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Laboratoire de mathématiques, UMR CNRS 6620
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Summary

We consider cross-over designs for a model with partial interactions (Afsarinejad and He-

dayat, 2002). In this model the carryover effect is different depending on whether the

treatment is preceded by itself or not. When the aim of an experiment is to select the

most efficient treatment, the parameters of interest should be the total effects which cor-

respond to the use of a single treatment. In this context, binary designs are inefficient.

We obtain optimal designs by generalizing the method introduced by Kushner (1997) and

Kunert and Martin (2000). This generalization places the method proposed by Bailey and

Druilhet (2004) into Kushner’s context. We also propose efficient designs generated by

only one sequence.
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1 Introduction

For chronic diseases, cross-over designs are the most common experimental devices for

comparing treatments and selecting the best one. The models associated to these designs

usually include carry-over effects. These effects may be additive or interact with treatment

effects. Considering all possible interactions induces a model with too many parameters.

Kempton et al. (2001) propose a model where carry-over effects are proportional to direct

treatment effects: see Bailey and Kunert (2006) for optimal designs related to this model.

Afsarinejad and Hedayat (2002) proposed another parsimonious model with partial inter-

actions between treatment and carryover effects: the carryover effect of a treatment is

different depending on whether the treatment is preceded by itself or not. For such mod-

els, Kunert and Stufken (2002) found that universally optimal designs for direct treatment

effects have no consecutive pairs of identical treatments. However, most often the aim of

an experiment is to select a single treatment which will be used alone and therefore will

always be preceded by itself. In that case, the parameters of interest are the total effects

which are the sum of direct treatment effects and self carryover effects. Bailey and Druil-

het (2004) considered total effects for models without interactions and showed that binary

designs are efficient for such effects. Unfortunately, total effects under the Afsarinejad and

Hedayat (2002) model are not estimable for designs with no treatment preceded by itself

and binary designs cannot be used in that context.

In this paper, we consider optimal cross-over designs for total effects under the model
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proposed by Afsarinejad and Hedayat (2002). In Section 2, we present the designs and the

models. In Section 3, we show that the extremal representation of information matrices

proposed by Gaffke (1987) and Pukelsheim (1993, chapter 3) may be used to generalize

the techniques developed by Kushner (1997) and Kunert and Martin (2000). We also

show how this generalization places the Bailey and Druilhet (2004) approach in Kushner’s

context. In Section 4, we obtain optimal approximate designs and also efficient designs

generated by only one sequence. In Section 5, we show that the optimal sequences found

in Section 4 also give optimal designs when period effects are included in the model.

2 The designs and the models

Let b be the number of subjects, k the number of periods and t the number of treatments.

For 1 ≤ u ≤ b and 1 ≤ j ≤ k, denote by d(u, j) the treatment assigned to subject u in

period j. We first consider a model without period effects. It will be seen in Section 5

that the optimal designs obtained for this model are also optimal when period effects are

present. Following Hedayat and Afsarinejad (2002), we assume that the response yuj is:

yuj = βu + τd(u,j) + λd(u,j−1) + χd(u,j−1)d(u,j) + εuj (1)

where βu is the effect of subject u, τi is the effect of treatment i, λi is the general carryover

effect of treatment i, χii′ is the additional specific carryover effect when treatment i is

followed by itself (χii′ = 0 if i 6= i′), εuj are independent identically distributed errors

with expectation 0 and variance σ2. Note that this parametrization, although equivalent,

is slightly different from that proposed by Hedayat and Afsarinejad (2002) or Kunert and

Stufken (2002): the self carryover effect of Treatment v is here equal to λv + χv,v. The

vector χ corresponds to an interaction between direct treatment and carryover effects. In



Optimal cross-over designs 4

vector notation, we have:

Y = B β + Td τ + Ld λ + Sd χ + ε (2)

where B, Td, Ld and Sd are the incidence matrices of subjects, direct treatments, carryover

and specific self-carryover effects. We define the vector φ of total effects by φ = τ + λ + χ

which corresponds to the effect of a treatment when preceded by itself. Note that if

θ′ = (τ ′, λ′, χ′) and K ′ = (It|It|It), then

φ = K ′θ.

Because the effect of having no treatment differs from the carryover effect of any

treatment, we consider here only designs with pre-periods, i.e. designs with one period,

called pre-period, added at the beginning. On this preperiod, each subject receives a

treatment but the response is not used in the analysis. In this paper, we consider only

circular designs, i.e. the treatment assigned to a subject in the pre-period is the same as the

treatment assigned in the last period. The circularity condition may be written d(i, 0) =

d(i, k). One interest of the circularity is that we may use the randomization proposed

by Azäıs (1987) which preserve the neighbour structure of the treatment sequences. We

denote by Ωt,b,k the set of all circular designs with t treatments, b subjects and k periods.

3 Upper bound for the information matrix

In this section, we present a general method to derive optimal crossover designs. We

generalize to more general effects the techniques developed by Kushner (1997), Kunert

and Martin (2000) for direct treatment effects and by Bailey and Druilhet (2004) for total

effects. The key point of this approach is the linearisation derived from the extremal

representation of the information matrix.
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Denote by 1lk, Ik and Jk respectively the vector of ones of length k, the (k, k) identity

matrix and the (k, k) matrix of ones. For any matrix A, denote by A+ the Moore-Penrose

inverse of A and by prA = A(A′A)+A′ the projection matrix onto the column span of A.

