-vaguely to Π(·|x).

Moreover, if {Πn(·|x)}n is a tight sequence of probabilities and Π(·|x) is a probability,
then {Πn(·|x)}n converges narrowly to Π(·|x).

Proof. Assume that {Πn}n converges q-vaguely to Π. From Definition 2.2, there exists
a sequence of positive scalars {an}n such that {anΠn}n converges vaguely to Π. So, for
any h ∈ CK , lim

n→∞
anΠn(h) = Π(h). Since f(x|·) is a continuous function, f(x|·)h ∈ CK

and lim
n→∞

anΠn(f(x|·)h) = Π(f(x|·)h). But Πn(f(x|·)h) = f(x|·)Πn(h) and Π(f(x|·)h) =

f(x|·)Π(h). So, {anf(x|·)Πn} converges vaguely to f(x|·)Π, or equivalently {f(x|·)Πn}n
converges q-vaguely to f(x|·)Π.

If {Πn(·|x)}n is a tight sequence of probabilities and Π(·|x) is a probability, the second
result follows from Proposition 2.8.

Remark 3.2. If Θ is discrete, then f(x|θ) is necessary continuous for the discrete
topology.

The following results are based on Proposition 3.1 with easier-to-check asumptions.

Corollary 3.3. Let {Πn}n and Π be priors. Assume that:
1) there exists a sequence of positive real numbers {an}n such that the sequence {anπn}n
converges pointwise to π,
2) {anπn(θ)}n is non-decreasing for all θ ∈ Θ,
3) θ 7−→ f(x|θ) is continuous and positive,
4) all the posteriors Πn(·|x) and Π(·|x) are proper.
Then, {Πn(·|x)}n converges narrowly to Π(·|x).

Proof. The sequence {an f πn}n is a non-decreasing sequence of non-negative functions.
By monotone convergence theorem, lim

n→∞

∫
anf(x|θ) πn(θ) dθ =

∫
lim
n→∞

an f(x|θ) πn(θ)

dθ =
∫
f(x|θ) π(θ) dθ. So, {anΠn(f)}n converges to Π(f) > 0. So there existsN such that

for all n > N , anΠn(f) > 1
2Π(f). Consider {Km}m an increasing sequence of compact

sets such that
⋃
Km = Θ. The sequence {Kc

m}m decreases to ∅ so limm Π(f1Kc
m

) =
0. Thus, for all ε > 0, there exists M such that, for all m > M , Π(f1Kc

m
) 6 ε. So, for

all n > N , f Πn(Kc
M )

Πn(f) =
f anΠn(Kc

M )
anΠn(f) 6

2 anΠn(f1Kc
M

)

Π(f) 6
2Π(f1Kc

M
)

Π(f) 6 2ε
Π(f) . The second
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inequality comes from assumption 3). Thus, { f Πn
Πn(f)}n is tight. The result follows from

Proposition 2.8.

Corollary 3.4. Let {Πn}n and Π be priors. Assume that:
1) there exists a sequence of positive real numbers {an}n such that the sequence {anπn}n
converges pointwise to π,
2) there exists a continuous function g : Θ→ R+ such that fg is Lebesgue integrable and
for all n ∈ N and θ ∈ Θ, anπn(θ) < g(θ),
3) θ 7−→ f(x|θ) is continuous and positive,
4) all the posteriors Πn(·|x) and Π(·|x) are proper.
Then, {Πn(·|x)}n converges narrowly to Π(·|x).

Proof. From Proposition 2.15, assumptions 1) and 2) imply that {Πn}n converges q-
vaguely to Π. From assumption 2), for all n, anf(x|θ)πn(θ) 6 f(x|θ)g(θ). Since fg
is Lebesgue-integrable, by dominated convergence theorem, lim

n→∞

∫
an f(x|θ) πn(θ) dθ

=
∫

lim
n→∞

an f(x|θ) πn(θ) dθ =
∫
f(x|θ) π(θ) dµ(θ). Thus, {anΠn(f)}n converges to

Π(f) > 0 so there exists N such that for all n > N , anΠn(f) > 1
2Π(f). Consider

{Km}m∈N an increasing sequence of compact sets such that
⋃
Km = Θ. The sequence

{Kc
m}m∈N decreases to ∅ so limm λ(fg1Kc

m
) = 0. Thus, for all ε > 0, there exists M

such that for all m > M , λ(fg1Kc
m

) 6 ε. So, for all n > N , f anΠn(Kc
M )

anΠn(f) 6
2 anΠn(f1Kc

M
)

Π(f)

6
2λ(fg1Kc

M
)

Π(f) 6 2ε
Π(f) . Thus, {Πn(·|x)}n is a tight sequence of probabilities. The result

follows from Proposition 3.1.

The following result will be useful to explain the Jeffreys-Lindley paradox (see Section
7).

