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Abstract

Shrinkage factors play an important role in the behaviour of biased estimators. In
this paper, we first show that the only way to have bounded shrinkage factors on a
subspace is to shrink uniformly on this subspace. Then, we characterize regressions
on components that shrink uniformly on the subspaces spanned by their associated
weight vectors. We show that this problem is equivalent to solving a set of linear
equations involving two different projectors. We define a class of matrices whose
eigen decompositions give the solution.
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1 Introduction

It is well established that some classes of biased estimators are often prefer-
able to ordinary least squares estimators (OLS) in linear regression when the
explanatory variables are highly correlated. The main classes of alternative
estimators are Ridge Regression (Hoerl and Kennard, 1970), Liu estimators
(Liu, 1993, Akdeniz, Styan and Werner, 2006) and regression on components
such as Principal Component Regression or Partial Least-Squares Regression
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(see Goutis, 1996, or Druilhet and Mom, 2006, for shrinkage properties of
PLSR).

Druilhet and Mom (2008) have shown that in most cases, these estimators
do not have bounded shrinkage factors in all the directions of the parameter
space, which may lead to peculiar properties of these estimators (see Frank and
Friedman, 1997, Butler and Denham, 2000, or Lingjærde and Christophersen,
2000). In the case of regression on components, a natural way to overcome
this problem is to seek competing estimators that have bounded shrinkage
factors in the directions generated by the weight vectors associated with the
components.

The aim of this paper is to identify which regressions on components lead to
estimators that shrink uniformly on the subspaces spanned by their associated
weight vectors. In section 2, we show that, from a statistical point of view, this
problem is equivalent to having bounded shrinkage factors on these subspaces.
In Section 3, we show that, from an algebraic point of view, this problem is
equivalent to finding orthonormal p-tuples (w1, ..., wp) of p-vectors that satisfy
some properties involving two projectors. Then, we give a solution and we
characterize uniformly shrinking regression on components. In Section 4, we
give another presentation of the results based on ridge estimators.

2 The statistical motivation

2.1 Uniformly shrinking estimators

We consider the standard linear model:

y = Xβ + ε, (1)

where X is the n× p design matrix, β the p-vector of parameters and ε the n-
vector of i.i.d. mean zero variance σ2 errors. We write S = X ′X and s = X ′y.
For the sake of simplicity, from now on, we assume that S is of full rank. We
denote by β̂ols = S−1 s, the OLS estimator.

Let w be a p-vector and β̂ a competing estimator. The shrinkage factor aw
associated with w is defined by:

aw =
w′β̂

w′β̂ols
. (2)

For w such that w′β̂ols = 0 and w′β̂ = 0 or w′β̂ols = 0 and w′β̂ 6= 0, aw is
not defined. In the first case, resp. the second case, we denote aw = 0

0
, resp.
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aw = ±∞. Since the shrinkage factor associated with w is scale invariant,
it depends on w only through the corresponding direction. Note that w′β̂
actually shrinks in the usual sense only when 0 ≤ aw ≤ 1.

Definition 1 An estimator β̂ is said to be uniformly shrinking on a subspace
E if there exists a real a 6= ±∞ such that:

w′β̂ = aw′β̂ols, ∀w ∈ E. (3)

It should be remarked that β̂ lies in a flat determined by the vector aβ̂ols and
the vector space orthogonal to W. Note that when β̂ is proportional to β̂ols,
this property holds for any subspace E (see e.g. Tian and Puntanen, 2009, for
some examples of equality between the two estimators).

The following proposition shows that uniform shrinkage on E is the only way
to obtain bounded shrinkage factors on each direction in E, i.e. the shrinkage
factor associated with any direction w in E which is not equal to 0

0
cannot be

greater than some number M nor equal to ±∞.

Proposition 2 Let β̂ be an estimator of β and E a subspace. Then, β̂ is
uniformly shrinking on E if and only if the shrinkage factors in the directions
belonging to E are bounded.