We also denote pr⊥A = I−prA and Qk = pr⊥1lk = Ik−k−1Jk. For a square matrix A, tr(A)

is the trace of A. For two symmetric matrices M and N , M ≤ N means that N −M is a

nonnegative definite matrix (Loewner ordering). A matrix M is completely symmetric if

M = aI + bJ for some scalars a and b.

3.1 Information matrices and its extremal representation

Consider a generic partitioned linear model:

Y = Aα + Bβ + ε with E(ε) = 0 and var(ε) = σ2I,

where α is a vector of length qt. From Kunert (1983), the information matrix C[α] of the

parameter α is

C[α] = A′pr⊥B A. (3)

Consider now a subsystem K ′α where K is a (qt, s) matrix. The information matrix

C[K ′α] of K ′α may be defined by the extremal representation (Gaffke, 1987 or Pukelsheim,

1993):

C[K ′α] = min
L∈Rqt×s:L′K=Is

L′C[α]L, (4)

where the minimum is taken relative to the Loewner ordering. It is worth noting that the

extremal representation (4) has a unique global minimum for any nonnegative symmetric

matrix C[α]. If L∗ is a (qt, s) matrix that minimizes L′C[α]L under the constraint L′K =
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Is, then

C[K ′α] = L∗′C[α]L∗. (5)

The fact that, for a fixed L, L′C[α]L is linear in C[α] will be useful in Section 4.2, where

C[α] will be decomposed in a sum of several matrices.

The main issue in constructing optimal designs will be to find L∗ for the designs can-

didate to optimality. Because there exists a unique global minimum in (4), L∗ minimizes

L′C[α]L under the constraint L′K = Is iff L∗ minimizes tr(L′C[α]L). So, we have

tr(C[K ′α]) = tr(L∗′C[α]L∗) = min
L∈Rqt×s:L′K=Is

tr(L′C[α]L). (6)

In our problem, the matrix C[α] will have a natural block structure with completely

symmetric blocks. In that case, the following results show that the blocks of L∗ are also

completely symmetric.

Proposition 1 Let C[α] = (Cij)1≤i,j≤q be a nonnegative symmetric block matrix, where

the blocks Cij, 1 ≤ i, j ≤ q, are (t, t) completely symmetric matrices. Let K ′ = (K ′
1, ..., K

′
q)

where for all i, Ki are (t, t) completely symmetric matrices. Then C[K ′α] is completely

symmetric. Moreover, if L∗′ = (L∗1
′, ..., L∗q

′) satisfies both (5) and the constraint L∗′K = It,

then L∗i , 1 ≤ i ≤ q, can be chosen to be completely symmetric.

Proof : The proof is given in Appendix A. 2

The interest of this result is that L∗i = a∗i It + b∗i Jt can be found out by minimizing

q(a1, b1, ..., aq, bq) = tr(L′C[α]L) under the constraint L′K = It, where L′ = (L′1, ..., L
′
q)

and Li = aiIt + biJt. Note that q is a quadratic form in a1, b1, ..., aq, bq.

Corollary 2 Under the notations and assumptions of Proposition 1, if moreover Cij1lt =

0, 1 ≤ i, j ≤ q, then L∗i can be chosen to be equal to a∗i It for some scalar a∗i .
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Proof : By Proposition 1, L∗i can be chosen to be equal to a∗i It + b∗i Jt. Since CijJt =

JtCij = 0, L′iCijLj = a∗i a
∗
jCij does not depend on b∗i and b∗j and the result follows. 2

The following lemma, although straightforward, is useful to explicitly calculate L∗.

Lemma 3 Let C be a nonnegative (v, v) matrix, γ be a k-vector, and γ 7→ Lγ be a lin-

ear mapping with Lγ a (v, w) matrix. Then, q(γ) = tr
(
L′γCLγ

)
is convex quadratic in

γ1, ..., γk. Moreover, q(γ∗) is a minimum of q(γ) if and only if d q/d γ (γ∗) = 0.

3.2 Some examples

Under the notations and assumptions of Proposition 1 and Corollary 2, i.e. assuming that

Cij are completely symmetric and that Cij1lt = 0, we show how in some cases the matrix

L∗ can be obtained. The three first examples give a new presentation of known results

established by Kushner (1997), Kunert and Martin (2000) and Bailey and Druilhet (2004).

The last example will be used in this paper. We denote cij = tr(Cij).

Example 1 : q = 2 and K ′ = (It|0). By Corollary 2 and because L∗′K = It, L∗′ can be

chosen to be equal to (It|x∗ It) for some x∗ ∈ R. By (6), x∗ can be found by minimizing

q(x) = tr(L′C[α]L) = c11 + 2x c12 + x2c22.

This quadratic function was used by Kushner (1997, Eq. 4.1). When c22 6= 0, the mini-

mum is obtained for x∗ = −c12/c22 and we found C[K ′α] = C11 − C12C+
22C21, the Schur-

complement of C22.

Example 2 : q = 3 and K ′ = (It|0|0) . As in example 1, L∗′ can be chosen to be equal to
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(It|x∗It|y∗It), where x∗ and y∗ minimize the quadratic function

q(x, y) = tr(L′C[α]L) = c11 + x2c22 + y2c33 + 2xc12 + 2yc13 + 2xyc23.