Corollary 3.5. Consider a sequence of probabilities {Πn}n which converges vaguely to
the proper measure Π. Assume that:
1) θ 7−→ f(x|θ) is continuous and non-negative,
2) f(x|·) ∈ C0(Θ).
Then, {Πn(·|x)}n converges narrowly to Π(·|x).

Proof. Since the Πn and Π are proper measures and f(·|θ) is a pdf, Πn(·|x) and Π(·|x)
are probabilities. We assume that {Πn}n converges vaguely, and so q-vaguely, to Π and
that f satisfies 1). So, from Proposition 3.1, {Πn(·|x)}n converges q-vaguely to Π(·|x).
From Lemma 2.1, {Πn(f)}n converges to Π(f). So, there exists N such that for n > N ,
Πn(f) > Π(f)

2 . Moreover, from assumption 2), for all ε > 0, there exists a compact K
such that for all θ ∈ Kc, f(θ|x) 6 ε. Thus, for all n > N , fΠn(Kc)

Πn(f) 6 2Πn(f1Kc )
Π(f) 6 2ε

Π(f) .
Thus, { f Πn

Πn(f)}n is tight. The result follows from Proposition 3.1.

Now, we establish some links between the q-vague convergence of {Πn}n and the
convergence of the bayes estimate E(θ|x).
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Proposition 3.6. Let {Πn}n be a sequence of priors which converges q-vaguely to Π.
Assume that:
1) θ 7−→ f(x|θ) is a non-zero continuous function on Θ,
2) the family {Πn(·|x)}n is a family of probabilities uniformly integrable (see Billingsley,
1968, p.32).
Then, lim

n→∞
EΠn(θ|x) = EΠ(θ|x).

Proof. From Proposition 3.1, {Πn(θ|x)}n converges q-vaguely to Π(θ|x). For all n,
Πn(·|x) and Π(·|x) are probability measures and {Πn(·|x)}n uniformly integrable im-
plies that {Πn(·|x)}n is tight. So, from Proposition 3.1, {Πn(θ|x)}n converges narrowly
to Π(θ|x). The result follows from Billingsley (1968, Th. 5.4).

We give an other version of Proposition 3.6 with a more restrictive but easier-to-check
condition than uniform integrability.

Corollary 3.7. Let {Πn}n be a sequence of priors which converges q-vaguely to Π.
Assume that θ 7−→ f(x|θ) is a non-zero continuous function on Θ, and that {Πn(·|x)}n
is a family of probabilities such that {VarΠn(θ|x)}n is bounded above. Then lim

n→∞
EΠn(θ|x)

= EΠ(θ|x).

Proof. This is a consequence of Billingsley (1968, p.32) and Proposition 3.6.

4. Some constructions of sequences of vague priors

In this section, we give some constructions of sequences of probability measures that
approximate a given improper prior such as the Haar measures or the Jeffreys prior. We
have shown in the proof of Proposition 2.6 that any improper prior may be approximated
by truncation, here we give other constructions for the Haar measure or the Jeffreys prior.

4.1. Location and scale models

The parameter θ is said to be a location parameter if there exists a pdf g such that
f(x|θ) = g(x− θ). For instance, it is the case when X|θ ∼ N (θ, σ2) with known σ2. The
underlying group is (R,+) and the Haar measure λR is improper.

Proposition 4.1. Let Π be a continuous probability measure on R. Assume that the pdf
π(θ) of Π w.r.t. the Lebesgue measure λR is bounded above by a continuous and increasing
function and is continuous at θ = 0 with π(0) > 0. We define Πn by πn(θ) = 1

nπ( θn ).
Then, {Πn}n>0 converges q-vaguely to λR.

Proof. Put πn(θ) = 1
nπ( θn ). Put an = n, then lim

n→∞
anπn(θ) = lim

n→∞
π( θn ) = π(0) > 0

since π is continuous at 0. Moreover, π is bounded above by a continuous and increasing
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function, so there exists g such that, for all θ ∈ R and for all n > 0, π( θn ) 6 g( θn ) 6 g(θ).
The result follows from Proposition 2.15.

We can note that Hartigan (1996) used a dual approach. He reduced the influence of the
prior by letting the conditional variance σ2 reducing to 0. He got similarly conditions. He
assumed that Π is locally uniform at 0, but it is equivalent to assume that Π is continuous
and positive at 0. And we replace his condition "π tail-bounded" by the condition "π
bounded".

Remark 4.2. Proposition 4.1 holds with the assumption "π bounded" instead of "π
bounded above by a continuous and increasing function".

We now study the scale model. The strictly positive parameter σ is said to be a scale
parameter if f(x|σ) = 1

σ g( xσ ) where g is a pdf. If σ is a scale parameter, log(σ) is a
location parameter for log(X). Here, the concerned group is (R+\{0},×) and the Haar
measure 1

σλR+\{0} is improper. The following proposition is the equivalent of Proposition
4.1 for the Haar measure on (R+\{0},×).

