
Metrika manuscript No.
(will be inserted by the editor)

Information matrices

for non full rank subsystems

Pierre Druilhet1, Augustyn Markiewicz2

1 CREST-ENSAI, Campus de Ker Lann, Rue Blaise Pascal, 35 170 BRUZ, France

email: druilhet@ensai.fr

2 Department of Mathematical and Statistical Methods, Agricultural University

of Poznán, Wojska Polskiego 28, PL-60637 Poznán, Poland

email: amark@au.poznan.pl

Received:

Abstract

Consider the standard linear model Y = Xθ + ε. If the parameter of

interest is a full rank subsystem K ′θ of mean parameters, the associated

information matrix can be defined via an extremal representation. For rank

deficient subsystems, Pukelsheim (1993) introduced the notion of general-

ized information matrices that inherit many properties of the information

matrices. However, this notion is not a direct extension of the full rank case

in the sense that the definition of the generalized information matrix ap-
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plied to full rank subsystems does not lead to the usual information matrix.

In this paper, we propose a definition of the information matrix via an ex-

tremal representation that encompasses the full rank and the non-full rank

cases. We also study its properties and show its links with the generalized

information matrices.

1 Introduction

Information matrices play a central role in experimental design theory: opti-

mal designs are found by maximizing some criteria based on them. Consider

for example the standard linear model Y = Xθ+ε with X a (n×k) matrix.

In many cases, the parameter of interest is not the whole parameter θ ∈ Rk,

but a subsystem K ′θ, for some (k× s) matrix K. Denote by M+
n the set of

(n× n) nonnegative symmetric information matrices and by In the (n× n)

identity matrix. On M+
n , the Loewner ordering is defined as follows: let M

and N be two matrices in M+
n ; then M is said to be lower than N , denoted

by M ≤ N , if N −M belongs to M+
n . When K is a full rank matrix, the

information matrix CK can be defined (Gaffke, 1987) by the mapping:

CK : M+
k −→M+

s

A 7−→ CK [A] = min
L∈Rk×s:L′K=Is

L′AL,

(1)

where the minimum is taken relative to the Loewner ordering. The exis-

tence, uniqueness and many properties of this extremal representation can
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be found in Pukelsheim (1993). However, in some situations, K is rank defi-

cient and a full rank reparameterization is generally of no help. Pukelsheim

(1993) introduced the notion of generalized information matrix to give an

analogue to Formula (1) in non full rank cases. It is defined by the mapping:

A 7−→ AK = min
U∈Rk×k:U ′K=K

U ′AU, (2)

where the minimum is taken relative to the Loewner ordering. This defi-

nition has many good properties but also admits some imperfections. The

first one is that AK is a k × k matrix whereas a s × s matrix is expected,

as in the full rank case. The second one is that AK is not a direct gener-

alization of CK [A] since AK = K CK [A]K ′ for full rank subsystems. The

third one and perhaps the most important one is that AK depends only on

Range(K) and not on the exact parameterization K ′θ. More precisely, for

any full rank (s× s) matrix M , the constraint UKM = KM is equivalent

to UK = K and then:

AK = AKM . (3)

For instance, it will be seen in Section 4.1 that this feature leads to some

inconsistency when we want to use label permutations in order to derive

optimal designs and especially universally optimal design (Kiefer, 1975).

In this paper, we propose another generalization of information matrices

for the non full rank case. This generalization does not suffer from the three

points mentioned above and encompasses the full rank case. So we will just

call it information matrix. The term ”generalized information matrix” will
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refer to Pukelsheim’s definition. In Section 2, we give the definition and some

basic properties of the information matrices for rank deficient subsystems.

We also give two fundamental lemmas and a general scheme useful to derive

further properties of the information matrix. In Section 3, we give further

properties of information matrices. In Section 4, we compare information

matrices and generalized information matrices in some siutations.

2 Information matrices for non-full rank subsystem: definition

and first properties

In this section, we propose an analogue to Formula (1) for a rank deficient

matrix K. However, contrary to the full rank case, the condition L′K = Is

cannot be satisfied. Moreover, a generalization of the information matrix

cannot be achieved without a dose of arbitrariness. The idea here is to

replace Is by prK′ , where prK′ = K ′(KK ′)+K = K+K is the orthogonal

projector onto Range(K ′).