This quadratic function was used by Kunert and Martin (2000, Proposition 3).

Example 3 : q = 2 and K ′ = (It|It). We have L∗′ = (x∗ It|(1− x∗) It), where x∗ minimizes

q(x) = x2c11 + (1− x)2c22 + 2x(1− x)c12.

If C11 = C22, then x∗ = 1
2 and L∗ = 1

2K. Therefore, C[K ′α] = 1
4K ′C[α]K. This equation

was obtained in a different way by Bailey and Druilhet (2004) in order to construct optimal

designs for total effects under models without interactions.

Example 4: q = 3 and K ′ = (It|It|It). We assume that C11 = C22 and that C13 = C23 (see

Section 4.1). We no longer assume that C331lt = 0. We have L∗′ = (x∗1 It|x∗2It|(1−x∗1−x∗2)It

+y∗Jt), where x∗1, x∗2 and y∗ minimize

q(x1, x2, y) = (x2
1 + x2

2) c11 + 2 x1 x2 c12 − (x1 + x2)2(2 c13 − c33)

+2(x1 + x2)(c13 − c33 − y c̃33)

+2 y c̃33 + t y2 c̃33 + c33 (7)

with c̃33 = tr(JtC33) = t−1tr(JtC33Jt). Note that L∗ does not satisfy L∗′K = It. This is in

fact a simplified form of

L̃∗ ′ = (x∗1 It + u∗Jt|x∗2It − (u∗ + y∗)Jt|(1− x∗1 − x∗2)It + y∗Jt) ,

with L̃∗ ′K = It, noting that the terms u∗Jt and (u∗ + y∗)Jt vanish in the expression of

L̃∗ ′C[α]L̃∗. By Lemma 3 and by symmetry of q(x1, x2, y) in x1, x2, it is easy to see that
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x∗1 and x∗2 can be chosen to be equal. Denote x∗ = x∗1 = x∗2. From (7), x∗ and y∗ can be

found by minimizing

q (x, y) = c33 + 4 (c13 − c33) x + 2c̃33y + 2 (c11 + c12 − 4c13 + 2c33)x2

+ tc̃33y
2 − 4c̃33xy

(8)

and the minimum, q(x∗, y∗), is equal to tr(C[K ′α]).

4 Optimal circular crossover designs for total effects

From Kiefer (1975), a design d∗ for which the information matrix Cd∗ [φ] is completely

symmetric and that maximizes the trace of Cd[φ] over all the designs d in Ωt,b,k is uni-

versally optimal. In this section, we propose a method to construct universally optimal

circular designs for total effects.

4.1 Upper bound of tr Cd[φ]

For a design d, the information matrix for the whole parameter θ′ = (τ ′, λ′, χ′) in Model

(1) is:

Cd[θ] =




T ′d pr⊥(B) Td T ′d pr⊥(B) Ld T ′d pr⊥(B) Sd

L′d pr⊥(B) Td L′d pr⊥(B) Ld L′d pr⊥(B) Sd

S′d pr⊥(B) Td S′d pr⊥(B) Ld S′d pr⊥(B) Sd




=




Cd11 Cd12 Cd13

C′d12 Cd22 Cd23

C′d13 C′d23 Cd33




.

By circularity of the designs, B′Td = B′Ld , T ′dTd = L′dLd and T ′dSd = L′dSd = S′dSd =

S′dLd = S′dTd and therefore Cd22 = Cd11 and Cd23 = Cd13. As in Section 3.2, we define

cdij = tr(Cdij) and c̃dij = tr(Jt Cdij).

A design is said to be symmetric if all the blocks Cdij are completely symmetric, or

equivalently, if Cd[θ] is invariant by any permutations of the treatment labels.
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Proposition 4 For any design d, the information matrix for total effects φ satisfies:

trCd[φ] ≤ min
x,y

qd(x, y)

where qd(x, y) is equal to q(x, y) defined by (8). Equality holds if Cdij [θ] are completely

symmetric for 1 ≤ i ≤ 3 and 1 ≤ j ≤ 3.

Proof : For a design d, we denote Cd[θ] = 1
t!

∑
σ∈St

(I3⊗Pσ) Cd[θ] (I3⊗P ′
σ) the symmetrized

information matrix for θ. By construction, the corresponding matrices Cdij are completely

symmetric for all i and j. Moreover, cdij = tr(Cdij) = tr(Cdij) and c̃dij = tr(Jt Cd33) =

tr(Jt Cd33). Denote by Cd[φ] the matrix obtained from Cd[θ] by (4). By concavity of Cd[φ]

with respect to Cd[θ], (see Pukelsheim, 1993 p. 77), and by Lemma 10 in Appendix A,

Cd[φ] ≥ 1
t!

∑
σ

PσCd[φ]P ′
σ

and trCd[φ] ≤ trCd[φ] = minx,y qd(x, y). 2

Note that qd(x, y), resp. Cd[θ], correspond to q(x, y), resp. C[α], of Example 4 of

Section 3.2 and Proposition 1.

A design is called degenerate if c̃d33 = tr(Jt Cd33[θ]) = 0. A design is degenerate if and

only if its sequences either contains a single treatment or has no treatment preceded by

itself. For such designs, total effects are not estimable. For example, binary designs are

degenerate. Note that the information matrix of a degenerate design is null and therefore

such a design is not considered. The following lemma shows that the minimization of

qd(x, y) may be reduce to the minimization of a one variable quadratic function.