Proof : If β̂ is uniformly shrinking on E, then, obviously, the shrinkage factors
are bounded on E. Conversely, assume that β̂ is not uniformly shrinking on
E. If there exists a direction in E whose shrinkage factor is equal to ±∞, then
the shrinkage factors are not bounded. So, we assume that there exist w1 and

w2 in E such that aw1 6= aw2 , both belonging to R. Let γ = −w′1β̂
ols

w′2β̂
ols

+ δ and

w = w1 + γw2, which belongs to E. We have

aw =
(aw1 − aw2)w

′
1β̂

ols + δ w′2β̂

δ w′2β̂
ols

.

When δ tends towards 0, aw tends towards +∞ or −∞ and therefore cannot
be bounded. 2

2.2 Totally uniformly shrinking sequences of directions

In regression on components, we have p components t1 = X w1, ..., tp = X wp,
where (w1, ..., wp) are the corresponding linearly independent weight vectors.
For 1 ≤ q ≤ p, we consider (i1, ..., iq) a subset of (1, ..., p). We denote W =
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(wi1 , ..., wiq). The estimator β̂W obtained by regression on the components
ti1 , ..., tiq is:

β̂W = P S
W β̂ols, (4)

where P S
W = W (W ′SW )−1W ′S is the projector onto span(W ) w.r.t. S. We

name such estimators POD (Projection Onto Directions) estimators. If q = 0,
i.e. if the set of directions is empty, we write β̂{0} = 0.

Since β̂W is concentrated in the subspace spanned by the weight vectors, we
want this estimator to have bounded shrinkage factors on this subspace, or
equivalently, to shrink uniformly on this subspace as seen in Section 2.1.

Proposition 3 The estimator β̂W defined by (4)is uniformly shrinking on
span(W ) iff there exists a real aW such that:

β̂W = aW PW β̂ols, (5)

where PW = W (W ′W )−1W ′ is the orthogonal projector onto span(W ).

Proof : Since β̂W and PW β̂ols belong to span(W ), (5) is equivalent to: ∀w ∈
span(W ), w′β̂W = aW w′PW β̂ols, which is equivalent to ∀w ∈ span(W ),
w′β̂W = aW w′β̂ols. 2

Since we want these estimators to be uniformly shrinking for any subsets of
components, we are led to the following concept:

Definition 4 A p-tuple (w1, · · · , wp) of orthonormal directions in Rp is said
to be totally uniformly shrinking if for any subset W the corresponding POD
estimator is uniformly shrinking on span(W ).

The next section is devoted to the characterization of totally uniformly shrink-
ing p-tuples.

3 Characterization of totally uniformly shrinking p-tuples of direc-
tions

We deal with the following problem derived from the previous section: for any
given p× p symmetric positive-definite matrix S and any given non-zero x in
Rp , we seek all the p-tuples (w1, · · · , wp) of orthonormal vectors in Rp such
that, for any subset W , there exists a scalar aW , called shrinkage factor, such
that

P S
W x = aW PW x . (6)
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Such a p-tuple (w1, · · · , wp) is said to be totally uniformly shrinking as in

Section 2 with (5) corresponding to (6) and β̂ols being replaced by x. Note
that from Prop. 3, condition (6) is equivalent to: for any vector w in span(W ),

w′ P S
W x = aW w′ x.

We also write s = S x.

3.1 Totally uniformly shrinking p-tuples of directions and matrices Mα

Consider the class of p× p symmetric matrices Mα defined by:

Mα = S−1 + α x x′ (7)

for α ∈ R. When α = − 1
s′ x

, Mα is denoted by H:

H = S−1 − 1

s′ x
x x′ . (8)

Lemma 5 All the matrices Mα, except H, are of full rank. The matrix H has
a simple null eigenvalue which corresponds to the eigenvector s.