Definition 1 Let K be a (k × s) matrix. Then the information matrix for

K ′θ is defined by

CK : M+
k −→M+

s

A 7−→ CK [A] = min
L∈Rk×s:L′K=prK′

L′AL.

The minimum is taken relative to the Loewner ordering.

Remarks:
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1. The existence and uniqueness of CK [A] follow from the Gauss-Markov

theorem: see Pukelsheim (1993)’s Theorem 1.19 with U ′ = K+ = K ′(KK ′)+,

X = K and V = A.

2. For a full rank matrix K, CK [A] correspond to the usual information

matrix since prK′ = Is.

The choice of the orthogonal projector prK′ = K+K is somewhat arbitrary:

any other non-orthogonal projector K−K, with K− a generalized inverse of

K, could have been chosen: see Pukelsheim (1993 p. 19) for a similar discus-

sion in the paradigm of the Gauss-Markov theorem and estimable functions.

Heuristically, the choice of K+ is motivated by the following argument: con-

sider c ∈ ker(X), then the corresponding least squares estimator c′K ′θ̂ of

c′K ′θ is equal to 0 and thus its variance is also equal to 0. Since the in-

formation matrix is roughly speaking the inverse of the variance matrix,

the way to obtain a simple relation between them, as given in Corollary

2, is to impose that c′ CK [A] c = 0 for c ∈ ker(K) or equivalently that

Range(CK [A]) ⊂ Range(K ′). This is achieved by choosing K− = K+, as

seen in lemma 4.

The following basic properties of information matrices follow directly

from the extremal definition. They are direct extensions of the full rank

case (see Pukelsheim 1993, p.77).
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Lemma 1

CK [α A] = α CK [A] ∀α ≥ 0, ∀A ∈M+
k ,

CK [A + B] ≥ CK [A] + CK [B] ∀A,B ∈M+
k ,

CK [α A + (1− α)B] ≥ α CK [A] + (1− α) CK [B] ∀α ∈]0, 1[, ∀A,B ∈M+
k ,

A ≥ B =⇒ CK [A] ≥ CK [B] ∀A,B ∈M+
k .

We present now two lemmas and a general scheme to compute information

matrices for a non full rank subsystem from information matrices for a

full rank subsystem. This general scheme is also very useful to generalize

properties of information matrices for full rank subsystem to the non full

rank case.

Lemma 2 If K = (K1|0) with K1 a (k× s1) matrix (s1 < s) and 0 the zero

matrix with appropriate dimensions, then :

CK [A] = C(K1|0)[A] =




CK1 [A] 0

0 0


 . (4)

Proof For any k × s matrix L, we write L = (L1|L2) where L1 and L2 are

(k × s1) and (k × s− s1) matrices, respectively. We have, for K = (K1|0),

L′K = prK′ ⇐⇒




L′1K1 0

L′2K2 0


 =




prK′
1

0

0 0


 ⇐⇒





L′1K1 = prK′
1
,

L′2K1 = 0.

and

L′AL =




L′1AL1 L′1AL2

L′2AL1 L′2AL2


 .
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If L̃ = (L̃1|L̃2) minimizes L′AL under the constraint L′K = prK′ , nec-

essarily L̃2 minimizes L′2AL2 under the constraint L′2K = 0. Therefore

L̃′2AL̃2 = 0 and

C(K1|0)[A] = min
L∈Rk×s:L′K=prK′

L′AL, (5)

=




min
L1∈Rk×s1 :L′1K1=prK′1

L′1AL1 0

0 0


 , (6)

=




CK1 [A] 0

0 0


 . (7)

The following lemma give an equivariance property of the information ma-

trix under orthogonal transformations.