Lemma 5 Let d be a non-degenerate design. The values x∗ and y∗ that minimize qd(x, y)

satisfy 2x∗ − ty∗ − 1 = 0. Moreover, x∗ minimizes qd(x), where

qd(x) = cd33− 1
t
c̃d33 +4(cd13−cd33 +

1
t
c̃d33)x+2(cd11 +cd12−4cd13 +2cd33− 2

t
c̃d33)x2, (9)
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and qd(x∗, y∗) = qd(x∗).

Proof : by Lemma 3, ∂qd/∂y (x∗, y∗) = 0 at the minimum. For a non-degenerate design,

this is equivalent to 2x∗ − ty∗ − 1 = 0. Replacing y by (2x − 1)/t in qd(x, y), we find

qd(x, (2x− 1)/t) = qd(x). Therefore, x∗ necessarily minimizes qd(x). 2

4.2 Decomposition over the subjects

It is well known that Cd[θ] is the sum of the information matrices Cdu corresponding

to Subject u. Denote by Tdu, Ldu and Sdu the incidence matrices for Subject u. Thus,

T ′d = (T ′d1 | ... | T ′db) , L′d = (L′d1 | ... | L′db), S′d = (S′d1 | ... | S′db) and:

Cd[θ] =
b∑

u=1

Cdu[θ] =
b∑

u=1




T ′duQkTdu T ′duQkLdu T ′duQkSdu

L′duQkTdu L′duQkLdu L′duQkSdu

S′duQkTdu S′duQkLdu S′duQkSdu




(10)

We decompose in the same way tr (Cdij) and tr (CdijJt):

cdij = tr (Cdij) =
b∑

u=1

c
(u)
dij and c̃dij = tr (CdijJt) =

b∑

u=1

c̃
(u)
dij ,

denoting by c
(u)
dij and by c̃

(u)
dij the contributions of Subject u. For example, for i = j = 1 we

have:

cd11 = tr (Cd11) = tr

(
b∑

u=1

T ′duQkTdu

)
=

b∑

u=1

c
(u)
d11 with c

(u)
d11 = tr(T ′duQkTdu).

Simplifications of these forms give:

c
(u)
d11 = k − ns

u

k
, c

(u)
d12 = mu − ns

u

k
, c

(u)
d13 = mu − lu

k
, c

(u)
d33 = mu − ms

u

k
, c̃

(u)
d33 = mu − m2

u

k
,

with ns
u =

∑t
i=1 n2

ui, mu =
∑t

i=1 mui, ms
u =

∑t
i=1 m2

ui, lu =
∑t

i=1 nuimui, denoting by

nui the number of periods where Subject u receives treatment i and by mui the number
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of times Treatment i is preceded by itself for Subject u. It follows that:

qd (x) =
b∑

u=1

h
(u)
d (x)

where

h
(u)
d (x) = c

(u)
d33 −

1
t
c̃
(u)
d33 + 4(c(u)

d13 − c
(u)
d33 +

1
t
c̃
(u)
d33)x + 2(c(u)

d11 + c
(u)
d12 − 4c

(u)
d13 + 2c

(u)
d33 −

2
t
c̃
(u)
d33)x

2.

Two sequences of treatments in two subjects u1 and u2 are said to be equivalent if

(
ns

u1
,mu1 ,m

s
u1

, lu1

)
=

(
ns

u2
,mu2 ,m

s
u2

, lu2

)
, which is the case if one sequence is obtained

from the other one by relabelling the treatments or by a circular permutation of the peri-

ods. So, for given k and t, we can divide the set of all possible treatment sequences into

K equivalence classes of treatments. Since ns
u, mu, ms

u, lu and c
(u)
dij are the same for all u

from one equivalent class `, we change the notation and write ns
` , m`, ms

` , l` and cdij(`)

instead. We define:

h` (x) =
(

m` −
ms

`

k
− δ`

t

)
+

4
k

(
ms

` − l` +
kδ`

t

)
x

+2
{

(k −m`) +
2
k

(2l` − ns
` −ms

`)−
2δ`

t

}
x2

where δ` = m` (1−m`/k) . For a design d, we denote by πd` the proportion of subjects

assigned to the class ` (1 ≤ ` ≤ K). So, we have:

qd(x) = b

K∑

`=1

πd` h` (x) . (11)

4.3 Approximate designs

A design, also called exact design, is characterized, up to a subject permutation, by the

proportions of subjects receiving each sequence of treatments. These proportions are nec-

essarily multiple of 1/b. If we remove this restriction, we obtain approximate designs,
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sometimes called continuous block designs. The information matrix associated to an ap-

proximate design d is defined similarly to (10) by

Cd[θ] = b
∑

s

π(ds)Cs[θ]

where π(ds) is the proportion of sequences receiving the sequence s and Cs[θ] is the infor-

mation matrix associated to the sequence s. The information matrix Cd[φ] for total effects

is obtained from Cds[θ] by (4). Note that (11) also hold for approximate designs with

πd` =
∑

s∈`

π(ds).

The notion of symmetric or universally optimal design can be directly extended to approx-

imate designs. Let d be an exact or approximate design, then the symmetrized design,

denoted by d̄, is the symmetric design such that πd` = πd̄` for any equivalent class `. Note

that Cd[θ] defined in the proof of Proposition 4 is equal to Cd̄[θ].

