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Abstract

Biased regression is an alternative to ordinary least squares (OLS) regression, espe-
cially when explanatory variables are highly correlated. In this paper, we examine
the geometrical structure of the shrinkage factors of biased estimators. We show
that, in most cases, shrinkage factors cannot belong to [0, 1] in all directions. We
also compare the shrinkage factors of ridge regression (RR), principal component
regression (PCR) and partial least squares regression (PLSR) in the orthogonal di-
rections obtained by the signal-to-noise ratio (SNR) algorithm. In these directions,
we find that PLSR and RR behave well whereas shrinkage factors of PCR have an
erratic behaviour.
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1 Introduction

Biased regressions are sometimes preferred to ordinary least squares (OLS)
regression in order to improve the mean-squared error (MSE). When the ex-
planatory variables are highly correlated, the most popular biased regression
are Ridge regression (RR), principal component regression (PCR) and partial
least square regression (PLSR). These three methods provide shrunk estima-
tors in the sense that their Euclidean norms are lower than that of the OLS
estimator. However, this overall feature does not give any indication of the
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shrinkage behaviour in specific directions. Frank and Friedman (1993) com-
pared the shrinkage properties of these three estimators in the principal direc-
tions, i.e. in the directions given by the singular value decomposition of the
design matrix. They pointed out that, in these directions, shrinkage factors
for PLS estimators may be greater than 1 (in that case the term ”shrinkage”
is abusive).

In this paper, we show that, for any biased estimator, except for estima-
tors proportional to the OLS estimator, there exist directions in which the
shrinkage factors are greater than 1 and even equal to +∞. Then, we study
the shrinkage factors of PLSR, PCR and RR in the directions given by the
SNR algorithm introduced by Druilhet and Mom (2006). Whereas principal
directions can be seen as orthogonal directions that iteratively minimise the
variance of the OLS estimator, the SNR algorithm constructs orthogonal di-
rections that iteratively maximise the signal-to-noise ratio (SNR). Since the
SNR appears when we seek optimal directional shrinkage factors, shrinkage
behaviours in these directions are of interest. As expected, the peculiar be-
haviour of PLSR disappears, the shrinkage factors of PCR may become erratic
and surprisingly those of RR behave well.

2 Shrinkage structure of biased estimators

We consider the centered linear model:

y = Xβ + ε. (1)

where X is the (n, p) design matrix, β the p-vector of parameters and ε the n-
vector of i.i.d. mean zero variance σ2 errors. We write S = X ′X and s = X ′y.
For simplicity, from now on, we assume that S is of full rank. The non-full-
rank case is equivalent except that we restrict the directions considered to
those corresponding to estimable functions. We denote by β̂ols = S−1 s the
OLS estimator and by β̂∗ a competing estimator.

2.1 Geometrical structure of shrinkage factors

Let x be a p-vector. We define the shrinkage factor of β̂∗ in the direction x by:

α
x,β̂∗ =

x′β̂∗

x′β̂ols
(2)
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Fig. 1. Geometrical shrinkage structure of biased estimators

with the following convention:

α
x,β̂∗ =

0

0
if x′β̂ols = 0 and x′β̂∗ = 0,

and

α
x,β̂∗ = ±∞ if x′β̂ols = 0 and x′β̂∗ 6= 0.

Note that in Druilhet and Mom (2006) the term ”shrinkage factor” has another
meaning: it corresponds to an optimal factor applied to the OLS estimator on
a direction.

Since shrinkage factors are scale invariant, i.e. for non-zero scalar δ,

α
δx,β̂∗ = α

x,β̂∗ , (3)

α
x,β̂∗ depends only on the direction given by x, not on the exact value of x.

Note that α
x,β̂∗ is actually a shrinkage factor only if it belongs to [0, 1]. We

want to determine when a competing estimator has its shrinkage factors in
[0, 1] in all directions and if it has not, what can we say about the shrinkage
structure. We assume that β̂ols 6= 0, which arises with probability 1 in most
cases, and that β̂∗ 6= 0 (otherwise, all shrinkage factors are equal to 0 or 0

0
).

