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Abstract

The purpose of this paper is to establish some results on optimal criteria

in experimental designs. Some relationships between optimality criteria are

shown. In particular, we extend results on the Φp criteria. We prove the Yeh

[19] conjecture that gives a necessary and sufficient condition for a design to

be universally optimal. We also give a similar result based on the eigenvalues

of the information matrix.
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1 Introduction

The aim of optimal design theory is to choose from a set D of designs one

that gives the “best” estimator of the parameters of interest. The optimal

design depends on how “the best” is defined. For example, consider the linear

model:

Y = Ad α + Bd β + ε,

where α is the t-vector of interest parameters, β is the vector of nuisance

parameters, Ad and Bd are the design matrices and ε the vector of zero-

mean constant-variance uncorrelated errors. The quality of the parameter

of interest is directly related to its variance matrix Vd or equivalently to its

information matrix Cd defined by

Cd = A′
d

(
I − pr(Bd)

)
Ad,

2



where pr(M) = M(M ′M)−M ′ is the projector onto Range(M) and I is the

identity matrix. From now on, we assume that all the information matrices

considered satisfy:

Cd1lt = 0 and Rank(Cd) = t− 1,

where 1lt is the t-vector of ones. These conditions occur frequently in analysis

of variance. Comparing estimators is equivalent to defining a preordering on

the set C = {Cd; d ⊂ D} of information matrices. A natural ordering on C is

the Loewner ordering that leads to the following notion of optimality:

Definition 1 A design d∗ is said to be uniformly optimal among a class D

of designs if for any design d in D, Cd∗−Cd is non-negative or, equivalently,

if for any design d in D and any contrast c′α:

var(c′α̂d∗) ≤ var(c′α̂d),

where α̂d is an ordinary least-square estimator of α for the design d.

Strategies to obtain uniformly optimal designs can be found in Kunert [12].

Unfortunately the Loewner ordering is a partial ordering and most often

uniformly optimal designs do not exist. Another way to define a preordering
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on C is to choose a statistically meaningful criterion Φ : C 7→ B, where B is

a totally ordered set, such as [0,∞].

Definition 2 A design d∗ is said to be Φ−optimal if:

∀ d ∈ D, Φ(Cd∗) ≤ Φ(Cd).

The purpose of this paper is to present some new results concerning cri-

teria used in optimal design theory. In Section 2, we first recall some results

on Schur convexity which is the main tool used in this paper. Then we es-

tablish some relationships between Φp criteria, with application to A-, D-,

and E-optimality. In Section 3, we present some results concerning universal

optimality and we establish a necessary and sufficient condition for a design

to be universally optimal (Yeh’s [19] conjecture). We also present another

necessary and sufficient condition for an alternative definition of universal

optimality

2 Optimality criteria

Many optimal design criteria are available in the literature; we refer to He-

dayat [8] for a review of optimality criteria and to Shah and Sinha [18] for

an extended discussion on the relationships between these criteria. In this
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section, we aim to extend some results concerning these relationships. First,

we present the main tools used throughout this paper: majorization and

Schur-convex functions.

2.1 Majorization and Schur convexity

Schur convexity is an important concept, useful in deriving relationships

between criteria. The best general reference on majorization and Schur con-

vexity is Marshall & Olkin [14]. We recall here some basic definitions and

properties.

Definition 3 For x and y in Rt, we denote by x↓i the ith greatest component

of x. We say that x is majorized by y, denoted x ≺ y, if

t∑
i=1

xi =
t∑

i=1

yi and ∀ k = 1, ..., t− 1 :
k∑

i=1

x↓i ≤
k∑

i=1

y↓i

We also denote :

x ≺w y if ∀ k = 1, ..., t,
∑t

i=k x↓i ≥
∑t

i=k y↓i

and x ≺w y if ∀ k = 1, ..., t,
∑k

i=1 x↓i ≤
∑k

i=1 y↓i

Notation 4 We denote by Pσ the (t,t)-matrix that permutes the components

of a vector according to the permutation σ lying in St, where St is the sym-

metric group on {1, ..., t}.
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Definition 5 A real function φ on Rt is Schur-convex if

x ≺ y =⇒ φ(x) ≤ φ(y).

and Schur-concave if

x ≺ y =⇒ φ(x) ≥ φ(y).