Lemma 3 Let T be a (s× s) orthogonal matrix (i.e. T ′T = Is). Then:

CK T [A] = T ′ CK [A] T, (8)

or equivalently,

CK [A] = T CK T [A] T ′. (9)

Proof First note that pr(KT )′ = T ′ prK′T for any orthogonal matrix T . We

have:
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T CK T [A] T ′ = T

(
min

L∈Rk×s:L′KT=pr(KT )′
L′AL

)
T ′,

= min
L∈Rk×s:L′KT=pr(KT )′

TL′ALT ′,

= min
L∈Rk×s:L′KT=T ′prK′T

TL′ALT ′,

= min
L∈Rk×s:TL′K=prK′

TL′ALT ′,

= min
U∈Rk×s:U ′K=prK′

U ′AU (with U = LT ′),

= CK [A].

We can now use Lemmas 2 and 3 to derive the calculation and some

properties of CK [A] from the full rank case as follows:

1. First, diagonalize K ′K as T ′K ′KT = ∆K where ∆K is the diagonal

matrix with decreasingly ordered diagonal entries and T is an orthogonal

matrix whose columns correspond to the eigenvectors of K ′K.

2. Then, break up T into two parts : T = (T1|T2). The columns of T1

correspond to the eigenvectors associated to the non-zero eigenvalues

and the columns of T2 correspond to the kernel of K. So, K1 = K T1 is

a full rank matrix and K T2 = 0:

KT = (K T1|K T2) = (K T1|0) = (K1|0). (10)

3. Then, by Lemma 3 and Lemma 2, we have

CK [A] = T CKT [A] T ′ = T




CK T1 [A] 0

0 0


 T ′ = T1 CKT1 [A] T ′1,

(11)



Information matrices for non full rank subsystems 9

where CK T1 [A] is the usual information matrix for the full rank subsys-

tem given by K T1.

3 Further properties of information matrices

In this section, we give several properties of the information matrices for the

non full rank case. The first one is a range inclusion useful for establishing

the link between information matrices and generalized information matrices.

Lemma 4 We have the following range inclusion:

Range(CK [A]) ⊂ Range(K ′), (12)

or equivalently

CK [A] = prK′ CK [A] prK′ . (13)

Proof Define T = (T1|T2) as in Formula 10, where Range(T2) = ker(K)

and Range(T1) = ker(K)⊥ = Range(K ′). By Formula 11, it is obvious that

Range(CK [A]) ⊂ Range(T1) = Range(K ′).

The following proposition gives a very simple link between the gener-

alized information matrix AK and the information matrix CK [A]. It is a

generalization to the non full rank case of a result by Pukelsheim (1993,

p.90, ii).

Proposition 1 We have:

AK = K CK [A] K ′, (14)

where AK is defined by Formula (2).
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Proof The full rank case has been proved by Pukelsheim (1993, p.90). For

the general case, define T = (T1|T2) as in Formula 10. Since T1K is of full

rank, AKT1 = KT1 CKT1 [A] T ′1K
′. By Formula 3, AKT1 = AK . By Formula

11, T1 CKT1 [A] T ′1 = CK [A]. The result follows.

Corollary 1 The information matrix can be obtained from the generalized

information matrix as follows:

CK [A] = K+ AK K+′ = K ′(KK ′)+ AK (KK ′)+K.

Proof By Formula (13) and (14), CK [A] = K ′(KK ′)+K CK [A] K ′(KK ′)+K =

K ′(KK ′)+ AK (KK ′)+K.

The following proposition and its corollary give the main motivation of

the definition of the information matrix: the link between the information

matrix and the variance matrix for an estimable subsystem is given through

the Moore-Penrose inverse. Another definition of the information matrix

would have led to a more complicated generalized inverse.

Proposition 2 If K ′θ is estimable, i.e. if Range(K) ⊂ Range(A), then:

CK [A] = (K ′A−K)+,

for any generalized inverse A− of A.

Proof Assume first that K = (K1|0) with K1 a full rank matrix and Range(K1) ⊂

Range(A). We have:
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(K ′A−K)+ =




K ′
1A

−K1 0

0 0




+

,

=




(K ′
1A

−K1)−1 0

0 0


 ,

=




CK1 [A] 0

0 0


 (by Pukelsheim, 1993 p. 64),

= CK [A] (by Lemma 2).

In the general case, we just assume that Range(K) ⊂ Range(A). Let T be

an orthogonal matrix such that KT = (K1|0) with K1 of full rank.