Corollary 4.3. Let Π be a continuous probability measure on R+\{0}. Assume that the
pdf π(σ) of Π w.r.t. the Lebesgue measure λR+\{0} is bounded above by a continuous and
increasing function and is continuous at σ = 1 with π(1) > 0. We define Πn by πn(σ) =
1
nσ

1
n−1π(σ

1
n ). Then, {Πn}n>0 converges q-vaguely to 1

σλR+\{0}.

Proof. Put θ = log(σ). From Proposition 2.7, π̃(θ) = eθπ(eθ) which is bounded above
by the continuous and increasing function eθg(eθ). The result follows from Proposition
4.1.

4.2. Jeffreys conjugate priors (JCPs)

The Jeffreys prior is one of the most popular prior when no information is available, but,
in many cases, is improper. Consider that the distribution X|θ belongs to an exponential
family, i.e. f(x|θ) = exp{θ · t(x)−φ(θ)} h(x), for some functions t(x), h(x) and φ(θ), and
θ ∈ Θ, where Θ is an open set in Rp, p ≥ 1, such that f(x|θ) is a well defined pdf. We
assume that φ(θ) and Iθ(θ) are continuous. These conditions are satisfied if t(X) is not
concentrated on an hyperplane a.s. (see Barndorff-Nielsen, 1978). Druilhet and Pommeret
(2012) proposed a class of conjugate priors that aims to approximate the Jeffreys prior
and that is invariant w.r.t. smooth reparameterization. The notion of approximation was
defined only from an intuitive point of view. We can now give a more rigorous approach
by using the q-vague convergence.

Denote by πJ(θ) = |Iθ(θ)|1/2 the pdf of the Jeffreys prior w.r.t. the Lebesgue measure,
where θ is the natural parameter of the exponential family and Iθ(θ) is the determinant
of Fisher information matrix. The JCPs are defined through their pdf w.r.t. the Lebesgue
measure by
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πJα,β(θ) ∝ exp{α.θ − βφ(θ)} |Iθ(θ)|
1
2 ,

and for a smooth reparameterization θ → η by

πJα,β(η) ∝ exp{α.θ(η)− βφ(θ(η))} |Iη(η)| 12 .

Proposition 4.4. Let {(αn, βn)}n be a sequence of real numbers that converges to (0, 0).
Then, for the natural parameter θ or for any smooth reparameterization η, {ΠJ

αn,βn
}n

converges q-vaguely to ΠJ .

Proof. Choose {an}n such that anπJαn,βn(θ) = exp{αn θ − βnφ(θ)} |Iθ(θ)|
1
2 , which

converges pointwise to |Iθ(θ)|
1
2 . Put γn = (αn, βn) and ψ(θ) = (θ,−φ(θ)). We have

γn ·ψ(θ) = αn θ−βnφ(θ). By Cauchy-Schwarz inequality, γn ·ψ(θ) ≤ ‖γn‖ ‖ψ(θ)‖. Since
γn converges to (0, 0), there exists N such that, for n > N , ‖γn‖ < 1. Let K be a compact
set in Θ, by continuity of ψ(θ), since φ(θ) is continuous, and by continuity of Iθ(θ), there
exist M1 and M2 such that, for all θ ∈ K, ‖ψ(θ)‖ < M1 and |Iθ(θ)|

1
2 < M2. Therefore,

anπ
J
αn,βn

(θ) ≤M2 exp{M1}. The result follows from Proposition 2.16.

Even if we have the convergence to the Jeffreys prior, we have no guaranty that ΠJ
αn,βn

is a proper prior and there is no general result to characterize this property such as in
Diaconis and Ylvisaker (1979) for usual conjugate priors. For example, consider inverse

gaussian models with likelihood f(x;µ, λ) =
(

λ
2πx3

) 1
2 exp

(
−λ(x−µ)2

2µ2x

)
1{x>0} where µ > 0

denotes the mean parameter and λ > 0 stands for the shape parameter. Considering the
parameterization

(
ψ = 1

µ , λ
)
, the JCPs are given by πJα,β(ψ, λ) ∝ e−

λ
2 (α1ψ

2−2βψ+α2)

ψ−
1
2λ

(β−1)
2 . Druilhet and Pommeret (2012) showed that πJα,β(ψ, λ) is proper iff α1 > 0,

α2 > 0 and − 1
2 6 β <

√
α1α2. So, we may consider the sequences α1,n = α2,n = 1

n and
βn = 1

2n . By Proposition 4.4, ΠJ
αn,βn

(ψ, λ) is therefor a sequence of proper priors that
converges q-vaguely to the Jeffreys prior ΠJ .

Remark 4.5. For any continuous function g on Θ, we can define πgα,β (θ) ∝ exp{α.θ −
βφ(θ)} g(θ) and πg(θ) = g(θ). Similarly to Proposition 4.4, it can be shown that {Πg

αn,βn
}

converges q-vaguely to Πg.