4.4 Construction of optimal approximate design

Our goal, in order to find an optimal approximate designs d∗, is to obtain a value x∗ and

proportions π′d∗ = (πd∗1, ..., πd∗K) such that:

qd∗ (x∗) = max
πd

q∗d with q∗d = min
x

qd(x).

The following propositions characterizes universally optimal approximate designs.

Proposition 6 (Kunert and Martin, 2000) Consider a symmetric approximate de-

sign d∗ ∈ Ωt,b,k and a point x∗ such that the first derivative of qd∗ is zero. If we have

also for all 1 ≤ ` ≤ K :

bh` (x∗) ≤ q∗d∗ ,

then d∗ is universally optimal over Ωt,b,k.
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An optimal design for this one-dimensional problem may be obtained using one class

or a mixture of two different classes (see Kushner, 1997). The following method (for given

k and t) can be used in order to prove that a design d∗ is optimal:

• If the optimal symmetric design d∗ is generated by one treatment sequence `1, i.e.

qd∗ (x) = bh`1 (x):

- find x∗ that minimizes h`1 and then the minimum q∗d∗ of qd∗ ,

- check that for 1 ≤ ` ≤ K , bh` (x∗) ≤ q∗d∗ (cf. Prop. 6).

• If the optimal symmetric design d∗ is generated by two treatment sequences, `1 and

`2, i.e. qd∗ (x) = b {πd∗`1h`1 (x) + πd∗`2h`2 (x)}:

- find an admissible intersection point x∗ according to the definition of Kushner

(1997), i.e. h`1 (x∗) = h`2 (x∗) and

∂h`1

∂x
(x∗)

∂h`2

∂x
(x∗) ≤ 0,

- find the minimum q∗d∗ = qd∗(x∗) of qd∗ ,

- check that for 1 ≤ ` ≤ K , bh` (x∗) ≤ q∗d∗ (cf. Prop. 6).

Note that the optimal proportions can be found by the following method.

∂qd∗

∂x
(x∗) = 0 ⇐⇒ b

{
πd∗`1

∂h`1

∂x
(x∗) + πd∗`2

∂h`2

∂x
(x∗)

}
= 0.

Denote ai = (∂h`i/∂x) (x∗), i = 1, 2. The optimal proportions are then:

π∗d∗`1 =
a2

a2 − a1
and π∗d∗`2 =

a1

a1 − a2
.

When t ≥ k, the following proposition show that the number of equivalent classes that

possibly appear in an optimal design may be reduce to k − 1. Note that for a sequence `

with a single treatment can be neglected since h`(x) ≡ 0. We denote by bxc the integer

part of x.
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Proposition 7 For t ≥ k, if a symmetric approximate design is universally optimal, then

the treatment sequences present in the design necessarily satisfies:

1. all the periods receiving the same treatment are contiguous in the sequence.

2. each treatment present in the sequence occurs bk/vc or bk/vc + 1 times, where v is

the number of different treatments present in the sequence. The number of treatments

that occur bk/vc + 1 times is k − vbk/vc and the number of treatments that occur

bk/vc times is v(bk/vc+ 1)− k.

The proof is given in Appendix B. When k ≥ t, it is worth noting that for each value of v

there is only one equivalent class of treatment sequences that may appear in the optimal

design.

For a sequence ` satisfying Conditions 1 and 2 of Proposition 7, we have m`i = n`i− 1

for any treatment present in `. Moreover the number v` of treatments present in ` is equal

to k −m`, ns
` = ms

` + m` + k and l` = ms
` + m`. Therefore, h` simplify to:

h` (x) =
(

m` −
ms

`

k
− δ`

t

)
+

4
k

(
kδ`

t
−m`

)
x + 2

{
(k −m`)

(
k − 2

k

)
− 2δ`

t

}
x2.

The restriction t ≥ k in Proposition 7 is purely technical. We conjecture that the

proposition is still valid for t < k. This conjecture has been checked for k ≤ 10 (see

Section 4.5).

4.5 Examples of optimal approximate designs and efficient exact designs.

We give here optimal designs in the sense of approximate design theory for several values

of k. For k = 3, 4 we give explicit formulae. For k = 5, ..., 10, we present numerical results.

For each situation, we also propose efficient or optimal designs generated by one sequence,

i.e. design obtained from one sequence by considering all the treatment permutations.
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1) The case k = 3. An optimal design in the sense of approximate theory is generated by

one or two sequence in the following set of sequences:

Sequence ns
` m` ms

` l`

[ 1 2 3 ] 3 0 0 0

[ 1 1 2 ] 5 1 1 2

So the functions h` are given by (we identify each class with its value of m`):

h0 (x) = 2x2 and h1 (x) =
2
3

(
1− 1

t

)
− 4

3

(
1− 2

t

)
x +

4
3

(
1− 2

t

)
x2.

It is impossible in that case to satisfy Proposition 6 using only one of these two sequences.

So, we must find an admissible intersection point x∗. Some algebra shows that:

x∗ =

{
(t− 2)2 + (t− 1) (t + 4)

}1/2
− (t− 2)

t + 4
.