Proof :

We have Mαu = 0 ⇔ S−1u = −α(u′ x)x ⇔ u = −α(u′ x)s. Then, s is the
corresponding eigenvector and S−1s+ α(s′ x)x = 0⇔ α = − 1

s′ x
. 2

Proposition 6 For any α ∈ R, the set of p orthonormal eigenvectors u1, ..., up
of Mα is totally uniformly shrinking. Moreover, the shrinkage factor associated
with W = (ui1 , ..., uik) is

aW = 1 + α ‖ (Ip − P S
W ) x ‖2S . (9)

Or equivalently,

aW =
‖ P S

W x ‖2S
‖ x ‖2S

if α = − 1

s′ x
, (10)

aW =
1 + α(s′ x)

1 + α(s′PW x)
if α 6= − 1

s′ x
. (11)

Proof : For 1 6 i 6 p, let ui be the normalized eigenvector of Mα associated
with λi(Mα).
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If λi(Mα) = 0, Lemma 5 implies that ui ∝ s and α = − 1
s′ x

. Then, Proposi-
tion 7 gives the result.

If λi(Mα) 6= 0 for 1 6 i 6 p, then ui + α(u′i x)s = λi(Mα)Sui.

∀j 6= i, u′jSui = α
(u′i x)(u

′
js)

λi(Mα)
since u′jui = 0. For j = i, u′iSui = α

(u′i x)(u
′
is)

λi(Mα)
+

1
λi(Mα)

. Let di = α
(u′i x)

λi(Mα)
and W = (ui1 , · · · , uik), 1 6 k 6 p. Denote by

d ∈ Rk the vector whose lth entry is dil and D the k × k diagonal matrix
whose lth diagonal entry is 1

λil (Mα)
for 1 6 l 6 k, then W ′SW = D + (W ′s)d′.

Since d′D−1(W ′s) = α(s′PW x) and W ′SW is always of full rank, we have
1 + α(s′PW x) 6= 0. Then,

(W ′SW )−1W ′S x =
1

1 + α(s′PW x)
D−1W ′s.

Furthermore, for 1 6 i 6 p, S−1ui = (λi(Mα)ui) − α(u′i x)x, thus W ′S−1s =
D−1W ′s− α(s′ x)W ′ x⇒ D−1W ′s = (1 + α(s′ x))W ′ x. Since W ′W = Ik, (6)
holds with:

aW =
1 + α(s′ x)

1 + α(s′PW x)
.

For the last part of the proof, simply note that (10) is equivalent to (9) if
α = − 1

s′ x
= − 1

‖x‖2S
.

If α 6= − 1
s′ x

, (6) and the symmetry of the projector Ip − P S
W w.r.t S imply

that (11) is equivalent to (9).
2

3.2 Preliminary results

In order to prove Theorem 9 giving the main result of the paper, we need the
following proposition and lemma.

Proposition 7 Any set of p orthonormal eigenvectors of H is totally uni-
formly shrinking. Furthermore, for any subset W , aW is given by (10).

Proof : From (6), straightforward algebra gives the first part of Proposition 7.
By Lemma 5, s is an eigenvector of H. Thus, if s ∈ span(W ), multiplying
(6) by s′ gives (10). If s /∈ span(W ), then P S

W x = 0 and (6) implies that

aW = 0 =
‖PSW x‖2S
‖x‖2S

. 2

Lemma 8 Let α ∈ R and (w1, · · · , wp) be the eigenvectors of Mα. Denote by
q the number of eigenvectors wi such that w′i x 6= 0. Without loss of generality,
assume that these eigenvectors are the q first ones. For, q + 1 6 j 6 p,
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w′j x = 0. Let (uq+1, · · · , up) be any orthonormal basis of span(w1, · · · , wq)⊥,
then (w1, · · · , wq, uq+1, · · · , up) is totally uniformly shrinking.