5. Some examples

In this section we consider some usual distributions and we look at the q-vague limiting
measure.
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5.1. Approximation of flat prior from uniform distributions

5.1.1. The discrete case

Consider Θ = N, and Πn = U({0, 1, ..., n}) the Uniform disctribution on {0, ..., n}. Then
{Πn}n converges q-vaguely to the counting measure.

Indeed, πn(θ) = 1
n+1 1{0,1,...,n}(θ). Put an = n+ 1, then, for θ ∈ N, lim

n→∞
anπn(θ) =

lim
n→∞

1{0,1,...,n}(θ) = 1. The result follows from Proposition 2.14.

5.1.2. The continuous case

Let Θ = R, and Πn = U([−n, n]) the Uniform distribution on [−n, n]. Then {Πn}n
converges q-vaguely to the Lebesgue measure λR.

It corresponds to a location model so the result follows from Proposition 4.1 with Π
= U([−1, 1]).

5.2. Poisson distribution

Here is an exemple where a family of proper priors does not converge q-vaguely. Let
Θ = N and Πn be the Poisson distribution with πn(θ) = exp(−n)n

θ

θ! . Assume that there
exists Π such that {Πn}n converges q-vaguely to Π. Then, from Proposition 2.14, there
exists a sequence {an}n such that for all θ ∈ Θ, lim

n→∞
an πn(θ) = π(θ). Consider θ0 ∈ Θ

such that π(θ0) > 0. There exists N such that, for all n > N , πn(θ0) > 0. Consider
θ > θ0, for all n > N , πn(θ)

πn(θ0) = θ0!
θ! n

θ−θ0 and lim
n→∞

πn(θ)
πn(θ0) = π(θ)

π(θ0) < +∞. On the other

side lim
n→∞

θ0!
θ! n

θ−θ0 = +∞. This is a contradiction. So, there is no prior Π such that {Πn}n
converges q-vaguely to Π.

5.3. Normal distribution

Let Θ = R and Πn = N (0, n) the Normal distribution with zero mean and variance equal
to n. Then {Πn}n converges q-vaguely to the Lebesgue measure on R.

Indeed, πn(θ) = 1√
2πn

e−
θ2

2n and π(θ) = 1. Put an =
√

2πn, n > 0. Then, {anπn}n>0

converges pointwise to 1. Moreover, for all n and all θ, anπn(θ) < 2. The result follows
from Proposition 2.15.

Remark 5.1. From Theorem 2.5, {N (0, n)}n>0 cannot converge to another limiting
measure than the Lebesgue measure (up to within a scalar factor).

More generally, it can be shown that the limiting measure is the same for {N (µn, n)}n
where {µn}n is a constant or a bounded sequence. So, we consider now the case where
lim
n→∞

µn = +∞ by taking µn = n.
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Proposition 5.2. We have three cases for the convergence of N (n, σ2
n):

1. If lim
n→∞

n
σ2
n

= +∞, then {N (n, σ2
n)}n does not converge q-vaguely.

2. If lim
n→∞

n
σ2
n

= c with 0 < c <∞, then {N (n, σ2
n)}n converges q-vaguely to ecθdθ.

3. If lim
n→∞

n
σ2
n

= 0, then {N (n, σ2
n)}n converges q-vaguely to λR.

Proof. For all n > 0, we denote by Πn = N (n, σ2
n), and by πn the pdf w.r.t. the Lebesgue

measure, πn(θ) = 1√
2πσn

exp(− (θ−n)2

2σ2
n

).

1. Put π̃n(θ) = exp
(
− θ2

2σ2
n

+ θ n
σ2
n

)
and π̃(θ) = e

n2

2σ2
n π(θ). So {Πn}n converges q-vaguely

iff {Π̃n}n converges q-vaguely. Assume that there exists Π̃ such that {Π̃n}n con-
verges q-vaguely to Π̃. Then, there exists a sequence {an}n such that {anΠ̃n}n
converges vaguely to Π̃. Since Π̃ 6= 0, there exists an interval [A1, A2] such that
−∞ < A1 < A2 < +∞ and 0 < Π̃([A1, A2]) < +∞. Consider [B1, B2] such that
A2 < B1 < B2 < +∞. There exists N such that for n > N , θ 7−→ − θ2

2n + θ n
σ2
n

is non-decreasing. For a such n, Π̃n([B1, B2]) > (B2 − B1) exp(− B1

2σ2
n

+ B1 n
σ2
n

) and

Π̃n([A1, A2]) 6 (A2−A1) exp(− A2

2σ2
n

+ A2 n
σ2
n

). So Π̃n([B1,B2])

Π̃n([A1,A2])
> B2−B1

A2−A1
exp(C(n)) with

C(n) = n(B1−A2)
σ2
n

− (B2
1−A

2
2)

2σ2
n

> n(B1−A2)
2σ2
n

. Thus, lim
n→∞

Π̃n([B1,B2])

Π̃n([A1,A2])
= +∞ but lim

n→∞
Π̃n([B1,B2])

Π̃n([A1,A2])
= Π̃([B1,B2])

Π̃([A1,A2])
< +∞. So, {Πn}n does not converge q-vaguely.