The proportions in the optimal design d∗ are then:

π∗d∗0 = 1− π∗d∗1 and π∗d∗1 =
3t

t + 4

{
1− (t− 2)

t1/2 (2t− 1)1/2

}
.

The following table gives the optimal proportions for several values of t.

t 3 4 5 10 20 ∞

Prop. [ 1 2 3 ] 0.046 0.067 0.079 0.100 0.111 0.121

Prop. [ 1 1 2 ] 0.954 0.933 0.921 0.899 0.889 0.879

The sequence [ 1 1 2 ] is dominant in this mixture. So it can be interesting in practice to

use designs generated by only this sequence. The quality of such designs can be quantified

by the classical Φp criteria. We know (see e.g. Druilhet, 2004) that when the information

matrix is completely symmetric Φp does not depend on p. Thus we can derive the efficiency

factor of a design d ∈ Ωt,b,3 generated by one sequence `:

Eff (d) =
b h∗`

qd∗ (x∗)
with h∗` = min

x
h` (x) .
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Note that the efficiency factors given in approximate design theory are lower bounds of

efficiency factors obtained in exact design theory. Numerical applications are given in the

following table:

t 3 4 5 10 20 ∞

Eff. [ 1 1 2 ] 0.989 0.985 0.982 0.976 0.974 0.971

Eff. [ 1 2 3 ] 0 0 0 0 0 0

2) The case k = 4. An optimal approximate design is generated by the sequence [ 1 1 2 2 ].

As an example we can consider, for t = 4, the optimal design such that:

D =




1 2 1 3 1 4 2 3 2 4 3 4

1 2 1 3 1 4 2 3 2 4 3 4

2 1 3 1 4 1 3 2 4 2 4 3

2 1 3 1 4 1 3 2 4 2 4 3




∈ Ω4,12,4.

Note that, by circularity, the design obtained by taking away one out of every two columns

is universally optimal over all the designs in Ω4,6,4.

3) The case k = 5. The optimal design is generated by the following mixtures:

t 3 4 5 10 20 ∞

Prop. [ 1 1 2 2 3 ] 0.167 0.250 0.300 0.400 0.450 0.500

Prop. [ 1 1 1 2 2 ] 0.833 0.750 0.700 0.600 0.550 0.500

The efficiencies of designs generated by only one sequence are:

t 3 4 5 10 20 ∞

Eff. [ 1 1 2 2 3 ] 0.844 0.895 0.918 0.949 0.961 0.970

Eff. [ 1 1 1 2 2 ] 0.984 0.977 0.972 0.963 0.959 0.955

It can be observed that the design generated by [ 1 1 2 2 3 ] is more efficient than the one

generated by [ 1 1 1 2 2 ] for t > 18.
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4) The case k = 6. The optimal design is generated by the following mixtures:

t 3 4 5 6 7 ≥ 8

Prop. [ 1 1 2 2 3 3 ] 0.400 0.628 0.775 0.878 0.954 1.000

Prop. [ 1 1 1 2 2 2 ] 0.600 0.372 0.225 0.122 0.046

The efficiencies of designs generated by only one sequence are:

t 3 4 5 6 7 ≥ 8

Eff. [ 1 1 2 2 3 3 ] 0.962 0.989 0.997 0.999 0.999 1.000

Eff. [ 1 1 1 2 2 2 ] 0.962 0.942 0.930 0.922 0.917

We note that the sequence [ 1 1 2 2 3 3 ] is always more efficient than the sequence [ 1 1

1 2 2 2 ]. It also generates an optimal design when t ≥ 8.

5) The case k = 7. The optimal design is generated by the following mixtures:

t 3 ≥ 4

Prop. [ 1 1 1 2 2 3 3 ] 0.682 1.000

Prop. [ 1 1 1 1 2 2 2 ] 0.318

The efficiencies of designs generated by only one sequence are:

t 3 ≥ 4

Eff. [ 1 1 1 2 2 3 3 ] 0.994 1.000

Eff. [ 1 1 1 1 2 2 2 ] 0.938

We note that he sequence [ 1 1 1 2 2 3 3 ] is always better than the sequence [ 1 1 1 1 2 2

2 ] and generates the optimal design when t ≥ 4.

6) The case k = 8, 9, 10. We find that the optimal design is generated, for every t, by only

one sequence. These optimal sequences are given by:

t 8 9 10

Sequence [ 1 1 1 2 2 2 3 3 ] [ 1 1 1 2 2 2 3 3 3 ] [ 1 1 1 1 2 2 2 3 3 3 ]
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5 Models with period effects

We consider the model:

yij = αj + βi + τd(i,j) + λd(i,j−1) + χd(i,j−1)d(i,j) + εij , (12)

where αj is the effects of the period j. We denote by A the corresponding incidence matrix.

A strongly symmetric design is a design such that all the sequences belonging to the same

equivalent class appear equally often. This notion is slightly more restrictive than the

notion of symmetric design defined in Section 4.1 but corresponds to the design generated

by one sequence or a mixture of sequences.

Proposition 8 A strongly symmetric design which is universally optimal for total effects

under Model (1) is also universally optimal under Model (12).