Proof : First, from the proof of Proposition 6, for any subsetW1 of (w1, · · · , wq),
there exists aW1 ∈ R, such that P S

W1
x = aW1 PW1

x.
For, q + 1 6 j 6 p, since wj is an eigenvector of Mα and w′j x = 0, wj is an
eigenvector of S and thus λj(Mα) 6= 0. Then, for 1 6 i 6 q and q+ 1 6 j 6 p,

w′iSwj =
1

λj(Mα)
w′iwj = 0 (12)

and (w1, · · · , wq)⊥S(wq+1, · · · , wp). Thus, for any subset W1 of (w1, · · · , wq),
and any W2 such that span(W2) ⊂ span(wq+1, · · · , wp), P S

W = P S
W1

+ P S
W2

where W = (W1,W2). Since, for q + 1 6 j 6 p, w′j x = 0, on the one hand,
PW2

x = 0 ⇒ PW x = PW1
x. On the other hand, for q + 1 6 j 6 p, 0 =

w′j x = w′j S
−1 s = λj(Mα)w′j s ⇒ w′j s = 0 since λj(Mα) 6= 0. Thus s ∈

span(w1, · · · , wq)⇒ P S
W2

x = 0⇒ P S
W x = P S

W1
x.

Then,

P S
W x = P S

W1
x = aW1 PW1

x = aW1 PW x .

Thus, for any orthonormal basis of span(w1, · · · , wq)⊥, say (uq+1, · · · , up),
(w1, · · · , wq, uq+1, · · · , up) is an orthonormal basis of Rp which is totally uni-
formly shrinking. 2

3.3 Main result

The following result, which is the main one, is a reciprocal of Proposition 6.
Roughly speaking, a totally uniformly shrinking p-tuple of directions is a set
of eigenvectors of a matrix Mα for some α.

When x = β̂ols and S = X ′X, a totally uniformly shrinking p-tuple of The-
orem 9, say (w1, · · · , wp), turns into a totally uniformly shrinking p-tuple of
directions given in Definition 4. Thus, any subset W of (w1, · · · , wp) gives a
POD estimator defined in (4) and the statistical problem dealt with in sec-
tion 2 is solved.

Theorem 9 Let (w1, · · · , wp) be a p-tuple of orthonormal directions.
If, for 1 6 i 6 p, w′i x 6= 0 , then (w1, · · · , wp) is totally uniformly shrinking if
and only if there exists α ∈ R such that, for 1 6 i 6 p, wi are the eigenvectors
of Mα .
If there are q 6 p − 1 directions wi among (w1, · · · , wp) such that w′i x 6= 0,
(assumed to be the q first ones without loss of generality) then (w1, · · · , wp) is
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totally uniformly shrinking if and only if ∃α ∈ R such that (w1, · · · , wq) are
eigenvectors of Mα and (wq+1, · · · , wp) are any orthonormal basis of
span(w1, · · · , wq)⊥.

Proof :

For the first part of Theorem 9, the necessary part follows from Proposition 6.
For the sufficient part, we search p orthonormal directions (w1, · · · , wp) such
that any subset W satisfies (6). Consider wi one of these directions and denote
by W(−i) = span(wi)

⊥ its orthogonal subspace. Then, there exists a(−i) ∈ R
such that

P S
W(−i)

x = a(−i) PW(−i) x

⇔ (Ip − P S
W(−i)

) x = (Ip − a(−i) PW(−i)) x = (1− a(−i))x+a(−i)Pwi x

Since W⊥S
(−i) = span(S−1wi), (Ip − P S

W(−i)
) x = P S

S−1wi
x . Then,

P S
S−1wi

x = (1− a(−i))x+a(−i)Pwi x

Thus, for 1 6 i 6 p, S−1wi ∈ span(x,wi). More precisely, if w′i x 6= 0 for
1 6 i 6 p, wi verifies:

Mα(wi)wi = S−1wi + α(wi)(w
′
i x)x = λi(Mα(wi))wi (13)

with α(wi) = −(1− a(−i))
w′iS

−1wi
(w′i x)

2 and

λi(Mα(wi)) = a(−i)
w′iS

−1wi
w′iwi

.