For u ∈ Rp, we denote Hu = {x ∈ Rp / x′u = 0} = u⊥, H+
u = {x ∈ Rp / x′u >

0} and H−
u = {x ∈ Rp / x′u < 0}. The three hyperplanes H

β̂ols , H
β̂ols−β̂∗ and

H
β̂∗ correspond to the directions in which shrinkage factors are respectively

either ±∞ or 0
0
, either 1 or 0

0
and either 0 or 0

0
. They are displayed in Fig.

1. If β̂∗ is proportional to β̂ols but different, the three hyperplanes coincide. If
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not,

H
β̂ols ∩H

β̂∗ = H
β̂∗ ∩H

β̂ols−β̂∗ = H
β̂ols ∩H

β̂ols−β̂∗ = {x / α
x,β̂∗ =

0

0
} (4)

is a linear subspace of dimension p − 2 and the region where the shrinkage
factors are greater than 1 is

(H−
β̂ols−β̂∗

∩H+

β̂ols
) ∪ (H+

β̂ols−β̂∗
∩H−

β̂ols
) = {x / 1 < α

x,β̂∗ < +∞} 6= ∅. (5)

These geometrical considerations show that, except in the case of an estimator
proportional to β̂ols such as, for instance, the James-Stein estimator (see Stein,
1956), it is hopeless to seek a competing estimator β̂∗ whose shrinkage factors
belong to [0, 1] in all the directions of Rp, as stated in the following proposition:

Proposition 1 The shrinkage factors of a competing estimator β̂∗ are in [0, 1]
in all directions if and only if β̂∗ is proportional to β̂ols, i.e.:

~wwwwwÄ

a) ∀x ∈ Rp, 0 ≤ α
x,β̂∗ ≤ 1,

b) ∃a ∈ [0, 1] such that β̂∗ = a β̂ols.

where the scalar a may be random.

PROOF. (b) ⇒ (a) is obvious. Now, suppose that (b) is false. Either β̂∗ =
αβ̂ols with α /∈ [0, 1] and the result follows, or β̂∗ is not proportional to β̂ols.
In that case, H

β̂ols , H
β̂ols−β̂∗ and H

β̂∗ are distinct and the region where the

shrinkage factor is greater than 1 is not empty as seen in Eq. (5)

When β̂∗ is not proportional to β̂ols, it is possible to find shrinkage factors
arbitrarily large when the direction is getting closer to H

β̂ols \H
β̂∗ .

2.2 Shrinkage factors for regression on components

Among biased regressions, regressions on components, such as PCR, PLSR
and more generally continuum regression (Stone et Brooks, 1990), are widely
used. We give here some general features of shrinkage factors for regression on
components, useful for the following. Let w1, ..., wq be q linearly independent

p-vectors (q ≤ p). The estimator β̂q of β obtained by regression on the q
components t1 = X w1, ..., tq = X wq is defined by
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β̂q = Wq (T ′
(q) T (q))−1T ′

(q) Y = W(q)

(
W(q)

′ S W(q)

)−1
W(q)

′S β̂ols = P
S
W(q)

β̂ols,

(6)
where W(q) = (w1, ..., wq), T(q) = (t1, ..., tq) = X W(q) and PS

W(q)
is the pro-

jection matrix onto range(W(q)) w.r.t. the quadratic form S. In that context,

w1, ..., wq are often called weight vectors. Another interpretation of β̂q can be
given in terms of constrained least squares estimator: denote by wq+1, ..., wp,
p− q linearly independent p-vectors orthogonal to w1, ..., wq, then

β̂q = ArgMin
w′iβ=0, i=q+1,...,p

||Y −Xβ||2 (7)

Now, wq+1, ..., wp can be seen as directions in Rp where the least squares
estimator is constrained to be null and therefore, we have:

α
x,β̂q

= 0 or
0

0
, ∀x ∈ range(W(q))

⊥. (8)

Since (PS
W(q)

)′ = PS−1

SW(q)
, Eq. (6) gives

α
x,β̂q

= 1 or
0

0
∀x ∈ span(S w1, ..., S wq) (9)

However, in the general case, the shrinkage factors of β̂q in the directions

w1, ...wq are not necessarily in [0, 1]. For example, consider β̂ols = (0, 1)′,

w1 = (1, 0)′ and S =




2 1

1 1


. The estimator obtained by regression on the

component t1 = X w1 is β̂1 = (1/2, 0)′. The shrinkage factor α
w1,β̂1

for β̂1 in
the direction w1 is equal to ±∞.