(K ′A−K)+ = T (T ′K ′A−KT )+T ′,

= TCKT [A]T ′,

= CK [A].

The second equality comes from the first case with K replaced by KT . The

third equality comes from Lemma 3.

Corollary 2 Consider the standard linear model Y = Xθ+ε with E(ε) = 0,

var(ε) = σ2 In, and denote M = X ′X. Then for any estimable function K ′θ,

we have :

Var(K ′θ̂) = σ2 K ′ M+ K = σ2 (CK [M ])+, (15)

where θ̂ is an OLS estimator.

We now give a chain rule for the information matrix of a subsystem of the

subsystem K ′θ.
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Proposition 3 (iterated information matrices) Let K be an (k × s)

matrix, H be an (s× r) matrix and A ∈M+
k , then :

CKH [A] = CprK′ H [CK [A]]. (16)

Proof The proof is a bit long and is given in the appendix.

Remark: Formula (16) is more complicated than for the full rank case.

However, if K is of full rank (but not necessarily H), the formulae for the

full-rank and non full-rank cases match and we have

CKH [A] = CH [CK [A]]. (17)

We now establish some relationships between the linear subspace of the

estimable functions associated to a subsystem and the range of the informa-

tion matrices. Then, we derive a rank property of the information matrix.

Definition 2 Let K be a (k×s) matrix and A ∈M+
k . We denote by EK(A)

the linear subspace of estimable functions associated to the parameter sub-

system K:

EK(A) = {c ∈ Rs / K c ∈ Range(A)} , (18)

= {c ∈ Rs / K c ∈ Range(A) ∩ Range(K)} . (19)

When K is of full rank, each element in Range(K) has a unique antecedent.

Thus, for any generalized inverse K−:

EK(A) = K−(Range(A) ∩ Range(K)).
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In the general case, K−(Range(A)∩Range(K)) is a linear subspace of EK(A)

that depends on the choice of the generalized inverse K−. To get the whole

space, we have to add the kernel of K:

EK(A) = K−(Range(A) ∩ Range(K))⊕ ker (K). (20)

Proposition 4 Using the same notations as in Definition 2:

Range(CK(A)) = K+(Range(A) ∩ Range(K)) = prK′ (EK(A)) . (21)

Proof This result is well known for the full rank case (see, e.g. Pukelsheim,

1993 p. 96 or Heiligers, 1991). Note that, in that case, prK′ = Is and that

K+ can be replaced by any generalized inverse of K. If K is rank deficient,

we first consider the case K = (K1|0), with K1 a (k × s1) full rank matrix.

We have:

K+ =




K+
1

0




and Range(K) = Range(K1). Denote c =




c1

c2


 with c1 ∈ Rs1 and c2 ∈

Rs−s2 , then

c ∈ Range(CK [A]) ⇐⇒ c2 = 0, c1 ∈ CK1 [A] (by Formula (4)),

⇐⇒ c2 = 0, c1 ∈ K+
1 (RangeA ∩ Range(K1)) ,

⇐⇒ c2 = 0, c1 ∈ K+
1 (RangeA ∩ Range(K)) ,

⇐⇒ c ∈ K+(RangeA ∩ Range(K)).

The general case follows from Lemmas 3 and Lemma 2. The second equality

of the proposition comes from Equation 20.



14 Pierre Druilhet, Augustyn Markiewicz

Corollary 3 We have the following rank equality

RankCK(A) = dim (Range A ∩ Range K) = dim (EK(A))− dim(ker(K)).

The last result of this section is a variant of Lemma 2.

Proposition 5 Let A ∈ M+
k . Let K = (K1|K2) be a k × (s1 + s2) matrix

such that Range(K1) ⊂ Range A and Range(K2) ∩ Range(A) = {0}. Then,

CK [A] =




CK1 [A] 0

0 0


 .

Remark: Note that the condition Range(K1) ⊂ Range A cannot be re-

moved.

Proof We first consider the case where (K1|K2) is a full rank matrix. De-

note by PA a projector onto Range(A) along a supplementary subspace of

Range(A) containing Range K2. Write QA = Is−PA where s = s1 +s2. Let

L̃ = (L̃1|L̃2) be a (s× k) matrix that minimizes L′AL under the constraint

L′K = Is i.e. such that L′1K1 = Is1 , L′2K
′
1 = 0, L′1K

′
2 = 0 and L′2K2 = Is2 .