For any other direction of (w1, ..., wp), say wj, such that w′j x 6= 0, we have:

Mα(wj)wj = S−1wj + α(wj)(w
′
j x)x = λj(Mα(wj)wj. (14)

Since w′iwj = 0, multiplying (13) by w′j and (14) by w′i gives:

α(wi) = α(wj) = − w′iS
−1wj

(w′i x)(w′j x)
= α.

Then all the wi, for 1 6 i 6 p, such that w′i x 6= 0, are the eigenvectors of the
same matrix Mα.
For the second part of Theorem 9, the necessary part follows from Lemma 8.
For the sufficient part, let (w1, · · · , wp) be a totally uniformly shrinking p-
tuple with for 1 6 i 6 q, w′i x 6= 0 and for q + 1 6 i 6 p, w′i x = 0. The
first part of the proof shows that ∃α ∈ R such that, for 1 6 i 6 q, wi are the
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eigenvectors of Mα. For 1 6 i 6 q,we have:

wi + α(w′i x)s = λi(Mα)Swi. (15)

Since w′j x = 0 for q+1 6 j 6 p, x ∈ span(W1) where W1 = (w1, · · · , wq) and,
by (6), w′js = 0 for q + 1 6 j 6 p. Thus, s ∈ span(W1).

For 1 6 i 6 q and for q + 1 6 j 6 p, multiplying (15) by w′j gives w′jSwi = 0
because λi(Mα) 6= 0. Thus,

W1⊥SW2 = (wq+1, · · · , wp). (16)

Furthermore, the set W2 is necessarily an orthonormal basis of span(W1)
⊥.

To complete the proof, we have to prove that it could be any one. Since (16)
holds, the remainder of the proof is the same as in Lemma 8 after (12). 2

Now, we seek for which values of α the associated shrinkage factor actually
shrinks, i.e. belongs to [0, 1].

Remark : From (9), when x = β̂ols, the least-squares estimator constrained to
belong to W actually shrinks, i.e. 0 ≤ aW ≤ 1, iff:

− 1

‖ (Ip − P S
W )x ‖2S

6 α 6 0. (17)

Let maxnorm = maxWp−1(‖ P S
Wp−1

x ‖2S) where Wp−1 is one of the p sub-
sets of p − 1 directions of (w1, ..., wp). Therefore, it follows from (17) that if
− 1

maxnorm
6 α 6 0, then the 2p estimators defined by (4) actually shrink on

their respective subspaces. It is the case when − 1
‖x‖2S

= − 1
s′ x

6 α 6 0. Note

that α = − 1
s′ x

corresponds to Mα = H. If α = 0, the eigenvectors of Mα

are the directions of PCR and the corresponding shrinkage coefficients are all
equal to 1 as shown by (9).

Remark : Since a regular symmetric matrix has the same eigenvectors as its
inverse, all matrices Mα, except H, can be replaced in Theorem 9 by their
inverses:

M−1
α = S − α

1 + αs′ x
ss′.

In these expressions, S does not need to be inverted and the matrices are
easier to diagonalize.
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4 Totally uniformly shrinking p-tuples of directions obtained from
Ridge regression

In this section, we show that the directions wi in Theorem 9 can also be
obtained from a set of matrices based on (S + kIp)

−1s where s = Sx. The
matrix S+kIp is better conditioned than S and is preferable from a numerical

point of view. In the context of section 2 , when x = β̂ols then (S + kIp)
−1s

corresponds to a ridge estimator: see e.g. Groß and Markiewicz (2004) for
properties of general ridge estimators.