In the case of PCR, we denote by wpcr
1 , ..., wpcr

p the principal directions, i.e.
the eigenvectors corresponding to decreasingly ordered eigenvalues λ1, ..., λq

of S. We denote by β̂pcr
q the PCR estimator obtained by regression on the q

principal components tpcr
1 = X wpcr

1 , ..., tpcr
q = X wpcr

q . Since the directions given
by wpcr

i and S wpcr
i are the same, Eq. (9) gives

α
wi,β̂pcr

q
= 1 or

0

0
for i ≤ q,

and Eq. (8) gives

α
wi,β̂pcr

q
= 0 or

0

0
for i > q.
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3 Shrinkage factors in the SNR directions

In the principal directions, shrinkage factors of PCR and RR belong to [0, 1].
In the case of PLSR, Frank and Friedman (1993), Butler and Denham (2000),
Lingjærde and Christophersen (2000) and Krämer (2005) showed that shrink-
age factors in these directions can be outside of [0, 1]. However, as explained
in Section 2, biased regressions such as RR, PCR or PLSR cannot shrink in
all directions and PLS estimators are not adapted to the principal directions
whose construction only depends on the variance of the OLS estimator. The
idea here is to compare the behaviour of PLSR, PCR, and RR in another
orthogonal system of directions based on directional SNRs. The SNRs depend
both on the variance and the actual value of the OLS estimator. They are
related to optimal directional shrinking and are involved in the construction
of PLSR estimators.

3.1 The SNR algorithm and related directions

The SNR arises in the following problem: consider a direction x ∈ Rp. We want
to improve the best linear unbiased estimator x′β̂ols of x′β by shrinking. We
consider the class of estimators a x′β̂ols for a ∈ R. The scalar a∗x that minimizes

the quadratic risk E
(
a x′β̂ols − x′β

)2
is equal to ρ2

x

1+ρ2
x

where ρx = |x′ β|
σ
√

x′ S−1x
. If

σ is known, a∗x can be estimated by â∗x = ρ̂2
x

1+ρ̂2
x
, where ρ̂x = |x′ β̂ols|

σ
√

x′ S−1x
is the

SNR in the direction given by x. Note that â∗x is an increasing function of ρ̂x,
thus maximizing â∗x w.r.t. x is equivalent to maximizing ρ̂x.

The SNR algorithm (Druilhet and Mom, 2006) seeks orthogonal directions
that successively maximise ρ̂x. At step one, the first direction wsnr

1 is:

wsnr

1 = ArgMax
w∈Rp

ρ̂w ∝ s. (10)

Iteratively, at step i, wsnr
i is the direction that maximises ρ̂w under the orthog-

onality constraint w ⊥ span(wsnr
1 , ..., wsnr

i−1). Denote by q∗ the greatest q such
that ρ̂wsnr

q
6= 0. For q ≤ q∗, wsnr

q belongs to the Krylov subspace

Kq = span(s, S s, S2 s, ..., Sq−1 s). (11)

Note that q∗ is also the smallest q satisfying Kq+1 = Kq. For q ≥ q∗, ρ̂wq = 0
and (wsnr

q∗+1, ..., w
snr
p ) is any system of orthogonal directions that are orthogonal

to Kq∗ .