Consider L∗ = (L∗1|L∗2) = (L̃1, QAL̃2). It is easy to check that L̃∗
′
K = Is

and L∗
′

2 AL∗
′

2 = 0. Since L̃AL̃ is a minimum w.r.t. the Loewner ordering,

necessarily, L̃′2AL̃2 = 0 and then L̃′2AL̃1 = L̃′1AL̃2 = 0. So,

CK [A] = L̃′A L̃ =




L̃1 A L̃1 0

0 0


 .

It remains to show that L̃1AL̃1 = CK [A]. Define L̄1 such that:

CK1 [A] = min
L′1K1=Is1

L′1 AL1 = L̄1 A L̄1.
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We have:

L̄1 A L̄1 ≤ min
L′1K1=Is1
L′1K2=0

L′1 A L1 = L̃1 A L̃1.

Denote L̄∗1 = P ′AL̄1. It is straightforward to check that L̄∗
′

1 K1 = Is1 ,

L̄∗
′

1 K2 = 0 and L̄∗
′

1 AL̄∗1 = L̄1AL̄1 = CK1 [A]. The result follows.

We now consider the general case, that is, K1 and K2 are not necessarily

of full rank. Consider the orthogonal matrices T1 = (Ta|Tb) and T2 = (Tc|Td)

such that K1Ta and K2Tc are full rank matrices and such that KTc = 0

and KTd = 0. Consider the orthogonal matrix

T =




Ta 0 Tb 0

0 Tc 0 Td


 .

We have KT = (K1Ta|K2Tc|0) with (K1Ta|K2Tc) of full rank since Range K1∩

Range K2 = {0}. The result follows easily from Lemmas 2 and 3 and the

full rank case.

4 Some examples and applications

In this section, we compare the behavior of information matrices and gener-

alized information matrices in the one-way and two-way analysis of variance

under a relabelisation of the treatments.

4.1 One way ANOVA

We show that, in one-way analysis of variance, it is not necessary to center

the parameter of interest. We also compare the behavior of information and

generalized information matrices under a permutation group action.
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Consider the standard one-way model yij = µ + αi + εij for i = 1, ..., I

and j = 1, ..., ni, where ni ≥ 1. Denote n =
∑I

i=1 ni. In vector notation, we

have,

Y = µ 1n + A α + ε

where 1n is the n vector of ones, A the incidence matrix of the factor α. It is

well known that M = A′
(
In − 1

n1n1′n
)
A is the information matrix for the

parameter α. On the other hand, consider the (centered) parameterization

Qα =

(
α1 − 1

I

∑

i

αi, ..., αI − 1
I

∑

i

αi

)′

where Q = II − 1
I 1I1′I . Note that M1I = M+1I = 0. Moreover, RangeQ =

Range M which means that Qα is estimable. By Proposition 2, we have

CQ[M ] = (QM+Q)+ = (M+)+ = M. (22)

So, the information matrix for the centered parameter is the same as for

the initial parameter. The generalized information matrix for Qα based on

M is also :

MQ = M. (23)

Consider now a permutation, say σ, of the levels of α. Denote by Pσ

the corresponding permutation matrix. This permutation can be applied at

two different levels: either on the matrix M by considering Pσ M P ′σ or on

the parameter Qα by considering Pσ Qα. At both levels, the corresponding
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information matrix gives the same answer. More precisely, by Formula (22)

we have:

CQ[Pσ M P ′σ] = Pσ M P ′σ,

and by Formula (8) we have:

CQ P ′σ [M ] = Pσ M P ′σ.

We can see that information matrices have some equivariance property.

On the other hand, the corresponding generalized information matrices are

different. Formula (23) applied to Pσ M P ′σ gives:

(Pσ M P ′σ)Q = Pσ M P ′σ

whereas, by Formula (3), the one obtained for Pσ Qα is

MQ P ′σ = MQ = M.

We see here that the generalized information matrix is either equivariant or

invariant, depending on the way the permutation is applied.