This definition looks more like a non-decreasing (resp. non-increasing) con-

dition than a convexity condition. The term “Schur-convex” is historical and

Corollary 8 establishes the link between convexity and Schur convexity.

Definition 6

A function φ on Rt is symmetric if ∀x ∈ Rt and ∀σ ∈ St, φ(Pσx) = φ(x).

The following proposition gives a characterization of majorization in term of

permutation matrices. It combines two theorems, one by Birkhoff [1] and the

other one by Hardy, Littlewood and Pólya [7] (see Theorem 2.B.2 and 2.A.2

in Marshall & Olkin [14]).

Proposition 7 For x and y in Rt, x ≺ y if and only if there exist non-

negative reals ασ such that:

x =
∑
σ∈St

ασPσy with
∑

σ∈St
ασ = 1.
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Corollary 8 A convex symmetric function φ on Rt is Schur-convex.

Note that a Schur-convex function is not necessarily convex (see Hedayat

[8]). The following corollary shows how x ≺ y implies that the components

of x are closer together around their mean than the components of y.

Corollary 9 Denote by x̄ (resp. ȳ) the arithmetic mean of x (resp. y). If

x ≺ y, then

x̄ = ȳ and ∀ p ≥ 1,

(
1

t

t∑
i=1

|xi − x̄|p
)1/p

≤
(

1

t

t∑
i=1

|yi − ȳ|p
)1/p

.

Note that the converse does not necessarily hold.

Notation 10 We denote by λ(C) the t-vector of the decreasingly ordered

eigenvalues of C.

Lemma 11 (Fan [6]) Let A and B be two (n,n) symmetric matrices, then

λ(A + B) ≺ λ(A) + λ(B).

Definition 12 A criterion C 7→ Φ(C) is Schur-convex on the eigenvalues if

λ(C) ≺ λ(D) =⇒ Φ(C) ≤ Φ(D).

Lemma 13 (Bondar [2]) If a criterion Φ is convex and satisfies Φ(OCO′) =

Φ(C) for any orthogonal matrix O, then Φ is Schur-convex on the eigenval-

ues.
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Lemma 14 If a criterion C 7→ Φ(C) is Schur-convex on the eigenvalues of

C, then there exists a Schur-convex function φ on Rt such that:

Φ(C) = φ(λ(C)).

2.2 Optimality and diagonal terms

The following result is useful in finding Φ−optimal designs when Φ is Schur

convex on the eigenvalues of C and the diagonal terms are easy to calculate.

Proposition 15 Let Φ be a Schur convex criterion on the eigenvalues. So

that Φ(C) = φ(λ(C)). Then d∗ is Φ−optimal among a class D of designs if

∀ d ∈ D Φ(Cd∗) ≤ φ(δ(Cd))

where δ(Cd) is the vector of diagonal terms of Cd in decreasing order.

Proof : The proof is a direct consequence of the following lemma. 2

Lemma 16 (Schur [17]) For all symmetric real matrices,

δ(C) ≺ λ(C),

where δ(C) is the vector of diagonal terms of C.
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2.3 The Φp criteria

In this section, we present the well-known Φp criteria introduced first by

Kiefer [10]. We establish some relationships between these criteria, and

strengthen some existing results. First, we define the exponent of a non-

full-rank symmetric matrix.

Notation 17 Let M be a non-negative symmetric matrix. We denote by

M+ its Moore-Penrose inverse. For p > 0, Mp is the usual matrix exponent.

When p < 0, Mp is defined by Mp = (M+)−p. By continuity, M0 = pr(M) =

MM+.

Definition 18 The Φp criteria are defined as follow :

Φp(C) =

(
1

t− 1

t−1∑
i=1

λ−p
i (C)

)1/p

=

(
1

t− 1
tr(C−p)

)1/p

, for p ∈ R\{0}

Φ0(C) = lim
p→0

Φp(C) =
t−1∏
i=1

λ
−1/(t−1)
i ,

Φ+∞(C) = lim
p→+∞

Φp(C) = λ−1
t−1(C) = max

i=1,...,t−1
λ−1

i (C),

Φ−∞(C) = lim
p→−∞

Φp(C) = λ−1
1 (C) = min

i=1,...,t−1
λ−1

i (C)

Remark:

The Φ0−, Φ1− and Φ∞−optimality are equivalent to the very popular D−,

A− and E−optimality, respectively. The criterion Φ−1(C) = (t − 1)/ tr(C)

play an important role in the next section.
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The following proposition is a catalogue of well known results on the Φp

criteria.