The PLS estimators β̂pls
q , q = 1, ..., p, can be obtained from the Krylov sub-

spaces K1, ..., Kq∗ , and therefore from the SNR directions, by:
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β̂pls

q = ArgMin
β∈Kq

||Y −Xβ||2 = ArgMin
wsnr′

i β=0, i=q+1,...,p

||Y −Xβ||2, (12)

(see Helland, 1988). For q ≥ q∗, we have:

β̂pls

q = β̂ols. (13)

Equivalently, β̂pls
q can be obtained by regression on the components t1 =

X wsnr
1 , ..., tq = X wsnr

q . Denote W snr

(q) = (wsnr
1 , ..., wsnr

q ), then Eq. (6) gives:

β̂pls

q = P
S
W snr

(q)
β̂ols. (14)

SNR directions and PLS estimators can also be obtained simultaneously by
the ∆SNR algorithm (Druilhet and Mom, 2006): at step one, we put β̂pls

0 = 0

and we seek the direction w1 that maximises ∆SNR0(x) =
|x′(β̂ols−β̂ols

0 )|
σ
√

x′S−1x
. We

find w1 = wsnr
1 and we define β̂pls

1 to be the least squares estimator constrained
to belong to span wsnr

1 . Iteratively, at step q, wsnr
q maximises ∆SNRq−1(x) =

|x′(β̂ols−β̂pls
q−1)|

σ
√

x′S−1x
and β̂pls

q is the least square estimator constrained to belong to

span(wsnr
1 , ..., wsnr

q ) = Kq. This algorithm leads to interesting formulae. In par-
ticular, the vectors wq may be chosen (up to a multiplicative constant) as

wsnr

q = s− Sβ̂pls

q−1 for q = 1, ..., q∗. (15)

which gives:

ρ̂wsnr
q+1

=
1

σ

√
s′β̂ols − s′β̂pls

q . (16)

We also have:

∆SNRq(w
snr

q+1) = ρ̂wsnr
q+1

. (17)

The following results establish a relationship between shrinkage factors of PLS
estimators in a direction x and the SNR in the same direction.

Proposition 2

∆SNRq(x) = ρ̂x |1− α
x,β̂pls

q
| (18)

and

|1− α
x,β̂pls

q
| ≤ ρ̂wsnr

q+1

ρ̂x

∀q = 1, .., q∗ − 1. (19)

PROOF. Eq. (18) is straightforward. Since wsnr
q+1 maximises ∆SNRq(x), we

have ∆SNR(x) ≤ ∆SNR(wsnr
q+1). The result follows from Eq. (17) and (18).
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3.2 Shrinkage factors for PLS

We now examine the shrinkage behaviour of PLSR estimators onto the SNR
directions. We saw in Section 2.2 that the fact that β̂pls

q is obtained by re-
gression on the components tpls

1 = X wpls
1 , ..., tpls

q = X wpls
q does not necessarily

imply that the shrinkage factors in the directions wpls
1 , ..., wpls

q belong to [0, 1].
However, we shall show that this property holds for PLSR.

Consider the shrinkage factors given in the table below:

β̂pls
1 β̂pls

2 · · · · · · β̂pls
q∗−1 β̂pls

q∗

wsnr
1 α

wsnr
1 ,β̂pls

1
α

wsnr
2 ,β̂pls

1
· · · · · · α

wsnr
1 ,β̂pls

q∗−1

1

wsnr
2 0 α

wsnr
2 ,β̂pls

2
· · · · · · α

wsnr
2 ,β̂pls

q∗−1

1

...
... 0

...
...

...
...

...
. . .

...
...

wsnr
q∗ 0 0 · · · 0 α

wsnr
q∗ ,β̂pls

q∗−1

1

(20)

We are interested in the ”horizontal” and ”vertical” behaviour of the shrinkage
factors. Note that, by Eq. (8), the lower triangular matrix is 0.

Lemma 3 For q = 1, ..., q∗ and u = 0, ..., q∗ − q,

β̂pls

q+u
′S β̂pls

q = β̂pls

q
′S β̂pls

q (21)

Moreover, q 7−→ β̂pls
q

′S β̂pls
q is decreasing for q ∈ {1, ..., q∗}.