4.2 Two way ANOVA

Consider now a connected block design with t treatments and b blocks. The

corresponding model is

Y = µ 1n + A α + Bβ + ε

where α ∈ RI is the vector treatment effects with incidence matrix A of size

(n× t) and β ∈ Rb is the vector of block effects with incidence matrix B of
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size (n× b). The moment matrix M for the full parameter θ =




α

β


 is

M =




∆t W

W ′ ∆b




where ∆t = A′A, ∆b = B′B and W = A′B. Denote Kα =




It

0


. Is is well

known that the information matrix for α = K ′
αθ is the Schur complement

CKα [M ] = ∆t −W∆−1
b W ′.

By Formula (14), the corresponding generalized information matrix is

MKα = Kα CKα [M ] K ′
α =




CKα [M ] 0

0 0




We see here that the information matrix does not involve unnecessary

zero matrices. As in section 4.1, consider the centered parameterization

Qα = QKαθ. Note that CKα [M ]1t = 0 and, because the design is con-

nected, Range(CKα [M ]) = Range(Q). The information matrix for Qα can

be derived either from the moment matrix M for θ, or the information

matrix CKα [M ] for α. By Formulae (17) and (22), we have

CKα Q[M ] = CQ[CKα [M ]] = CKα [M ].

On the other hand, the generalized information matrices obtained either

from M or from CKα [M ] give two different answers and, in fact, two matrices

of different sizes. We see here that information matrices are more consistent

than generalized information matrices.
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5 Appendix

We give here the proof of Proposition 3. Let us start by establishing two

technical Lemmas.

Lemma 5 For any full rank square matrix Q,

CQK [A] = CK [Q−1A Q
′−1].

Proof We have prK′Q′ = prK′ . So,

CQK [A] = min
L∈Rk×s:L′QK=prK′Q′

L′QQ−1A Q
′−1Q′L,

= min
U∈Rk×s:U ′K=prK′

U ′Q−1A Q
′−1U (with U = Q′L),

= CK [Q−1A Q
′−1].

Lemma 6 Let A =




A1 0

0 0


 ∈ M+

k with A1 ∈ M+
k1

and K =




K1

0


 a

(k × s) matrix with K1 of size k1 × s. Then,

CK [A] = CK1 [A1].

Proof The result follows from the definition of the information matrix and

the fact that prK′ = prK′
1
, L′K = L′1K1 and L′AL = L′1A1L1 where L′ =

(L′1|L′2).

Proof (of Proposition 3) First, note that the full rank case can be found

in Pukelsheim (1993, theorem 3.19). To get the proof more clear, we split

it into four cases.

Case 1: K is of full rank and H = (H1|0) with H1 of full rank. Hence,

KH = (K H1|0) with K H1 of full rank. We have:
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CKH [A] =




CKH1 [A] 0

0 0


 (by lemma 2),

=




CH1 [CK [A]] 0

0 0


 (from the full rank case),

= CH [CK [A]] (by lemma 2).

Case 2: K is of full rank. Denote by U an (r×r) orthogonal matrix such that

HU = (H1|0). By Lemma 3 and Case 1, we have CKH [A] = UCKHUU ′ =

UCHU [CK [A]]U ′ = CH [CK [A]].

Case 3: Assume K = (K1|0) with K1 of full rank and H ′ = (H ′
1|H ′

2). Note

that prK′H = (H ′
1|0)′. Consequently,

CPK′H [CK [A]] = CPK′H







CK1 [A] 0

0 0





 (by Lemma 2),

=




CH1 [CK1 [A]] 0

0 0


 (by Case 2),

= C(K1H1|0)[A] ( by Lemma 6),

= CKH [A] (because KH = K1H1)).



Information matrices for non full rank subsystems 21

Case 4 (general case) : Let T be an orthogonal matrix such that KT =

(K1|0) with K1 of full rank:

CKH [A] = CKTT ′H [A],

= CprT ′K′T ′H [CKT [A]] (from Case 3),

= CT ′prK′H [CKT [A]] (because prT ′K′ = T ′prK′T ),

= CprK′H [TCKT [A]] (by Lemma 5),

= CprK′H [CK [A]] (by Lemma 3).
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