Proposition 19

- For all p ∈ [−∞, +∞], C 7→ Φp(C) is invariant by row-column permuta-

tions of C.

- For all p ∈ [−∞, +∞], Cd1 ≤ Cd2 =⇒ Φp(Cd1) ≥ Φp(Cd2),

- C 7→ Φp(C) is convex for p > −1,

- p 7→ Φp(C) is non-decreasing in p.

The following two propositions generalize property 2.5 of Kiefer [11]: they

show that the Φp criteria can be considered, in some cases, as a kind of

“scale” of optimality.

Proposition 20 Let d1 and d2 be two designs with rank t − 1 information

matrices. Then for po 6= 0

λ(C−po

d1
) ≺ λ(C−po

d2
) =⇒





Φpo(Cd1) = Φpo(Cd2)

Φp(Cd1) ≤ Φp(Cd2) for p > po

Φp(Cd1) ≥ Φp(Cd2) for p < po

Proof : For i = 1, ..., t− 1,

λi(C
−p) = λi(C)−p = (λi(C)−po)p/po .
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There are several cases to be considered: 0 < p < po, 0 < po < p, p < 0 < po,

po < 0 < p, p < po < 0 and po < p < 0. In all the cases, the scheme of the

proof is the following:

a) By proposition 3.C.1.b of Marshall & Olkin [14], x ∈ (]0,∞[)t−1 7→
∑t−1

i=1 x
p/po

i is Schur-concave for p/po ∈]0, 1[ and Schur-convex otherwise. So

the condition λ(C−po

d1
) ≺ λ(C−po

d2
) leads to the comparison between

∑t−1
i=1 λi(C

−p
d1

)

and
∑t−1

i=1 λi(C
−p
d2

).

b) The result follows on using the fact that x ∈ (]0, +∞[) 7→ x1/p is in-

creasing for p > 0 and decreasing for p < 0.

For example, when 0 < po < p, x 7→ xp/po is convex and x 7→ x1/p is in-

creasing, so that:

λ(C−po

d1
) ≺ λ(C−po

d2
) =⇒

t−1∑
i=1

λi(C
−p
d1

) ≤
t−1∑
i=1

λi(C
−p
d2

)

=⇒
(

1

t− 1

t−1∑
i=1

λi(C
−p
d1

)

)1/p

≤
(

1

t− 1

t−1∑
i=1

λi(C
−p
d2

)

)1/p

The case p = 0 can be obtained as the limit case when p → 0. The case

p = po is obvious.
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2

In the next proposition, we weaken both the sufficient and the necessary

conditions.

Proposition 21 Let d1 and d2 be two designs with rank t − 1 information

matrices.

Then for po < 0:

λ
(
C−po

d1

) ≺w λ
(
C−po

d2

)
=⇒ Φp(Cd1) ≤ Φp(Cd2) for p ≥ po

and for po > 0

λ
(
C−po

d1

) ≺w λ
(
C−po

d2

)
=⇒ Φp(Cd1) ≤ Φp(Cd2) for p ≥ po

Proof : There are three cases to be considered: p > po > 0, p ≥ 0 > po and

0 > p > po. The scheme of the proof is identical to the proof of Proposition

20 except that we use Proposition 4.B.2 or Theorem 5.A.2 of Marshall&

Olkin [14].

2

Many results can be derived from the above two propositions:

Corollary 22 A design d∗ is Φp−optimal among a class D of designs for

p ≥ −1 if ∀ d ∈ D, λ(Cd∗) ≺w λ(Cd)
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This result will be generalized in the next section.

Corollary 23 A design d∗ is E−optimal among a class D of designs if for

all d ∈ D, λ(C+
d∗) ≺w λ(C+

d ).

Note that the condition “∀ d ∈ D , λ(C+
d∗) ≺w λ(C+

d )” is slightly stronger

than “d is A−optimal”.