Denote by M the set of p× p matrices

M(α1, α2) = α1S
−1 + α2 x x

′

where α1, α2 ∈ R. When α1 = 0, x is an eigenvector of M(0, α2) and the other
eigenvectors span its orthogonal subspace. Therefore, if W is any subspace
spanned by some eigenvectors of M(0, α2), P

S
W x = PW x = x if x ∈ W . If

x 6∈ W , P S
W x 6= 0 and PW x = 0 and there does not exist a real aW such

that (6) holds. Except in this case, there exists a real α = α2

α1
such that the

eigenvectors of M(α1, α2) are also those of S−1 + α x x′.

Now denote by N the set of p× p matrices N(γ1, γ2, k) defined by:

N(γ1, γ2, k) = γ1(S + kIp)
−1 + γ2((S + kIp)

−1s)((S + kIp)
−1s)′

(18)

where γ1, γ2 ∈ R, k ∈ R− {−λi(S),∀i = 1, · · · , p} and s = Sx.
Note that in the context of section 2 when x = β̂ols,
N(γ1, γ2, k) = γ1(S + kIp)

−1 + γ2β̂
ridge
k β̂ridgek

′, where β̂ridgek = (S + kIp)
−1s.

Then:

Proposition 10 To each matrix belonging to M corresponds a matrix of N
with the same eigenvectors.

Proof :

Let M(α1, α2) = α1S
−1 + α2 x x

′ be any matrix of M. First, if α1 = 0, then
x is an eigenvector of M(0, α2) and the other eigenvectors span its orthogonal
subspace. These vectors can also be obtained as eigenvectors of the matrix
N(1, γ, k) belonging to N with γ = 1

s′(S−1−(S+kIp)−1)s
. Now, if α1 6= 0, the

eigenvectors of M(α1, α2) are also those of Mα = S−1 + α x x′ with α =
α2

α1
. Then Mαui = λi(Mα)ui is equivalent to (1 + kλi(Mα))(S + kIp)

−1ui +

α(u′i x)(S + kIp)
−1s = λi(Mα)ui.

If there exists i such that 1 + kλi(Mα) = 0, then ui ∝ (S + kIp)
−1s which
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is an eigenvector of N(γ1, γ2, k) with γ1 = 0 for any γ2 6= 0. Since the other
eigenvectors of Mα are orthogonal to ui, then the eigenvectors of Mα are also
the eigenvectors of any matrix N(0, γ2, k) with γ2 6= 0.

If for all 1 ≤ i ≤ p, 1+kλi(Mα) 6= 0, we consider two cases for the eigenvectors
of Mα :

Case 1: If ui satisfies
s′(S + kIp)

−1ui 6= 0, (19)

then ui is an eigenvector of N(1, γ, k) with:

γ =
α(u′i x)

(1 + kλi(Mα))(s′(S + kIp)−1ui)
.

As in the proof of Theorem 9, it can be shown that γ does not depend on the
eigenvector of Mα satisfying (19).

Case 2: If ui satisfies s′(S + kIp)
−1ui = 0 then for all j 6= i,

(1 + kλj(Mα))(S + kIp)
−1uj + α(u′j x)(S + kIp)

−1s = λj(Mα)uj. (20)

Since u′iuj = 0, multiplying (20) by u′i gives: (1+kλj(Mα))(u′i(S+kIp)
−1uj) =

0. So, for all j 6= i, u′i(S+kIp)
−1uj = 0 and (S+kIp)

−1ui ∈ span(ui). Therefore
ui is an eigenvector of (S + kIp)

−1. Since s′(S + kIp)
−1ui = 0, ui is then an

eigenvector of any matrix N(1, γ2, k).

Therefore, if there exist any eigenvectors of Mα in case 1, then all the eigenvec-
tors ofMα are eigenvectors ofN(1, γ, k) where γ is defined in case 1. Otherwise,
the eigenvectors of Mα are the eigenvectors of any matrix N(1, γ2, k).

2
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