2. Put an = 1√
2πσn

exp(− n2

2σ2
n

). Then lim
n→∞

anπn(θ) = lim
n→∞

exp(− θ2

2σ2
n

+ θn
σ2
n

) = ecθ.
Since lim

n→∞
n
σ2
n

= c, there exists N such that for all n > N , n
σ2
n
∈ [c−ε, c+ε]. So, for

all n > N , exp(− θ2

2σ2
n

+ θn
σ2
n

) 6 exp((c+ ε)θ) which is continuous. The result follows
from Proposition 2.15.

3. This is the same reasoning as Point 2. with lim
n→∞

anπn(θ) = 1 and anπn(θ) 6 1 + ε

for all n > N and N large enough.

Example 5.3. Assume that X|θ ∼ N (θ, σ2), σ2 known, and put the prior Πn = N (0, n)

on θ. Then, Πn(θ|x) = N ( nx
σ2+n ,

σ2n
σ2+n ). From Section 5.3, the two first hypotheses are

satisfied and {N (0, n)}n converges q-vaguely to the Lebesgue measure λR so here, Π =
λR. Moreover, θ 7−→ f(x|θ) is continuous and positive on Θ and Π(·|x) = N (x, σ2) is
proper. So, from Theorem 3.3, {N ( nx

σ2+n ,
σ2n
σ2+n )}n converges narrowly to N (x, σ2).

Example 5.4. To continue Example 5.3, VarΠn(θ|x) = σ2n
σ2+n is bounded above by σ2

and the other hypothesis have already been verified in Example 5.3. So, from Proposition
3.7, lim

n→∞
EΠn(θ|x) = EΠ(θ). Indeed, lim

n→∞
EΠn(θ) = lim

n→∞
nx
σ2+n = x = EΠ(θ).
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5.4. Gamma distribution

5.4.1. Approximation of Π = 1
θ1θ>0dθ

Let Θ = R+ and Πn = γ(αn, βn) the Gamma distributions with lim
n→∞

(αn, βn) = (0, 0).

We have πn(θ) = βn
αn

Γ(αn) θ
αn−1 e−βnθ. Put an = Γ(αn)

βnαn
. Then anπn(θ) = θαn−1 e−βnθ and

{anπn(θ)}n converges to 1
θ . Put g(θ) = 1

θ 1[0,1](θ) + 1]1,+∞[(θ). The sequence {αn}n
goes to 0 so there exists N such that for all n > N , αn < 1. So, for n > N and for θ > 0,
an πn(θ) 6 θαn−1 6 g(θ). Since g is a continuous function on R∗+, from Proposition 2.15,
{Πn}n converges q-vaguely to 1

θ dθ.
Recall that for θ ∼ γ(a, b), E(θ) = a

b and Var(θ) = a
b2 . We can see below that the

same convergence may be obtained with different convergence of the mean and variance.

• For Πn = γ( 1
n ,

1
n ), EΠn(θ) = 1 for all n and lim

n→∞
VarΠn(θ) = lim

n→∞
n = +∞.

• For Πn = γ( 1
n ,

1√
n

), lim
n→∞

EΠn(θ) = lim
n→∞

1√
n

= 0 and lim
n→∞

VarΠn(θ) = 1 for all n.

• For Πn = γ( 1
n ,

1

n
1
3

), lim
n→∞

EΠn(θ) = lim
n→∞

n−
2
3 = 0 and lim

n→∞
VarΠn(θ) = lim

n→∞
n−

1
3

= 0.
• For Πn = γ( 1

n ,
1
n2 ), lim

n→∞
EΠn(θ) = lim

n→∞
n = +∞ and lim

n→∞
VarΠn(θ) = lim

n→∞
n3 =

+∞.
• For Πn = γ( 1

n ,
1

n
2
3

), lim
n→∞

EΠn(θ) = n−
1
2 = 0 and lim

n→∞
VarΠn(θ) = lim

n→∞
n

1
3 = +∞.

More generally, if lim infn EΠn(θ) > 0 then lim
n→∞

VarΠn(θ) = +∞, since VarΠn(θ) =

EΠn (θ)
βn

with lim
n→∞

βn = 0.

5.4.2. Approximation of Π = 1
θ e
−θ1θ>0dθ

Let us show that {γ(αn, 1)} converges q-vaguely to e−θ

θ 1θ>0 dθ when {αn} goes to 0.
Put Πn = {γ(αn, 1)}. Then πn(θ) = 1

Γ(αn) θ
αn−1e−θ1θ>0 is the pdf of Πn. Put an =

Γ(αn), then anπn(θ) = θαn−1 e−θ 1θ>0 converges to π(θ) = 1
θ e
−θ 1θ>0. Moreover, since

{αn}n goes to 0, there exists N such that for n > N , αn < 1. Put g(θ) = 1
θ 1]0,1](θ)

+ 1]1,+∞[(θ). So, for n > N and θ > 0, anπn(θ) 6 θαn−1 6 g(θ). The function g is
continuous so from Proposition 2.15, {γ(αn, 1)}n converges q-vaguely to 1

θ e
−θ 1θ>0 dθ.