The next application of Proposition 20 is a result by Bondar [2] concerning

MS-optimality introduced by Eccleston and Hedayat [5].

Definition 24 A design d∗ of a class D of designs is MS-optimal if it mini-

mizes Φ−1 and if it maximizes Φ−2 among the subclass of designs minimizing

φ−1.

Corollary 25 A design d∗ is MS-optimal among a class D if it minimizes

Φ−1 and if λ(Cd∗) ≺ λ(Cd) for all the designs minimizing φ−1.

3 Conditions for universal optimality

In some cases, a design is optimal not only for just a single specific criterion

but for a whole class of criteria. Following this idea, Kiefer [11] introduces the
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notion of universal optimality. In this section, we present different definitions

of universal optimality and give necessary and sufficient conditions for a

design to be universally optimal.

3.1 Kiefer’s universal optimality

The following definition of universal optimality is the historical one.

Definition 26 (Kiefer [11]) A design d∗ is universally optimal among a

class D of designs if d∗ is Φ-optimal for all the criteria Φ(C) from C to

]−∞, +∞] satisfying:

(a) Φ is invariant under each permutation of rows and (the same on) columns,

(b) Φ(αC) is non-increasing in the scalar α > 0,

(c) Φ is convex.

Remark:

Many of the usual criteria satisfy the three conditions of Definition 26. These

include Φp− criteria for p ≥ −1, the criteria of type 1 and 2 (Cheng [3]) and

the MS criterion.

Proposition 1 of Kiefer [11] gives a sufficient condition for a design d∗ to be

universally optimal.
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Proposition 27 (Kiefer [11]) A design d∗ is universally optimal among a

class D of designs if its information matrix is completely symmetric (i.e.

invariant by row-column permutation) and maximizes the trace among D.

Yeh [19] establishes a more general sufficient condition and gives some

applications. He conjectures that the condition is also necessary.

Proposition 28 (Yeh [19] ) A design d∗ is universally optimal among a

class D of designs if it satisfies:

(i) tr Cd∗ = maxd∈D tr Cd,

(ii) ∀ d ∈ D, there exist scalars adσ ≥ 0 satisfying:

Cd∗ =
∑
σ∈St

adσPσCdP
′
σ.

Proposition 29 (Yeh’s conjecture [19] ) The sufficient condition in Propo-

sition 28 is also a necessary condition.

Proof of Proposition 29.

Condition (i) is necessary because C 7→ − tr C satisfies condition (a), (b)

and (c) in Definition 26 . Let d∗ be a universally optimal design, and assume

that there exists a design d1 for which there are no αd1σ ≥ 0 such that

Cd∗ =
∑
σ∈St

αd1σ Pσ Cd1 P ′
σ.
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Let A be the convex cone generated by the matrices {Pσ Cd1 P ′
σ}σ∈St . We

have (see e.g. Rockafellar [16, p.14]):

A =

{
M / M =

∑
σ∈St

αdσPσ Cd1 P ′
σ for some αdσ ≥ 0

}
.

Consider the criterion Φ defined by:

Φ(Cd) =





0 if Cd ∈ A,

+∞ if Cd /∈ A.

For all σ ∈ St, PσAP ′
σ = A, thus Φ(PσCdP

′
σ) = Φ(Cd). The convexity of

A implies the convexity of Φ. Moreover, for any α > 0, Φ(α Cd) = Φ(Cd).

Hence Φ satisfies conditions (a), (b) and (c) in Definition 26. By construction

of Φ, we have Φ(Cd1) < Φ(Cd∗) that contradicts the fact that d∗ is universally

optimal.

2

Remark:

It may be objectionable that the criterion Φ exhibited in the proof takes only

two values: 0 and +∞ and that ∀α > 0, Φ(αCd) = Φ(Cd). However, Φ can

be replaced by

Φ1(Cd) = inf
C∈A

‖Cd − C‖

where ‖ · ‖ is any norm on the set of symmetric matrices invariant by row-

column permutation, e.g. the Euclidean norm ‖C‖ =
√

tr C2. The criterion
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Φ1(Cd) is, in fact, the distance between Cd and A. We now check that Φ1

satisfies conditions (a), (b) and (c) of Definition 26. Because PσAP ′
σ = A

and because the norm is invariant by permutation, we have:

Φ1(PσCdP
′
σ) = inf

C∈A
‖PσCdP

′
σ − C‖ = inf

C∈A
‖PσCdP

′
σ − PσCP ′

σ‖ = Φ1(Cd).