PROOF.

Since range(W(q)) ⊂ range(W(q+u)), P S
W snr

(q)
= P S

W snr
(q)

P S
W snr

(q+u)
and

β̂pls

q = P
S
W snr

(q)
β̂ols = P

S
W snr

(q)
β̂pls

q+u.

As β̂pls
q = PS

W snr
(q)

β̂pls
q , β̂pls

q+u
′ S β̂pls

q = (PS
W(q)

β̂pls
q+u)

′ S β̂pls
q and Eq. (21) follows.

Since β̂pls
q

′S β̂pls
q is the norm of β̂pls

q w.r.t. S, β̂pls
q+1

′Sβ̂pls
q+1 ≥ β̂pls

q
′S β̂pls

q . Equality

holds iff β̂pls
q+1 = β̂pls

q . In that case, ∆SNRq+1 = ∆SNRq. Since wq+2 maximises
∆SNRq+1, it also maximises ∆SNRq, and then wq+2 ∈ Kq+1, i.e. Kq+2 = Kq+1

and q + 1 ≥ q∗. By Eq. (13), β̂pls
q+1 = β̂ols. Therefore β̂pls

q = β̂ols and q ≥ q∗.
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Lemma 4 For q = 1, ..., q∗ and u = 0, ..., q∗ − q,

wsnr′
q β̂pls

q+u = β̂pls′
q+u S β̂pls

q+u − β̂pls′
q−1 S β̂pls

q−1 (22)

PROOF. By Eq. (15), wsnr′
q β̂pls

q+u = s′ β̂pls
q+u − β̂pls′

q−1 S β̂pls
q+u = β̂olsSβ̂pls

q+u −
β̂pls′

q−1 S β̂pls
q+u. By (21) applied at both terms, the last expression is equal to

β̂pls′
q+u S β̂pls

q+u − β̂pls′
q−1 S β̂pls

q−1.

From Lemma 5 and Lemma 4, wsnr′
q∗ β̂ols 6= 0 for q = 1, ..., q∗ and therefore, the

shrinkage factors in the SNR directions are well defined.

Proposition 5 The shrinkage factors displayed in Table 20 belong to [0, 1].
Moreover, for q = 1, ..., q∗, α

wsnr
q ,β̂pls

u
is increasing w.r.t. u and decreasing w.r.t.

q.

PROOF. For u = 0, ..., q − 1, α
wsnr

q ,β̂pls
u

= 0. We now consider the case q ≤
u ≤ q∗. By Lemma 4, we have α

wsnr
q ,β̂pls

u
=

wsnr′
q β̂pls

u

wsnr′
q β̂ols

=
β̂pls′

u S β̂pls
u −β̂pls′

q−1 S β̂pls
q−1

β̂pls′
q∗ S β̂pls

q∗ −β̂pls′
q−1 S β̂pls

q−1

. By

Lemma 3, β̂pls′
u S β̂pls

u is increasing w.r.t. u, thus 0 ≤ α
wsnr

q , β̂pls
u
≤ 1 and α

wsnr
q , β̂pls

u

is increasing w.r.t. u. Now, u is fixed. Since α
wsnr

q , β̂pls
u

= 1− β̂pls′
q∗ S β̂pls

q∗ −β̂pls′
u S β̂pls

u

β̂pls′
q∗ S β̂pls

q∗ −β̂pls′
q−1 S β̂pls

q−1

,

it is easy to see that α
wsnr

q , β̂pls
u

is also decreasing w.r.t. q.

Proposition 5 provides a simple proof of a result established independently by
De Jong (1995) and Goutis (1996):

Corollary 6 We have

||β̂pls

1 || < ||β̂pls

2 || < ... < ||β̂pls

q∗ || = ||β̂ols||.