Since lim
n→∞

αn = 0, we necessarily have lim
n→∞

EΠn(θ) = 0 and lim
n→∞

VarΠn(θ) = 0.

6. Convergence of Beta distributions

We now consider a more complex example which often appears in literature, see e.g. Tuyl
et al (2009). Let X represents the number of successes in N Bernoulli trials, and θ be
the probability of a success in a single trial. Since the Beta distribution and the Binomial
distribution form a conjugate pair, a common prior distribution on θ is β(α, α) which
have mean and median equal to 1

2 . Three ’plausible’ noninformative priors were listed by
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Berger (1985, p.89): the Bayes-Laplace prior β(1, 1), the Jeffreys prior β( 1
2 ,

1
2 ) and the

improper Haldane prior, wrote down β(0, 0), whose density is πH(θ) = 1
θ(1−θ) w.r.t. the

Lebesgue measure on ]0, 1[. If we want β(α, α) with large variance, necessarily α −→ 0.
Thus, we choose β( 1

n ,
1
n ). The density of Πn = β( 1

n ,
1
n ) w.r.t. the Lebesgue measure

on ]0; 1[ is πn(θ) = 1
B( 1

n ,
1
n )

θ
1
n−1(1 − θ) 1

n−1. As mentioned, e.g. by Bernardo (1979) or

Lane and Sudderth (1983), there are two possible limiting distributions for β( 1
n ,

1
n ) when

n goes to +∞. The first one is 1
2 (δ0 + δ1) which is the limiting measure given by the

standard probability theory. The second one is the Haldane prior ΠH which is deduced
from the posterior distributions and estimators (Lehmann and Casella, 1998). We show
that it depends on the space where θ lives. Choosing ]0, 1[ or [0, 1] does not matter for
β( 1

n ,
1
n ) but it matters for the limiting distributions. We may note that the Haldane prior

is a Radon measure on ]0, 1[ but not on [0, 1] and that 1
2 (δ0 + δ1) is not defined on ]0, 1[.

6.1. Convergence on ]0, 1[

In this section, we study the convergences on ]0, 1[ of {β( 1
n ,

1
n )}n>0, of the sequence of

posteriors and of the sequence of estimators.
Put an = B( 1

n ,
1
n ), then an πn(θ) = θ

1
n−1 (1−θ) 1

n−1 converges to πH(θ) = [θ(1−θ)]−1

and for any θ and n, an πn(θ) < 5. Therefore, from Theorem 2.15, {β( 1
n ,

1
n )}n>0 converges

q-vaguely to ΠH .
Consider the sequence of posteriors. The sequence of priors {Πn}n converges q-vaguely

to ΠH and θ 7−→ f(x|θ) is continuous on Θ. Then, from Lemma 3.1,

• if x = 0, {Πn(θ|x)}n converges q-vaguely to the improper measures with pdf π(θ)
= (1− θ)N−1 θ−1,

• if x = N , {Πn(θ|x)}n converges q-vaguely to the improper measures with pdf π(θ)
= θN−1(1− θ)−1

• if 0 < x < N , {Πn(θ|x)}n converges q-vaguely to ΠH(θ|x) = β(x,N − x).

For 0 < x < N , β(x,N − x) is proper and θ 7−→ f(x|θ) is continuous and positive. So,
from Theorem 3.3, {Πn(θ|x)}n>0 converges narrowly to ΠH(θ|x) = β(x,N − x).

Consider now bayes estimates. For all n, EΠn(θ|x) = 1 + n x
2 + n N −→

x
N . So:

• If x = 0, lim
n→∞

EΠn(θ|x = 0) = 0 whereas EΠH (θ|x = 0) = 1
N .

• If x = N , lim
n→∞

EΠn(θ|x = N) = 1 whereas EΠH (θ|x = N) = +∞.
• If 0 < x < N , lim

n→∞
EΠn(θ|x) = x

N = EΠH (θ|x).

For x = 0 and x = N , ΠH(·|x) is an improper measure. In this case, EΠH (θ|x) =∫
Θ
θdΠH(θ|x).

6.2. Convergence on [0, 1]

In this section, we study the convergences on [0, 1] of {β( 1
n ,

1
n )}n>0, of the sequence of

posteriors and of the sequence of estimators.
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For all n and for 0 < t < 1, Πn([0, t[) + Πn([t, 1−t]) + Πn(]1−t, 1]) = 1. But on ]0, 1[,
{β( 1

n ,
1
n )}n>0 converges q-vaguely to the improper measure ΠH , so lim

n→∞
Πn([t, 1−t]) = 0.