For α > 0, αA = A, thus

Φ1(α C) = inf
C∈A

‖α Cd − C‖ = inf
C∈A

‖α Cd − α C‖ = α Φ1(Cd)

So Φ1(α Cd) is (strictly) increasing in α > 0.

Moreover, Cd 7→ Φ(Cd) is convex (see Hiriart-Urruty and Lemaréchal [9,

p.153]). It remains to show that Φ1(Cd1) < Φ1(Cd∗). Since the convex

cone A is closed (see Hiriart-Urruty and Lemaréchal [9, p.102]), there exists

D ∈ A such that Φ1(Cd∗) = ‖Cd∗ − D‖. Since Cd∗ /∈ A, Φ1(Cd∗) > 0. So

0 = Φ1(Cd1) < Φ1(Cd∗) (QED).

3.2 Restricted universal optimality

We now seek a necessary and sufficient condition of universal optimality that

only depends on the eigenvalues of the information matrix. So, we are led to

restrict Kiefer’s definition to criteria Φ(Cd) that depend only on the eigen-

values of Cd. Hence we replace condition (a) in Definition 26 with:
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(a′) Φ(OCdO
′) = Φ(Cd) for any orthogonal matrix O.

Proposition 30 A design d∗ is universally optimal (with condition a′) among

a class D of designs if and only if

(i) tr Cd∗ = max
d∈D

tr Cd,

(ii) λ

(
Cd∗

tr Cd∗

)
≺ λ

(
Cd

tr Cd

)
.

Proof :

Assume that conditions (i) and (ii) hold, then ∀ d ∈ D: condition (ii) im-

plies that λ(Cd∗) ≺ λ
(

tr Cd∗
tr Cd

Cd

)
and, by Lemma 13, Φ(Cd∗) ≤ Φ

(
tr Cd∗
tr Cd

Cd

)
.

By condition (b) of Definition 26 and by condition (i), Φ(Cd∗) ≤ Φ(Cd).

Thus d∗ is universally optimal (with condition a′).

Conversely, let d∗ be universally optimal (with condition a′). Then condition

(i) holds. Assume that condition (ii) does not hold, then there exists a design

d1 such that

λ

(
Cd∗

tr Cd∗

)
6≺ λ

(
Cd1

tr Cd1

)
.

We now define the following set of (t,t) non-negative symmetric matrices:

A =

{
M / M1lt = 0 and λ

(
M

tr M

)
≺ λ

(
Cd1

tr Cd1

)}
.
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The set A is a cone and, by Lemma 11, it can be proved that A is convex as

well. Then, the end of the proof is identical to the proof of Proposition 29.

2

Remark:

This proposition shows that the ellipsoid x 7→ 1
||x||2 x

′Cdx must be “as spher-

ical as possible”. The sphericity comparison is made by the majorization of

the eigenvalues of Cd, that are equal to the half length of the ellipsoid axes,

using the scale parameter tr(Cd).

3.3 Schur optimality

For the sake of completeness, we mention a concept close to universal op-

timality: Schur optimality introduced by Magda [13] and called universal

optimality by Bondar [2]. This definition show again the strong link between

universal optimality and Schur convexity.

Definition 31 (Magda [13]) A design d∗ is Schur optimal among a class

D of designs if d∗ is Φ-optimal for all criteria Φ(C) from C to ] −∞, +∞]

satisfying:

(α) : λ (C1) ≺w λ (C2) =⇒ Φ(C1) ≤ Φ(C2).
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Remark:

By Theorem 3.A.8 in Marsall & Olkin [14] or Theorem 2.1 in Bondar [2], con-

dition (α) is equivalent to the two conditions given historically by Magda[13]:

(β) Φ(C) is Schur-convex on the eigenvalues of C,

(γ) ∀ i, λi(C1) ≤ λi(C2) =⇒ Φ(C1) ≥ Φ(C2).
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