Proof : The proof is a direct consequence of the following lemma. 2

Lemma 9 For a strongly symmetric design, the information matrix for the total effects

is the same under models (1) and (12)

Proof : Let d be a strongly symmetric design. The difficulty is that interaction and period

effects are not orthogonal. Write θ̃′ = (τ ′|λ′|χ′|α′) and C̃d[θ̃] the corresponding information

matrix. We want to prove that C̃d[K̃ ′θ̃] = Cd[K ′θ] where K̃ ′ = (It|It|It|0t×k). We write:

C̃d[θ̃] =




Cd[θ] Cd12

Cd21 Cd22




where C ′
d12 = (0k×t|0k×t|D′

d) with Dd the (t×k) matrix (pd11lt|pd21lt|...|pdk1lt). The scalars

pdj depend only on the number of times a treatment is preceded by itself on period j. Note
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that the usual orthogonality condition (see Kunert, 1983) between interaction and period

effects is Dd = 0 which is not the case here. The key point of the proof is that

Qt Dd = 0. (13)

Denote by L̃∗d a matrix such that C̃d[K̃ ′θ̃] = L̃∗d
′C̃d[θ̃]L̃∗d and L̃∗d

′K̃ = It. We write

L̃∗d
′ = (M∗

d
′|N∗

d
′) where Md is a (3t × t) matrix and N∗

d is a (k × k) matrix. It is easy

to see that Cd[K ′θ]1lt = 0 and, since C̃d[K̃ ′θ̃] ≤ Cd[K ′θ], we have C̃d[K̃ ′θ̃]1lt = 0. So,

Cd[K̃ ′θ̃] = QtC̃d[K̃ ′θ̃]Qt. Therefore, L̃∗ can be chosen to be equal to (M∗
dQt|N∗

dQt). For

any permutation σ, we have (I3 ⊗ Pσ)Cd12 = Cd12 and therefore, similarly to Proposition

1, it can be shown that the three (t × t) blocks of M∗
d can be chosen to be completely

symmetric. So, L̃∗d
′ can be chosen to be equal to (x∗1Qt|x∗2Qt|(1− (x∗1 + x∗2))Qt|N∗). Put

L̃′ = (M ′|N ′) with M ′ = (x1Qt|x2Qt|(1− (x1 + x2)Qt). By (13), we have M ′Cd12 = 0 and

then

C̃d[K̃ ′θ̃] = min
x1,x1,N

L̃′C̃[θ̃]L̃ = min
x1,x1,N

(M ′Cd[θ]M + N ′Cd12N).

Since x1, x2 and N vary freely, N can be chosen to be equal to 0 and therefore, from

Example 4 of Section 3.2 and the constraint on y obtained in Lemma 5, M∗ ′C̃[θ̃]M∗ =

L∗ ′Cd[θ]L∗. The result follows. 2
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Appendix A

We give here the proof of Proposition 1, using the same notations and assumptions. We

first establish a general result where we do not assume that the block matrices Cij are

completely symmetric. This result will also be used in Proposition 4.

Lemma 10 Consider a permutation σ on {1, ..., t} and denote by Pσ the corresponding

permutation matrix. Denote by C[K ′α], resp. Cσ[K ′α], the matrices defined from C[α],

resp. from (Iq ⊗ Pσ)C[α](Iq ⊗ P ′
σ), by (4). We have:

Cσ[K ′α] = Pσ C[K ′α] P ′
σ.

Proof :

Cσ[K ′α] = min
L∈Rqt×t:L′K=It

L′(Iq ⊗ Pσ)C[α](Iq ⊗ P ′
σ)L (by (15)),

= Pσ

{
min

L∈Rqt×t:L′K=It

P ′
σL′(Iq ⊗ Pσ)C[α](Iq ⊗ P ′

σ)LPσ

}
P ′

σ.

Put Lσ = (Iq⊗P ′
σ)LPσ. Since the blocks of K are completely symmetric, (Iq⊗P ′

σ)K = KPσ

and then L′σK = It. Because L ↔ Lσ is a one to one mapping:

Cσ[K ′α] = Pσ

(
min

Lσ∈Rqt×t:L′σK=It

L′σC[α]Lσ

)
P ′

σ = Pσ C[K ′α] P ′
σ. (14)

2

We now assume that the block matrices Cij are completely symmetric.

Step 1: We show that the set E of matrices L that minimize L′C[α]L under the constraint

L′K = It is an affine subspace. Consider La and Lb in E with La 6= Lb. It is sufficient to

prove that Lγ = γLa + (1− γ)Lb belongs to E for any real γ. We have L′γK = It and

L′γC[α]Lγ = γ2L′aC[α]La + (1− γ)2L′bC[α]Lb + γ(1− γ)(L′aC[α]Lb + L′bC[α]La).

This quadratic function in γ, whose coefficients are symmetric matrices, admits a min-

imum relative to the Loewner ordering at two distinct values of γ: γ = 0 and γ = 1.
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Therefore it is constant. So, Lγ minimizes L′C[α]L for any γ ∈ R.

Step 2: For any permutation σ on {1, ..., t} and denote by Pσ the corresponding permu-

tation matrix. We want to prove that if L∗ ∈ E, so does L∗σ = (Iq ⊗ P ′
σ) L∗Pσ. Since Cij

and Ki are completely symmetric:

(Iq ⊗ Pσ)C[α](Iq ⊗ P ′
σ) = C[α]. (15)

By Lemma 10,

C[K ′α] = Cα[K ′α] = Pσ[K ′α]P ′
σ

for any permutation σ and C[K ′α] is completely symmetric. From (14),

C[K ′α] = min
Lσ∈Rqt×t:L′σK=It

L′σC[α]Lσ

and therefore C[K ′α] = L∗σ
′C[α]L∗σ.