Moreover, for all n, Πn([0, t[) = Πn(]1− t, 1]). Thus for all 0 < t < 1, lim
n→∞

Πn([0, t[) = 1
2 .

From Billingsley (1986, p.192), {β( 1
n ,

1
n )}n>0 converges narrowly to 1

2 (δ0 + δ1) = Π{0,1}.
By Theorem 2.5, {β( 1

n ,
1
n )}n>0 cannot converge to an other limit such as, e.g., the Hal-

dane measure which is not a Radon measure on [0, 1].
The limit of the posterior distributions can be deduced from the limit of the prior

distributions only for x = 0 and x = N .

• If x = 0, {Πn(θ|x = 0)} converges narrowly to Π{0,1}(θ|x = 0) = δ0.
• If x = N , {Πn(θ|x = N)} converges narrowly to Π{0,1}(θ|x = N) = δ1.
• If 0 < x < N , {Πn(θ|x)} converges narrowly to β(x,N − x) whereas Π{0,1}(θ|x)

does not exist.

Similarly, the limit of the estimators can be deduced from the limit of the prior dis-
tributions only for x = 0 and x = N .

• If x = 0, lim
n→∞

EΠn(θ|x = 0) = 0 = EΠ{0,1}(θ|x = 0).
• If x = N , lim

n→∞
EΠn(θ|x = N) = 1 = EΠ{0,1}(θ|x = N).

• If 0 < x < N , lim
n→∞

EΠn(θ|x) = x
N whereas EΠ{0,1}(θ|x) does not exist.

7. The Jeffreys-Lindley paradox

Consider the standard gaussian model X|θ ∼ N (θ, 1) and the point null hypothe-
sis H0 : θ = 0 tested against H1 : θ 6= 0. If we use the prior π(θ) = 1

21θ=0 +
1
21θ 6=0 w.r.t. the measure δ0 + λR, it corresponds to the mass 1

2 on H0 and the Laplace
prior on H1. The posterior probability of H0 is Π(θ = 0|x) = [1 +

√
2πex

2/2]−1 so
Π(θ = 0|x) 6

[
1 +
√

2π
]−1 ≈ 0.285 whatever the data are. An alternative is to use a se-

quence of proper priors {Πn}n whose pdf are πn(θ) = 1
2 1θ=0 + 1

2 1θ 6=0
1√
2πn

e−
θ2

2n2 . With

these priors, we have πn(θ = 0|x) =

[
1 +

√
1

1+n2 e
n2x2

2(1+n2)

]−1

which converges to 1. This

limit differs from the "noninformative" answer
[
1 +
√

2πex
2/2
]−1

and is considered as a
paradox. In the light of the concept of q-vague convergence, this result is not paradoxal
since, as shown in Proposition 7.1, the sequence of priors { 1

2δ0 + 1
2N (0, n2)}n converges

vaguely to 1
2δ0, and, the limiting posterior distribution corresponds to the posterior of

the limit of the prior distribution. The following proposition generalize this example.

Proposition 7.1. Consider a partition: Θ = Θ0

⋃
Θ1 where Θ0 = {θ0}. Let {Π̃n}n

be a sequence of probabilities on Θ which converges q-vaguely to the improper measure Π̃
and such that Π̃n(θ0) = Π̃(θ0) = 0. Put Πn = ρδθ0 + (1− ρ) Π̃n where 0 < ρ < 1, then
{Πn}n converges vaguely to ρδθ0 .



Approximation of improper priors 19

Moreover, assume that θ 7−→ f(x|θ) is continuous and belongs to C0. Then {Πn(·|x)}
converges narrowly to Π(·|x).

Proof. From Definition 2.2, there exists {an}n such that {anΠ̃n}n converges vaguely
to Π̃. For g ∈ CK , Πn(g) = ρ g(θ0) + (1 − ρ) Π̃n(g) = ρ g(θ0) + 1−ρ

an
an Π̃n(g). But,

lim
n→∞

anΠ̃n(g) = Π̃(g) < ∞. So, lim
n→∞

1−ρ
an

an Π̃n(g) = 0 since, from Lemma 2.9, lim
n→∞

an

= +∞. Thus, lim
n→∞

Πn(g) = ρ g(θ0). The first result follows.
The second part is a direct consequence of Theorem 3.5.

In the Proposition 7.1, it is assumed that θ 7−→ f(x|θ) ∈ C0(Θ). We consider now the
case where the limit of the likelihood f(x|θ) when θ is outside of any compact is not 0
but f(x|θ0). In that case, the limit of the posterior probabilities is the same as the limit
of the prior probabilities, as stated in the following proposition.

Proposition 7.2. Consider the same notations and assumptions of Proposition 7.1.
Moreover, assume that θ 7−→ f(x|θ) is continuous and such that for all ε > 0, there exists
a compact K such that for all θ ∈ Kc, |f(x|θ) − f(x|θ0)| 6 ε. Then lim

n→∞
Πn(θ = θ0|x)

= Π(θ = θ0) and lim
n→∞

Πn(θ 6= θ0|x) = Π(θ 6= θ0).