PROOF. From Eq. (12), wsnr
q

′β̂pls
u = 0 for i > q∗ and q = 1, ..., q∗. So we

have ||β̂pls
u ||2 =

∑q∗
q=1

(wsnr
q

′β̂pls
u )2

||wsnr
q ||2 . For q = 1, ..., q∗, Proposition 5 implies that

wsnr
q

′β̂u is increasing w.r.t. u. By Lemmas 4 and 3, wsnr
q

′β̂u ≥ 0 and therefore

(wsnr
q

′β̂u)
2 is also increasing. The result follows.
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3.3 Shrinkage factors for RR

Here, we investigate the shrinkage factors of the RR estimators β̂RR
γ = (S +

γ I)−1 s in the SNR directions. Surprisingly, their behaviours are comparable
to those of PLS.

Proposition 7 For q = 1, ..., q∗ and γ ≥ 0, the shrinkage factors α
wsnr

q ,β̂RR
γ

belong to [0, 1]. They are increasing w.r.t. γ.

The proof is technical and is given in the appendix. The key point is that the
Krylov subspaces generated by (S, s) and by (S + γI, s) are the same. In the
light of Section 3.4, we conjecture that α

wsnr
q ,β̂RR

γ
is decreasing w.r.t. q.

3.4 Examples

We compare the shrinkage factors of PLSR, PCR and RR in the SNR direc-
tions for several artificial and real data sets. They are represented in Figures 2-
4. We use the canonical model to describe the data, i.e. we express S and β̂ols by
using the spectral decomposition S =

∑
i λiw

pcr
i wpcr′

i . We denote β̂i = wpcr′
i β̂ols.

The two artificial data comes from Frank and Friedman (1993): {β̂i = 1}j

{λi = 1/j}j (neutral β̂ols, moderate collinearity) and {β̂i = 1/j}j {λi = 1/j2}j

(favourable β̂ols, high collinearity), where j = 1, ..., 10. The real data come
from calibration experiments to determine the chemical composition of liquid
detergent by using mid-infra-red spectroscopy (Brown, 1990 and Butler and
Denham, 2000). The data in their canonical form are (λ1, ..., λ12) =(8.0059,
6.0324, 1.4529, 0.8665, 0.0201, 0.0122, 0.0053, 0.0033, 0.0020, 0.0017, 0.0014) and
(β̂1, ..., β̂12) = (2.7837, -1.3266, -7.2850, 4.21118, -0.3483, -2.7951, 0.0755, -0.5455,
-1.95, 0.2941, 2.7857).

For each data set, we have displayed the shrinkage factors w.r.t. the directions
wsnr

i , i = 1, ..., 10 or 11 for β̂pls
q , β̂pcr

q and β̂RR
γ , for q varying from 1 to 8 and γ

chosen such that ||β̂pls
q || = ||β̂RR

γ ||.

In all cases, we see that the shrinkage factors of PLS estimators in the SNR
directions have a good behaviour as expected. Ridge estimators have a smooth
behaviour and the decrease of the shrinkage factors is slower than for PLS.
We also observe that the shrinkage factors for PCR are more erratic and can
take very large positive or negative values.
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Fig. 2. Shrinkage factors in SNR directions for PLSR (solid), RR (dashed) and PCR
(dotted) for neutral β̂ols and moderate collinearity.

4 Discussion

In this paper, we have demonstrated that biased estimators such as RR, PCR
or PLSR cannot shrink in all directions. Therefore, they favour certain di-
rections to the detriment of others, and a peculiar behaviour on a specific
direction does not necessarily lead to a bad overall behaviour. PCR estima-
tors are constructed to shrink in the principal directions and have peculiar

11
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Fig. 3. Shrinkage factors in SNR directions for PLSR (solid), RR (dashed) and PCR
(dotted) for favourable β̂ols and high collinearity.

shrinkage behaviour in the SNR directions. Conversely, PLS estimators are
based on the SNR directions and have peculiar shrinkage behaviour in the
principal directions. The RR estimators are known to minimise a bayesian
risk and surprisingly shrink in both the SNR and principal directions in a
smooth way.
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Fig. 4. Shrinkage factors in SNR directions for PLSR (solid), RR (dashed) and PCR
(dotted) for detergent data.

5 Appendix

We give here the proof of Proposition 7.