Step 3: If L∗ ∈ E then, by steps 1 and 2, L̄∗ = 1
t!

∑
σ L∗σ also belongs to E. By

construction, L̄∗i is completely symmetric and the proof is complete.

Appendix B

We prove here Proposition 7. From (11), we have h` (x) = A` + B` x + C` x2 where: A` =

m`−
ms

`

k
−δ`

t
, B` =

4
k

(
ms

` − l` +
kδ`

t

)
and C` = 2

{
(k −m`) +

2
k

(2l` − ns
` −ms

`)−
2δ`

t

}
.

We denote by v` the number of treatments present in the sequence `. For any treatment

i in `, we have:

n`i ≥ m`i + 1 (16)

with equality if and only if treatment i occurs in consecutive periods. In general, each

treatment appears in the sequence ` in several groups of consecutive periods. The number

of such groups is γi = n`i−m`i. From `, we construct a new sequence ˜̀as follows: in each

group of consecutive periods receiving the same treatment, we replace the treatment that
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occurs in this group by a new treatment, such that in the new sequence ˜̀, each treatment

have only one group. For example ` = (1, 1, 2, 2, 2, 1, 3, 2, 2) gives ˜̀= (1, 1, 2, 2, 2, 4, 3, 5, 5).

We have mè= m` and vè= γ = k−m`, where γ =
∑

i γi is the number of different groups

in `. The existence of ˜̀ is assured by the fact that t ≥ k.

Lemma 11 If d is a non degenerate design, then x∗d that minimizes qd(x) is positive.

Proof. From Lemma 3 we know that h` (x) is convex, then C` ≥ 0. So it is sufficient to

show that B` ≤ 0. If C` = 0 then B` = 0 because we know that h` (x) admits a minimum.

In that case, any x is a minimum and can be chosen to be positive. We assume now that

C` > 0. By (16), we have l` =
∑

i m`in`i ≥ m` + ms
` and then

B` ≤ 4
kt

m` (k −m` − t)

with equality if and only if the treatments present in the sequence are contiguous. In that

case a sequence ˜̀ satisfies k −mè= vè and, since t ≥ vè, Bè≤ 0. Consider now a general

sequence ` and denote by ˜̀ its associated sequence with contiguous treatments. Since

mè= m` we have also δ` = δè and then B` ≤ Bè if and only if (l` −ms
`) ≥

(
lè−ms

è
)

. But:

l` −ms
` =

v∑̀

i=1

m`i (n`i −m`i) ≥
v∑̀

i=1

m`i = m` =
vè∑

i=1

mèi
(
nèi −mèi

)
= lè−ms

è

with equality if and only if ` = ˜̀. So we have for every sequence `: B` ≤ Bè≤ 0. Therefore,

by (11), x∗d = −(
∑

` πdlB`)/(2
∑

` πdlC`) is non-negative since the denominator is positive

for a non degenerate design. ¤

The proof of the Proposition 7 is given below.

Step 1: Let ` be a sequence containing v` different treatments numbered 1, ..., v` and ˜̀

the associated sequence defined above. We want to prove that hè(x) > h`(x) for all x ≥ 0

and ` 6= ˜̀. The idea is to show that A` < Aè, B` < Bè and C` < Cè. Note that m` = mè

so δ` = δè. Then:
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• We show that C` < Cè. It is equivalent to show that (ns
` − 2l` + ms

`) >
(
ns
è− 2lè+ ms

è
)
.

Since nèi = mèi + 1 we have:

ns
` − 2l` + ms

` =
v∑̀

i=1

(n`i −m`i)
2 =

v∑̀

i=1

γ2
i ≥

v∑̀

i=1

γi = k −m` =
vè∑

i=1

(
nèi −mèi

)2

with equality if and only if ` = ˜̀. The result follows.

• From Lemma 11, we have B` < Bè.

• We show that A` < Aè. It is equivalent to show that ms
` > ms

è. This follows from the

fact that
∑

i m`i =
∑

i mèi and, for all i, m`i ≥ mèi with equality if and only if ` = ˜̀.

Step 2: we have shown that an optimal sequence l necessary satisfy l = l̃. Consider now

the set Lv of sequences ` having the same number v` = v of distinct treatments and such

that ` = ˜̀. For a sequence ` ∈ Lv, n`i = m`i − 1 and m` = k − v. So we have for every

`1, `2 ∈ Lv (see Section 4.2):

h`1 (x)− h`2 (x) =
1
k

(
ms

`2 −ms
`1

)
.

If there exists a sequence `∗ ∈ Lv such that, for any sequence ` in Lv which is not equivalent

to `∗, h`∗ (x) − h` (x) > 0, then only the sequences in the equivalent class corresponding

to `∗ can belong to the optimal design. Such a sequence minimizes ms
` =

∑v
i=1 m2

`i under

the constraint
∑v

i=1 m`i = m`. So, it is well known that the m`∗i or equivalently the n`∗i

(i = 1, ..., v) must be as equal as possible: if k/v is an integer, a treatment present in `∗

occurs k/v times; otherwise, a treatment present in `∗ occurs either bk/vc or bk/vc + 1

times in `∗ ¤
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