Proof. By Bayes formula: Πn(θ = θ0|x) = ρf(x|θ0)

ρf(x|θ0)+(1−ρ)
∫
Θ
f(x|θ)dΠ̃n(θ)

. But, for all

ε > 0, there exists a compact K such that, for all θ ∈ Kc, |f(x|θ) − f(x|θ0)| 6 ε.
So
∫

Θ
f(x|θ)dΠ̃n(θ) =

∫
K
f(x|θ)dΠ̃n(θ) +

∫
Kc f(x|θ) dΠ̃n(θ), where:

• (f(x|θ0)−ε) Π̃n(Kc) 6
∫
Kc f(x|θ)dΠ̃n(θ) 6 (f(x|θ0)+ε) Π̃n(Kc). From Proposition

2.11, lim
n→∞

Π̃n(Kc) = 1. So, lim
n→∞

∫
Kc f(x|θ) d Π̃n(θ) = f(x|θ0).

• There exists g ∈ CK(Θ) such that 0 6 g 6 1 and g 1K = 1. For a such g, lim
n→∞

∫
K

f(x|θ) d Π̃n(θ) 6 lim
n→∞

1
an
an
∫

Θ
g(θ) f(x|θ) d Π̃n(θ) = 0 since lim

n→∞
an
∫

Θ
g(θ)

f(x|θ) d Π̃n(θ) =
∫

Θ
g(θ) f(x|θ) d Π̃(θ) < +∞ and lim

n→∞
an = +∞ from Lemma

2.9.

Thus, lim
n→∞

Πn(θ = θ0|x) = ρf(x|θ0)
ρf(x|θ0)+(1−ρ)f(x|θ0) = ρ = Π(θ = θ0).

To illustrate this result in a more general case, we consider an example proposed by
Dauxois et al (2006). They consider a model choice between P(m) the Poisson distri-
bution, B(N,m) the binomial distribution and NB(N,m) the negative binomial distri-
bution. These models belong to the general framework of Natural Exponentiel Families
(NEFs) and are determined by their variance funtion V (m) = am2 + m where m is the
mean parameter. Thus, a null value for a relates to the Poisson NEF, a negative one to the
binomial NEF and a positive one to the negative binomial NEF. The prior distribution
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chosen on the parameter a is ΠK defined by

ΠK(a) =


1
3 if a = 0
1

3K if 1
a ∈ {1, ...,K}

1
3K if − 1

a ∈ {n0, ..., n0 +K − 1}

where K is an hyperparameter. Note that ΠK(a = 0) = ΠK(a > 0) = ΠK(a < 0) = 1
3 .

Dauxois et al (2006) showed that the posterior distributions does not converge to δ0
as in the previous case but ΠK(a = 0|X = x), ΠK(a > 0|X = x) and ΠK(a < 0|X = x)
converge to the prior probabilities ΠK(a = 0), ΠK(a > 0) and ΠK(a < 0) whatever the
data are when K → +∞.
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Appendix A: Properties of the quotient space

Proposition A.1. R is a Hausdorff space.

Proof. This proof is based on two results of Bourbaki (1971).

Step 1: R is a topological space and Γ = {σα : Π 7−→ αΠ, α ∈ R∗+} is a homeomorphism
group of R. We consider the equivalence relation: Π ∼ Π′ ⇐⇒ there exists α > 0
such that Π = αΠ′ i.e. there exists σα ∈ Γ such that Π = σα(Π′). So, from Bourbaki
(1971, section I.31), ∼ is open.

Step 2: Let us show that G = {(Π, αΠ), (Π, αΠ) ∈ R×R} which is the graph of ∼ is closed.
Let {(Πn, αnΠn)}n∈N∗ be a sequence in G such that (Πn, αnΠn) −−−−−→

n→+∞
(Π0,Π

′
0).

The aim is to show that (Π0,Π
′
0) ∈ G, i.e. (Π0,Π

′
0) takes the form (Π0, α0Π0)

where α0Π0 6= 0. Since Π0 6= 0, there exists f0 ∈ CK such that Π0(f0) > 0.
Moreover, Πn(f0) −−−−−→

n→+∞
Π0(f0) so there exists N ∈ N∗ such that for all n > N ,

Πn(f0) > 0. For all n > N , αn = αnΠn(f0)
Πn(f0) −−−−−→

n→+∞
Π′0(f0)
Π0(f0) = α0. Thus, for all

f ∈ CK , αnΠn(f) −−−−−→
n→+∞

α0Π0(f) and αnΠn(f) −−−−−→
n→+∞

Π′0(f). Since R is a

Hausdorff space, α0Π0(f) = Π′0(f). So, the graph of ∼, G, is closed. The result
follows from Bourbaki (1971, section I.55).
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