Step 1: fix q ≤ q∗ and γ > −λp. We define

G0(γ) =
wsnr′

q (S + γ I)−1s

wsnr′
q S−1s

= α
wsnr

q ,β̂RR
γ

.
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Note that γ may be negative. We have G0(0) = 1 and from Section 3.1,
wsnr′

q S−1s 6= 0. So by continuity, G0(γ) > 0 for γ around 0. The derivative is

G′
0(γ) = −wsnr′

q (S + γ I)−2s

wsnr′
q S−1s

.

We can choose wsnr
q as in Eq. (15). By Lemma 4, we have wsnr′

q S−1s > 0 and

wsnr′
q S−2 s = s′S−2s− β̂pls′

q−1S
−1 s = ||β̂ols||2 − β̂ols′ β̂pls

q−1.

By the Cauchy-Schwarz inequality and Corollary 6, β̂ols′ β̂pls
q−1 ≤ ||β̂ols′|| ||β̂pls

q−1|| <
||β̂ols′||2. Therefore, G′

0(0) < 0 and, by continuity, G′
0(γ) < 0 for γ around 0,

i.e. there exists 0 < r0 < λp such that, for γ ∈ B0 =] − r0, r0[, G0(γ) is
decreasing.

Step 2: for δ > 0 and γ > −λp, we define

Gδ(γ) =
wsnr′

q (S + γ I)−1s

wsnr′
q (S + δ I)−1s

.

We want to prove that the behaviour of Gδ(γ) around δ is similar to that of
G0(γ) around 0. The idea is to replace S by S + δ I in the SNR and ∆SNR
algorithms. This leads to a sequence of directions wδ

1, w
δ
2, ..., w

δ
p and a sequence

of estimators β̂δ
1 , β̂

δ
2, ..., β̂

δ
p = β̂RR

δ . The Krylov subspaces generated by S and s
are equal to those generated by S+δ I and s. Then, wδ

i ∝ wsnr
i , for i = 1, ..., q∗.

Moreover, β̂δ
q∗ = β̂RR

δ . Since Gδ(γ) is scale invariant w.r.t. wq,

Gδ(γ) =
wδ ′

q (S + γ I)−1 s

wδ ′
q (S + δ I)−1 s

=
wδ ′

q ((S + δ I) + (γ − δ) I)−1s

wδ ′
q (S + δ I)−1s

.

The direction wδ
i plays the same role in this step as wsnr

i in step 1. Therefore,
we can apply the results obtained for G0, i.e. there exists 0 < rδ < λp such
that, for γ ∈ Bδ =]δ − rδ, δ + rδ[, Gδ(γ) is decreasing and positive.

Step 3: fix 0 ≤ γa < γb. Since [γa, γb] is a compact set, the open covering
{Bδ ; γa ≤ δ ≤ γb} admits a finite subcover {Bδi

; i = 1, ..., n} with δ1 =
γa < δ2 < ... < δn = γb. This subcover can be chosen minimal, i.e. for all
i 6= j, Bi 6⊂ Bj, which implies here that for i = 2, ..., n, Bi−1 ∩ Bi 6= ∅. Let
γi ∈ Bi−1 ∩Bi. We have γ1 < ... < γn and

α
wsnr

q ,β̂RR
γa

α
wsnr

q ,β̂RR
γb

=
Gδ1(γ1)

Gδ1(γ2)

Gδ2(γ2)

Gδ2(γ3)

Gδ3(γ3)

Gδ3(γ4)
· · · Gδn(γn−1)

Gδn(γn)

From step 2, we have 0 < Gδi
(γi+1)/Gδi

(γi) < 1. Therefore, α
wsnr

q ,β̂RR
γa

≥
α

wsnr
q ,β̂RR

γb

and G0(γ) = α
wsnr

q ,β̂RR
γ

is decreasing w.r.t. γ on [0, +∞). Since G0(0) =

14



1 and limγ→∞ G(γ) = 0, α
wsnr

q ,β̂RR
γ

belongs to [0, 1].
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